crypto: arm64/speck - add NEON-accelerated implementation of Speck-XTS
Add a NEON-accelerated implementation of Speck128-XTS and Speck64-XTS for ARM64. This is ported from the 32-bit version. It may be useful on devices with 64-bit ARM CPUs that don't have the Cryptography Extensions, so cannot do AES efficiently -- e.g. the Cortex-A53 processor on the Raspberry Pi 3. It generally works the same way as the 32-bit version, but there are some slight differences due to the different instructions, registers, and syntax available in ARM64 vs. in ARM32. For example, in the 64-bit version there are enough registers to hold the XTS tweaks for each 128-byte chunk, so they don't need to be saved on the stack. Benchmarks on a Raspberry Pi 3 running a 64-bit kernel: Algorithm Encryption Decryption --------- ---------- ---------- Speck64/128-XTS (NEON) 92.2 MB/s 92.2 MB/s Speck128/256-XTS (NEON) 75.0 MB/s 75.0 MB/s Speck128/256-XTS (generic) 47.4 MB/s 35.6 MB/s AES-128-XTS (NEON bit-sliced) 33.4 MB/s 29.6 MB/s AES-256-XTS (NEON bit-sliced) 24.6 MB/s 21.7 MB/s The code performs well on higher-end ARM64 processors as well, though such processors tend to have the Crypto Extensions which make AES preferred. For example, here are the same benchmarks run on a HiKey960 (with CPU affinity set for the A73 cores), with the Crypto Extensions implementation of AES-256-XTS added: Algorithm Encryption Decryption --------- ----------- ----------- AES-256-XTS (Crypto Extensions) 1273.3 MB/s 1274.7 MB/s Speck64/128-XTS (NEON) 359.8 MB/s 348.0 MB/s Speck128/256-XTS (NEON) 292.5 MB/s 286.1 MB/s Speck128/256-XTS (generic) 186.3 MB/s 181.8 MB/s AES-128-XTS (NEON bit-sliced) 142.0 MB/s 124.3 MB/s AES-256-XTS (NEON bit-sliced) 104.7 MB/s 91.1 MB/s Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This commit is contained in:
parent
6c51ddddac
commit
91a2abb78f
|
@ -113,4 +113,10 @@ config CRYPTO_AES_ARM64_BS
|
|||
select CRYPTO_AES_ARM64
|
||||
select CRYPTO_SIMD
|
||||
|
||||
config CRYPTO_SPECK_NEON
|
||||
tristate "NEON accelerated Speck cipher algorithms"
|
||||
depends on KERNEL_MODE_NEON
|
||||
select CRYPTO_BLKCIPHER
|
||||
select CRYPTO_SPECK
|
||||
|
||||
endif
|
||||
|
|
|
@ -53,6 +53,9 @@ sha512-arm64-y := sha512-glue.o sha512-core.o
|
|||
obj-$(CONFIG_CRYPTO_CHACHA20_NEON) += chacha20-neon.o
|
||||
chacha20-neon-y := chacha20-neon-core.o chacha20-neon-glue.o
|
||||
|
||||
obj-$(CONFIG_CRYPTO_SPECK_NEON) += speck-neon.o
|
||||
speck-neon-y := speck-neon-core.o speck-neon-glue.o
|
||||
|
||||
obj-$(CONFIG_CRYPTO_AES_ARM64) += aes-arm64.o
|
||||
aes-arm64-y := aes-cipher-core.o aes-cipher-glue.o
|
||||
|
||||
|
|
|
@ -0,0 +1,352 @@
|
|||
// SPDX-License-Identifier: GPL-2.0
|
||||
/*
|
||||
* ARM64 NEON-accelerated implementation of Speck128-XTS and Speck64-XTS
|
||||
*
|
||||
* Copyright (c) 2018 Google, Inc
|
||||
*
|
||||
* Author: Eric Biggers <ebiggers@google.com>
|
||||
*/
|
||||
|
||||
#include <linux/linkage.h>
|
||||
|
||||
.text
|
||||
|
||||
// arguments
|
||||
ROUND_KEYS .req x0 // const {u64,u32} *round_keys
|
||||
NROUNDS .req w1 // int nrounds
|
||||
NROUNDS_X .req x1
|
||||
DST .req x2 // void *dst
|
||||
SRC .req x3 // const void *src
|
||||
NBYTES .req w4 // unsigned int nbytes
|
||||
TWEAK .req x5 // void *tweak
|
||||
|
||||
// registers which hold the data being encrypted/decrypted
|
||||
// (underscores avoid a naming collision with ARM64 registers x0-x3)
|
||||
X_0 .req v0
|
||||
Y_0 .req v1
|
||||
X_1 .req v2
|
||||
Y_1 .req v3
|
||||
X_2 .req v4
|
||||
Y_2 .req v5
|
||||
X_3 .req v6
|
||||
Y_3 .req v7
|
||||
|
||||
// the round key, duplicated in all lanes
|
||||
ROUND_KEY .req v8
|
||||
|
||||
// index vector for tbl-based 8-bit rotates
|
||||
ROTATE_TABLE .req v9
|
||||
ROTATE_TABLE_Q .req q9
|
||||
|
||||
// temporary registers
|
||||
TMP0 .req v10
|
||||
TMP1 .req v11
|
||||
TMP2 .req v12
|
||||
TMP3 .req v13
|
||||
|
||||
// multiplication table for updating XTS tweaks
|
||||
GFMUL_TABLE .req v14
|
||||
GFMUL_TABLE_Q .req q14
|
||||
|
||||
// next XTS tweak value(s)
|
||||
TWEAKV_NEXT .req v15
|
||||
|
||||
// XTS tweaks for the blocks currently being encrypted/decrypted
|
||||
TWEAKV0 .req v16
|
||||
TWEAKV1 .req v17
|
||||
TWEAKV2 .req v18
|
||||
TWEAKV3 .req v19
|
||||
TWEAKV4 .req v20
|
||||
TWEAKV5 .req v21
|
||||
TWEAKV6 .req v22
|
||||
TWEAKV7 .req v23
|
||||
|
||||
.align 4
|
||||
.Lror64_8_table:
|
||||
.octa 0x080f0e0d0c0b0a090007060504030201
|
||||
.Lror32_8_table:
|
||||
.octa 0x0c0f0e0d080b0a090407060500030201
|
||||
.Lrol64_8_table:
|
||||
.octa 0x0e0d0c0b0a09080f0605040302010007
|
||||
.Lrol32_8_table:
|
||||
.octa 0x0e0d0c0f0a09080b0605040702010003
|
||||
.Lgf128mul_table:
|
||||
.octa 0x00000000000000870000000000000001
|
||||
.Lgf64mul_table:
|
||||
.octa 0x0000000000000000000000002d361b00
|
||||
|
||||
/*
|
||||
* _speck_round_128bytes() - Speck encryption round on 128 bytes at a time
|
||||
*
|
||||
* Do one Speck encryption round on the 128 bytes (8 blocks for Speck128, 16 for
|
||||
* Speck64) stored in X0-X3 and Y0-Y3, using the round key stored in all lanes
|
||||
* of ROUND_KEY. 'n' is the lane size: 64 for Speck128, or 32 for Speck64.
|
||||
* 'lanes' is the lane specifier: "2d" for Speck128 or "4s" for Speck64.
|
||||
*/
|
||||
.macro _speck_round_128bytes n, lanes
|
||||
|
||||
// x = ror(x, 8)
|
||||
tbl X_0.16b, {X_0.16b}, ROTATE_TABLE.16b
|
||||
tbl X_1.16b, {X_1.16b}, ROTATE_TABLE.16b
|
||||
tbl X_2.16b, {X_2.16b}, ROTATE_TABLE.16b
|
||||
tbl X_3.16b, {X_3.16b}, ROTATE_TABLE.16b
|
||||
|
||||
// x += y
|
||||
add X_0.\lanes, X_0.\lanes, Y_0.\lanes
|
||||
add X_1.\lanes, X_1.\lanes, Y_1.\lanes
|
||||
add X_2.\lanes, X_2.\lanes, Y_2.\lanes
|
||||
add X_3.\lanes, X_3.\lanes, Y_3.\lanes
|
||||
|
||||
// x ^= k
|
||||
eor X_0.16b, X_0.16b, ROUND_KEY.16b
|
||||
eor X_1.16b, X_1.16b, ROUND_KEY.16b
|
||||
eor X_2.16b, X_2.16b, ROUND_KEY.16b
|
||||
eor X_3.16b, X_3.16b, ROUND_KEY.16b
|
||||
|
||||
// y = rol(y, 3)
|
||||
shl TMP0.\lanes, Y_0.\lanes, #3
|
||||
shl TMP1.\lanes, Y_1.\lanes, #3
|
||||
shl TMP2.\lanes, Y_2.\lanes, #3
|
||||
shl TMP3.\lanes, Y_3.\lanes, #3
|
||||
sri TMP0.\lanes, Y_0.\lanes, #(\n - 3)
|
||||
sri TMP1.\lanes, Y_1.\lanes, #(\n - 3)
|
||||
sri TMP2.\lanes, Y_2.\lanes, #(\n - 3)
|
||||
sri TMP3.\lanes, Y_3.\lanes, #(\n - 3)
|
||||
|
||||
// y ^= x
|
||||
eor Y_0.16b, TMP0.16b, X_0.16b
|
||||
eor Y_1.16b, TMP1.16b, X_1.16b
|
||||
eor Y_2.16b, TMP2.16b, X_2.16b
|
||||
eor Y_3.16b, TMP3.16b, X_3.16b
|
||||
.endm
|
||||
|
||||
/*
|
||||
* _speck_unround_128bytes() - Speck decryption round on 128 bytes at a time
|
||||
*
|
||||
* This is the inverse of _speck_round_128bytes().
|
||||
*/
|
||||
.macro _speck_unround_128bytes n, lanes
|
||||
|
||||
// y ^= x
|
||||
eor TMP0.16b, Y_0.16b, X_0.16b
|
||||
eor TMP1.16b, Y_1.16b, X_1.16b
|
||||
eor TMP2.16b, Y_2.16b, X_2.16b
|
||||
eor TMP3.16b, Y_3.16b, X_3.16b
|
||||
|
||||
// y = ror(y, 3)
|
||||
ushr Y_0.\lanes, TMP0.\lanes, #3
|
||||
ushr Y_1.\lanes, TMP1.\lanes, #3
|
||||
ushr Y_2.\lanes, TMP2.\lanes, #3
|
||||
ushr Y_3.\lanes, TMP3.\lanes, #3
|
||||
sli Y_0.\lanes, TMP0.\lanes, #(\n - 3)
|
||||
sli Y_1.\lanes, TMP1.\lanes, #(\n - 3)
|
||||
sli Y_2.\lanes, TMP2.\lanes, #(\n - 3)
|
||||
sli Y_3.\lanes, TMP3.\lanes, #(\n - 3)
|
||||
|
||||
// x ^= k
|
||||
eor X_0.16b, X_0.16b, ROUND_KEY.16b
|
||||
eor X_1.16b, X_1.16b, ROUND_KEY.16b
|
||||
eor X_2.16b, X_2.16b, ROUND_KEY.16b
|
||||
eor X_3.16b, X_3.16b, ROUND_KEY.16b
|
||||
|
||||
// x -= y
|
||||
sub X_0.\lanes, X_0.\lanes, Y_0.\lanes
|
||||
sub X_1.\lanes, X_1.\lanes, Y_1.\lanes
|
||||
sub X_2.\lanes, X_2.\lanes, Y_2.\lanes
|
||||
sub X_3.\lanes, X_3.\lanes, Y_3.\lanes
|
||||
|
||||
// x = rol(x, 8)
|
||||
tbl X_0.16b, {X_0.16b}, ROTATE_TABLE.16b
|
||||
tbl X_1.16b, {X_1.16b}, ROTATE_TABLE.16b
|
||||
tbl X_2.16b, {X_2.16b}, ROTATE_TABLE.16b
|
||||
tbl X_3.16b, {X_3.16b}, ROTATE_TABLE.16b
|
||||
.endm
|
||||
|
||||
.macro _next_xts_tweak next, cur, tmp, n
|
||||
.if \n == 64
|
||||
/*
|
||||
* Calculate the next tweak by multiplying the current one by x,
|
||||
* modulo p(x) = x^128 + x^7 + x^2 + x + 1.
|
||||
*/
|
||||
sshr \tmp\().2d, \cur\().2d, #63
|
||||
and \tmp\().16b, \tmp\().16b, GFMUL_TABLE.16b
|
||||
shl \next\().2d, \cur\().2d, #1
|
||||
ext \tmp\().16b, \tmp\().16b, \tmp\().16b, #8
|
||||
eor \next\().16b, \next\().16b, \tmp\().16b
|
||||
.else
|
||||
/*
|
||||
* Calculate the next two tweaks by multiplying the current ones by x^2,
|
||||
* modulo p(x) = x^64 + x^4 + x^3 + x + 1.
|
||||
*/
|
||||
ushr \tmp\().2d, \cur\().2d, #62
|
||||
shl \next\().2d, \cur\().2d, #2
|
||||
tbl \tmp\().16b, {GFMUL_TABLE.16b}, \tmp\().16b
|
||||
eor \next\().16b, \next\().16b, \tmp\().16b
|
||||
.endif
|
||||
.endm
|
||||
|
||||
/*
|
||||
* _speck_xts_crypt() - Speck-XTS encryption/decryption
|
||||
*
|
||||
* Encrypt or decrypt NBYTES bytes of data from the SRC buffer to the DST buffer
|
||||
* using Speck-XTS, specifically the variant with a block size of '2n' and round
|
||||
* count given by NROUNDS. The expanded round keys are given in ROUND_KEYS, and
|
||||
* the current XTS tweak value is given in TWEAK. It's assumed that NBYTES is a
|
||||
* nonzero multiple of 128.
|
||||
*/
|
||||
.macro _speck_xts_crypt n, lanes, decrypting
|
||||
|
||||
/*
|
||||
* If decrypting, modify the ROUND_KEYS parameter to point to the last
|
||||
* round key rather than the first, since for decryption the round keys
|
||||
* are used in reverse order.
|
||||
*/
|
||||
.if \decrypting
|
||||
mov NROUNDS, NROUNDS /* zero the high 32 bits */
|
||||
.if \n == 64
|
||||
add ROUND_KEYS, ROUND_KEYS, NROUNDS_X, lsl #3
|
||||
sub ROUND_KEYS, ROUND_KEYS, #8
|
||||
.else
|
||||
add ROUND_KEYS, ROUND_KEYS, NROUNDS_X, lsl #2
|
||||
sub ROUND_KEYS, ROUND_KEYS, #4
|
||||
.endif
|
||||
.endif
|
||||
|
||||
// Load the index vector for tbl-based 8-bit rotates
|
||||
.if \decrypting
|
||||
ldr ROTATE_TABLE_Q, .Lrol\n\()_8_table
|
||||
.else
|
||||
ldr ROTATE_TABLE_Q, .Lror\n\()_8_table
|
||||
.endif
|
||||
|
||||
// One-time XTS preparation
|
||||
.if \n == 64
|
||||
// Load first tweak
|
||||
ld1 {TWEAKV0.16b}, [TWEAK]
|
||||
|
||||
// Load GF(2^128) multiplication table
|
||||
ldr GFMUL_TABLE_Q, .Lgf128mul_table
|
||||
.else
|
||||
// Load first tweak
|
||||
ld1 {TWEAKV0.8b}, [TWEAK]
|
||||
|
||||
// Load GF(2^64) multiplication table
|
||||
ldr GFMUL_TABLE_Q, .Lgf64mul_table
|
||||
|
||||
// Calculate second tweak, packing it together with the first
|
||||
ushr TMP0.2d, TWEAKV0.2d, #63
|
||||
shl TMP1.2d, TWEAKV0.2d, #1
|
||||
tbl TMP0.8b, {GFMUL_TABLE.16b}, TMP0.8b
|
||||
eor TMP0.8b, TMP0.8b, TMP1.8b
|
||||
mov TWEAKV0.d[1], TMP0.d[0]
|
||||
.endif
|
||||
|
||||
.Lnext_128bytes_\@:
|
||||
|
||||
// Calculate XTS tweaks for next 128 bytes
|
||||
_next_xts_tweak TWEAKV1, TWEAKV0, TMP0, \n
|
||||
_next_xts_tweak TWEAKV2, TWEAKV1, TMP0, \n
|
||||
_next_xts_tweak TWEAKV3, TWEAKV2, TMP0, \n
|
||||
_next_xts_tweak TWEAKV4, TWEAKV3, TMP0, \n
|
||||
_next_xts_tweak TWEAKV5, TWEAKV4, TMP0, \n
|
||||
_next_xts_tweak TWEAKV6, TWEAKV5, TMP0, \n
|
||||
_next_xts_tweak TWEAKV7, TWEAKV6, TMP0, \n
|
||||
_next_xts_tweak TWEAKV_NEXT, TWEAKV7, TMP0, \n
|
||||
|
||||
// Load the next source blocks into {X,Y}[0-3]
|
||||
ld1 {X_0.16b-Y_1.16b}, [SRC], #64
|
||||
ld1 {X_2.16b-Y_3.16b}, [SRC], #64
|
||||
|
||||
// XOR the source blocks with their XTS tweaks
|
||||
eor TMP0.16b, X_0.16b, TWEAKV0.16b
|
||||
eor Y_0.16b, Y_0.16b, TWEAKV1.16b
|
||||
eor TMP1.16b, X_1.16b, TWEAKV2.16b
|
||||
eor Y_1.16b, Y_1.16b, TWEAKV3.16b
|
||||
eor TMP2.16b, X_2.16b, TWEAKV4.16b
|
||||
eor Y_2.16b, Y_2.16b, TWEAKV5.16b
|
||||
eor TMP3.16b, X_3.16b, TWEAKV6.16b
|
||||
eor Y_3.16b, Y_3.16b, TWEAKV7.16b
|
||||
|
||||
/*
|
||||
* De-interleave the 'x' and 'y' elements of each block, i.e. make it so
|
||||
* that the X[0-3] registers contain only the second halves of blocks,
|
||||
* and the Y[0-3] registers contain only the first halves of blocks.
|
||||
* (Speck uses the order (y, x) rather than the more intuitive (x, y).)
|
||||
*/
|
||||
uzp2 X_0.\lanes, TMP0.\lanes, Y_0.\lanes
|
||||
uzp1 Y_0.\lanes, TMP0.\lanes, Y_0.\lanes
|
||||
uzp2 X_1.\lanes, TMP1.\lanes, Y_1.\lanes
|
||||
uzp1 Y_1.\lanes, TMP1.\lanes, Y_1.\lanes
|
||||
uzp2 X_2.\lanes, TMP2.\lanes, Y_2.\lanes
|
||||
uzp1 Y_2.\lanes, TMP2.\lanes, Y_2.\lanes
|
||||
uzp2 X_3.\lanes, TMP3.\lanes, Y_3.\lanes
|
||||
uzp1 Y_3.\lanes, TMP3.\lanes, Y_3.\lanes
|
||||
|
||||
// Do the cipher rounds
|
||||
mov x6, ROUND_KEYS
|
||||
mov w7, NROUNDS
|
||||
.Lnext_round_\@:
|
||||
.if \decrypting
|
||||
ld1r {ROUND_KEY.\lanes}, [x6]
|
||||
sub x6, x6, #( \n / 8 )
|
||||
_speck_unround_128bytes \n, \lanes
|
||||
.else
|
||||
ld1r {ROUND_KEY.\lanes}, [x6], #( \n / 8 )
|
||||
_speck_round_128bytes \n, \lanes
|
||||
.endif
|
||||
subs w7, w7, #1
|
||||
bne .Lnext_round_\@
|
||||
|
||||
// Re-interleave the 'x' and 'y' elements of each block
|
||||
zip1 TMP0.\lanes, Y_0.\lanes, X_0.\lanes
|
||||
zip2 Y_0.\lanes, Y_0.\lanes, X_0.\lanes
|
||||
zip1 TMP1.\lanes, Y_1.\lanes, X_1.\lanes
|
||||
zip2 Y_1.\lanes, Y_1.\lanes, X_1.\lanes
|
||||
zip1 TMP2.\lanes, Y_2.\lanes, X_2.\lanes
|
||||
zip2 Y_2.\lanes, Y_2.\lanes, X_2.\lanes
|
||||
zip1 TMP3.\lanes, Y_3.\lanes, X_3.\lanes
|
||||
zip2 Y_3.\lanes, Y_3.\lanes, X_3.\lanes
|
||||
|
||||
// XOR the encrypted/decrypted blocks with the tweaks calculated earlier
|
||||
eor X_0.16b, TMP0.16b, TWEAKV0.16b
|
||||
eor Y_0.16b, Y_0.16b, TWEAKV1.16b
|
||||
eor X_1.16b, TMP1.16b, TWEAKV2.16b
|
||||
eor Y_1.16b, Y_1.16b, TWEAKV3.16b
|
||||
eor X_2.16b, TMP2.16b, TWEAKV4.16b
|
||||
eor Y_2.16b, Y_2.16b, TWEAKV5.16b
|
||||
eor X_3.16b, TMP3.16b, TWEAKV6.16b
|
||||
eor Y_3.16b, Y_3.16b, TWEAKV7.16b
|
||||
mov TWEAKV0.16b, TWEAKV_NEXT.16b
|
||||
|
||||
// Store the ciphertext in the destination buffer
|
||||
st1 {X_0.16b-Y_1.16b}, [DST], #64
|
||||
st1 {X_2.16b-Y_3.16b}, [DST], #64
|
||||
|
||||
// Continue if there are more 128-byte chunks remaining
|
||||
subs NBYTES, NBYTES, #128
|
||||
bne .Lnext_128bytes_\@
|
||||
|
||||
// Store the next tweak and return
|
||||
.if \n == 64
|
||||
st1 {TWEAKV_NEXT.16b}, [TWEAK]
|
||||
.else
|
||||
st1 {TWEAKV_NEXT.8b}, [TWEAK]
|
||||
.endif
|
||||
ret
|
||||
.endm
|
||||
|
||||
ENTRY(speck128_xts_encrypt_neon)
|
||||
_speck_xts_crypt n=64, lanes=2d, decrypting=0
|
||||
ENDPROC(speck128_xts_encrypt_neon)
|
||||
|
||||
ENTRY(speck128_xts_decrypt_neon)
|
||||
_speck_xts_crypt n=64, lanes=2d, decrypting=1
|
||||
ENDPROC(speck128_xts_decrypt_neon)
|
||||
|
||||
ENTRY(speck64_xts_encrypt_neon)
|
||||
_speck_xts_crypt n=32, lanes=4s, decrypting=0
|
||||
ENDPROC(speck64_xts_encrypt_neon)
|
||||
|
||||
ENTRY(speck64_xts_decrypt_neon)
|
||||
_speck_xts_crypt n=32, lanes=4s, decrypting=1
|
||||
ENDPROC(speck64_xts_decrypt_neon)
|
|
@ -0,0 +1,282 @@
|
|||
// SPDX-License-Identifier: GPL-2.0
|
||||
/*
|
||||
* NEON-accelerated implementation of Speck128-XTS and Speck64-XTS
|
||||
* (64-bit version; based on the 32-bit version)
|
||||
*
|
||||
* Copyright (c) 2018 Google, Inc
|
||||
*/
|
||||
|
||||
#include <asm/hwcap.h>
|
||||
#include <asm/neon.h>
|
||||
#include <asm/simd.h>
|
||||
#include <crypto/algapi.h>
|
||||
#include <crypto/gf128mul.h>
|
||||
#include <crypto/internal/skcipher.h>
|
||||
#include <crypto/speck.h>
|
||||
#include <crypto/xts.h>
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/module.h>
|
||||
|
||||
/* The assembly functions only handle multiples of 128 bytes */
|
||||
#define SPECK_NEON_CHUNK_SIZE 128
|
||||
|
||||
/* Speck128 */
|
||||
|
||||
struct speck128_xts_tfm_ctx {
|
||||
struct speck128_tfm_ctx main_key;
|
||||
struct speck128_tfm_ctx tweak_key;
|
||||
};
|
||||
|
||||
asmlinkage void speck128_xts_encrypt_neon(const u64 *round_keys, int nrounds,
|
||||
void *dst, const void *src,
|
||||
unsigned int nbytes, void *tweak);
|
||||
|
||||
asmlinkage void speck128_xts_decrypt_neon(const u64 *round_keys, int nrounds,
|
||||
void *dst, const void *src,
|
||||
unsigned int nbytes, void *tweak);
|
||||
|
||||
typedef void (*speck128_crypt_one_t)(const struct speck128_tfm_ctx *,
|
||||
u8 *, const u8 *);
|
||||
typedef void (*speck128_xts_crypt_many_t)(const u64 *, int, void *,
|
||||
const void *, unsigned int, void *);
|
||||
|
||||
static __always_inline int
|
||||
__speck128_xts_crypt(struct skcipher_request *req,
|
||||
speck128_crypt_one_t crypt_one,
|
||||
speck128_xts_crypt_many_t crypt_many)
|
||||
{
|
||||
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
|
||||
const struct speck128_xts_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
|
||||
struct skcipher_walk walk;
|
||||
le128 tweak;
|
||||
int err;
|
||||
|
||||
err = skcipher_walk_virt(&walk, req, true);
|
||||
|
||||
crypto_speck128_encrypt(&ctx->tweak_key, (u8 *)&tweak, walk.iv);
|
||||
|
||||
while (walk.nbytes > 0) {
|
||||
unsigned int nbytes = walk.nbytes;
|
||||
u8 *dst = walk.dst.virt.addr;
|
||||
const u8 *src = walk.src.virt.addr;
|
||||
|
||||
if (nbytes >= SPECK_NEON_CHUNK_SIZE && may_use_simd()) {
|
||||
unsigned int count;
|
||||
|
||||
count = round_down(nbytes, SPECK_NEON_CHUNK_SIZE);
|
||||
kernel_neon_begin();
|
||||
(*crypt_many)(ctx->main_key.round_keys,
|
||||
ctx->main_key.nrounds,
|
||||
dst, src, count, &tweak);
|
||||
kernel_neon_end();
|
||||
dst += count;
|
||||
src += count;
|
||||
nbytes -= count;
|
||||
}
|
||||
|
||||
/* Handle any remainder with generic code */
|
||||
while (nbytes >= sizeof(tweak)) {
|
||||
le128_xor((le128 *)dst, (const le128 *)src, &tweak);
|
||||
(*crypt_one)(&ctx->main_key, dst, dst);
|
||||
le128_xor((le128 *)dst, (const le128 *)dst, &tweak);
|
||||
gf128mul_x_ble(&tweak, &tweak);
|
||||
|
||||
dst += sizeof(tweak);
|
||||
src += sizeof(tweak);
|
||||
nbytes -= sizeof(tweak);
|
||||
}
|
||||
err = skcipher_walk_done(&walk, nbytes);
|
||||
}
|
||||
|
||||
return err;
|
||||
}
|
||||
|
||||
static int speck128_xts_encrypt(struct skcipher_request *req)
|
||||
{
|
||||
return __speck128_xts_crypt(req, crypto_speck128_encrypt,
|
||||
speck128_xts_encrypt_neon);
|
||||
}
|
||||
|
||||
static int speck128_xts_decrypt(struct skcipher_request *req)
|
||||
{
|
||||
return __speck128_xts_crypt(req, crypto_speck128_decrypt,
|
||||
speck128_xts_decrypt_neon);
|
||||
}
|
||||
|
||||
static int speck128_xts_setkey(struct crypto_skcipher *tfm, const u8 *key,
|
||||
unsigned int keylen)
|
||||
{
|
||||
struct speck128_xts_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
|
||||
int err;
|
||||
|
||||
err = xts_verify_key(tfm, key, keylen);
|
||||
if (err)
|
||||
return err;
|
||||
|
||||
keylen /= 2;
|
||||
|
||||
err = crypto_speck128_setkey(&ctx->main_key, key, keylen);
|
||||
if (err)
|
||||
return err;
|
||||
|
||||
return crypto_speck128_setkey(&ctx->tweak_key, key + keylen, keylen);
|
||||
}
|
||||
|
||||
/* Speck64 */
|
||||
|
||||
struct speck64_xts_tfm_ctx {
|
||||
struct speck64_tfm_ctx main_key;
|
||||
struct speck64_tfm_ctx tweak_key;
|
||||
};
|
||||
|
||||
asmlinkage void speck64_xts_encrypt_neon(const u32 *round_keys, int nrounds,
|
||||
void *dst, const void *src,
|
||||
unsigned int nbytes, void *tweak);
|
||||
|
||||
asmlinkage void speck64_xts_decrypt_neon(const u32 *round_keys, int nrounds,
|
||||
void *dst, const void *src,
|
||||
unsigned int nbytes, void *tweak);
|
||||
|
||||
typedef void (*speck64_crypt_one_t)(const struct speck64_tfm_ctx *,
|
||||
u8 *, const u8 *);
|
||||
typedef void (*speck64_xts_crypt_many_t)(const u32 *, int, void *,
|
||||
const void *, unsigned int, void *);
|
||||
|
||||
static __always_inline int
|
||||
__speck64_xts_crypt(struct skcipher_request *req, speck64_crypt_one_t crypt_one,
|
||||
speck64_xts_crypt_many_t crypt_many)
|
||||
{
|
||||
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
|
||||
const struct speck64_xts_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
|
||||
struct skcipher_walk walk;
|
||||
__le64 tweak;
|
||||
int err;
|
||||
|
||||
err = skcipher_walk_virt(&walk, req, true);
|
||||
|
||||
crypto_speck64_encrypt(&ctx->tweak_key, (u8 *)&tweak, walk.iv);
|
||||
|
||||
while (walk.nbytes > 0) {
|
||||
unsigned int nbytes = walk.nbytes;
|
||||
u8 *dst = walk.dst.virt.addr;
|
||||
const u8 *src = walk.src.virt.addr;
|
||||
|
||||
if (nbytes >= SPECK_NEON_CHUNK_SIZE && may_use_simd()) {
|
||||
unsigned int count;
|
||||
|
||||
count = round_down(nbytes, SPECK_NEON_CHUNK_SIZE);
|
||||
kernel_neon_begin();
|
||||
(*crypt_many)(ctx->main_key.round_keys,
|
||||
ctx->main_key.nrounds,
|
||||
dst, src, count, &tweak);
|
||||
kernel_neon_end();
|
||||
dst += count;
|
||||
src += count;
|
||||
nbytes -= count;
|
||||
}
|
||||
|
||||
/* Handle any remainder with generic code */
|
||||
while (nbytes >= sizeof(tweak)) {
|
||||
*(__le64 *)dst = *(__le64 *)src ^ tweak;
|
||||
(*crypt_one)(&ctx->main_key, dst, dst);
|
||||
*(__le64 *)dst ^= tweak;
|
||||
tweak = cpu_to_le64((le64_to_cpu(tweak) << 1) ^
|
||||
((tweak & cpu_to_le64(1ULL << 63)) ?
|
||||
0x1B : 0));
|
||||
dst += sizeof(tweak);
|
||||
src += sizeof(tweak);
|
||||
nbytes -= sizeof(tweak);
|
||||
}
|
||||
err = skcipher_walk_done(&walk, nbytes);
|
||||
}
|
||||
|
||||
return err;
|
||||
}
|
||||
|
||||
static int speck64_xts_encrypt(struct skcipher_request *req)
|
||||
{
|
||||
return __speck64_xts_crypt(req, crypto_speck64_encrypt,
|
||||
speck64_xts_encrypt_neon);
|
||||
}
|
||||
|
||||
static int speck64_xts_decrypt(struct skcipher_request *req)
|
||||
{
|
||||
return __speck64_xts_crypt(req, crypto_speck64_decrypt,
|
||||
speck64_xts_decrypt_neon);
|
||||
}
|
||||
|
||||
static int speck64_xts_setkey(struct crypto_skcipher *tfm, const u8 *key,
|
||||
unsigned int keylen)
|
||||
{
|
||||
struct speck64_xts_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
|
||||
int err;
|
||||
|
||||
err = xts_verify_key(tfm, key, keylen);
|
||||
if (err)
|
||||
return err;
|
||||
|
||||
keylen /= 2;
|
||||
|
||||
err = crypto_speck64_setkey(&ctx->main_key, key, keylen);
|
||||
if (err)
|
||||
return err;
|
||||
|
||||
return crypto_speck64_setkey(&ctx->tweak_key, key + keylen, keylen);
|
||||
}
|
||||
|
||||
static struct skcipher_alg speck_algs[] = {
|
||||
{
|
||||
.base.cra_name = "xts(speck128)",
|
||||
.base.cra_driver_name = "xts-speck128-neon",
|
||||
.base.cra_priority = 300,
|
||||
.base.cra_blocksize = SPECK128_BLOCK_SIZE,
|
||||
.base.cra_ctxsize = sizeof(struct speck128_xts_tfm_ctx),
|
||||
.base.cra_alignmask = 7,
|
||||
.base.cra_module = THIS_MODULE,
|
||||
.min_keysize = 2 * SPECK128_128_KEY_SIZE,
|
||||
.max_keysize = 2 * SPECK128_256_KEY_SIZE,
|
||||
.ivsize = SPECK128_BLOCK_SIZE,
|
||||
.walksize = SPECK_NEON_CHUNK_SIZE,
|
||||
.setkey = speck128_xts_setkey,
|
||||
.encrypt = speck128_xts_encrypt,
|
||||
.decrypt = speck128_xts_decrypt,
|
||||
}, {
|
||||
.base.cra_name = "xts(speck64)",
|
||||
.base.cra_driver_name = "xts-speck64-neon",
|
||||
.base.cra_priority = 300,
|
||||
.base.cra_blocksize = SPECK64_BLOCK_SIZE,
|
||||
.base.cra_ctxsize = sizeof(struct speck64_xts_tfm_ctx),
|
||||
.base.cra_alignmask = 7,
|
||||
.base.cra_module = THIS_MODULE,
|
||||
.min_keysize = 2 * SPECK64_96_KEY_SIZE,
|
||||
.max_keysize = 2 * SPECK64_128_KEY_SIZE,
|
||||
.ivsize = SPECK64_BLOCK_SIZE,
|
||||
.walksize = SPECK_NEON_CHUNK_SIZE,
|
||||
.setkey = speck64_xts_setkey,
|
||||
.encrypt = speck64_xts_encrypt,
|
||||
.decrypt = speck64_xts_decrypt,
|
||||
}
|
||||
};
|
||||
|
||||
static int __init speck_neon_module_init(void)
|
||||
{
|
||||
if (!(elf_hwcap & HWCAP_ASIMD))
|
||||
return -ENODEV;
|
||||
return crypto_register_skciphers(speck_algs, ARRAY_SIZE(speck_algs));
|
||||
}
|
||||
|
||||
static void __exit speck_neon_module_exit(void)
|
||||
{
|
||||
crypto_unregister_skciphers(speck_algs, ARRAY_SIZE(speck_algs));
|
||||
}
|
||||
|
||||
module_init(speck_neon_module_init);
|
||||
module_exit(speck_neon_module_exit);
|
||||
|
||||
MODULE_DESCRIPTION("Speck block cipher (NEON-accelerated)");
|
||||
MODULE_LICENSE("GPL");
|
||||
MODULE_AUTHOR("Eric Biggers <ebiggers@google.com>");
|
||||
MODULE_ALIAS_CRYPTO("xts(speck128)");
|
||||
MODULE_ALIAS_CRYPTO("xts-speck128-neon");
|
||||
MODULE_ALIAS_CRYPTO("xts(speck64)");
|
||||
MODULE_ALIAS_CRYPTO("xts-speck64-neon");
|
Loading…
Reference in New Issue