siphash.txt: standardize document format
Each text file under Documentation follows a different format. Some doesn't even have titles! Change its representation to follow the adopted standard, using ReST markups for it to be parseable by Sphinx: - Mark titles; - Mark literal blocks; - Use :Author: for authorship; - Don't sumerate chapters; - Adjust identation. NOTE: This file has actually two documents inside it, the first one describing siphash, the second one describing halfsiphash. It is likely a good idea to split them when it gets moved to security/ (which is where it probably belongs). Signed-off-by: Mauro Carvalho Chehab <mchehab@s-opensource.com> Signed-off-by: Jonathan Corbet <corbet@lwn.net>
This commit is contained in:
parent
53708b8748
commit
9135bf4dcb
|
@ -1,6 +1,8 @@
|
||||||
SipHash - a short input PRF
|
===========================
|
||||||
-----------------------------------------------
|
SipHash - a short input PRF
|
||||||
Written by Jason A. Donenfeld <jason@zx2c4.com>
|
===========================
|
||||||
|
|
||||||
|
:Author: Written by Jason A. Donenfeld <jason@zx2c4.com>
|
||||||
|
|
||||||
SipHash is a cryptographically secure PRF -- a keyed hash function -- that
|
SipHash is a cryptographically secure PRF -- a keyed hash function -- that
|
||||||
performs very well for short inputs, hence the name. It was designed by
|
performs very well for short inputs, hence the name. It was designed by
|
||||||
|
@ -13,58 +15,61 @@ an input buffer or several input integers. It spits out an integer that is
|
||||||
indistinguishable from random. You may then use that integer as part of secure
|
indistinguishable from random. You may then use that integer as part of secure
|
||||||
sequence numbers, secure cookies, or mask it off for use in a hash table.
|
sequence numbers, secure cookies, or mask it off for use in a hash table.
|
||||||
|
|
||||||
1. Generating a key
|
Generating a key
|
||||||
|
================
|
||||||
|
|
||||||
Keys should always be generated from a cryptographically secure source of
|
Keys should always be generated from a cryptographically secure source of
|
||||||
random numbers, either using get_random_bytes or get_random_once:
|
random numbers, either using get_random_bytes or get_random_once::
|
||||||
|
|
||||||
siphash_key_t key;
|
siphash_key_t key;
|
||||||
get_random_bytes(&key, sizeof(key));
|
get_random_bytes(&key, sizeof(key));
|
||||||
|
|
||||||
If you're not deriving your key from here, you're doing it wrong.
|
If you're not deriving your key from here, you're doing it wrong.
|
||||||
|
|
||||||
2. Using the functions
|
Using the functions
|
||||||
|
===================
|
||||||
|
|
||||||
There are two variants of the function, one that takes a list of integers, and
|
There are two variants of the function, one that takes a list of integers, and
|
||||||
one that takes a buffer:
|
one that takes a buffer::
|
||||||
|
|
||||||
u64 siphash(const void *data, size_t len, const siphash_key_t *key);
|
u64 siphash(const void *data, size_t len, const siphash_key_t *key);
|
||||||
|
|
||||||
And:
|
And::
|
||||||
|
|
||||||
u64 siphash_1u64(u64, const siphash_key_t *key);
|
u64 siphash_1u64(u64, const siphash_key_t *key);
|
||||||
u64 siphash_2u64(u64, u64, const siphash_key_t *key);
|
u64 siphash_2u64(u64, u64, const siphash_key_t *key);
|
||||||
u64 siphash_3u64(u64, u64, u64, const siphash_key_t *key);
|
u64 siphash_3u64(u64, u64, u64, const siphash_key_t *key);
|
||||||
u64 siphash_4u64(u64, u64, u64, u64, const siphash_key_t *key);
|
u64 siphash_4u64(u64, u64, u64, u64, const siphash_key_t *key);
|
||||||
u64 siphash_1u32(u32, const siphash_key_t *key);
|
u64 siphash_1u32(u32, const siphash_key_t *key);
|
||||||
u64 siphash_2u32(u32, u32, const siphash_key_t *key);
|
u64 siphash_2u32(u32, u32, const siphash_key_t *key);
|
||||||
u64 siphash_3u32(u32, u32, u32, const siphash_key_t *key);
|
u64 siphash_3u32(u32, u32, u32, const siphash_key_t *key);
|
||||||
u64 siphash_4u32(u32, u32, u32, u32, const siphash_key_t *key);
|
u64 siphash_4u32(u32, u32, u32, u32, const siphash_key_t *key);
|
||||||
|
|
||||||
If you pass the generic siphash function something of a constant length, it
|
If you pass the generic siphash function something of a constant length, it
|
||||||
will constant fold at compile-time and automatically choose one of the
|
will constant fold at compile-time and automatically choose one of the
|
||||||
optimized functions.
|
optimized functions.
|
||||||
|
|
||||||
3. Hashtable key function usage:
|
Hashtable key function usage::
|
||||||
|
|
||||||
struct some_hashtable {
|
struct some_hashtable {
|
||||||
DECLARE_HASHTABLE(hashtable, 8);
|
DECLARE_HASHTABLE(hashtable, 8);
|
||||||
siphash_key_t key;
|
siphash_key_t key;
|
||||||
};
|
};
|
||||||
|
|
||||||
void init_hashtable(struct some_hashtable *table)
|
void init_hashtable(struct some_hashtable *table)
|
||||||
{
|
{
|
||||||
get_random_bytes(&table->key, sizeof(table->key));
|
get_random_bytes(&table->key, sizeof(table->key));
|
||||||
}
|
}
|
||||||
|
|
||||||
static inline hlist_head *some_hashtable_bucket(struct some_hashtable *table, struct interesting_input *input)
|
static inline hlist_head *some_hashtable_bucket(struct some_hashtable *table, struct interesting_input *input)
|
||||||
{
|
{
|
||||||
return &table->hashtable[siphash(input, sizeof(*input), &table->key) & (HASH_SIZE(table->hashtable) - 1)];
|
return &table->hashtable[siphash(input, sizeof(*input), &table->key) & (HASH_SIZE(table->hashtable) - 1)];
|
||||||
}
|
}
|
||||||
|
|
||||||
You may then iterate like usual over the returned hash bucket.
|
You may then iterate like usual over the returned hash bucket.
|
||||||
|
|
||||||
4. Security
|
Security
|
||||||
|
========
|
||||||
|
|
||||||
SipHash has a very high security margin, with its 128-bit key. So long as the
|
SipHash has a very high security margin, with its 128-bit key. So long as the
|
||||||
key is kept secret, it is impossible for an attacker to guess the outputs of
|
key is kept secret, it is impossible for an attacker to guess the outputs of
|
||||||
|
@ -73,7 +78,8 @@ is significant.
|
||||||
|
|
||||||
Linux implements the "2-4" variant of SipHash.
|
Linux implements the "2-4" variant of SipHash.
|
||||||
|
|
||||||
5. Struct-passing Pitfalls
|
Struct-passing Pitfalls
|
||||||
|
=======================
|
||||||
|
|
||||||
Often times the XuY functions will not be large enough, and instead you'll
|
Often times the XuY functions will not be large enough, and instead you'll
|
||||||
want to pass a pre-filled struct to siphash. When doing this, it's important
|
want to pass a pre-filled struct to siphash. When doing this, it's important
|
||||||
|
@ -81,30 +87,32 @@ to always ensure the struct has no padding holes. The easiest way to do this
|
||||||
is to simply arrange the members of the struct in descending order of size,
|
is to simply arrange the members of the struct in descending order of size,
|
||||||
and to use offsetendof() instead of sizeof() for getting the size. For
|
and to use offsetendof() instead of sizeof() for getting the size. For
|
||||||
performance reasons, if possible, it's probably a good thing to align the
|
performance reasons, if possible, it's probably a good thing to align the
|
||||||
struct to the right boundary. Here's an example:
|
struct to the right boundary. Here's an example::
|
||||||
|
|
||||||
const struct {
|
const struct {
|
||||||
struct in6_addr saddr;
|
struct in6_addr saddr;
|
||||||
u32 counter;
|
u32 counter;
|
||||||
u16 dport;
|
u16 dport;
|
||||||
} __aligned(SIPHASH_ALIGNMENT) combined = {
|
} __aligned(SIPHASH_ALIGNMENT) combined = {
|
||||||
.saddr = *(struct in6_addr *)saddr,
|
.saddr = *(struct in6_addr *)saddr,
|
||||||
.counter = counter,
|
.counter = counter,
|
||||||
.dport = dport
|
.dport = dport
|
||||||
};
|
};
|
||||||
u64 h = siphash(&combined, offsetofend(typeof(combined), dport), &secret);
|
u64 h = siphash(&combined, offsetofend(typeof(combined), dport), &secret);
|
||||||
|
|
||||||
6. Resources
|
Resources
|
||||||
|
=========
|
||||||
|
|
||||||
Read the SipHash paper if you're interested in learning more:
|
Read the SipHash paper if you're interested in learning more:
|
||||||
https://131002.net/siphash/siphash.pdf
|
https://131002.net/siphash/siphash.pdf
|
||||||
|
|
||||||
|
-------------------------------------------------------------------------------
|
||||||
|
|
||||||
~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~
|
===============================================
|
||||||
|
|
||||||
HalfSipHash - SipHash's insecure younger cousin
|
HalfSipHash - SipHash's insecure younger cousin
|
||||||
-----------------------------------------------
|
===============================================
|
||||||
Written by Jason A. Donenfeld <jason@zx2c4.com>
|
|
||||||
|
:Author: Written by Jason A. Donenfeld <jason@zx2c4.com>
|
||||||
|
|
||||||
On the off-chance that SipHash is not fast enough for your needs, you might be
|
On the off-chance that SipHash is not fast enough for your needs, you might be
|
||||||
able to justify using HalfSipHash, a terrifying but potentially useful
|
able to justify using HalfSipHash, a terrifying but potentially useful
|
||||||
|
@ -120,7 +128,8 @@ then when you can be absolutely certain that the outputs will never be
|
||||||
transmitted out of the kernel. This is only remotely useful over `jhash` as a
|
transmitted out of the kernel. This is only remotely useful over `jhash` as a
|
||||||
means of mitigating hashtable flooding denial of service attacks.
|
means of mitigating hashtable flooding denial of service attacks.
|
||||||
|
|
||||||
1. Generating a key
|
Generating a key
|
||||||
|
================
|
||||||
|
|
||||||
Keys should always be generated from a cryptographically secure source of
|
Keys should always be generated from a cryptographically secure source of
|
||||||
random numbers, either using get_random_bytes or get_random_once:
|
random numbers, either using get_random_bytes or get_random_once:
|
||||||
|
@ -130,44 +139,49 @@ get_random_bytes(&key, sizeof(key));
|
||||||
|
|
||||||
If you're not deriving your key from here, you're doing it wrong.
|
If you're not deriving your key from here, you're doing it wrong.
|
||||||
|
|
||||||
2. Using the functions
|
Using the functions
|
||||||
|
===================
|
||||||
|
|
||||||
There are two variants of the function, one that takes a list of integers, and
|
There are two variants of the function, one that takes a list of integers, and
|
||||||
one that takes a buffer:
|
one that takes a buffer::
|
||||||
|
|
||||||
u32 hsiphash(const void *data, size_t len, const hsiphash_key_t *key);
|
u32 hsiphash(const void *data, size_t len, const hsiphash_key_t *key);
|
||||||
|
|
||||||
And:
|
And::
|
||||||
|
|
||||||
u32 hsiphash_1u32(u32, const hsiphash_key_t *key);
|
u32 hsiphash_1u32(u32, const hsiphash_key_t *key);
|
||||||
u32 hsiphash_2u32(u32, u32, const hsiphash_key_t *key);
|
u32 hsiphash_2u32(u32, u32, const hsiphash_key_t *key);
|
||||||
u32 hsiphash_3u32(u32, u32, u32, const hsiphash_key_t *key);
|
u32 hsiphash_3u32(u32, u32, u32, const hsiphash_key_t *key);
|
||||||
u32 hsiphash_4u32(u32, u32, u32, u32, const hsiphash_key_t *key);
|
u32 hsiphash_4u32(u32, u32, u32, u32, const hsiphash_key_t *key);
|
||||||
|
|
||||||
If you pass the generic hsiphash function something of a constant length, it
|
If you pass the generic hsiphash function something of a constant length, it
|
||||||
will constant fold at compile-time and automatically choose one of the
|
will constant fold at compile-time and automatically choose one of the
|
||||||
optimized functions.
|
optimized functions.
|
||||||
|
|
||||||
3. Hashtable key function usage:
|
Hashtable key function usage
|
||||||
|
============================
|
||||||
|
|
||||||
struct some_hashtable {
|
::
|
||||||
DECLARE_HASHTABLE(hashtable, 8);
|
|
||||||
hsiphash_key_t key;
|
|
||||||
};
|
|
||||||
|
|
||||||
void init_hashtable(struct some_hashtable *table)
|
struct some_hashtable {
|
||||||
{
|
DECLARE_HASHTABLE(hashtable, 8);
|
||||||
get_random_bytes(&table->key, sizeof(table->key));
|
hsiphash_key_t key;
|
||||||
}
|
};
|
||||||
|
|
||||||
static inline hlist_head *some_hashtable_bucket(struct some_hashtable *table, struct interesting_input *input)
|
void init_hashtable(struct some_hashtable *table)
|
||||||
{
|
{
|
||||||
return &table->hashtable[hsiphash(input, sizeof(*input), &table->key) & (HASH_SIZE(table->hashtable) - 1)];
|
get_random_bytes(&table->key, sizeof(table->key));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
static inline hlist_head *some_hashtable_bucket(struct some_hashtable *table, struct interesting_input *input)
|
||||||
|
{
|
||||||
|
return &table->hashtable[hsiphash(input, sizeof(*input), &table->key) & (HASH_SIZE(table->hashtable) - 1)];
|
||||||
|
}
|
||||||
|
|
||||||
You may then iterate like usual over the returned hash bucket.
|
You may then iterate like usual over the returned hash bucket.
|
||||||
|
|
||||||
4. Performance
|
Performance
|
||||||
|
===========
|
||||||
|
|
||||||
HalfSipHash is roughly 3 times slower than JenkinsHash. For many replacements,
|
HalfSipHash is roughly 3 times slower than JenkinsHash. For many replacements,
|
||||||
this will not be a problem, as the hashtable lookup isn't the bottleneck. And
|
this will not be a problem, as the hashtable lookup isn't the bottleneck. And
|
||||||
|
|
Loading…
Reference in New Issue