Small release, the most interesting stuff is x86 nested virt improvements.

x86: userspace can now hide nested VMX features from guests; nested
 VMX can now run Hyper-V in a guest; support for AVX512_4VNNIW and
 AVX512_FMAPS in KVM; infrastructure support for virtual Intel GPUs.
 
 PPC: support for KVM guests on POWER9; improved support for interrupt
 polling; optimizations and cleanups.
 
 s390: two small optimizations, more stuff is in flight and will be
 in 4.11.
 
 ARM: support for the GICv3 ITS on 32bit platforms.
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2
 
 iQExBAABCAAbBQJYTkP0FBxwYm9uemluaUByZWRoYXQuY29tAAoJEL/70l94x66D
 lZIH/iT1n9OQXcuTpYYnQhuCenzI3GZZOIMTbCvK2i5bo0FIJKxVn0EiAAqZSXvO
 nO185FqjOgLuJ1AD1kJuxzye5suuQp4HIPWWgNHcexLuy43WXWKZe0IQlJ4zM2Xf
 u31HakpFmVDD+Cd1qN3yDXtDrRQ79/xQn2kw7CWb8olp+pVqwbceN3IVie9QYU+3
 gCz0qU6As0aQIwq2PyalOe03sO10PZlm4XhsoXgWPG7P18BMRhNLTDqhLhu7A/ry
 qElVMANT7LSNLzlwNdpzdK8rVuKxETwjlc1UP8vSuhrwad4zM2JJ1Exk26nC2NaG
 D0j4tRSyGFIdx6lukZm7HmiSHZ0=
 =mkoB
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull KVM updates from Paolo Bonzini:
 "Small release, the most interesting stuff is x86 nested virt
  improvements.

  x86:
   - userspace can now hide nested VMX features from guests
   - nested VMX can now run Hyper-V in a guest
   - support for AVX512_4VNNIW and AVX512_FMAPS in KVM
   - infrastructure support for virtual Intel GPUs.

  PPC:
   - support for KVM guests on POWER9
   - improved support for interrupt polling
   - optimizations and cleanups.

  s390:
   - two small optimizations, more stuff is in flight and will be in
     4.11.

  ARM:
   - support for the GICv3 ITS on 32bit platforms"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (94 commits)
  arm64: KVM: pmu: Reset PMSELR_EL0.SEL to a sane value before entering the guest
  KVM: arm/arm64: timer: Check for properly initialized timer on init
  KVM: arm/arm64: vgic-v2: Limit ITARGETSR bits to number of VCPUs
  KVM: x86: Handle the kthread worker using the new API
  KVM: nVMX: invvpid handling improvements
  KVM: nVMX: check host CR3 on vmentry and vmexit
  KVM: nVMX: introduce nested_vmx_load_cr3 and call it on vmentry
  KVM: nVMX: propagate errors from prepare_vmcs02
  KVM: nVMX: fix CR3 load if L2 uses PAE paging and EPT
  KVM: nVMX: load GUEST_EFER after GUEST_CR0 during emulated VM-entry
  KVM: nVMX: generate MSR_IA32_CR{0,4}_FIXED1 from guest CPUID
  KVM: nVMX: fix checks on CR{0,4} during virtual VMX operation
  KVM: nVMX: support restore of VMX capability MSRs
  KVM: nVMX: generate non-true VMX MSRs based on true versions
  KVM: x86: Do not clear RFLAGS.TF when a singlestep trap occurs.
  KVM: x86: Add kvm_skip_emulated_instruction and use it.
  KVM: VMX: Move skip_emulated_instruction out of nested_vmx_check_vmcs12
  KVM: VMX: Reorder some skip_emulated_instruction calls
  KVM: x86: Add a return value to kvm_emulate_cpuid
  KVM: PPC: Book3S: Move prototypes for KVM functions into kvm_ppc.h
  ...
This commit is contained in:
Linus Torvalds 2016-12-13 15:47:02 -08:00
commit 93173b5bf2
64 changed files with 2317 additions and 929 deletions

View File

@ -6,6 +6,8 @@ cpuid.txt
- KVM-specific cpuid leaves (x86).
devices/
- KVM_CAP_DEVICE_CTRL userspace API.
halt-polling.txt
- notes on halt-polling
hypercalls.txt
- KVM hypercalls.
locking.txt

View File

@ -2034,6 +2034,8 @@ registers, find a list below:
PPC | KVM_REG_PPC_WORT | 64
PPC | KVM_REG_PPC_SPRG9 | 64
PPC | KVM_REG_PPC_DBSR | 32
PPC | KVM_REG_PPC_TIDR | 64
PPC | KVM_REG_PPC_PSSCR | 64
PPC | KVM_REG_PPC_TM_GPR0 | 64
...
PPC | KVM_REG_PPC_TM_GPR31 | 64
@ -2050,6 +2052,7 @@ registers, find a list below:
PPC | KVM_REG_PPC_TM_VSCR | 32
PPC | KVM_REG_PPC_TM_DSCR | 64
PPC | KVM_REG_PPC_TM_TAR | 64
PPC | KVM_REG_PPC_TM_XER | 64
| |
MIPS | KVM_REG_MIPS_R0 | 64
...
@ -2209,7 +2212,7 @@ after pausing the vcpu, but before it is resumed.
4.71 KVM_SIGNAL_MSI
Capability: KVM_CAP_SIGNAL_MSI
Architectures: x86 arm64
Architectures: x86 arm arm64
Type: vm ioctl
Parameters: struct kvm_msi (in)
Returns: >0 on delivery, 0 if guest blocked the MSI, and -1 on error

View File

@ -0,0 +1,127 @@
The KVM halt polling system
===========================
The KVM halt polling system provides a feature within KVM whereby the latency
of a guest can, under some circumstances, be reduced by polling in the host
for some time period after the guest has elected to no longer run by cedeing.
That is, when a guest vcpu has ceded, or in the case of powerpc when all of the
vcpus of a single vcore have ceded, the host kernel polls for wakeup conditions
before giving up the cpu to the scheduler in order to let something else run.
Polling provides a latency advantage in cases where the guest can be run again
very quickly by at least saving us a trip through the scheduler, normally on
the order of a few micro-seconds, although performance benefits are workload
dependant. In the event that no wakeup source arrives during the polling
interval or some other task on the runqueue is runnable the scheduler is
invoked. Thus halt polling is especially useful on workloads with very short
wakeup periods where the time spent halt polling is minimised and the time
savings of not invoking the scheduler are distinguishable.
The generic halt polling code is implemented in:
virt/kvm/kvm_main.c: kvm_vcpu_block()
The powerpc kvm-hv specific case is implemented in:
arch/powerpc/kvm/book3s_hv.c: kvmppc_vcore_blocked()
Halt Polling Interval
=====================
The maximum time for which to poll before invoking the scheduler, referred to
as the halt polling interval, is increased and decreased based on the perceived
effectiveness of the polling in an attempt to limit pointless polling.
This value is stored in either the vcpu struct:
kvm_vcpu->halt_poll_ns
or in the case of powerpc kvm-hv, in the vcore struct:
kvmppc_vcore->halt_poll_ns
Thus this is a per vcpu (or vcore) value.
During polling if a wakeup source is received within the halt polling interval,
the interval is left unchanged. In the event that a wakeup source isn't
received during the polling interval (and thus schedule is invoked) there are
two options, either the polling interval and total block time[0] were less than
the global max polling interval (see module params below), or the total block
time was greater than the global max polling interval.
In the event that both the polling interval and total block time were less than
the global max polling interval then the polling interval can be increased in
the hope that next time during the longer polling interval the wake up source
will be received while the host is polling and the latency benefits will be
received. The polling interval is grown in the function grow_halt_poll_ns() and
is multiplied by the module parameter halt_poll_ns_grow.
In the event that the total block time was greater than the global max polling
interval then the host will never poll for long enough (limited by the global
max) to wakeup during the polling interval so it may as well be shrunk in order
to avoid pointless polling. The polling interval is shrunk in the function
shrink_halt_poll_ns() and is divided by the module parameter
halt_poll_ns_shrink, or set to 0 iff halt_poll_ns_shrink == 0.
It is worth noting that this adjustment process attempts to hone in on some
steady state polling interval but will only really do a good job for wakeups
which come at an approximately constant rate, otherwise there will be constant
adjustment of the polling interval.
[0] total block time: the time between when the halt polling function is
invoked and a wakeup source received (irrespective of
whether the scheduler is invoked within that function).
Module Parameters
=================
The kvm module has 3 tuneable module parameters to adjust the global max
polling interval as well as the rate at which the polling interval is grown and
shrunk. These variables are defined in include/linux/kvm_host.h and as module
parameters in virt/kvm/kvm_main.c, or arch/powerpc/kvm/book3s_hv.c in the
powerpc kvm-hv case.
Module Parameter | Description | Default Value
--------------------------------------------------------------------------------
halt_poll_ns | The global max polling interval | KVM_HALT_POLL_NS_DEFAULT
| which defines the ceiling value |
| of the polling interval for | (per arch value)
| each vcpu. |
--------------------------------------------------------------------------------
halt_poll_ns_grow | The value by which the halt | 2
| polling interval is multiplied |
| in the grow_halt_poll_ns() |
| function. |
--------------------------------------------------------------------------------
halt_poll_ns_shrink | The value by which the halt | 0
| polling interval is divided in |
| the shrink_halt_poll_ns() |
| function. |
--------------------------------------------------------------------------------
These module parameters can be set from the debugfs files in:
/sys/module/kvm/parameters/
Note: that these module parameters are system wide values and are not able to
be tuned on a per vm basis.
Further Notes
=============
- Care should be taken when setting the halt_poll_ns module parameter as a
large value has the potential to drive the cpu usage to 100% on a machine which
would be almost entirely idle otherwise. This is because even if a guest has
wakeups during which very little work is done and which are quite far apart, if
the period is shorter than the global max polling interval (halt_poll_ns) then
the host will always poll for the entire block time and thus cpu utilisation
will go to 100%.
- Halt polling essentially presents a trade off between power usage and latency
and the module parameters should be used to tune the affinity for this. Idle
cpu time is essentially converted to host kernel time with the aim of decreasing
latency when entering the guest.
- Halt polling will only be conducted by the host when no other tasks are
runnable on that cpu, otherwise the polling will cease immediately and
schedule will be invoked to allow that other task to run. Thus this doesn't
allow a guest to denial of service the cpu.

View File

@ -87,9 +87,11 @@ struct kvm_regs {
/* Supported VGICv3 address types */
#define KVM_VGIC_V3_ADDR_TYPE_DIST 2
#define KVM_VGIC_V3_ADDR_TYPE_REDIST 3
#define KVM_VGIC_ITS_ADDR_TYPE 4
#define KVM_VGIC_V3_DIST_SIZE SZ_64K
#define KVM_VGIC_V3_REDIST_SIZE (2 * SZ_64K)
#define KVM_VGIC_V3_ITS_SIZE (2 * SZ_64K)
#define KVM_ARM_VCPU_POWER_OFF 0 /* CPU is started in OFF state */
#define KVM_ARM_VCPU_PSCI_0_2 1 /* CPU uses PSCI v0.2 */

View File

@ -34,6 +34,7 @@ config KVM
select HAVE_KVM_IRQFD
select HAVE_KVM_IRQCHIP
select HAVE_KVM_IRQ_ROUTING
select HAVE_KVM_MSI
depends on ARM_VIRT_EXT && ARM_LPAE && ARM_ARCH_TIMER
---help---
Support hosting virtualized guest machines.

View File

@ -32,5 +32,6 @@ obj-y += $(KVM)/arm/vgic/vgic-mmio.o
obj-y += $(KVM)/arm/vgic/vgic-mmio-v2.o
obj-y += $(KVM)/arm/vgic/vgic-mmio-v3.o
obj-y += $(KVM)/arm/vgic/vgic-kvm-device.o
obj-y += $(KVM)/arm/vgic/vgic-its.o
obj-y += $(KVM)/irqchip.o
obj-y += $(KVM)/arm/arch_timer.o

View File

@ -221,6 +221,12 @@ int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
case KVM_CAP_MAX_VCPUS:
r = KVM_MAX_VCPUS;
break;
case KVM_CAP_MSI_DEVID:
if (!kvm)
r = -EINVAL;
else
r = kvm->arch.vgic.msis_require_devid;
break;
default:
r = kvm_arch_dev_ioctl_check_extension(kvm, ext);
break;

View File

@ -16,9 +16,6 @@ menuconfig VIRTUALIZATION
if VIRTUALIZATION
config KVM_ARM_VGIC_V3_ITS
bool
config KVM
bool "Kernel-based Virtual Machine (KVM) support"
depends on OF
@ -34,7 +31,6 @@ config KVM
select KVM_VFIO
select HAVE_KVM_EVENTFD
select HAVE_KVM_IRQFD
select KVM_ARM_VGIC_V3_ITS
select KVM_ARM_PMU if HW_PERF_EVENTS
select HAVE_KVM_MSI
select HAVE_KVM_IRQCHIP

View File

@ -85,7 +85,13 @@ static void __hyp_text __activate_traps(struct kvm_vcpu *vcpu)
write_sysreg(val, hcr_el2);
/* Trap on AArch32 cp15 c15 accesses (EL1 or EL0) */
write_sysreg(1 << 15, hstr_el2);
/* Make sure we trap PMU access from EL0 to EL2 */
/*
* Make sure we trap PMU access from EL0 to EL2. Also sanitize
* PMSELR_EL0 to make sure it never contains the cycle
* counter, which could make a PMXEVCNTR_EL0 access UNDEF at
* EL1 instead of being trapped to EL2.
*/
write_sysreg(0, pmselr_el0);
write_sysreg(ARMV8_PMU_USERENR_MASK, pmuserenr_el0);
write_sysreg(vcpu->arch.mdcr_el2, mdcr_el2);
__activate_traps_arch()();

View File

@ -86,12 +86,6 @@ int kvm_arch_dev_ioctl_check_extension(struct kvm *kvm, long ext)
case KVM_CAP_VCPU_ATTRIBUTES:
r = 1;
break;
case KVM_CAP_MSI_DEVID:
if (!kvm)
r = -EINVAL;
else
r = kvm->arch.vgic.msis_require_devid;
break;
default:
r = 0;
}

View File

@ -70,7 +70,9 @@
#define HPTE_V_SSIZE_SHIFT 62
#define HPTE_V_AVPN_SHIFT 7
#define HPTE_V_COMMON_BITS ASM_CONST(0x000fffffffffffff)
#define HPTE_V_AVPN ASM_CONST(0x3fffffffffffff80)
#define HPTE_V_AVPN_3_0 ASM_CONST(0x000fffffffffff80)
#define HPTE_V_AVPN_VAL(x) (((x) & HPTE_V_AVPN) >> HPTE_V_AVPN_SHIFT)
#define HPTE_V_COMPARE(x,y) (!(((x) ^ (y)) & 0xffffffffffffff80UL))
#define HPTE_V_BOLTED ASM_CONST(0x0000000000000010)
@ -80,14 +82,16 @@
#define HPTE_V_VALID ASM_CONST(0x0000000000000001)
/*
* ISA 3.0 have a different HPTE format.
* ISA 3.0 has a different HPTE format.
*/
#define HPTE_R_3_0_SSIZE_SHIFT 58
#define HPTE_R_3_0_SSIZE_MASK (3ull << HPTE_R_3_0_SSIZE_SHIFT)
#define HPTE_R_PP0 ASM_CONST(0x8000000000000000)
#define HPTE_R_TS ASM_CONST(0x4000000000000000)
#define HPTE_R_KEY_HI ASM_CONST(0x3000000000000000)
#define HPTE_R_RPN_SHIFT 12
#define HPTE_R_RPN ASM_CONST(0x0ffffffffffff000)
#define HPTE_R_RPN_3_0 ASM_CONST(0x01fffffffffff000)
#define HPTE_R_PP ASM_CONST(0x0000000000000003)
#define HPTE_R_PPP ASM_CONST(0x8000000000000003)
#define HPTE_R_N ASM_CONST(0x0000000000000004)
@ -316,11 +320,42 @@ static inline unsigned long hpte_encode_avpn(unsigned long vpn, int psize,
*/
v = (vpn >> (23 - VPN_SHIFT)) & ~(mmu_psize_defs[psize].avpnm);
v <<= HPTE_V_AVPN_SHIFT;
if (!cpu_has_feature(CPU_FTR_ARCH_300))
v |= ((unsigned long) ssize) << HPTE_V_SSIZE_SHIFT;
v |= ((unsigned long) ssize) << HPTE_V_SSIZE_SHIFT;
return v;
}
/*
* ISA v3.0 defines a new HPTE format, which differs from the old
* format in having smaller AVPN and ARPN fields, and the B field
* in the second dword instead of the first.
*/
static inline unsigned long hpte_old_to_new_v(unsigned long v)
{
/* trim AVPN, drop B */
return v & HPTE_V_COMMON_BITS;
}
static inline unsigned long hpte_old_to_new_r(unsigned long v, unsigned long r)
{
/* move B field from 1st to 2nd dword, trim ARPN */
return (r & ~HPTE_R_3_0_SSIZE_MASK) |
(((v) >> HPTE_V_SSIZE_SHIFT) << HPTE_R_3_0_SSIZE_SHIFT);
}
static inline unsigned long hpte_new_to_old_v(unsigned long v, unsigned long r)
{
/* insert B field */
return (v & HPTE_V_COMMON_BITS) |
((r & HPTE_R_3_0_SSIZE_MASK) <<
(HPTE_V_SSIZE_SHIFT - HPTE_R_3_0_SSIZE_SHIFT));
}
static inline unsigned long hpte_new_to_old_r(unsigned long r)
{
/* clear out B field */
return r & ~HPTE_R_3_0_SSIZE_MASK;
}
/*
* This function sets the AVPN and L fields of the HPTE appropriately
* using the base page size and actual page size.
@ -341,12 +376,8 @@ static inline unsigned long hpte_encode_v(unsigned long vpn, int base_psize,
* aligned for the requested page size
*/
static inline unsigned long hpte_encode_r(unsigned long pa, int base_psize,
int actual_psize, int ssize)
int actual_psize)
{
if (cpu_has_feature(CPU_FTR_ARCH_300))
pa |= ((unsigned long) ssize) << HPTE_R_3_0_SSIZE_SHIFT;
/* A 4K page needs no special encoding */
if (actual_psize == MMU_PAGE_4K)
return pa & HPTE_R_RPN;

View File

@ -99,6 +99,7 @@
#define BOOK3S_INTERRUPT_H_EMUL_ASSIST 0xe40
#define BOOK3S_INTERRUPT_HMI 0xe60
#define BOOK3S_INTERRUPT_H_DOORBELL 0xe80
#define BOOK3S_INTERRUPT_H_VIRT 0xea0
#define BOOK3S_INTERRUPT_PERFMON 0xf00
#define BOOK3S_INTERRUPT_ALTIVEC 0xf20
#define BOOK3S_INTERRUPT_VSX 0xf40

View File

@ -48,7 +48,7 @@
#ifdef CONFIG_KVM_MMIO
#define KVM_COALESCED_MMIO_PAGE_OFFSET 1
#endif
#define KVM_HALT_POLL_NS_DEFAULT 500000
#define KVM_HALT_POLL_NS_DEFAULT 10000 /* 10 us */
/* These values are internal and can be increased later */
#define KVM_NR_IRQCHIPS 1
@ -244,8 +244,10 @@ struct kvm_arch_memory_slot {
struct kvm_arch {
unsigned int lpid;
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
unsigned int tlb_sets;
unsigned long hpt_virt;
struct revmap_entry *revmap;
atomic64_t mmio_update;
unsigned int host_lpid;
unsigned long host_lpcr;
unsigned long sdr1;
@ -408,6 +410,24 @@ struct kvmppc_passthru_irqmap {
#define KVMPPC_IRQ_MPIC 1
#define KVMPPC_IRQ_XICS 2
#define MMIO_HPTE_CACHE_SIZE 4
struct mmio_hpte_cache_entry {
unsigned long hpte_v;
unsigned long hpte_r;
unsigned long rpte;
unsigned long pte_index;
unsigned long eaddr;
unsigned long slb_v;
long mmio_update;
unsigned int slb_base_pshift;
};
struct mmio_hpte_cache {
struct mmio_hpte_cache_entry entry[MMIO_HPTE_CACHE_SIZE];
unsigned int index;
};
struct openpic;
struct kvm_vcpu_arch {
@ -498,6 +518,8 @@ struct kvm_vcpu_arch {
ulong tcscr;
ulong acop;
ulong wort;
ulong tid;
ulong psscr;
ulong shadow_srr1;
#endif
u32 vrsave; /* also USPRG0 */
@ -546,6 +568,7 @@ struct kvm_vcpu_arch {
u64 tfiar;
u32 cr_tm;
u64 xer_tm;
u64 lr_tm;
u64 ctr_tm;
u64 amr_tm;
@ -655,9 +678,11 @@ struct kvm_vcpu_arch {
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
struct kvm_vcpu_arch_shared shregs;
struct mmio_hpte_cache mmio_cache;
unsigned long pgfault_addr;
long pgfault_index;
unsigned long pgfault_hpte[2];
struct mmio_hpte_cache_entry *pgfault_cache;
struct task_struct *run_task;
struct kvm_run *kvm_run;

View File

@ -483,9 +483,10 @@ extern void kvmppc_xics_set_mapped(struct kvm *kvm, unsigned long guest_irq,
unsigned long host_irq);
extern void kvmppc_xics_clr_mapped(struct kvm *kvm, unsigned long guest_irq,
unsigned long host_irq);
extern long kvmppc_deliver_irq_passthru(struct kvm_vcpu *vcpu, u32 xirr,
struct kvmppc_irq_map *irq_map,
struct kvmppc_passthru_irqmap *pimap);
extern long kvmppc_deliver_irq_passthru(struct kvm_vcpu *vcpu, __be32 xirr,
struct kvmppc_irq_map *irq_map,
struct kvmppc_passthru_irqmap *pimap,
bool *again);
extern int h_ipi_redirect;
#else
static inline struct kvmppc_passthru_irqmap *kvmppc_get_passthru_irqmap(
@ -509,6 +510,48 @@ static inline int kvmppc_xics_hcall(struct kvm_vcpu *vcpu, u32 cmd)
{ return 0; }
#endif
/*
* Prototypes for functions called only from assembler code.
* Having prototypes reduces sparse errors.
*/
long kvmppc_rm_h_put_tce(struct kvm_vcpu *vcpu, unsigned long liobn,
unsigned long ioba, unsigned long tce);
long kvmppc_rm_h_put_tce_indirect(struct kvm_vcpu *vcpu,
unsigned long liobn, unsigned long ioba,
unsigned long tce_list, unsigned long npages);
long kvmppc_rm_h_stuff_tce(struct kvm_vcpu *vcpu,
unsigned long liobn, unsigned long ioba,
unsigned long tce_value, unsigned long npages);
long int kvmppc_rm_h_confer(struct kvm_vcpu *vcpu, int target,
unsigned int yield_count);
long kvmppc_h_random(struct kvm_vcpu *vcpu);
void kvmhv_commence_exit(int trap);
long kvmppc_realmode_machine_check(struct kvm_vcpu *vcpu);
void kvmppc_subcore_enter_guest(void);
void kvmppc_subcore_exit_guest(void);
long kvmppc_realmode_hmi_handler(void);
long kvmppc_h_enter(struct kvm_vcpu *vcpu, unsigned long flags,
long pte_index, unsigned long pteh, unsigned long ptel);
long kvmppc_h_remove(struct kvm_vcpu *vcpu, unsigned long flags,
unsigned long pte_index, unsigned long avpn);
long kvmppc_h_bulk_remove(struct kvm_vcpu *vcpu);
long kvmppc_h_protect(struct kvm_vcpu *vcpu, unsigned long flags,
unsigned long pte_index, unsigned long avpn,
unsigned long va);
long kvmppc_h_read(struct kvm_vcpu *vcpu, unsigned long flags,
unsigned long pte_index);
long kvmppc_h_clear_ref(struct kvm_vcpu *vcpu, unsigned long flags,
unsigned long pte_index);
long kvmppc_h_clear_mod(struct kvm_vcpu *vcpu, unsigned long flags,
unsigned long pte_index);
long kvmppc_hpte_hv_fault(struct kvm_vcpu *vcpu, unsigned long addr,
unsigned long slb_v, unsigned int status, bool data);
unsigned long kvmppc_rm_h_xirr(struct kvm_vcpu *vcpu);
int kvmppc_rm_h_ipi(struct kvm_vcpu *vcpu, unsigned long server,
unsigned long mfrr);
int kvmppc_rm_h_cppr(struct kvm_vcpu *vcpu, unsigned long cppr);
int kvmppc_rm_h_eoi(struct kvm_vcpu *vcpu, unsigned long xirr);
/*
* Host-side operations we want to set up while running in real
* mode in the guest operating on the xics.

View File

@ -214,6 +214,11 @@ extern u64 ppc64_rma_size;
/* Cleanup function used by kexec */
extern void mmu_cleanup_all(void);
extern void radix__mmu_cleanup_all(void);
/* Functions for creating and updating partition table on POWER9 */
extern void mmu_partition_table_init(void);
extern void mmu_partition_table_set_entry(unsigned int lpid, unsigned long dw0,
unsigned long dw1);
#endif /* CONFIG_PPC64 */
struct mm_struct;

View File

@ -220,9 +220,12 @@ int64_t opal_pci_set_power_state(uint64_t async_token, uint64_t id,
int64_t opal_pci_poll2(uint64_t id, uint64_t data);
int64_t opal_int_get_xirr(uint32_t *out_xirr, bool just_poll);
int64_t opal_rm_int_get_xirr(__be32 *out_xirr, bool just_poll);
int64_t opal_int_set_cppr(uint8_t cppr);
int64_t opal_int_eoi(uint32_t xirr);
int64_t opal_rm_int_eoi(uint32_t xirr);
int64_t opal_int_set_mfrr(uint32_t cpu, uint8_t mfrr);
int64_t opal_rm_int_set_mfrr(uint32_t cpu, uint8_t mfrr);
int64_t opal_pci_tce_kill(uint64_t phb_id, uint32_t kill_type,
uint32_t pe_num, uint32_t tce_size,
uint64_t dma_addr, uint32_t npages);

View File

@ -153,6 +153,8 @@
#define PSSCR_EC 0x00100000 /* Exit Criterion */
#define PSSCR_ESL 0x00200000 /* Enable State Loss */
#define PSSCR_SD 0x00400000 /* Status Disable */
#define PSSCR_PLS 0xf000000000000000 /* Power-saving Level Status */
#define PSSCR_GUEST_VIS 0xf0000000000003ff /* Guest-visible PSSCR fields */
/* Floating Point Status and Control Register (FPSCR) Fields */
#define FPSCR_FX 0x80000000 /* FPU exception summary */
@ -236,6 +238,7 @@
#define SPRN_TEXASRU 0x83 /* '' '' '' Upper 32 */
#define TEXASR_FS __MASK(63-36) /* TEXASR Failure Summary */
#define SPRN_TFHAR 0x80 /* Transaction Failure Handler Addr */
#define SPRN_TIDR 144 /* Thread ID register */
#define SPRN_CTRLF 0x088
#define SPRN_CTRLT 0x098
#define CTRL_CT 0xc0000000 /* current thread */
@ -294,6 +297,7 @@
#define SPRN_HSRR1 0x13B /* Hypervisor Save/Restore 1 */
#define SPRN_LMRR 0x32D /* Load Monitor Region Register */
#define SPRN_LMSER 0x32E /* Load Monitor Section Enable Register */
#define SPRN_ASDR 0x330 /* Access segment descriptor register */
#define SPRN_IC 0x350 /* Virtual Instruction Count */
#define SPRN_VTB 0x351 /* Virtual Time Base */
#define SPRN_LDBAR 0x352 /* LD Base Address Register */
@ -305,6 +309,7 @@
/* HFSCR and FSCR bit numbers are the same */
#define FSCR_LM_LG 11 /* Enable Load Monitor Registers */
#define FSCR_MSGP_LG 10 /* Enable MSGP */
#define FSCR_TAR_LG 8 /* Enable Target Address Register */
#define FSCR_EBB_LG 7 /* Enable Event Based Branching */
#define FSCR_TM_LG 5 /* Enable Transactional Memory */
@ -320,6 +325,7 @@
#define FSCR_DSCR __MASK(FSCR_DSCR_LG)
#define SPRN_HFSCR 0xbe /* HV=1 Facility Status & Control Register */
#define HFSCR_LM __MASK(FSCR_LM_LG)
#define HFSCR_MSGP __MASK(FSCR_MSGP_LG)
#define HFSCR_TAR __MASK(FSCR_TAR_LG)
#define HFSCR_EBB __MASK(FSCR_EBB_LG)
#define HFSCR_TM __MASK(FSCR_TM_LG)
@ -358,6 +364,7 @@
#define LPCR_PECE_HVEE ASM_CONST(0x0000400000000000) /* P9 Wakeup on HV interrupts */
#define LPCR_MER ASM_CONST(0x0000000000000800) /* Mediated External Exception */
#define LPCR_MER_SH 11
#define LPCR_GTSE ASM_CONST(0x0000000000000400) /* Guest Translation Shootdown Enable */
#define LPCR_TC ASM_CONST(0x0000000000000200) /* Translation control */
#define LPCR_LPES 0x0000000c
#define LPCR_LPES0 ASM_CONST(0x0000000000000008) /* LPAR Env selector 0 */
@ -378,6 +385,12 @@
#define PCR_VEC_DIS (1ul << (63-0)) /* Vec. disable (bit NA since POWER8) */
#define PCR_VSX_DIS (1ul << (63-1)) /* VSX disable (bit NA since POWER8) */
#define PCR_TM_DIS (1ul << (63-2)) /* Trans. memory disable (POWER8) */
/*
* These bits are used in the function kvmppc_set_arch_compat() to specify and
* determine both the compatibility level which we want to emulate and the
* compatibility level which the host is capable of emulating.
*/
#define PCR_ARCH_207 0x8 /* Architecture 2.07 */
#define PCR_ARCH_206 0x4 /* Architecture 2.06 */
#define PCR_ARCH_205 0x2 /* Architecture 2.05 */
#define SPRN_HEIR 0x153 /* Hypervisor Emulated Instruction Register */
@ -1219,6 +1232,7 @@
#define PVR_ARCH_206 0x0f000003
#define PVR_ARCH_206p 0x0f100003
#define PVR_ARCH_207 0x0f000004
#define PVR_ARCH_300 0x0f000005
/* Macros for setting and retrieving special purpose registers */
#ifndef __ASSEMBLY__

View File

@ -573,6 +573,10 @@ struct kvm_get_htab_header {
#define KVM_REG_PPC_SPRG9 (KVM_REG_PPC | KVM_REG_SIZE_U64 | 0xba)
#define KVM_REG_PPC_DBSR (KVM_REG_PPC | KVM_REG_SIZE_U32 | 0xbb)
/* POWER9 registers */
#define KVM_REG_PPC_TIDR (KVM_REG_PPC | KVM_REG_SIZE_U64 | 0xbc)
#define KVM_REG_PPC_PSSCR (KVM_REG_PPC | KVM_REG_SIZE_U64 | 0xbd)
/* Transactional Memory checkpointed state:
* This is all GPRs, all VSX regs and a subset of SPRs
*/
@ -596,6 +600,7 @@ struct kvm_get_htab_header {
#define KVM_REG_PPC_TM_VSCR (KVM_REG_PPC_TM | KVM_REG_SIZE_U32 | 0x67)
#define KVM_REG_PPC_TM_DSCR (KVM_REG_PPC_TM | KVM_REG_SIZE_U64 | 0x68)
#define KVM_REG_PPC_TM_TAR (KVM_REG_PPC_TM | KVM_REG_SIZE_U64 | 0x69)
#define KVM_REG_PPC_TM_XER (KVM_REG_PPC_TM | KVM_REG_SIZE_U64 | 0x6a)
/* PPC64 eXternal Interrupt Controller Specification */
#define KVM_DEV_XICS_GRP_SOURCES 1 /* 64-bit source attributes */

View File

@ -487,6 +487,7 @@ int main(void)
/* book3s */
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
DEFINE(KVM_TLB_SETS, offsetof(struct kvm, arch.tlb_sets));
DEFINE(KVM_SDR1, offsetof(struct kvm, arch.sdr1));
DEFINE(KVM_HOST_LPID, offsetof(struct kvm, arch.host_lpid));
DEFINE(KVM_HOST_LPCR, offsetof(struct kvm, arch.host_lpcr));
@ -548,6 +549,8 @@ int main(void)
DEFINE(VCPU_TCSCR, offsetof(struct kvm_vcpu, arch.tcscr));
DEFINE(VCPU_ACOP, offsetof(struct kvm_vcpu, arch.acop));
DEFINE(VCPU_WORT, offsetof(struct kvm_vcpu, arch.wort));
DEFINE(VCPU_TID, offsetof(struct kvm_vcpu, arch.tid));
DEFINE(VCPU_PSSCR, offsetof(struct kvm_vcpu, arch.psscr));
DEFINE(VCORE_ENTRY_EXIT, offsetof(struct kvmppc_vcore, entry_exit_map));
DEFINE(VCORE_IN_GUEST, offsetof(struct kvmppc_vcore, in_guest));
DEFINE(VCORE_NAPPING_THREADS, offsetof(struct kvmppc_vcore, napping_threads));
@ -569,6 +572,7 @@ int main(void)
DEFINE(VCPU_VRS_TM, offsetof(struct kvm_vcpu, arch.vr_tm.vr));
DEFINE(VCPU_VRSAVE_TM, offsetof(struct kvm_vcpu, arch.vrsave_tm));
DEFINE(VCPU_CR_TM, offsetof(struct kvm_vcpu, arch.cr_tm));
DEFINE(VCPU_XER_TM, offsetof(struct kvm_vcpu, arch.xer_tm));
DEFINE(VCPU_LR_TM, offsetof(struct kvm_vcpu, arch.lr_tm));
DEFINE(VCPU_CTR_TM, offsetof(struct kvm_vcpu, arch.ctr_tm));
DEFINE(VCPU_AMR_TM, offsetof(struct kvm_vcpu, arch.amr_tm));

View File

@ -174,7 +174,7 @@ __init_FSCR:
__init_HFSCR:
mfspr r3,SPRN_HFSCR
ori r3,r3,HFSCR_TAR|HFSCR_TM|HFSCR_BHRB|HFSCR_PM|\
HFSCR_DSCR|HFSCR_VECVSX|HFSCR_FP|HFSCR_EBB
HFSCR_DSCR|HFSCR_VECVSX|HFSCR_FP|HFSCR_EBB|HFSCR_MSGP
mtspr SPRN_HFSCR,r3
blr

View File

@ -88,6 +88,8 @@ long kvmppc_alloc_hpt(struct kvm *kvm, u32 *htab_orderp)
/* 128 (2**7) bytes in each HPTEG */
kvm->arch.hpt_mask = (1ul << (order - 7)) - 1;
atomic64_set(&kvm->arch.mmio_update, 0);
/* Allocate reverse map array */
rev = vmalloc(sizeof(struct revmap_entry) * kvm->arch.hpt_npte);
if (!rev) {
@ -255,7 +257,7 @@ static void kvmppc_mmu_book3s_64_hv_reset_msr(struct kvm_vcpu *vcpu)
kvmppc_set_msr(vcpu, msr);
}
long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
long pte_index, unsigned long pteh,
unsigned long ptel, unsigned long *pte_idx_ret)
{
@ -312,7 +314,7 @@ static int kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
struct kvmppc_slb *slbe;
unsigned long slb_v;
unsigned long pp, key;
unsigned long v, gr;
unsigned long v, orig_v, gr;
__be64 *hptep;
int index;
int virtmode = vcpu->arch.shregs.msr & (data ? MSR_DR : MSR_IR);
@ -337,10 +339,12 @@ static int kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
return -ENOENT;
}
hptep = (__be64 *)(kvm->arch.hpt_virt + (index << 4));
v = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
v = orig_v = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
if (cpu_has_feature(CPU_FTR_ARCH_300))
v = hpte_new_to_old_v(v, be64_to_cpu(hptep[1]));
gr = kvm->arch.revmap[index].guest_rpte;
unlock_hpte(hptep, v);
unlock_hpte(hptep, orig_v);
preempt_enable();
gpte->eaddr = eaddr;
@ -438,6 +442,7 @@ int kvmppc_book3s_hv_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu,
{
struct kvm *kvm = vcpu->kvm;
unsigned long hpte[3], r;
unsigned long hnow_v, hnow_r;
__be64 *hptep;
unsigned long mmu_seq, psize, pte_size;
unsigned long gpa_base, gfn_base;
@ -451,6 +456,7 @@ int kvmppc_book3s_hv_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu,
unsigned int writing, write_ok;
struct vm_area_struct *vma;
unsigned long rcbits;
long mmio_update;
/*
* Real-mode code has already searched the HPT and found the
@ -460,6 +466,19 @@ int kvmppc_book3s_hv_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu,
*/
if (ea != vcpu->arch.pgfault_addr)
return RESUME_GUEST;
if (vcpu->arch.pgfault_cache) {
mmio_update = atomic64_read(&kvm->arch.mmio_update);
if (mmio_update == vcpu->arch.pgfault_cache->mmio_update) {
r = vcpu->arch.pgfault_cache->rpte;
psize = hpte_page_size(vcpu->arch.pgfault_hpte[0], r);
gpa_base = r & HPTE_R_RPN & ~(psize - 1);
gfn_base = gpa_base >> PAGE_SHIFT;
gpa = gpa_base | (ea & (psize - 1));
return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea,
dsisr & DSISR_ISSTORE);
}
}
index = vcpu->arch.pgfault_index;
hptep = (__be64 *)(kvm->arch.hpt_virt + (index << 4));
rev = &kvm->arch.revmap[index];
@ -472,6 +491,10 @@ int kvmppc_book3s_hv_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu,
unlock_hpte(hptep, hpte[0]);
preempt_enable();
if (cpu_has_feature(CPU_FTR_ARCH_300)) {
hpte[0] = hpte_new_to_old_v(hpte[0], hpte[1]);
hpte[1] = hpte_new_to_old_r(hpte[1]);
}
if (hpte[0] != vcpu->arch.pgfault_hpte[0] ||
hpte[1] != vcpu->arch.pgfault_hpte[1])
return RESUME_GUEST;
@ -575,16 +598,22 @@ int kvmppc_book3s_hv_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu,
*/
if (psize < PAGE_SIZE)
psize = PAGE_SIZE;
r = (r & ~(HPTE_R_PP0 - psize)) | ((pfn << PAGE_SHIFT) & ~(psize - 1));
r = (r & HPTE_R_KEY_HI) | (r & ~(HPTE_R_PP0 - psize)) |
((pfn << PAGE_SHIFT) & ~(psize - 1));
if (hpte_is_writable(r) && !write_ok)
r = hpte_make_readonly(r);
ret = RESUME_GUEST;
preempt_disable();
while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
cpu_relax();
if ((be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK) != hpte[0] ||
be64_to_cpu(hptep[1]) != hpte[1] ||
rev->guest_rpte != hpte[2])
hnow_v = be64_to_cpu(hptep[0]);
hnow_r = be64_to_cpu(hptep[1]);
if (cpu_has_feature(CPU_FTR_ARCH_300)) {
hnow_v = hpte_new_to_old_v(hnow_v, hnow_r);
hnow_r = hpte_new_to_old_r(hnow_r);
}
if ((hnow_v & ~HPTE_V_HVLOCK) != hpte[0] || hnow_r != hpte[1] ||
rev->guest_rpte != hpte[2])
/* HPTE has been changed under us; let the guest retry */
goto out_unlock;
hpte[0] = (hpte[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID;
@ -615,6 +644,10 @@ int kvmppc_book3s_hv_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu,
kvmppc_add_revmap_chain(kvm, rev, rmap, index, 0);
}
if (cpu_has_feature(CPU_FTR_ARCH_300)) {
r = hpte_old_to_new_r(hpte[0], r);
hpte[0] = hpte_old_to_new_v(hpte[0]);
}
hptep[1] = cpu_to_be64(r);
eieio();
__unlock_hpte(hptep, hpte[0]);
@ -758,6 +791,7 @@ static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
hpte_rpn(ptel, psize) == gfn) {
hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
kvmppc_invalidate_hpte(kvm, hptep, i);
hptep[1] &= ~cpu_to_be64(HPTE_R_KEY_HI | HPTE_R_KEY_LO);
/* Harvest R and C */
rcbits = be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
*rmapp |= rcbits << KVMPPC_RMAP_RC_SHIFT;
@ -1165,7 +1199,7 @@ static long record_hpte(unsigned long flags, __be64 *hptp,
unsigned long *hpte, struct revmap_entry *revp,
int want_valid, int first_pass)
{
unsigned long v, r;
unsigned long v, r, hr;
unsigned long rcbits_unset;
int ok = 1;
int valid, dirty;
@ -1192,6 +1226,11 @@ static long record_hpte(unsigned long flags, __be64 *hptp,
while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
cpu_relax();
v = be64_to_cpu(hptp[0]);
hr = be64_to_cpu(hptp[1]);
if (cpu_has_feature(CPU_FTR_ARCH_300)) {
v = hpte_new_to_old_v(v, hr);
hr = hpte_new_to_old_r(hr);
}
/* re-evaluate valid and dirty from synchronized HPTE value */
valid = !!(v & HPTE_V_VALID);
@ -1199,8 +1238,8 @@ static long record_hpte(unsigned long flags, __be64 *hptp,
/* Harvest R and C into guest view if necessary */
rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
if (valid && (rcbits_unset & be64_to_cpu(hptp[1]))) {
revp->guest_rpte |= (be64_to_cpu(hptp[1]) &
if (valid && (rcbits_unset & hr)) {
revp->guest_rpte |= (hr &
(HPTE_R_R | HPTE_R_C)) | HPTE_GR_MODIFIED;
dirty = 1;
}
@ -1608,7 +1647,7 @@ static ssize_t debugfs_htab_read(struct file *file, char __user *buf,
return ret;
}
ssize_t debugfs_htab_write(struct file *file, const char __user *buf,
static ssize_t debugfs_htab_write(struct file *file, const char __user *buf,
size_t len, loff_t *ppos)
{
return -EACCES;

View File

@ -39,7 +39,6 @@
#include <asm/udbg.h>
#include <asm/iommu.h>
#include <asm/tce.h>
#include <asm/iommu.h>
#define TCES_PER_PAGE (PAGE_SIZE / sizeof(u64))

View File

@ -54,6 +54,9 @@
#include <asm/dbell.h>
#include <asm/hmi.h>
#include <asm/pnv-pci.h>
#include <asm/mmu.h>
#include <asm/opal.h>
#include <asm/xics.h>
#include <linux/gfp.h>
#include <linux/vmalloc.h>
#include <linux/highmem.h>
@ -62,6 +65,7 @@
#include <linux/irqbypass.h>
#include <linux/module.h>
#include <linux/compiler.h>
#include <linux/of.h>
#include "book3s.h"
@ -104,23 +108,6 @@ module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect,
MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
#endif
/* Maximum halt poll interval defaults to KVM_HALT_POLL_NS_DEFAULT */
static unsigned int halt_poll_max_ns = KVM_HALT_POLL_NS_DEFAULT;
module_param(halt_poll_max_ns, uint, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(halt_poll_max_ns, "Maximum halt poll time in ns");
/* Factor by which the vcore halt poll interval is grown, default is to double
*/
static unsigned int halt_poll_ns_grow = 2;
module_param(halt_poll_ns_grow, int, S_IRUGO);
MODULE_PARM_DESC(halt_poll_ns_grow, "Factor halt poll time is grown by");
/* Factor by which the vcore halt poll interval is shrunk, default is to reset
*/
static unsigned int halt_poll_ns_shrink;
module_param(halt_poll_ns_shrink, int, S_IRUGO);
MODULE_PARM_DESC(halt_poll_ns_shrink, "Factor halt poll time is shrunk by");
static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
@ -146,12 +133,21 @@ static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
static bool kvmppc_ipi_thread(int cpu)
{
unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
/* On POWER9 we can use msgsnd to IPI any cpu */
if (cpu_has_feature(CPU_FTR_ARCH_300)) {
msg |= get_hard_smp_processor_id(cpu);
smp_mb();
__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
return true;
}
/* On POWER8 for IPIs to threads in the same core, use msgsnd */
if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
preempt_disable();
if (cpu_first_thread_sibling(cpu) ==
cpu_first_thread_sibling(smp_processor_id())) {
unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
msg |= cpu_thread_in_core(cpu);
smp_mb();
__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
@ -162,8 +158,12 @@ static bool kvmppc_ipi_thread(int cpu)
}
#if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
if (cpu >= 0 && cpu < nr_cpu_ids && paca[cpu].kvm_hstate.xics_phys) {
xics_wake_cpu(cpu);
if (cpu >= 0 && cpu < nr_cpu_ids) {
if (paca[cpu].kvm_hstate.xics_phys) {
xics_wake_cpu(cpu);
return true;
}
opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
return true;
}
#endif
@ -299,41 +299,54 @@ static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
vcpu->arch.pvr = pvr;
}
/* Dummy value used in computing PCR value below */
#define PCR_ARCH_300 (PCR_ARCH_207 << 1)
static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
{
unsigned long pcr = 0;
unsigned long host_pcr_bit = 0, guest_pcr_bit = 0;
struct kvmppc_vcore *vc = vcpu->arch.vcore;
/* We can (emulate) our own architecture version and anything older */
if (cpu_has_feature(CPU_FTR_ARCH_300))
host_pcr_bit = PCR_ARCH_300;
else if (cpu_has_feature(CPU_FTR_ARCH_207S))
host_pcr_bit = PCR_ARCH_207;
else if (cpu_has_feature(CPU_FTR_ARCH_206))
host_pcr_bit = PCR_ARCH_206;
else
host_pcr_bit = PCR_ARCH_205;
/* Determine lowest PCR bit needed to run guest in given PVR level */
guest_pcr_bit = host_pcr_bit;
if (arch_compat) {
switch (arch_compat) {
case PVR_ARCH_205:
/*
* If an arch bit is set in PCR, all the defined
* higher-order arch bits also have to be set.
*/
pcr = PCR_ARCH_206 | PCR_ARCH_205;
guest_pcr_bit = PCR_ARCH_205;
break;
case PVR_ARCH_206:
case PVR_ARCH_206p:
pcr = PCR_ARCH_206;
guest_pcr_bit = PCR_ARCH_206;
break;
case PVR_ARCH_207:
guest_pcr_bit = PCR_ARCH_207;
break;
case PVR_ARCH_300:
guest_pcr_bit = PCR_ARCH_300;
break;
default:
return -EINVAL;
}
if (!cpu_has_feature(CPU_FTR_ARCH_207S)) {
/* POWER7 can't emulate POWER8 */
if (!(pcr & PCR_ARCH_206))
return -EINVAL;
pcr &= ~PCR_ARCH_206;
}
}
/* Check requested PCR bits don't exceed our capabilities */
if (guest_pcr_bit > host_pcr_bit)
return -EINVAL;
spin_lock(&vc->lock);
vc->arch_compat = arch_compat;
vc->pcr = pcr;
/* Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit */
vc->pcr = host_pcr_bit - guest_pcr_bit;
spin_unlock(&vc->lock);
return 0;
@ -945,6 +958,7 @@ static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
break;
case BOOK3S_INTERRUPT_EXTERNAL:
case BOOK3S_INTERRUPT_H_DOORBELL:
case BOOK3S_INTERRUPT_H_VIRT:
vcpu->stat.ext_intr_exits++;
r = RESUME_GUEST;
break;
@ -1229,6 +1243,12 @@ static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
case KVM_REG_PPC_WORT:
*val = get_reg_val(id, vcpu->arch.wort);
break;
case KVM_REG_PPC_TIDR:
*val = get_reg_val(id, vcpu->arch.tid);
break;
case KVM_REG_PPC_PSSCR:
*val = get_reg_val(id, vcpu->arch.psscr);
break;
case KVM_REG_PPC_VPA_ADDR:
spin_lock(&vcpu->arch.vpa_update_lock);
*val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
@ -1288,6 +1308,9 @@ static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
case KVM_REG_PPC_TM_CR:
*val = get_reg_val(id, vcpu->arch.cr_tm);
break;
case KVM_REG_PPC_TM_XER:
*val = get_reg_val(id, vcpu->arch.xer_tm);
break;
case KVM_REG_PPC_TM_LR:
*val = get_reg_val(id, vcpu->arch.lr_tm);
break;
@ -1427,6 +1450,12 @@ static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
case KVM_REG_PPC_WORT:
vcpu->arch.wort = set_reg_val(id, *val);
break;
case KVM_REG_PPC_TIDR:
vcpu->arch.tid = set_reg_val(id, *val);
break;
case KVM_REG_PPC_PSSCR:
vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
break;
case KVM_REG_PPC_VPA_ADDR:
addr = set_reg_val(id, *val);
r = -EINVAL;
@ -1498,6 +1527,9 @@ static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
case KVM_REG_PPC_TM_CR:
vcpu->arch.cr_tm = set_reg_val(id, *val);
break;
case KVM_REG_PPC_TM_XER:
vcpu->arch.xer_tm = set_reg_val(id, *val);
break;
case KVM_REG_PPC_TM_LR:
vcpu->arch.lr_tm = set_reg_val(id, *val);
break;
@ -1540,6 +1572,20 @@ static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
return r;
}
/*
* On POWER9, threads are independent and can be in different partitions.
* Therefore we consider each thread to be a subcore.
* There is a restriction that all threads have to be in the same
* MMU mode (radix or HPT), unfortunately, but since we only support
* HPT guests on a HPT host so far, that isn't an impediment yet.
*/
static int threads_per_vcore(void)
{
if (cpu_has_feature(CPU_FTR_ARCH_300))
return 1;
return threads_per_subcore;
}
static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int core)
{
struct kvmppc_vcore *vcore;
@ -1554,7 +1600,7 @@ static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int core)
init_swait_queue_head(&vcore->wq);
vcore->preempt_tb = TB_NIL;
vcore->lpcr = kvm->arch.lpcr;
vcore->first_vcpuid = core * threads_per_subcore;
vcore->first_vcpuid = core * threads_per_vcore();
vcore->kvm = kvm;
INIT_LIST_HEAD(&vcore->preempt_list);
@ -1717,7 +1763,7 @@ static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
int core;
struct kvmppc_vcore *vcore;
core = id / threads_per_subcore;
core = id / threads_per_vcore();
if (core >= KVM_MAX_VCORES)
goto out;
@ -1935,7 +1981,10 @@ static void kvmppc_wait_for_nap(void)
{
int cpu = smp_processor_id();
int i, loops;
int n_threads = threads_per_vcore();
if (n_threads <= 1)
return;
for (loops = 0; loops < 1000000; ++loops) {
/*
* Check if all threads are finished.
@ -1943,17 +1992,17 @@ static void kvmppc_wait_for_nap(void)
* and the thread clears it when finished, so we look
* for any threads that still have a non-NULL vcore ptr.
*/
for (i = 1; i < threads_per_subcore; ++i)
for (i = 1; i < n_threads; ++i)
if (paca[cpu + i].kvm_hstate.kvm_vcore)
break;
if (i == threads_per_subcore) {
if (i == n_threads) {
HMT_medium();
return;
}
HMT_low();
}
HMT_medium();
for (i = 1; i < threads_per_subcore; ++i)
for (i = 1; i < n_threads; ++i)
if (paca[cpu + i].kvm_hstate.kvm_vcore)
pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
}
@ -2019,7 +2068,7 @@ static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
vc->vcore_state = VCORE_PREEMPT;
vc->pcpu = smp_processor_id();
if (vc->num_threads < threads_per_subcore) {
if (vc->num_threads < threads_per_vcore()) {
spin_lock(&lp->lock);
list_add_tail(&vc->preempt_list, &lp->list);
spin_unlock(&lp->lock);
@ -2123,8 +2172,7 @@ static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
cip->subcore_threads[sub] = vc->num_threads;
cip->subcore_vm[sub] = vc->kvm;
init_master_vcore(vc);
list_del(&vc->preempt_list);
list_add_tail(&vc->preempt_list, &cip->vcs[sub]);
list_move_tail(&vc->preempt_list, &cip->vcs[sub]);
return true;
}
@ -2309,6 +2357,7 @@ static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
unsigned long cmd_bit, stat_bit;
int pcpu, thr;
int target_threads;
int controlled_threads;
/*
* Remove from the list any threads that have a signal pending
@ -2326,12 +2375,19 @@ static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
init_master_vcore(vc);
vc->preempt_tb = TB_NIL;
/*
* Number of threads that we will be controlling: the same as
* the number of threads per subcore, except on POWER9,
* where it's 1 because the threads are (mostly) independent.
*/
controlled_threads = threads_per_vcore();
/*
* Make sure we are running on primary threads, and that secondary
* threads are offline. Also check if the number of threads in this
* guest are greater than the current system threads per guest.
*/
if ((threads_per_core > 1) &&
if ((controlled_threads > 1) &&
((vc->num_threads > threads_per_subcore) || !on_primary_thread())) {
for_each_runnable_thread(i, vcpu, vc) {
vcpu->arch.ret = -EBUSY;
@ -2347,7 +2403,7 @@ static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
*/
init_core_info(&core_info, vc);
pcpu = smp_processor_id();
target_threads = threads_per_subcore;
target_threads = controlled_threads;
if (target_smt_mode && target_smt_mode < target_threads)
target_threads = target_smt_mode;
if (vc->num_threads < target_threads)
@ -2383,7 +2439,7 @@ static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
smp_wmb();
}
pcpu = smp_processor_id();
for (thr = 0; thr < threads_per_subcore; ++thr)
for (thr = 0; thr < controlled_threads; ++thr)
paca[pcpu + thr].kvm_hstate.kvm_split_mode = sip;
/* Initiate micro-threading (split-core) if required */
@ -2493,7 +2549,7 @@ static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
}
/* Let secondaries go back to the offline loop */
for (i = 0; i < threads_per_subcore; ++i) {
for (i = 0; i < controlled_threads; ++i) {
kvmppc_release_hwthread(pcpu + i);
if (sip && sip->napped[i])
kvmppc_ipi_thread(pcpu + i);
@ -2545,9 +2601,6 @@ static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
vc->halt_poll_ns = 10000;
else
vc->halt_poll_ns *= halt_poll_ns_grow;
if (vc->halt_poll_ns > halt_poll_max_ns)
vc->halt_poll_ns = halt_poll_max_ns;
}
static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
@ -2558,7 +2611,8 @@ static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
vc->halt_poll_ns /= halt_poll_ns_shrink;
}
/* Check to see if any of the runnable vcpus on the vcore have pending
/*
* Check to see if any of the runnable vcpus on the vcore have pending
* exceptions or are no longer ceded
*/
static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
@ -2657,16 +2711,18 @@ static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
}
/* Adjust poll time */
if (halt_poll_max_ns) {
if (halt_poll_ns) {
if (block_ns <= vc->halt_poll_ns)
;
/* We slept and blocked for longer than the max halt time */
else if (vc->halt_poll_ns && block_ns > halt_poll_max_ns)
else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
shrink_halt_poll_ns(vc);
/* We slept and our poll time is too small */
else if (vc->halt_poll_ns < halt_poll_max_ns &&
block_ns < halt_poll_max_ns)
else if (vc->halt_poll_ns < halt_poll_ns &&
block_ns < halt_poll_ns)
grow_halt_poll_ns(vc);
if (vc->halt_poll_ns > halt_poll_ns)
vc->halt_poll_ns = halt_poll_ns;
} else
vc->halt_poll_ns = 0;
@ -2973,6 +3029,15 @@ static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
struct kvm_memslots *slots;
struct kvm_memory_slot *memslot;
/*
* If we are making a new memslot, it might make
* some address that was previously cached as emulated
* MMIO be no longer emulated MMIO, so invalidate
* all the caches of emulated MMIO translations.
*/
if (npages)
atomic64_inc(&kvm->arch.mmio_update);
if (npages && old->npages) {
/*
* If modifying a memslot, reset all the rmap dirty bits.
@ -3017,6 +3082,22 @@ static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
return;
}
static void kvmppc_setup_partition_table(struct kvm *kvm)
{
unsigned long dw0, dw1;
/* PS field - page size for VRMA */
dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
/* HTABSIZE and HTABORG fields */
dw0 |= kvm->arch.sdr1;
/* Second dword has GR=0; other fields are unused since UPRT=0 */
dw1 = 0;
mmu_partition_table_set_entry(kvm->arch.lpid, dw0, dw1);
}
static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
{
int err = 0;
@ -3068,17 +3149,20 @@ static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
psize == 0x1000000))
goto out_srcu;
/* Update VRMASD field in the LPCR */
senc = slb_pgsize_encoding(psize);
kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
(VRMA_VSID << SLB_VSID_SHIFT_1T);
/* the -4 is to account for senc values starting at 0x10 */
lpcr = senc << (LPCR_VRMASD_SH - 4);
/* Create HPTEs in the hash page table for the VRMA */
kvmppc_map_vrma(vcpu, memslot, porder);
kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
/* Update VRMASD field in the LPCR */
if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
/* the -4 is to account for senc values starting at 0x10 */
lpcr = senc << (LPCR_VRMASD_SH - 4);
kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
} else {
kvmppc_setup_partition_table(kvm);
}
/* Order updates to kvm->arch.lpcr etc. vs. hpte_setup_done */
smp_wmb();
@ -3193,14 +3277,18 @@ static int kvmppc_core_init_vm_hv(struct kvm *kvm)
* Since we don't flush the TLB when tearing down a VM,
* and this lpid might have previously been used,
* make sure we flush on each core before running the new VM.
* On POWER9, the tlbie in mmu_partition_table_set_entry()
* does this flush for us.
*/
cpumask_setall(&kvm->arch.need_tlb_flush);
if (!cpu_has_feature(CPU_FTR_ARCH_300))
cpumask_setall(&kvm->arch.need_tlb_flush);
/* Start out with the default set of hcalls enabled */
memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
sizeof(kvm->arch.enabled_hcalls));
kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
if (!cpu_has_feature(CPU_FTR_ARCH_300))
kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
/* Init LPCR for virtual RMA mode */
kvm->arch.host_lpid = mfspr(SPRN_LPID);
@ -3213,8 +3301,28 @@ static int kvmppc_core_init_vm_hv(struct kvm *kvm)
/* On POWER8 turn on online bit to enable PURR/SPURR */
if (cpu_has_feature(CPU_FTR_ARCH_207S))
lpcr |= LPCR_ONL;
/*
* On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
* Set HVICE bit to enable hypervisor virtualization interrupts.
*/
if (cpu_has_feature(CPU_FTR_ARCH_300)) {
lpcr &= ~LPCR_VPM0;
lpcr |= LPCR_HVICE;
}
kvm->arch.lpcr = lpcr;
/*
* Work out how many sets the TLB has, for the use of
* the TLB invalidation loop in book3s_hv_rmhandlers.S.
*/
if (cpu_has_feature(CPU_FTR_ARCH_300))
kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH; /* 256 */
else if (cpu_has_feature(CPU_FTR_ARCH_207S))
kvm->arch.tlb_sets = POWER8_TLB_SETS; /* 512 */
else
kvm->arch.tlb_sets = POWER7_TLB_SETS; /* 128 */
/*
* Track that we now have a HV mode VM active. This blocks secondary
* CPU threads from coming online.
@ -3279,9 +3387,9 @@ static int kvmppc_core_check_processor_compat_hv(void)
!cpu_has_feature(CPU_FTR_ARCH_206))
return -EIO;
/*
* Disable KVM for Power9, untill the required bits merged.
* Disable KVM for Power9 in radix mode.
*/
if (cpu_has_feature(CPU_FTR_ARCH_300))
if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled())
return -EIO;
return 0;
@ -3635,6 +3743,23 @@ static int kvmppc_book3s_init_hv(void)
if (r)
return r;
/*
* We need a way of accessing the XICS interrupt controller,
* either directly, via paca[cpu].kvm_hstate.xics_phys, or
* indirectly, via OPAL.
*/
#ifdef CONFIG_SMP
if (!get_paca()->kvm_hstate.xics_phys) {
struct device_node *np;
np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
if (!np) {
pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
return -ENODEV;
}
}
#endif
kvm_ops_hv.owner = THIS_MODULE;
kvmppc_hv_ops = &kvm_ops_hv;
@ -3657,3 +3782,4 @@ module_exit(kvmppc_book3s_exit_hv);
MODULE_LICENSE("GPL");
MODULE_ALIAS_MISCDEV(KVM_MINOR);
MODULE_ALIAS("devname:kvm");

View File

@ -26,6 +26,8 @@
#include <asm/dbell.h>
#include <asm/cputhreads.h>
#include <asm/io.h>
#include <asm/opal.h>
#include <asm/smp.h>
#define KVM_CMA_CHUNK_ORDER 18
@ -205,12 +207,18 @@ static inline void rm_writeb(unsigned long paddr, u8 val)
void kvmhv_rm_send_ipi(int cpu)
{
unsigned long xics_phys;
unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
/* On POWER8 for IPIs to threads in the same core, use msgsnd */
/* On POWER9 we can use msgsnd for any destination cpu. */
if (cpu_has_feature(CPU_FTR_ARCH_300)) {
msg |= get_hard_smp_processor_id(cpu);
__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
return;
}
/* On POWER8 for IPIs to threads in the same core, use msgsnd. */
if (cpu_has_feature(CPU_FTR_ARCH_207S) &&
cpu_first_thread_sibling(cpu) ==
cpu_first_thread_sibling(raw_smp_processor_id())) {
unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
msg |= cpu_thread_in_core(cpu);
__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
return;
@ -218,7 +226,11 @@ void kvmhv_rm_send_ipi(int cpu)
/* Else poke the target with an IPI */
xics_phys = paca[cpu].kvm_hstate.xics_phys;
rm_writeb(xics_phys + XICS_MFRR, IPI_PRIORITY);
if (xics_phys)
rm_writeb(xics_phys + XICS_MFRR, IPI_PRIORITY);
else
opal_rm_int_set_mfrr(get_hard_smp_processor_id(cpu),
IPI_PRIORITY);
}
/*
@ -329,7 +341,7 @@ static struct kvmppc_irq_map *get_irqmap(struct kvmppc_passthru_irqmap *pimap,
* saved a copy of the XIRR in the PACA, it will be picked up by
* the host ICP driver.
*/
static int kvmppc_check_passthru(u32 xisr, __be32 xirr)
static int kvmppc_check_passthru(u32 xisr, __be32 xirr, bool *again)
{
struct kvmppc_passthru_irqmap *pimap;
struct kvmppc_irq_map *irq_map;
@ -348,11 +360,11 @@ static int kvmppc_check_passthru(u32 xisr, __be32 xirr)
/* We're handling this interrupt, generic code doesn't need to */
local_paca->kvm_hstate.saved_xirr = 0;
return kvmppc_deliver_irq_passthru(vcpu, xirr, irq_map, pimap);
return kvmppc_deliver_irq_passthru(vcpu, xirr, irq_map, pimap, again);
}
#else
static inline int kvmppc_check_passthru(u32 xisr, __be32 xirr)
static inline int kvmppc_check_passthru(u32 xisr, __be32 xirr, bool *again)
{
return 1;
}
@ -367,14 +379,31 @@ static inline int kvmppc_check_passthru(u32 xisr, __be32 xirr)
* -1 if there was a guest wakeup IPI (which has now been cleared)
* -2 if there is PCI passthrough external interrupt that was handled
*/
static long kvmppc_read_one_intr(bool *again);
long kvmppc_read_intr(void)
{
long ret = 0;
long rc;
bool again;
do {
again = false;
rc = kvmppc_read_one_intr(&again);
if (rc && (ret == 0 || rc > ret))
ret = rc;
} while (again);
return ret;
}
static long kvmppc_read_one_intr(bool *again)
{
unsigned long xics_phys;
u32 h_xirr;
__be32 xirr;
u32 xisr;
u8 host_ipi;
int64_t rc;
/* see if a host IPI is pending */
host_ipi = local_paca->kvm_hstate.host_ipi;
@ -383,8 +412,14 @@ long kvmppc_read_intr(void)
/* Now read the interrupt from the ICP */
xics_phys = local_paca->kvm_hstate.xics_phys;
if (unlikely(!xics_phys))
return 1;
if (!xics_phys) {
/* Use OPAL to read the XIRR */
rc = opal_rm_int_get_xirr(&xirr, false);
if (rc < 0)
return 1;
} else {
xirr = _lwzcix(xics_phys + XICS_XIRR);
}
/*
* Save XIRR for later. Since we get control in reverse endian
@ -392,7 +427,6 @@ long kvmppc_read_intr(void)
* host endian. Note that xirr is the value read from the
* XIRR register, while h_xirr is the host endian version.
*/
xirr = _lwzcix(xics_phys + XICS_XIRR);
h_xirr = be32_to_cpu(xirr);
local_paca->kvm_hstate.saved_xirr = h_xirr;
xisr = h_xirr & 0xffffff;
@ -411,8 +445,16 @@ long kvmppc_read_intr(void)
* If it is an IPI, clear the MFRR and EOI it.
*/
if (xisr == XICS_IPI) {
_stbcix(xics_phys + XICS_MFRR, 0xff);
_stwcix(xics_phys + XICS_XIRR, xirr);
if (xics_phys) {
_stbcix(xics_phys + XICS_MFRR, 0xff);
_stwcix(xics_phys + XICS_XIRR, xirr);
} else {
opal_rm_int_set_mfrr(hard_smp_processor_id(), 0xff);
rc = opal_rm_int_eoi(h_xirr);
/* If rc > 0, there is another interrupt pending */
*again = rc > 0;
}
/*
* Need to ensure side effects of above stores
* complete before proceeding.
@ -429,7 +471,11 @@ long kvmppc_read_intr(void)
/* We raced with the host,
* we need to resend that IPI, bummer
*/
_stbcix(xics_phys + XICS_MFRR, IPI_PRIORITY);
if (xics_phys)
_stbcix(xics_phys + XICS_MFRR, IPI_PRIORITY);
else
opal_rm_int_set_mfrr(hard_smp_processor_id(),
IPI_PRIORITY);
/* Let side effects complete */
smp_mb();
return 1;
@ -440,5 +486,5 @@ long kvmppc_read_intr(void)
return -1;
}
return kvmppc_check_passthru(xisr, xirr);
return kvmppc_check_passthru(xisr, xirr, again);
}

View File

@ -16,6 +16,7 @@
#include <asm/machdep.h>
#include <asm/cputhreads.h>
#include <asm/hmi.h>
#include <asm/kvm_ppc.h>
/* SRR1 bits for machine check on POWER7 */
#define SRR1_MC_LDSTERR (1ul << (63-42))

View File

@ -264,8 +264,10 @@ long kvmppc_do_h_enter(struct kvm *kvm, unsigned long flags,
if (pa)
pteh |= HPTE_V_VALID;
else
else {
pteh |= HPTE_V_ABSENT;
ptel &= ~(HPTE_R_KEY_HI | HPTE_R_KEY_LO);
}
/*If we had host pte mapping then Check WIMG */
if (ptep && !hpte_cache_flags_ok(ptel, is_ci)) {
@ -351,6 +353,7 @@ long kvmppc_do_h_enter(struct kvm *kvm, unsigned long flags,
/* inval in progress, write a non-present HPTE */
pteh |= HPTE_V_ABSENT;
pteh &= ~HPTE_V_VALID;
ptel &= ~(HPTE_R_KEY_HI | HPTE_R_KEY_LO);
unlock_rmap(rmap);
} else {
kvmppc_add_revmap_chain(kvm, rev, rmap, pte_index,
@ -361,6 +364,11 @@ long kvmppc_do_h_enter(struct kvm *kvm, unsigned long flags,
}
}
/* Convert to new format on P9 */
if (cpu_has_feature(CPU_FTR_ARCH_300)) {
ptel = hpte_old_to_new_r(pteh, ptel);
pteh = hpte_old_to_new_v(pteh);
}
hpte[1] = cpu_to_be64(ptel);
/* Write the first HPTE dword, unlocking the HPTE and making it valid */
@ -386,6 +394,13 @@ long kvmppc_h_enter(struct kvm_vcpu *vcpu, unsigned long flags,
#define LOCK_TOKEN (*(u32 *)(&get_paca()->paca_index))
#endif
static inline int is_mmio_hpte(unsigned long v, unsigned long r)
{
return ((v & HPTE_V_ABSENT) &&
(r & (HPTE_R_KEY_HI | HPTE_R_KEY_LO)) ==
(HPTE_R_KEY_HI | HPTE_R_KEY_LO));
}
static inline int try_lock_tlbie(unsigned int *lock)
{
unsigned int tmp, old;
@ -409,13 +424,18 @@ static void do_tlbies(struct kvm *kvm, unsigned long *rbvalues,
{
long i;
/*
* We use the POWER9 5-operand versions of tlbie and tlbiel here.
* Since we are using RIC=0 PRS=0 R=0, and P7/P8 tlbiel ignores
* the RS field, this is backwards-compatible with P7 and P8.
*/
if (global) {
while (!try_lock_tlbie(&kvm->arch.tlbie_lock))
cpu_relax();
if (need_sync)
asm volatile("ptesync" : : : "memory");
for (i = 0; i < npages; ++i)
asm volatile(PPC_TLBIE(%1,%0) : :
asm volatile(PPC_TLBIE_5(%0,%1,0,0,0) : :
"r" (rbvalues[i]), "r" (kvm->arch.lpid));
asm volatile("eieio; tlbsync; ptesync" : : : "memory");
kvm->arch.tlbie_lock = 0;
@ -423,7 +443,8 @@ static void do_tlbies(struct kvm *kvm, unsigned long *rbvalues,
if (need_sync)
asm volatile("ptesync" : : : "memory");
for (i = 0; i < npages; ++i)
asm volatile("tlbiel %0" : : "r" (rbvalues[i]));
asm volatile(PPC_TLBIEL(%0,%1,0,0,0) : :
"r" (rbvalues[i]), "r" (0));
asm volatile("ptesync" : : : "memory");
}
}
@ -435,18 +456,23 @@ long kvmppc_do_h_remove(struct kvm *kvm, unsigned long flags,
__be64 *hpte;
unsigned long v, r, rb;
struct revmap_entry *rev;
u64 pte;
u64 pte, orig_pte, pte_r;
if (pte_index >= kvm->arch.hpt_npte)
return H_PARAMETER;
hpte = (__be64 *)(kvm->arch.hpt_virt + (pte_index << 4));
while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
cpu_relax();
pte = be64_to_cpu(hpte[0]);
pte = orig_pte = be64_to_cpu(hpte[0]);
pte_r = be64_to_cpu(hpte[1]);
if (cpu_has_feature(CPU_FTR_ARCH_300)) {
pte = hpte_new_to_old_v(pte, pte_r);
pte_r = hpte_new_to_old_r(pte_r);
}
if ((pte & (HPTE_V_ABSENT | HPTE_V_VALID)) == 0 ||
((flags & H_AVPN) && (pte & ~0x7fUL) != avpn) ||
((flags & H_ANDCOND) && (pte & avpn) != 0)) {
__unlock_hpte(hpte, pte);
__unlock_hpte(hpte, orig_pte);
return H_NOT_FOUND;
}
@ -454,7 +480,7 @@ long kvmppc_do_h_remove(struct kvm *kvm, unsigned long flags,
v = pte & ~HPTE_V_HVLOCK;
if (v & HPTE_V_VALID) {
hpte[0] &= ~cpu_to_be64(HPTE_V_VALID);
rb = compute_tlbie_rb(v, be64_to_cpu(hpte[1]), pte_index);
rb = compute_tlbie_rb(v, pte_r, pte_index);
do_tlbies(kvm, &rb, 1, global_invalidates(kvm, flags), true);
/*
* The reference (R) and change (C) bits in a HPT
@ -472,6 +498,9 @@ long kvmppc_do_h_remove(struct kvm *kvm, unsigned long flags,
note_hpte_modification(kvm, rev);
unlock_hpte(hpte, 0);
if (is_mmio_hpte(v, pte_r))
atomic64_inc(&kvm->arch.mmio_update);
if (v & HPTE_V_ABSENT)
v = (v & ~HPTE_V_ABSENT) | HPTE_V_VALID;
hpret[0] = v;
@ -498,7 +527,7 @@ long kvmppc_h_bulk_remove(struct kvm_vcpu *vcpu)
int global;
long int ret = H_SUCCESS;
struct revmap_entry *rev, *revs[4];
u64 hp0;
u64 hp0, hp1;
global = global_invalidates(kvm, 0);
for (i = 0; i < 4 && ret == H_SUCCESS; ) {
@ -531,6 +560,11 @@ long kvmppc_h_bulk_remove(struct kvm_vcpu *vcpu)
}
found = 0;
hp0 = be64_to_cpu(hp[0]);
hp1 = be64_to_cpu(hp[1]);
if (cpu_has_feature(CPU_FTR_ARCH_300)) {
hp0 = hpte_new_to_old_v(hp0, hp1);
hp1 = hpte_new_to_old_r(hp1);
}
if (hp0 & (HPTE_V_ABSENT | HPTE_V_VALID)) {
switch (flags & 3) {
case 0: /* absolute */
@ -561,13 +595,14 @@ long kvmppc_h_bulk_remove(struct kvm_vcpu *vcpu)
rcbits = rev->guest_rpte & (HPTE_R_R|HPTE_R_C);
args[j] |= rcbits << (56 - 5);
hp[0] = 0;
if (is_mmio_hpte(hp0, hp1))
atomic64_inc(&kvm->arch.mmio_update);
continue;
}
/* leave it locked */
hp[0] &= ~cpu_to_be64(HPTE_V_VALID);
tlbrb[n] = compute_tlbie_rb(be64_to_cpu(hp[0]),
be64_to_cpu(hp[1]), pte_index);
tlbrb[n] = compute_tlbie_rb(hp0, hp1, pte_index);
indexes[n] = j;
hptes[n] = hp;
revs[n] = rev;
@ -605,7 +640,7 @@ long kvmppc_h_protect(struct kvm_vcpu *vcpu, unsigned long flags,
__be64 *hpte;
struct revmap_entry *rev;
unsigned long v, r, rb, mask, bits;
u64 pte;
u64 pte_v, pte_r;
if (pte_index >= kvm->arch.hpt_npte)
return H_PARAMETER;
@ -613,14 +648,16 @@ long kvmppc_h_protect(struct kvm_vcpu *vcpu, unsigned long flags,
hpte = (__be64 *)(kvm->arch.hpt_virt + (pte_index << 4));
while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
cpu_relax();
pte = be64_to_cpu(hpte[0]);
if ((pte & (HPTE_V_ABSENT | HPTE_V_VALID)) == 0 ||
((flags & H_AVPN) && (pte & ~0x7fUL) != avpn)) {
__unlock_hpte(hpte, pte);
v = pte_v = be64_to_cpu(hpte[0]);
if (cpu_has_feature(CPU_FTR_ARCH_300))
v = hpte_new_to_old_v(v, be64_to_cpu(hpte[1]));
if ((v & (HPTE_V_ABSENT | HPTE_V_VALID)) == 0 ||
((flags & H_AVPN) && (v & ~0x7fUL) != avpn)) {
__unlock_hpte(hpte, pte_v);
return H_NOT_FOUND;
}
v = pte;
pte_r = be64_to_cpu(hpte[1]);
bits = (flags << 55) & HPTE_R_PP0;
bits |= (flags << 48) & HPTE_R_KEY_HI;
bits |= flags & (HPTE_R_PP | HPTE_R_N | HPTE_R_KEY_LO);
@ -642,22 +679,26 @@ long kvmppc_h_protect(struct kvm_vcpu *vcpu, unsigned long flags,
* readonly to writable. If it should be writable, we'll
* take a trap and let the page fault code sort it out.
*/
pte = be64_to_cpu(hpte[1]);
r = (pte & ~mask) | bits;
if (hpte_is_writable(r) && !hpte_is_writable(pte))
r = (pte_r & ~mask) | bits;
if (hpte_is_writable(r) && !hpte_is_writable(pte_r))
r = hpte_make_readonly(r);
/* If the PTE is changing, invalidate it first */
if (r != pte) {
if (r != pte_r) {
rb = compute_tlbie_rb(v, r, pte_index);
hpte[0] = cpu_to_be64((v & ~HPTE_V_VALID) |
hpte[0] = cpu_to_be64((pte_v & ~HPTE_V_VALID) |
HPTE_V_ABSENT);
do_tlbies(kvm, &rb, 1, global_invalidates(kvm, flags),
true);
/* Don't lose R/C bit updates done by hardware */
r |= be64_to_cpu(hpte[1]) & (HPTE_R_R | HPTE_R_C);
hpte[1] = cpu_to_be64(r);
}
}
unlock_hpte(hpte, v & ~HPTE_V_HVLOCK);
unlock_hpte(hpte, pte_v & ~HPTE_V_HVLOCK);
asm volatile("ptesync" : : : "memory");
if (is_mmio_hpte(v, pte_r))
atomic64_inc(&kvm->arch.mmio_update);
return H_SUCCESS;
}
@ -681,6 +722,10 @@ long kvmppc_h_read(struct kvm_vcpu *vcpu, unsigned long flags,
hpte = (__be64 *)(kvm->arch.hpt_virt + (pte_index << 4));
v = be64_to_cpu(hpte[0]) & ~HPTE_V_HVLOCK;
r = be64_to_cpu(hpte[1]);
if (cpu_has_feature(CPU_FTR_ARCH_300)) {
v = hpte_new_to_old_v(v, r);
r = hpte_new_to_old_r(r);
}
if (v & HPTE_V_ABSENT) {
v &= ~HPTE_V_ABSENT;
v |= HPTE_V_VALID;
@ -798,10 +843,16 @@ void kvmppc_invalidate_hpte(struct kvm *kvm, __be64 *hptep,
unsigned long pte_index)
{
unsigned long rb;
u64 hp0, hp1;
hptep[0] &= ~cpu_to_be64(HPTE_V_VALID);
rb = compute_tlbie_rb(be64_to_cpu(hptep[0]), be64_to_cpu(hptep[1]),
pte_index);
hp0 = be64_to_cpu(hptep[0]);
hp1 = be64_to_cpu(hptep[1]);
if (cpu_has_feature(CPU_FTR_ARCH_300)) {
hp0 = hpte_new_to_old_v(hp0, hp1);
hp1 = hpte_new_to_old_r(hp1);
}
rb = compute_tlbie_rb(hp0, hp1, pte_index);
do_tlbies(kvm, &rb, 1, 1, true);
}
EXPORT_SYMBOL_GPL(kvmppc_invalidate_hpte);
@ -811,9 +862,15 @@ void kvmppc_clear_ref_hpte(struct kvm *kvm, __be64 *hptep,
{
unsigned long rb;
unsigned char rbyte;
u64 hp0, hp1;
rb = compute_tlbie_rb(be64_to_cpu(hptep[0]), be64_to_cpu(hptep[1]),
pte_index);
hp0 = be64_to_cpu(hptep[0]);
hp1 = be64_to_cpu(hptep[1]);
if (cpu_has_feature(CPU_FTR_ARCH_300)) {
hp0 = hpte_new_to_old_v(hp0, hp1);
hp1 = hpte_new_to_old_r(hp1);
}
rb = compute_tlbie_rb(hp0, hp1, pte_index);
rbyte = (be64_to_cpu(hptep[1]) & ~HPTE_R_R) >> 8;
/* modify only the second-last byte, which contains the ref bit */
*((char *)hptep + 14) = rbyte;
@ -828,6 +885,37 @@ static int slb_base_page_shift[4] = {
20, /* 1M, unsupported */
};
static struct mmio_hpte_cache_entry *mmio_cache_search(struct kvm_vcpu *vcpu,
unsigned long eaddr, unsigned long slb_v, long mmio_update)
{
struct mmio_hpte_cache_entry *entry = NULL;
unsigned int pshift;
unsigned int i;
for (i = 0; i < MMIO_HPTE_CACHE_SIZE; i++) {
entry = &vcpu->arch.mmio_cache.entry[i];
if (entry->mmio_update == mmio_update) {
pshift = entry->slb_base_pshift;
if ((entry->eaddr >> pshift) == (eaddr >> pshift) &&
entry->slb_v == slb_v)
return entry;
}
}
return NULL;
}
static struct mmio_hpte_cache_entry *
next_mmio_cache_entry(struct kvm_vcpu *vcpu)
{
unsigned int index = vcpu->arch.mmio_cache.index;
vcpu->arch.mmio_cache.index++;
if (vcpu->arch.mmio_cache.index == MMIO_HPTE_CACHE_SIZE)
vcpu->arch.mmio_cache.index = 0;
return &vcpu->arch.mmio_cache.entry[index];
}
/* When called from virtmode, this func should be protected by
* preempt_disable(), otherwise, the holding of HPTE_V_HVLOCK
* can trigger deadlock issue.
@ -842,7 +930,7 @@ long kvmppc_hv_find_lock_hpte(struct kvm *kvm, gva_t eaddr, unsigned long slb_v,
unsigned long avpn;
__be64 *hpte;
unsigned long mask, val;
unsigned long v, r;
unsigned long v, r, orig_v;
/* Get page shift, work out hash and AVPN etc. */
mask = SLB_VSID_B | HPTE_V_AVPN | HPTE_V_SECONDARY;
@ -877,6 +965,8 @@ long kvmppc_hv_find_lock_hpte(struct kvm *kvm, gva_t eaddr, unsigned long slb_v,
for (i = 0; i < 16; i += 2) {
/* Read the PTE racily */
v = be64_to_cpu(hpte[i]) & ~HPTE_V_HVLOCK;
if (cpu_has_feature(CPU_FTR_ARCH_300))
v = hpte_new_to_old_v(v, be64_to_cpu(hpte[i+1]));
/* Check valid/absent, hash, segment size and AVPN */
if (!(v & valid) || (v & mask) != val)
@ -885,8 +975,12 @@ long kvmppc_hv_find_lock_hpte(struct kvm *kvm, gva_t eaddr, unsigned long slb_v,
/* Lock the PTE and read it under the lock */
while (!try_lock_hpte(&hpte[i], HPTE_V_HVLOCK))
cpu_relax();
v = be64_to_cpu(hpte[i]) & ~HPTE_V_HVLOCK;
v = orig_v = be64_to_cpu(hpte[i]) & ~HPTE_V_HVLOCK;
r = be64_to_cpu(hpte[i+1]);
if (cpu_has_feature(CPU_FTR_ARCH_300)) {
v = hpte_new_to_old_v(v, r);
r = hpte_new_to_old_r(r);
}
/*
* Check the HPTE again, including base page size
@ -896,7 +990,7 @@ long kvmppc_hv_find_lock_hpte(struct kvm *kvm, gva_t eaddr, unsigned long slb_v,
/* Return with the HPTE still locked */
return (hash << 3) + (i >> 1);
__unlock_hpte(&hpte[i], v);
__unlock_hpte(&hpte[i], orig_v);
}
if (val & HPTE_V_SECONDARY)
@ -924,30 +1018,45 @@ long kvmppc_hpte_hv_fault(struct kvm_vcpu *vcpu, unsigned long addr,
{
struct kvm *kvm = vcpu->kvm;
long int index;
unsigned long v, r, gr;
unsigned long v, r, gr, orig_v;
__be64 *hpte;
unsigned long valid;
struct revmap_entry *rev;
unsigned long pp, key;
struct mmio_hpte_cache_entry *cache_entry = NULL;
long mmio_update = 0;
/* For protection fault, expect to find a valid HPTE */
valid = HPTE_V_VALID;
if (status & DSISR_NOHPTE)
if (status & DSISR_NOHPTE) {
valid |= HPTE_V_ABSENT;
index = kvmppc_hv_find_lock_hpte(kvm, addr, slb_v, valid);
if (index < 0) {
if (status & DSISR_NOHPTE)
return status; /* there really was no HPTE */
return 0; /* for prot fault, HPTE disappeared */
mmio_update = atomic64_read(&kvm->arch.mmio_update);
cache_entry = mmio_cache_search(vcpu, addr, slb_v, mmio_update);
}
hpte = (__be64 *)(kvm->arch.hpt_virt + (index << 4));
v = be64_to_cpu(hpte[0]) & ~HPTE_V_HVLOCK;
r = be64_to_cpu(hpte[1]);
rev = real_vmalloc_addr(&kvm->arch.revmap[index]);
gr = rev->guest_rpte;
if (cache_entry) {
index = cache_entry->pte_index;
v = cache_entry->hpte_v;
r = cache_entry->hpte_r;
gr = cache_entry->rpte;
} else {
index = kvmppc_hv_find_lock_hpte(kvm, addr, slb_v, valid);
if (index < 0) {
if (status & DSISR_NOHPTE)
return status; /* there really was no HPTE */
return 0; /* for prot fault, HPTE disappeared */
}
hpte = (__be64 *)(kvm->arch.hpt_virt + (index << 4));
v = orig_v = be64_to_cpu(hpte[0]) & ~HPTE_V_HVLOCK;
r = be64_to_cpu(hpte[1]);
if (cpu_has_feature(CPU_FTR_ARCH_300)) {
v = hpte_new_to_old_v(v, r);
r = hpte_new_to_old_r(r);
}
rev = real_vmalloc_addr(&kvm->arch.revmap[index]);
gr = rev->guest_rpte;
unlock_hpte(hpte, v);
unlock_hpte(hpte, orig_v);
}
/* For not found, if the HPTE is valid by now, retry the instruction */
if ((status & DSISR_NOHPTE) && (v & HPTE_V_VALID))
@ -985,12 +1094,32 @@ long kvmppc_hpte_hv_fault(struct kvm_vcpu *vcpu, unsigned long addr,
vcpu->arch.pgfault_index = index;
vcpu->arch.pgfault_hpte[0] = v;
vcpu->arch.pgfault_hpte[1] = r;
vcpu->arch.pgfault_cache = cache_entry;
/* Check the storage key to see if it is possibly emulated MMIO */
if (data && (vcpu->arch.shregs.msr & MSR_IR) &&
(r & (HPTE_R_KEY_HI | HPTE_R_KEY_LO)) ==
(HPTE_R_KEY_HI | HPTE_R_KEY_LO))
return -2; /* MMIO emulation - load instr word */
if ((r & (HPTE_R_KEY_HI | HPTE_R_KEY_LO)) ==
(HPTE_R_KEY_HI | HPTE_R_KEY_LO)) {
if (!cache_entry) {
unsigned int pshift = 12;
unsigned int pshift_index;
if (slb_v & SLB_VSID_L) {
pshift_index = ((slb_v & SLB_VSID_LP) >> 4);
pshift = slb_base_page_shift[pshift_index];
}
cache_entry = next_mmio_cache_entry(vcpu);
cache_entry->eaddr = addr;
cache_entry->slb_base_pshift = pshift;
cache_entry->pte_index = index;
cache_entry->hpte_v = v;
cache_entry->hpte_r = r;
cache_entry->rpte = gr;
cache_entry->slb_v = slb_v;
cache_entry->mmio_update = mmio_update;
}
if (data && (vcpu->arch.shregs.msr & MSR_IR))
return -2; /* MMIO emulation - load instr word */
}
return -1; /* send fault up to host kernel mode */
}

View File

@ -70,7 +70,11 @@ static inline void icp_send_hcore_msg(int hcore, struct kvm_vcpu *vcpu)
hcpu = hcore << threads_shift;
kvmppc_host_rm_ops_hv->rm_core[hcore].rm_data = vcpu;
smp_muxed_ipi_set_message(hcpu, PPC_MSG_RM_HOST_ACTION);
icp_native_cause_ipi_rm(hcpu);
if (paca[hcpu].kvm_hstate.xics_phys)
icp_native_cause_ipi_rm(hcpu);
else
opal_rm_int_set_mfrr(get_hard_smp_processor_id(hcpu),
IPI_PRIORITY);
}
#else
static inline void icp_send_hcore_msg(int hcore, struct kvm_vcpu *vcpu) { }
@ -737,7 +741,7 @@ int kvmppc_rm_h_eoi(struct kvm_vcpu *vcpu, unsigned long xirr)
unsigned long eoi_rc;
static void icp_eoi(struct irq_chip *c, u32 hwirq, u32 xirr)
static void icp_eoi(struct irq_chip *c, u32 hwirq, __be32 xirr, bool *again)
{
unsigned long xics_phys;
int64_t rc;
@ -751,7 +755,12 @@ static void icp_eoi(struct irq_chip *c, u32 hwirq, u32 xirr)
/* EOI it */
xics_phys = local_paca->kvm_hstate.xics_phys;
_stwcix(xics_phys + XICS_XIRR, xirr);
if (xics_phys) {
_stwcix(xics_phys + XICS_XIRR, xirr);
} else {
rc = opal_rm_int_eoi(be32_to_cpu(xirr));
*again = rc > 0;
}
}
static int xics_opal_rm_set_server(unsigned int hw_irq, int server_cpu)
@ -809,9 +818,10 @@ static void kvmppc_rm_handle_irq_desc(struct irq_desc *desc)
}
long kvmppc_deliver_irq_passthru(struct kvm_vcpu *vcpu,
u32 xirr,
__be32 xirr,
struct kvmppc_irq_map *irq_map,
struct kvmppc_passthru_irqmap *pimap)
struct kvmppc_passthru_irqmap *pimap,
bool *again)
{
struct kvmppc_xics *xics;
struct kvmppc_icp *icp;
@ -825,7 +835,8 @@ long kvmppc_deliver_irq_passthru(struct kvm_vcpu *vcpu,
icp_rm_deliver_irq(xics, icp, irq);
/* EOI the interrupt */
icp_eoi(irq_desc_get_chip(irq_map->desc), irq_map->r_hwirq, xirr);
icp_eoi(irq_desc_get_chip(irq_map->desc), irq_map->r_hwirq, xirr,
again);
if (check_too_hard(xics, icp) == H_TOO_HARD)
return 2;

View File

@ -501,17 +501,9 @@ END_FTR_SECTION_IFSET(CPU_FTR_ARCH_207S)
cmpwi r0, 0
beq 57f
li r3, (LPCR_PECEDH | LPCR_PECE0) >> 4
mfspr r4, SPRN_LPCR
rlwimi r4, r3, 4, (LPCR_PECEDP | LPCR_PECEDH | LPCR_PECE0 | LPCR_PECE1)
mtspr SPRN_LPCR, r4
isync
std r0, HSTATE_SCRATCH0(r13)
ptesync
ld r0, HSTATE_SCRATCH0(r13)
1: cmpd r0, r0
bne 1b
nap
b .
mfspr r5, SPRN_LPCR
rlwimi r5, r3, 4, (LPCR_PECEDP | LPCR_PECEDH | LPCR_PECE0 | LPCR_PECE1)
b kvm_nap_sequence
57: li r0, 0
stbx r0, r3, r4
@ -523,6 +515,10 @@ END_FTR_SECTION_IFSET(CPU_FTR_ARCH_207S)
* *
*****************************************************************************/
/* Stack frame offsets */
#define STACK_SLOT_TID (112-16)
#define STACK_SLOT_PSSCR (112-24)
.global kvmppc_hv_entry
kvmppc_hv_entry:
@ -581,12 +577,14 @@ kvmppc_hv_entry:
ld r9,VCORE_KVM(r5) /* pointer to struct kvm */
cmpwi r6,0
bne 10f
ld r6,KVM_SDR1(r9)
lwz r7,KVM_LPID(r9)
BEGIN_FTR_SECTION
ld r6,KVM_SDR1(r9)
li r0,LPID_RSVD /* switch to reserved LPID */
mtspr SPRN_LPID,r0
ptesync
mtspr SPRN_SDR1,r6 /* switch to partition page table */
END_FTR_SECTION_IFCLR(CPU_FTR_ARCH_300)
mtspr SPRN_LPID,r7
isync
@ -607,12 +605,8 @@ kvmppc_hv_entry:
stdcx. r7,0,r6
bne 23b
/* Flush the TLB of any entries for this LPID */
/* use arch 2.07S as a proxy for POWER8 */
BEGIN_FTR_SECTION
li r6,512 /* POWER8 has 512 sets */
FTR_SECTION_ELSE
li r6,128 /* POWER7 has 128 sets */
ALT_FTR_SECTION_END_IFSET(CPU_FTR_ARCH_207S)
lwz r6,KVM_TLB_SETS(r9)
li r0,0 /* RS for P9 version of tlbiel */
mtctr r6
li r7,0x800 /* IS field = 0b10 */
ptesync
@ -698,6 +692,14 @@ kvmppc_got_guest:
mtspr SPRN_PURR,r7
mtspr SPRN_SPURR,r8
/* Save host values of some registers */
BEGIN_FTR_SECTION
mfspr r5, SPRN_TIDR
mfspr r6, SPRN_PSSCR
std r5, STACK_SLOT_TID(r1)
std r6, STACK_SLOT_PSSCR(r1)
END_FTR_SECTION_IFSET(CPU_FTR_ARCH_300)
BEGIN_FTR_SECTION
/* Set partition DABR */
/* Do this before re-enabling PMU to avoid P7 DABR corruption bug */
@ -750,14 +752,16 @@ END_FTR_SECTION_IFSET(CPU_FTR_PMAO_BUG)
BEGIN_FTR_SECTION
ld r5, VCPU_MMCR + 24(r4)
ld r6, VCPU_SIER(r4)
mtspr SPRN_MMCR2, r5
mtspr SPRN_SIER, r6
BEGIN_FTR_SECTION_NESTED(96)
lwz r7, VCPU_PMC + 24(r4)
lwz r8, VCPU_PMC + 28(r4)
ld r9, VCPU_MMCR + 32(r4)
mtspr SPRN_MMCR2, r5
mtspr SPRN_SIER, r6
mtspr SPRN_SPMC1, r7
mtspr SPRN_SPMC2, r8
mtspr SPRN_MMCRS, r9
END_FTR_SECTION_NESTED(CPU_FTR_ARCH_300, 0, 96)
END_FTR_SECTION_IFSET(CPU_FTR_ARCH_207S)
mtspr SPRN_MMCR0, r3
isync
@ -813,20 +817,30 @@ END_FTR_SECTION_IFCLR(CPU_FTR_ARCH_207S)
mtspr SPRN_EBBHR, r8
ld r5, VCPU_EBBRR(r4)
ld r6, VCPU_BESCR(r4)
ld r7, VCPU_CSIGR(r4)
ld r8, VCPU_TACR(r4)
mtspr SPRN_EBBRR, r5
mtspr SPRN_BESCR, r6
mtspr SPRN_CSIGR, r7
mtspr SPRN_TACR, r8
ld r5, VCPU_TCSCR(r4)
ld r6, VCPU_ACOP(r4)
lwz r7, VCPU_GUEST_PID(r4)
ld r8, VCPU_WORT(r4)
mtspr SPRN_TCSCR, r5
mtspr SPRN_ACOP, r6
mtspr SPRN_EBBRR, r5
mtspr SPRN_BESCR, r6
mtspr SPRN_PID, r7
mtspr SPRN_WORT, r8
BEGIN_FTR_SECTION
/* POWER8-only registers */
ld r5, VCPU_TCSCR(r4)
ld r6, VCPU_ACOP(r4)
ld r7, VCPU_CSIGR(r4)
ld r8, VCPU_TACR(r4)
mtspr SPRN_TCSCR, r5
mtspr SPRN_ACOP, r6
mtspr SPRN_CSIGR, r7
mtspr SPRN_TACR, r8
FTR_SECTION_ELSE
/* POWER9-only registers */
ld r5, VCPU_TID(r4)
ld r6, VCPU_PSSCR(r4)
oris r6, r6, PSSCR_EC@h /* This makes stop trap to HV */
mtspr SPRN_TIDR, r5
mtspr SPRN_PSSCR, r6
ALT_FTR_SECTION_END_IFCLR(CPU_FTR_ARCH_300)
8:
/*
@ -1341,20 +1355,29 @@ END_FTR_SECTION_IFCLR(CPU_FTR_ARCH_207S)
std r8, VCPU_EBBHR(r9)
mfspr r5, SPRN_EBBRR
mfspr r6, SPRN_BESCR
mfspr r7, SPRN_CSIGR
mfspr r8, SPRN_TACR
std r5, VCPU_EBBRR(r9)
std r6, VCPU_BESCR(r9)
std r7, VCPU_CSIGR(r9)
std r8, VCPU_TACR(r9)
mfspr r5, SPRN_TCSCR
mfspr r6, SPRN_ACOP
mfspr r7, SPRN_PID
mfspr r8, SPRN_WORT
std r5, VCPU_TCSCR(r9)
std r6, VCPU_ACOP(r9)
std r5, VCPU_EBBRR(r9)
std r6, VCPU_BESCR(r9)
stw r7, VCPU_GUEST_PID(r9)
std r8, VCPU_WORT(r9)
BEGIN_FTR_SECTION
mfspr r5, SPRN_TCSCR
mfspr r6, SPRN_ACOP
mfspr r7, SPRN_CSIGR
mfspr r8, SPRN_TACR
std r5, VCPU_TCSCR(r9)
std r6, VCPU_ACOP(r9)
std r7, VCPU_CSIGR(r9)
std r8, VCPU_TACR(r9)
FTR_SECTION_ELSE
mfspr r5, SPRN_TIDR
mfspr r6, SPRN_PSSCR
std r5, VCPU_TID(r9)
rldicl r6, r6, 4, 50 /* r6 &= PSSCR_GUEST_VIS */
rotldi r6, r6, 60
std r6, VCPU_PSSCR(r9)
ALT_FTR_SECTION_END_IFCLR(CPU_FTR_ARCH_300)
/*
* Restore various registers to 0, where non-zero values
* set by the guest could disrupt the host.
@ -1363,12 +1386,14 @@ END_FTR_SECTION_IFCLR(CPU_FTR_ARCH_207S)
mtspr SPRN_IAMR, r0
mtspr SPRN_CIABR, r0
mtspr SPRN_DAWRX, r0
mtspr SPRN_TCSCR, r0
mtspr SPRN_WORT, r0
BEGIN_FTR_SECTION
mtspr SPRN_TCSCR, r0
/* Set MMCRS to 1<<31 to freeze and disable the SPMC counters */
li r0, 1
sldi r0, r0, 31
mtspr SPRN_MMCRS, r0
END_FTR_SECTION_IFCLR(CPU_FTR_ARCH_300)
8:
/* Save and reset AMR and UAMOR before turning on the MMU */
@ -1502,15 +1527,17 @@ END_FTR_SECTION_IFSET(CPU_FTR_ARCH_207S)
stw r8, VCPU_PMC + 20(r9)
BEGIN_FTR_SECTION
mfspr r5, SPRN_SIER
std r5, VCPU_SIER(r9)
BEGIN_FTR_SECTION_NESTED(96)
mfspr r6, SPRN_SPMC1
mfspr r7, SPRN_SPMC2
mfspr r8, SPRN_MMCRS
std r5, VCPU_SIER(r9)
stw r6, VCPU_PMC + 24(r9)
stw r7, VCPU_PMC + 28(r9)
std r8, VCPU_MMCR + 32(r9)
lis r4, 0x8000
mtspr SPRN_MMCRS, r4
END_FTR_SECTION_NESTED(CPU_FTR_ARCH_300, 0, 96)
END_FTR_SECTION_IFSET(CPU_FTR_ARCH_207S)
22:
/* Clear out SLB */
@ -1519,6 +1546,14 @@ END_FTR_SECTION_IFSET(CPU_FTR_ARCH_207S)
slbia
ptesync
/* Restore host values of some registers */
BEGIN_FTR_SECTION
ld r5, STACK_SLOT_TID(r1)
ld r6, STACK_SLOT_PSSCR(r1)
mtspr SPRN_TIDR, r5
mtspr SPRN_PSSCR, r6
END_FTR_SECTION_IFSET(CPU_FTR_ARCH_300)
/*
* POWER7/POWER8 guest -> host partition switch code.
* We don't have to lock against tlbies but we do
@ -1552,12 +1587,14 @@ kvmhv_switch_to_host:
beq 19f
/* Primary thread switches back to host partition */
ld r6,KVM_HOST_SDR1(r4)
lwz r7,KVM_HOST_LPID(r4)
BEGIN_FTR_SECTION
ld r6,KVM_HOST_SDR1(r4)
li r8,LPID_RSVD /* switch to reserved LPID */
mtspr SPRN_LPID,r8
ptesync
mtspr SPRN_SDR1,r6 /* switch to partition page table */
mtspr SPRN_SDR1,r6 /* switch to host page table */
END_FTR_SECTION_IFCLR(CPU_FTR_ARCH_300)
mtspr SPRN_LPID,r7
isync
@ -2211,6 +2248,21 @@ BEGIN_FTR_SECTION
ori r5, r5, LPCR_PECEDH
rlwimi r5, r3, 0, LPCR_PECEDP
END_FTR_SECTION_IFSET(CPU_FTR_ARCH_207S)
kvm_nap_sequence: /* desired LPCR value in r5 */
BEGIN_FTR_SECTION
/*
* PSSCR bits: exit criterion = 1 (wakeup based on LPCR at sreset)
* enable state loss = 1 (allow SMT mode switch)
* requested level = 0 (just stop dispatching)
*/
lis r3, (PSSCR_EC | PSSCR_ESL)@h
mtspr SPRN_PSSCR, r3
/* Set LPCR_PECE_HVEE bit to enable wakeup by HV interrupts */
li r4, LPCR_PECE_HVEE@higher
sldi r4, r4, 32
or r5, r5, r4
END_FTR_SECTION_IFSET(CPU_FTR_ARCH_300)
mtspr SPRN_LPCR,r5
isync
li r0, 0
@ -2219,7 +2271,11 @@ END_FTR_SECTION_IFSET(CPU_FTR_ARCH_207S)
ld r0, HSTATE_SCRATCH0(r13)
1: cmpd r0, r0
bne 1b
BEGIN_FTR_SECTION
nap
FTR_SECTION_ELSE
PPC_STOP
ALT_FTR_SECTION_END_IFCLR(CPU_FTR_ARCH_300)
b .
33: mr r4, r3
@ -2600,11 +2656,13 @@ kvmppc_save_tm:
mfctr r7
mfspr r8, SPRN_AMR
mfspr r10, SPRN_TAR
mfxer r11
std r5, VCPU_LR_TM(r9)
stw r6, VCPU_CR_TM(r9)
std r7, VCPU_CTR_TM(r9)
std r8, VCPU_AMR_TM(r9)
std r10, VCPU_TAR_TM(r9)
std r11, VCPU_XER_TM(r9)
/* Restore r12 as trap number. */
lwz r12, VCPU_TRAP(r9)
@ -2697,11 +2755,13 @@ kvmppc_restore_tm:
ld r7, VCPU_CTR_TM(r4)
ld r8, VCPU_AMR_TM(r4)
ld r9, VCPU_TAR_TM(r4)
ld r10, VCPU_XER_TM(r4)
mtlr r5
mtcr r6
mtctr r7
mtspr SPRN_AMR, r8
mtspr SPRN_TAR, r9
mtxer r10
/*
* Load up PPR and DSCR values but don't put them in the actual SPRs

View File

@ -536,7 +536,6 @@ int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
#ifdef CONFIG_PPC_BOOK3S_64
case KVM_CAP_SPAPR_TCE:
case KVM_CAP_SPAPR_TCE_64:
case KVM_CAP_PPC_ALLOC_HTAB:
case KVM_CAP_PPC_RTAS:
case KVM_CAP_PPC_FIXUP_HCALL:
case KVM_CAP_PPC_ENABLE_HCALL:
@ -545,13 +544,20 @@ int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
#endif
r = 1;
break;
case KVM_CAP_PPC_ALLOC_HTAB:
r = hv_enabled;
break;
#endif /* CONFIG_PPC_BOOK3S_64 */
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
case KVM_CAP_PPC_SMT:
if (hv_enabled)
r = threads_per_subcore;
else
r = 0;
r = 0;
if (hv_enabled) {
if (cpu_has_feature(CPU_FTR_ARCH_300))
r = 1;
else
r = threads_per_subcore;
}
break;
case KVM_CAP_PPC_RMA:
r = 0;

View File

@ -449,7 +449,7 @@ TRACE_EVENT(kvmppc_vcore_wakeup,
__entry->tgid = current->tgid;
),
TP_printk("%s time %lld ns, tgid=%d",
TP_printk("%s time %llu ns, tgid=%d",
__entry->waited ? "wait" : "poll",
__entry->ns, __entry->tgid)
);

View File

@ -221,13 +221,18 @@ static long native_hpte_insert(unsigned long hpte_group, unsigned long vpn,
return -1;
hpte_v = hpte_encode_v(vpn, psize, apsize, ssize) | vflags | HPTE_V_VALID;
hpte_r = hpte_encode_r(pa, psize, apsize, ssize) | rflags;
hpte_r = hpte_encode_r(pa, psize, apsize) | rflags;
if (!(vflags & HPTE_V_BOLTED)) {
DBG_LOW(" i=%x hpte_v=%016lx, hpte_r=%016lx\n",
i, hpte_v, hpte_r);
}
if (cpu_has_feature(CPU_FTR_ARCH_300)) {
hpte_r = hpte_old_to_new_r(hpte_v, hpte_r);
hpte_v = hpte_old_to_new_v(hpte_v);
}
hptep->r = cpu_to_be64(hpte_r);
/* Guarantee the second dword is visible before the valid bit */
eieio();
@ -295,6 +300,8 @@ static long native_hpte_updatepp(unsigned long slot, unsigned long newpp,
vpn, want_v & HPTE_V_AVPN, slot, newpp);
hpte_v = be64_to_cpu(hptep->v);
if (cpu_has_feature(CPU_FTR_ARCH_300))
hpte_v = hpte_new_to_old_v(hpte_v, be64_to_cpu(hptep->r));
/*
* We need to invalidate the TLB always because hpte_remove doesn't do
* a tlb invalidate. If a hash bucket gets full, we "evict" a more/less
@ -309,6 +316,8 @@ static long native_hpte_updatepp(unsigned long slot, unsigned long newpp,
native_lock_hpte(hptep);
/* recheck with locks held */
hpte_v = be64_to_cpu(hptep->v);
if (cpu_has_feature(CPU_FTR_ARCH_300))
hpte_v = hpte_new_to_old_v(hpte_v, be64_to_cpu(hptep->r));
if (unlikely(!HPTE_V_COMPARE(hpte_v, want_v) ||
!(hpte_v & HPTE_V_VALID))) {
ret = -1;
@ -350,6 +359,8 @@ static long native_hpte_find(unsigned long vpn, int psize, int ssize)
for (i = 0; i < HPTES_PER_GROUP; i++) {
hptep = htab_address + slot;
hpte_v = be64_to_cpu(hptep->v);
if (cpu_has_feature(CPU_FTR_ARCH_300))
hpte_v = hpte_new_to_old_v(hpte_v, be64_to_cpu(hptep->r));
if (HPTE_V_COMPARE(hpte_v, want_v) && (hpte_v & HPTE_V_VALID))
/* HPTE matches */
@ -409,6 +420,8 @@ static void native_hpte_invalidate(unsigned long slot, unsigned long vpn,
want_v = hpte_encode_avpn(vpn, bpsize, ssize);
native_lock_hpte(hptep);
hpte_v = be64_to_cpu(hptep->v);
if (cpu_has_feature(CPU_FTR_ARCH_300))
hpte_v = hpte_new_to_old_v(hpte_v, be64_to_cpu(hptep->r));
/*
* We need to invalidate the TLB always because hpte_remove doesn't do
@ -467,6 +480,8 @@ static void native_hugepage_invalidate(unsigned long vsid,
want_v = hpte_encode_avpn(vpn, psize, ssize);
native_lock_hpte(hptep);
hpte_v = be64_to_cpu(hptep->v);
if (cpu_has_feature(CPU_FTR_ARCH_300))
hpte_v = hpte_new_to_old_v(hpte_v, be64_to_cpu(hptep->r));
/* Even if we miss, we need to invalidate the TLB */
if (!HPTE_V_COMPARE(hpte_v, want_v) || !(hpte_v & HPTE_V_VALID))
@ -504,6 +519,10 @@ static void hpte_decode(struct hash_pte *hpte, unsigned long slot,
/* Look at the 8 bit LP value */
unsigned int lp = (hpte_r >> LP_SHIFT) & ((1 << LP_BITS) - 1);
if (cpu_has_feature(CPU_FTR_ARCH_300)) {
hpte_v = hpte_new_to_old_v(hpte_v, hpte_r);
hpte_r = hpte_new_to_old_r(hpte_r);
}
if (!(hpte_v & HPTE_V_LARGE)) {
size = MMU_PAGE_4K;
a_size = MMU_PAGE_4K;
@ -512,11 +531,7 @@ static void hpte_decode(struct hash_pte *hpte, unsigned long slot,
a_size = hpte_page_sizes[lp] >> 4;
}
/* This works for all page sizes, and for 256M and 1T segments */
if (cpu_has_feature(CPU_FTR_ARCH_300))
*ssize = hpte_r >> HPTE_R_3_0_SSIZE_SHIFT;
else
*ssize = hpte_v >> HPTE_V_SSIZE_SHIFT;
*ssize = hpte_v >> HPTE_V_SSIZE_SHIFT;
shift = mmu_psize_defs[size].shift;
avpn = (HPTE_V_AVPN_VAL(hpte_v) & ~mmu_psize_defs[size].avpnm);
@ -639,6 +654,9 @@ static void native_flush_hash_range(unsigned long number, int local)
want_v = hpte_encode_avpn(vpn, psize, ssize);
native_lock_hpte(hptep);
hpte_v = be64_to_cpu(hptep->v);
if (cpu_has_feature(CPU_FTR_ARCH_300))
hpte_v = hpte_new_to_old_v(hpte_v,
be64_to_cpu(hptep->r));
if (!HPTE_V_COMPARE(hpte_v, want_v) ||
!(hpte_v & HPTE_V_VALID))
native_unlock_hpte(hptep);

View File

@ -796,37 +796,17 @@ static void update_hid_for_hash(void)
static void __init hash_init_partition_table(phys_addr_t hash_table,
unsigned long htab_size)
{
unsigned long ps_field;
unsigned long patb_size = 1UL << PATB_SIZE_SHIFT;
mmu_partition_table_init();
/*
* slb llp encoding for the page size used in VPM real mode.
* We can ignore that for lpid 0
* PS field (VRMA page size) is not used for LPID 0, hence set to 0.
* For now, UPRT is 0 and we have no segment table.
*/
ps_field = 0;
htab_size = __ilog2(htab_size) - 18;
BUILD_BUG_ON_MSG((PATB_SIZE_SHIFT > 24), "Partition table size too large.");
partition_tb = __va(memblock_alloc_base(patb_size, patb_size,
MEMBLOCK_ALLOC_ANYWHERE));
/* Initialize the Partition Table with no entries */
memset((void *)partition_tb, 0, patb_size);
partition_tb->patb0 = cpu_to_be64(ps_field | hash_table | htab_size);
/*
* FIXME!! This should be done via update_partition table
* For now UPRT is 0 for us.
*/
partition_tb->patb1 = 0;
mmu_partition_table_set_entry(0, hash_table | htab_size, 0);
pr_info("Partition table %p\n", partition_tb);
if (cpu_has_feature(CPU_FTR_POWER9_DD1))
update_hid_for_hash();
/*
* update partition table control register,
* 64 K size.
*/
mtspr(SPRN_PTCR, __pa(partition_tb) | (PATB_SIZE_SHIFT - 12));
}
static void __init htab_initialize(void)

View File

@ -177,23 +177,15 @@ static void __init radix_init_pgtable(void)
static void __init radix_init_partition_table(void)
{
unsigned long rts_field;
unsigned long rts_field, dw0;
mmu_partition_table_init();
rts_field = radix__get_tree_size();
dw0 = rts_field | __pa(init_mm.pgd) | RADIX_PGD_INDEX_SIZE | PATB_HR;
mmu_partition_table_set_entry(0, dw0, 0);
BUILD_BUG_ON_MSG((PATB_SIZE_SHIFT > 24), "Partition table size too large.");
partition_tb = early_alloc_pgtable(1UL << PATB_SIZE_SHIFT);
partition_tb->patb0 = cpu_to_be64(rts_field | __pa(init_mm.pgd) |
RADIX_PGD_INDEX_SIZE | PATB_HR);
pr_info("Initializing Radix MMU\n");
pr_info("Partition table %p\n", partition_tb);
memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
/*
* update partition table control register,
* 64 K size.
*/
mtspr(SPRN_PTCR, __pa(partition_tb) | (PATB_SIZE_SHIFT - 12));
}
void __init radix_init_native(void)
@ -378,6 +370,8 @@ void __init radix__early_init_mmu(void)
radix_init_partition_table();
}
memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
radix_init_pgtable();
}

View File

@ -431,3 +431,37 @@ void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int shift)
}
}
#endif
#ifdef CONFIG_PPC_BOOK3S_64
void __init mmu_partition_table_init(void)
{
unsigned long patb_size = 1UL << PATB_SIZE_SHIFT;
BUILD_BUG_ON_MSG((PATB_SIZE_SHIFT > 36), "Partition table size too large.");
partition_tb = __va(memblock_alloc_base(patb_size, patb_size,
MEMBLOCK_ALLOC_ANYWHERE));
/* Initialize the Partition Table with no entries */
memset((void *)partition_tb, 0, patb_size);
/*
* update partition table control register,
* 64 K size.
*/
mtspr(SPRN_PTCR, __pa(partition_tb) | (PATB_SIZE_SHIFT - 12));
}
void mmu_partition_table_set_entry(unsigned int lpid, unsigned long dw0,
unsigned long dw1)
{
partition_tb[lpid].patb0 = cpu_to_be64(dw0);
partition_tb[lpid].patb1 = cpu_to_be64(dw1);
/* Global flush of TLBs and partition table caches for this lpid */
asm volatile("ptesync" : : : "memory");
asm volatile(PPC_TLBIE_5(%0,%1,2,0,0) : :
"r" (TLBIEL_INVAL_SET_LPID), "r" (lpid));
asm volatile("eieio; tlbsync; ptesync" : : : "memory");
}
EXPORT_SYMBOL_GPL(mmu_partition_table_set_entry);
#endif /* CONFIG_PPC_BOOK3S_64 */

View File

@ -304,8 +304,11 @@ OPAL_CALL(opal_pci_get_presence_state, OPAL_PCI_GET_PRESENCE_STATE);
OPAL_CALL(opal_pci_get_power_state, OPAL_PCI_GET_POWER_STATE);
OPAL_CALL(opal_pci_set_power_state, OPAL_PCI_SET_POWER_STATE);
OPAL_CALL(opal_int_get_xirr, OPAL_INT_GET_XIRR);
OPAL_CALL_REAL(opal_rm_int_get_xirr, OPAL_INT_GET_XIRR);
OPAL_CALL(opal_int_set_cppr, OPAL_INT_SET_CPPR);
OPAL_CALL(opal_int_eoi, OPAL_INT_EOI);
OPAL_CALL_REAL(opal_rm_int_eoi, OPAL_INT_EOI);
OPAL_CALL(opal_int_set_mfrr, OPAL_INT_SET_MFRR);
OPAL_CALL_REAL(opal_rm_int_set_mfrr, OPAL_INT_SET_MFRR);
OPAL_CALL(opal_pci_tce_kill, OPAL_PCI_TCE_KILL);
OPAL_CALL_REAL(opal_rm_pci_tce_kill, OPAL_PCI_TCE_KILL);

View File

@ -896,3 +896,5 @@ EXPORT_SYMBOL_GPL(opal_leds_get_ind);
EXPORT_SYMBOL_GPL(opal_leds_set_ind);
/* Export this symbol for PowerNV Operator Panel class driver */
EXPORT_SYMBOL_GPL(opal_write_oppanel_async);
/* Export this for KVM */
EXPORT_SYMBOL_GPL(opal_int_set_mfrr);

View File

@ -63,7 +63,7 @@ static long ps3_hpte_insert(unsigned long hpte_group, unsigned long vpn,
vflags &= ~HPTE_V_SECONDARY;
hpte_v = hpte_encode_v(vpn, psize, apsize, ssize) | vflags | HPTE_V_VALID;
hpte_r = hpte_encode_r(ps3_mm_phys_to_lpar(pa), psize, apsize, ssize) | rflags;
hpte_r = hpte_encode_r(ps3_mm_phys_to_lpar(pa), psize, apsize) | rflags;
spin_lock_irqsave(&ps3_htab_lock, flags);

View File

@ -145,7 +145,7 @@ static long pSeries_lpar_hpte_insert(unsigned long hpte_group,
hpte_group, vpn, pa, rflags, vflags, psize);
hpte_v = hpte_encode_v(vpn, psize, apsize, ssize) | vflags | HPTE_V_VALID;
hpte_r = hpte_encode_r(pa, psize, apsize, ssize) | rflags;
hpte_r = hpte_encode_r(pa, psize, apsize) | rflags;
if (!(vflags & HPTE_V_BOLTED))
pr_devel(" hpte_v=%016lx, hpte_r=%016lx\n", hpte_v, hpte_r);

View File

@ -415,7 +415,7 @@ static int __write_machine_check(struct kvm_vcpu *vcpu,
int rc;
mci.val = mchk->mcic;
/* take care of lazy register loading via vcpu load/put */
/* take care of lazy register loading */
save_fpu_regs();
save_access_regs(vcpu->run->s.regs.acrs);

View File

@ -1812,22 +1812,7 @@ __u64 kvm_s390_get_cpu_timer(struct kvm_vcpu *vcpu)
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
/* Save host register state */
save_fpu_regs();
vcpu->arch.host_fpregs.fpc = current->thread.fpu.fpc;
vcpu->arch.host_fpregs.regs = current->thread.fpu.regs;
if (MACHINE_HAS_VX)
current->thread.fpu.regs = vcpu->run->s.regs.vrs;
else
current->thread.fpu.regs = vcpu->run->s.regs.fprs;
current->thread.fpu.fpc = vcpu->run->s.regs.fpc;
if (test_fp_ctl(current->thread.fpu.fpc))
/* User space provided an invalid FPC, let's clear it */
current->thread.fpu.fpc = 0;
save_access_regs(vcpu->arch.host_acrs);
restore_access_regs(vcpu->run->s.regs.acrs);
gmap_enable(vcpu->arch.enabled_gmap);
atomic_or(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags);
if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu))
@ -1844,16 +1829,6 @@ void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
vcpu->arch.enabled_gmap = gmap_get_enabled();
gmap_disable(vcpu->arch.enabled_gmap);
/* Save guest register state */
save_fpu_regs();
vcpu->run->s.regs.fpc = current->thread.fpu.fpc;
/* Restore host register state */
current->thread.fpu.fpc = vcpu->arch.host_fpregs.fpc;
current->thread.fpu.regs = vcpu->arch.host_fpregs.regs;
save_access_regs(vcpu->run->s.regs.acrs);
restore_access_regs(vcpu->arch.host_acrs);
}
static void kvm_s390_vcpu_initial_reset(struct kvm_vcpu *vcpu)
@ -2243,7 +2218,6 @@ int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
{
memcpy(&vcpu->run->s.regs.acrs, &sregs->acrs, sizeof(sregs->acrs));
memcpy(&vcpu->arch.sie_block->gcr, &sregs->crs, sizeof(sregs->crs));
restore_access_regs(vcpu->run->s.regs.acrs);
return 0;
}
@ -2257,11 +2231,9 @@ int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
/* make sure the new values will be lazily loaded */
save_fpu_regs();
if (test_fp_ctl(fpu->fpc))
return -EINVAL;
current->thread.fpu.fpc = fpu->fpc;
vcpu->run->s.regs.fpc = fpu->fpc;
if (MACHINE_HAS_VX)
convert_fp_to_vx((__vector128 *) vcpu->run->s.regs.vrs,
(freg_t *) fpu->fprs);
@ -2279,7 +2251,7 @@ int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
(__vector128 *) vcpu->run->s.regs.vrs);
else
memcpy(fpu->fprs, vcpu->run->s.regs.fprs, sizeof(fpu->fprs));
fpu->fpc = current->thread.fpu.fpc;
fpu->fpc = vcpu->run->s.regs.fpc;
return 0;
}
@ -2740,6 +2712,20 @@ static void sync_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
if (riccb->valid)
vcpu->arch.sie_block->ecb3 |= 0x01;
}
save_access_regs(vcpu->arch.host_acrs);
restore_access_regs(vcpu->run->s.regs.acrs);
/* save host (userspace) fprs/vrs */
save_fpu_regs();
vcpu->arch.host_fpregs.fpc = current->thread.fpu.fpc;
vcpu->arch.host_fpregs.regs = current->thread.fpu.regs;
if (MACHINE_HAS_VX)
current->thread.fpu.regs = vcpu->run->s.regs.vrs;
else
current->thread.fpu.regs = vcpu->run->s.regs.fprs;
current->thread.fpu.fpc = vcpu->run->s.regs.fpc;
if (test_fp_ctl(current->thread.fpu.fpc))
/* User space provided an invalid FPC, let's clear it */
current->thread.fpu.fpc = 0;
kvm_run->kvm_dirty_regs = 0;
}
@ -2758,6 +2744,15 @@ static void store_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
kvm_run->s.regs.pft = vcpu->arch.pfault_token;
kvm_run->s.regs.pfs = vcpu->arch.pfault_select;
kvm_run->s.regs.pfc = vcpu->arch.pfault_compare;
save_access_regs(vcpu->run->s.regs.acrs);
restore_access_regs(vcpu->arch.host_acrs);
/* Save guest register state */
save_fpu_regs();
vcpu->run->s.regs.fpc = current->thread.fpu.fpc;
/* Restore will be done lazily at return */
current->thread.fpu.fpc = vcpu->arch.host_fpregs.fpc;
current->thread.fpu.regs = vcpu->arch.host_fpregs.regs;
}
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
@ -2874,7 +2869,7 @@ int kvm_s390_vcpu_store_status(struct kvm_vcpu *vcpu, unsigned long addr)
{
/*
* The guest FPRS and ACRS are in the host FPRS/ACRS due to the lazy
* copying in vcpu load/put. Lets update our copies before we save
* switch in the run ioctl. Let's update our copies before we save
* it into the save area
*/
save_fpu_regs();

View File

@ -191,6 +191,8 @@ enum {
#define PFERR_RSVD_BIT 3
#define PFERR_FETCH_BIT 4
#define PFERR_PK_BIT 5
#define PFERR_GUEST_FINAL_BIT 32
#define PFERR_GUEST_PAGE_BIT 33
#define PFERR_PRESENT_MASK (1U << PFERR_PRESENT_BIT)
#define PFERR_WRITE_MASK (1U << PFERR_WRITE_BIT)
@ -198,6 +200,13 @@ enum {
#define PFERR_RSVD_MASK (1U << PFERR_RSVD_BIT)
#define PFERR_FETCH_MASK (1U << PFERR_FETCH_BIT)
#define PFERR_PK_MASK (1U << PFERR_PK_BIT)
#define PFERR_GUEST_FINAL_MASK (1ULL << PFERR_GUEST_FINAL_BIT)
#define PFERR_GUEST_PAGE_MASK (1ULL << PFERR_GUEST_PAGE_BIT)
#define PFERR_NESTED_GUEST_PAGE (PFERR_GUEST_PAGE_MASK | \
PFERR_USER_MASK | \
PFERR_WRITE_MASK | \
PFERR_PRESENT_MASK)
/* apic attention bits */
#define KVM_APIC_CHECK_VAPIC 0
@ -1062,6 +1071,7 @@ unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm);
void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages);
int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3);
bool pdptrs_changed(struct kvm_vcpu *vcpu);
int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
const void *val, int bytes);
@ -1124,7 +1134,8 @@ int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr);
struct x86_emulate_ctxt;
int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port);
void kvm_emulate_cpuid(struct kvm_vcpu *vcpu);
int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, unsigned short port);
int kvm_emulate_cpuid(struct kvm_vcpu *vcpu);
int kvm_emulate_halt(struct kvm_vcpu *vcpu);
int kvm_vcpu_halt(struct kvm_vcpu *vcpu);
int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu);
@ -1203,7 +1214,7 @@ void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu);
int kvm_emulate_hypercall(struct kvm_vcpu *vcpu);
int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t gva, u32 error_code,
int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t gva, u64 error_code,
void *insn, int insn_len);
void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva);
void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu);
@ -1358,7 +1369,8 @@ void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu);
extern bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err);
int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu);
int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err);
int kvm_is_in_guest(void);

View File

@ -25,6 +25,7 @@
#define VMX_H
#include <linux/bitops.h>
#include <linux/types.h>
#include <uapi/asm/vmx.h>
@ -60,6 +61,7 @@
*/
#define SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES 0x00000001
#define SECONDARY_EXEC_ENABLE_EPT 0x00000002
#define SECONDARY_EXEC_DESC 0x00000004
#define SECONDARY_EXEC_RDTSCP 0x00000008
#define SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE 0x00000010
#define SECONDARY_EXEC_ENABLE_VPID 0x00000020
@ -110,6 +112,36 @@
#define VMX_MISC_SAVE_EFER_LMA 0x00000020
#define VMX_MISC_ACTIVITY_HLT 0x00000040
static inline u32 vmx_basic_vmcs_revision_id(u64 vmx_basic)
{
return vmx_basic & GENMASK_ULL(30, 0);
}
static inline u32 vmx_basic_vmcs_size(u64 vmx_basic)
{
return (vmx_basic & GENMASK_ULL(44, 32)) >> 32;
}
static inline int vmx_misc_preemption_timer_rate(u64 vmx_misc)
{
return vmx_misc & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
}
static inline int vmx_misc_cr3_count(u64 vmx_misc)
{
return (vmx_misc & GENMASK_ULL(24, 16)) >> 16;
}
static inline int vmx_misc_max_msr(u64 vmx_misc)
{
return (vmx_misc & GENMASK_ULL(27, 25)) >> 25;
}
static inline int vmx_misc_mseg_revid(u64 vmx_misc)
{
return (vmx_misc & GENMASK_ULL(63, 32)) >> 32;
}
/* VMCS Encodings */
enum vmcs_field {
VIRTUAL_PROCESSOR_ID = 0x00000000,
@ -399,10 +431,11 @@ enum vmcs_field {
#define IDENTITY_PAGETABLE_PRIVATE_MEMSLOT (KVM_USER_MEM_SLOTS + 2)
#define VMX_NR_VPIDS (1 << 16)
#define VMX_VPID_EXTENT_INDIVIDUAL_ADDR 0
#define VMX_VPID_EXTENT_SINGLE_CONTEXT 1
#define VMX_VPID_EXTENT_ALL_CONTEXT 2
#define VMX_VPID_EXTENT_SINGLE_NON_GLOBAL 3
#define VMX_EPT_EXTENT_INDIVIDUAL_ADDR 0
#define VMX_EPT_EXTENT_CONTEXT 1
#define VMX_EPT_EXTENT_GLOBAL 2
#define VMX_EPT_EXTENT_SHIFT 24
@ -419,8 +452,10 @@ enum vmcs_field {
#define VMX_EPT_EXTENT_GLOBAL_BIT (1ull << 26)
#define VMX_VPID_INVVPID_BIT (1ull << 0) /* (32 - 32) */
#define VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT (1ull << 8) /* (40 - 32) */
#define VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT (1ull << 9) /* (41 - 32) */
#define VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT (1ull << 10) /* (42 - 32) */
#define VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT (1ull << 11) /* (43 - 32) */
#define VMX_EPT_DEFAULT_GAW 3
#define VMX_EPT_MAX_GAW 0x4

View File

@ -65,6 +65,8 @@
#define EXIT_REASON_TPR_BELOW_THRESHOLD 43
#define EXIT_REASON_APIC_ACCESS 44
#define EXIT_REASON_EOI_INDUCED 45
#define EXIT_REASON_GDTR_IDTR 46
#define EXIT_REASON_LDTR_TR 47
#define EXIT_REASON_EPT_VIOLATION 48
#define EXIT_REASON_EPT_MISCONFIG 49
#define EXIT_REASON_INVEPT 50
@ -113,6 +115,8 @@
{ EXIT_REASON_MCE_DURING_VMENTRY, "MCE_DURING_VMENTRY" }, \
{ EXIT_REASON_TPR_BELOW_THRESHOLD, "TPR_BELOW_THRESHOLD" }, \
{ EXIT_REASON_APIC_ACCESS, "APIC_ACCESS" }, \
{ EXIT_REASON_GDTR_IDTR, "GDTR_IDTR" }, \
{ EXIT_REASON_LDTR_TR, "LDTR_TR" }, \
{ EXIT_REASON_EPT_VIOLATION, "EPT_VIOLATION" }, \
{ EXIT_REASON_EPT_MISCONFIG, "EPT_MISCONFIG" }, \
{ EXIT_REASON_INVEPT, "INVEPT" }, \
@ -129,6 +133,7 @@
{ EXIT_REASON_XRSTORS, "XRSTORS" }
#define VMX_ABORT_SAVE_GUEST_MSR_FAIL 1
#define VMX_ABORT_LOAD_HOST_PDPTE_FAIL 2
#define VMX_ABORT_LOAD_HOST_MSR_FAIL 4
#endif /* _UAPIVMX_H */

View File

@ -16,6 +16,7 @@
#include <linux/export.h>
#include <linux/vmalloc.h>
#include <linux/uaccess.h>
#include <asm/processor.h>
#include <asm/user.h>
#include <asm/fpu/xstate.h>
#include "cpuid.h"
@ -64,6 +65,11 @@ u64 kvm_supported_xcr0(void)
#define F(x) bit(X86_FEATURE_##x)
/* These are scattered features in cpufeatures.h. */
#define KVM_CPUID_BIT_AVX512_4VNNIW 2
#define KVM_CPUID_BIT_AVX512_4FMAPS 3
#define KF(x) bit(KVM_CPUID_BIT_##x)
int kvm_update_cpuid(struct kvm_vcpu *vcpu)
{
struct kvm_cpuid_entry2 *best;
@ -80,6 +86,10 @@ int kvm_update_cpuid(struct kvm_vcpu *vcpu)
best->ecx |= F(OSXSAVE);
}
best->edx &= ~F(APIC);
if (vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE)
best->edx |= F(APIC);
if (apic) {
if (best->ecx & F(TSC_DEADLINE_TIMER))
apic->lapic_timer.timer_mode_mask = 3 << 17;
@ -374,6 +384,10 @@ static inline int __do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
/* cpuid 7.0.ecx*/
const u32 kvm_cpuid_7_0_ecx_x86_features = F(PKU) | 0 /*OSPKE*/;
/* cpuid 7.0.edx*/
const u32 kvm_cpuid_7_0_edx_x86_features =
KF(AVX512_4VNNIW) | KF(AVX512_4FMAPS);
/* all calls to cpuid_count() should be made on the same cpu */
get_cpu();
@ -456,12 +470,14 @@ static inline int __do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
/* PKU is not yet implemented for shadow paging. */
if (!tdp_enabled)
entry->ecx &= ~F(PKU);
entry->edx &= kvm_cpuid_7_0_edx_x86_features;
entry->edx &= get_scattered_cpuid_leaf(7, 0, CPUID_EDX);
} else {
entry->ebx = 0;
entry->ecx = 0;
entry->edx = 0;
}
entry->eax = 0;
entry->edx = 0;
break;
}
case 9:
@ -861,17 +877,17 @@ void kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
}
EXPORT_SYMBOL_GPL(kvm_cpuid);
void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
{
u32 function, eax, ebx, ecx, edx;
u32 eax, ebx, ecx, edx;
function = eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx);
kvm_register_write(vcpu, VCPU_REGS_RAX, eax);
kvm_register_write(vcpu, VCPU_REGS_RBX, ebx);
kvm_register_write(vcpu, VCPU_REGS_RCX, ecx);
kvm_register_write(vcpu, VCPU_REGS_RDX, edx);
kvm_x86_ops->skip_emulated_instruction(vcpu);
return kvm_skip_emulated_instruction(vcpu);
}
EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);

View File

@ -158,9 +158,11 @@
#define Src2GS (OpGS << Src2Shift)
#define Src2Mask (OpMask << Src2Shift)
#define Mmx ((u64)1 << 40) /* MMX Vector instruction */
#define AlignMask ((u64)7 << 41)
#define Aligned ((u64)1 << 41) /* Explicitly aligned (e.g. MOVDQA) */
#define Unaligned ((u64)1 << 42) /* Explicitly unaligned (e.g. MOVDQU) */
#define Avx ((u64)1 << 43) /* Advanced Vector Extensions */
#define Unaligned ((u64)2 << 41) /* Explicitly unaligned (e.g. MOVDQU) */
#define Avx ((u64)3 << 41) /* Advanced Vector Extensions */
#define Aligned16 ((u64)4 << 41) /* Aligned to 16 byte boundary (e.g. FXSAVE) */
#define Fastop ((u64)1 << 44) /* Use opcode::u.fastop */
#define NoWrite ((u64)1 << 45) /* No writeback */
#define SrcWrite ((u64)1 << 46) /* Write back src operand */
@ -446,6 +448,26 @@ FOP_END;
FOP_START(salc) "pushf; sbb %al, %al; popf \n\t" FOP_RET
FOP_END;
/*
* XXX: inoutclob user must know where the argument is being expanded.
* Relying on CC_HAVE_ASM_GOTO would allow us to remove _fault.
*/
#define asm_safe(insn, inoutclob...) \
({ \
int _fault = 0; \
\
asm volatile("1:" insn "\n" \
"2:\n" \
".pushsection .fixup, \"ax\"\n" \
"3: movl $1, %[_fault]\n" \
" jmp 2b\n" \
".popsection\n" \
_ASM_EXTABLE(1b, 3b) \
: [_fault] "+qm"(_fault) inoutclob ); \
\
_fault ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE; \
})
static int emulator_check_intercept(struct x86_emulate_ctxt *ctxt,
enum x86_intercept intercept,
enum x86_intercept_stage stage)
@ -632,21 +654,26 @@ static void set_segment_selector(struct x86_emulate_ctxt *ctxt, u16 selector,
* depending on whether they're AVX encoded or not.
*
* Also included is CMPXCHG16B which is not a vector instruction, yet it is
* subject to the same check.
* subject to the same check. FXSAVE and FXRSTOR are checked here too as their
* 512 bytes of data must be aligned to a 16 byte boundary.
*/
static bool insn_aligned(struct x86_emulate_ctxt *ctxt, unsigned size)
static unsigned insn_alignment(struct x86_emulate_ctxt *ctxt, unsigned size)
{
if (likely(size < 16))
return false;
u64 alignment = ctxt->d & AlignMask;
if (ctxt->d & Aligned)
return true;
else if (ctxt->d & Unaligned)
return false;
else if (ctxt->d & Avx)
return false;
else
return true;
if (likely(size < 16))
return 1;
switch (alignment) {
case Unaligned:
case Avx:
return 1;
case Aligned16:
return 16;
case Aligned:
default:
return size;
}
}
static __always_inline int __linearize(struct x86_emulate_ctxt *ctxt,
@ -704,7 +731,7 @@ static __always_inline int __linearize(struct x86_emulate_ctxt *ctxt,
}
break;
}
if (insn_aligned(ctxt, size) && ((la & (size - 1)) != 0))
if (la & (insn_alignment(ctxt, size) - 1))
return emulate_gp(ctxt, 0);
return X86EMUL_CONTINUE;
bad:
@ -3842,6 +3869,131 @@ static int em_movsxd(struct x86_emulate_ctxt *ctxt)
return X86EMUL_CONTINUE;
}
static int check_fxsr(struct x86_emulate_ctxt *ctxt)
{
u32 eax = 1, ebx, ecx = 0, edx;
ctxt->ops->get_cpuid(ctxt, &eax, &ebx, &ecx, &edx);
if (!(edx & FFL(FXSR)))
return emulate_ud(ctxt);
if (ctxt->ops->get_cr(ctxt, 0) & (X86_CR0_TS | X86_CR0_EM))
return emulate_nm(ctxt);
/*
* Don't emulate a case that should never be hit, instead of working
* around a lack of fxsave64/fxrstor64 on old compilers.
*/
if (ctxt->mode >= X86EMUL_MODE_PROT64)
return X86EMUL_UNHANDLEABLE;
return X86EMUL_CONTINUE;
}
/*
* FXSAVE and FXRSTOR have 4 different formats depending on execution mode,
* 1) 16 bit mode
* 2) 32 bit mode
* - like (1), but FIP and FDP (foo) are only 16 bit. At least Intel CPUs
* preserve whole 32 bit values, though, so (1) and (2) are the same wrt.
* save and restore
* 3) 64-bit mode with REX.W prefix
* - like (2), but XMM 8-15 are being saved and restored
* 4) 64-bit mode without REX.W prefix
* - like (3), but FIP and FDP are 64 bit
*
* Emulation uses (3) for (1) and (2) and preserves XMM 8-15 to reach the
* desired result. (4) is not emulated.
*
* Note: Guest and host CPUID.(EAX=07H,ECX=0H):EBX[bit 13] (deprecate FPU CS
* and FPU DS) should match.
*/
static int em_fxsave(struct x86_emulate_ctxt *ctxt)
{
struct fxregs_state fx_state;
size_t size;
int rc;
rc = check_fxsr(ctxt);
if (rc != X86EMUL_CONTINUE)
return rc;
ctxt->ops->get_fpu(ctxt);
rc = asm_safe("fxsave %[fx]", , [fx] "+m"(fx_state));
ctxt->ops->put_fpu(ctxt);
if (rc != X86EMUL_CONTINUE)
return rc;
if (ctxt->ops->get_cr(ctxt, 4) & X86_CR4_OSFXSR)
size = offsetof(struct fxregs_state, xmm_space[8 * 16/4]);
else
size = offsetof(struct fxregs_state, xmm_space[0]);
return segmented_write(ctxt, ctxt->memop.addr.mem, &fx_state, size);
}
static int fxrstor_fixup(struct x86_emulate_ctxt *ctxt,
struct fxregs_state *new)
{
int rc = X86EMUL_CONTINUE;
struct fxregs_state old;
rc = asm_safe("fxsave %[fx]", , [fx] "+m"(old));
if (rc != X86EMUL_CONTINUE)
return rc;
/*
* 64 bit host will restore XMM 8-15, which is not correct on non-64
* bit guests. Load the current values in order to preserve 64 bit
* XMMs after fxrstor.
*/
#ifdef CONFIG_X86_64
/* XXX: accessing XMM 8-15 very awkwardly */
memcpy(&new->xmm_space[8 * 16/4], &old.xmm_space[8 * 16/4], 8 * 16);
#endif
/*
* Hardware doesn't save and restore XMM 0-7 without CR4.OSFXSR, but
* does save and restore MXCSR.
*/
if (!(ctxt->ops->get_cr(ctxt, 4) & X86_CR4_OSFXSR))
memcpy(new->xmm_space, old.xmm_space, 8 * 16);
return rc;
}
static int em_fxrstor(struct x86_emulate_ctxt *ctxt)
{
struct fxregs_state fx_state;
int rc;
rc = check_fxsr(ctxt);
if (rc != X86EMUL_CONTINUE)
return rc;
rc = segmented_read(ctxt, ctxt->memop.addr.mem, &fx_state, 512);
if (rc != X86EMUL_CONTINUE)
return rc;
if (fx_state.mxcsr >> 16)
return emulate_gp(ctxt, 0);
ctxt->ops->get_fpu(ctxt);
if (ctxt->mode < X86EMUL_MODE_PROT64)
rc = fxrstor_fixup(ctxt, &fx_state);
if (rc == X86EMUL_CONTINUE)
rc = asm_safe("fxrstor %[fx]", : [fx] "m"(fx_state));
ctxt->ops->put_fpu(ctxt);
return rc;
}
static bool valid_cr(int nr)
{
switch (nr) {
@ -4194,7 +4346,9 @@ static const struct gprefix pfx_0f_ae_7 = {
};
static const struct group_dual group15 = { {
N, N, N, N, N, N, N, GP(0, &pfx_0f_ae_7),
I(ModRM | Aligned16, em_fxsave),
I(ModRM | Aligned16, em_fxrstor),
N, N, N, N, N, GP(0, &pfx_0f_ae_7),
}, {
N, N, N, N, N, N, N, N,
} };
@ -5066,21 +5220,13 @@ static bool string_insn_completed(struct x86_emulate_ctxt *ctxt)
static int flush_pending_x87_faults(struct x86_emulate_ctxt *ctxt)
{
bool fault = false;
int rc;
ctxt->ops->get_fpu(ctxt);
asm volatile("1: fwait \n\t"
"2: \n\t"
".pushsection .fixup,\"ax\" \n\t"
"3: \n\t"
"movb $1, %[fault] \n\t"
"jmp 2b \n\t"
".popsection \n\t"
_ASM_EXTABLE(1b, 3b)
: [fault]"+qm"(fault));
rc = asm_safe("fwait");
ctxt->ops->put_fpu(ctxt);
if (unlikely(fault))
if (unlikely(rc != X86EMUL_CONTINUE))
return emulate_exception(ctxt, MF_VECTOR, 0, false);
return X86EMUL_CONTINUE;

View File

@ -291,7 +291,7 @@ static int synic_get_msr(struct kvm_vcpu_hv_synic *synic, u32 msr, u64 *pdata)
return ret;
}
int synic_set_irq(struct kvm_vcpu_hv_synic *synic, u32 sint)
static int synic_set_irq(struct kvm_vcpu_hv_synic *synic, u32 sint)
{
struct kvm_vcpu *vcpu = synic_to_vcpu(synic);
struct kvm_lapic_irq irq;

View File

@ -212,7 +212,7 @@ static void kvm_pit_ack_irq(struct kvm_irq_ack_notifier *kian)
*/
smp_mb();
if (atomic_dec_if_positive(&ps->pending) > 0)
kthread_queue_work(&pit->worker, &pit->expired);
kthread_queue_work(pit->worker, &pit->expired);
}
void __kvm_migrate_pit_timer(struct kvm_vcpu *vcpu)
@ -272,7 +272,7 @@ static enum hrtimer_restart pit_timer_fn(struct hrtimer *data)
if (atomic_read(&ps->reinject))
atomic_inc(&ps->pending);
kthread_queue_work(&pt->worker, &pt->expired);
kthread_queue_work(pt->worker, &pt->expired);
if (ps->is_periodic) {
hrtimer_add_expires_ns(&ps->timer, ps->period);
@ -667,10 +667,8 @@ struct kvm_pit *kvm_create_pit(struct kvm *kvm, u32 flags)
pid_nr = pid_vnr(pid);
put_pid(pid);
kthread_init_worker(&pit->worker);
pit->worker_task = kthread_run(kthread_worker_fn, &pit->worker,
"kvm-pit/%d", pid_nr);
if (IS_ERR(pit->worker_task))
pit->worker = kthread_create_worker(0, "kvm-pit/%d", pid_nr);
if (IS_ERR(pit->worker))
goto fail_kthread;
kthread_init_work(&pit->expired, pit_do_work);
@ -713,7 +711,7 @@ struct kvm_pit *kvm_create_pit(struct kvm *kvm, u32 flags)
fail_register_pit:
mutex_unlock(&kvm->slots_lock);
kvm_pit_set_reinject(pit, false);
kthread_stop(pit->worker_task);
kthread_destroy_worker(pit->worker);
fail_kthread:
kvm_free_irq_source_id(kvm, pit->irq_source_id);
fail_request:
@ -730,8 +728,7 @@ void kvm_free_pit(struct kvm *kvm)
kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &pit->speaker_dev);
kvm_pit_set_reinject(pit, false);
hrtimer_cancel(&pit->pit_state.timer);
kthread_flush_work(&pit->expired);
kthread_stop(pit->worker_task);
kthread_destroy_worker(pit->worker);
kvm_free_irq_source_id(kvm, pit->irq_source_id);
kfree(pit);
}

View File

@ -44,8 +44,7 @@ struct kvm_pit {
struct kvm_kpit_state pit_state;
int irq_source_id;
struct kvm_irq_mask_notifier mask_notifier;
struct kthread_worker worker;
struct task_struct *worker_task;
struct kthread_worker *worker;
struct kthread_work expired;
};

View File

@ -342,9 +342,11 @@ void __kvm_apic_update_irr(u32 *pir, void *regs)
u32 i, pir_val;
for (i = 0; i <= 7; i++) {
pir_val = xchg(&pir[i], 0);
if (pir_val)
pir_val = READ_ONCE(pir[i]);
if (pir_val) {
pir_val = xchg(&pir[i], 0);
*((u32 *)(regs + APIC_IRR + i * 0x10)) |= pir_val;
}
}
}
EXPORT_SYMBOL_GPL(__kvm_apic_update_irr);
@ -1090,7 +1092,7 @@ static void apic_send_ipi(struct kvm_lapic *apic)
static u32 apic_get_tmcct(struct kvm_lapic *apic)
{
ktime_t remaining;
ktime_t remaining, now;
s64 ns;
u32 tmcct;
@ -1101,7 +1103,8 @@ static u32 apic_get_tmcct(struct kvm_lapic *apic)
apic->lapic_timer.period == 0)
return 0;
remaining = hrtimer_get_remaining(&apic->lapic_timer.timer);
now = ktime_get();
remaining = ktime_sub(apic->lapic_timer.target_expiration, now);
if (ktime_to_ns(remaining) < 0)
remaining = ktime_set(0, 0);
@ -1332,7 +1335,7 @@ static void start_sw_tscdeadline(struct kvm_lapic *apic)
local_irq_save(flags);
now = apic->lapic_timer.timer.base->get_time();
now = ktime_get();
guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
if (likely(tscdeadline > guest_tsc)) {
ns = (tscdeadline - guest_tsc) * 1000000ULL;
@ -1347,6 +1350,79 @@ static void start_sw_tscdeadline(struct kvm_lapic *apic)
local_irq_restore(flags);
}
static void start_sw_period(struct kvm_lapic *apic)
{
if (!apic->lapic_timer.period)
return;
if (apic_lvtt_oneshot(apic) &&
ktime_after(ktime_get(),
apic->lapic_timer.target_expiration)) {
apic_timer_expired(apic);
return;
}
hrtimer_start(&apic->lapic_timer.timer,
apic->lapic_timer.target_expiration,
HRTIMER_MODE_ABS_PINNED);
}
static bool set_target_expiration(struct kvm_lapic *apic)
{
ktime_t now;
u64 tscl = rdtsc();
now = ktime_get();
apic->lapic_timer.period = (u64)kvm_lapic_get_reg(apic, APIC_TMICT)
* APIC_BUS_CYCLE_NS * apic->divide_count;
if (!apic->lapic_timer.period)
return false;
/*
* Do not allow the guest to program periodic timers with small
* interval, since the hrtimers are not throttled by the host
* scheduler.
*/
if (apic_lvtt_period(apic)) {
s64 min_period = min_timer_period_us * 1000LL;
if (apic->lapic_timer.period < min_period) {
pr_info_ratelimited(
"kvm: vcpu %i: requested %lld ns "
"lapic timer period limited to %lld ns\n",
apic->vcpu->vcpu_id,
apic->lapic_timer.period, min_period);
apic->lapic_timer.period = min_period;
}
}
apic_debug("%s: bus cycle is %" PRId64 "ns, now 0x%016"
PRIx64 ", "
"timer initial count 0x%x, period %lldns, "
"expire @ 0x%016" PRIx64 ".\n", __func__,
APIC_BUS_CYCLE_NS, ktime_to_ns(now),
kvm_lapic_get_reg(apic, APIC_TMICT),
apic->lapic_timer.period,
ktime_to_ns(ktime_add_ns(now,
apic->lapic_timer.period)));
apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) +
nsec_to_cycles(apic->vcpu, apic->lapic_timer.period);
apic->lapic_timer.target_expiration = ktime_add_ns(now, apic->lapic_timer.period);
return true;
}
static void advance_periodic_target_expiration(struct kvm_lapic *apic)
{
apic->lapic_timer.tscdeadline +=
nsec_to_cycles(apic->vcpu, apic->lapic_timer.period);
apic->lapic_timer.target_expiration =
ktime_add_ns(apic->lapic_timer.target_expiration,
apic->lapic_timer.period);
}
bool kvm_lapic_hv_timer_in_use(struct kvm_vcpu *vcpu)
{
if (!lapic_in_kernel(vcpu))
@ -1356,52 +1432,59 @@ bool kvm_lapic_hv_timer_in_use(struct kvm_vcpu *vcpu)
}
EXPORT_SYMBOL_GPL(kvm_lapic_hv_timer_in_use);
static void cancel_hv_tscdeadline(struct kvm_lapic *apic)
static void cancel_hv_timer(struct kvm_lapic *apic)
{
kvm_x86_ops->cancel_hv_timer(apic->vcpu);
apic->lapic_timer.hv_timer_in_use = false;
}
static bool start_hv_timer(struct kvm_lapic *apic)
{
u64 tscdeadline = apic->lapic_timer.tscdeadline;
if ((atomic_read(&apic->lapic_timer.pending) &&
!apic_lvtt_period(apic)) ||
kvm_x86_ops->set_hv_timer(apic->vcpu, tscdeadline)) {
if (apic->lapic_timer.hv_timer_in_use)
cancel_hv_timer(apic);
} else {
apic->lapic_timer.hv_timer_in_use = true;
hrtimer_cancel(&apic->lapic_timer.timer);
/* In case the sw timer triggered in the window */
if (atomic_read(&apic->lapic_timer.pending) &&
!apic_lvtt_period(apic))
cancel_hv_timer(apic);
}
trace_kvm_hv_timer_state(apic->vcpu->vcpu_id,
apic->lapic_timer.hv_timer_in_use);
return apic->lapic_timer.hv_timer_in_use;
}
void kvm_lapic_expired_hv_timer(struct kvm_vcpu *vcpu)
{
struct kvm_lapic *apic = vcpu->arch.apic;
WARN_ON(!apic->lapic_timer.hv_timer_in_use);
WARN_ON(swait_active(&vcpu->wq));
cancel_hv_tscdeadline(apic);
cancel_hv_timer(apic);
apic_timer_expired(apic);
if (apic_lvtt_period(apic) && apic->lapic_timer.period) {
advance_periodic_target_expiration(apic);
if (!start_hv_timer(apic))
start_sw_period(apic);
}
}
EXPORT_SYMBOL_GPL(kvm_lapic_expired_hv_timer);
static bool start_hv_tscdeadline(struct kvm_lapic *apic)
{
u64 tscdeadline = apic->lapic_timer.tscdeadline;
if (atomic_read(&apic->lapic_timer.pending) ||
kvm_x86_ops->set_hv_timer(apic->vcpu, tscdeadline)) {
if (apic->lapic_timer.hv_timer_in_use)
cancel_hv_tscdeadline(apic);
} else {
apic->lapic_timer.hv_timer_in_use = true;
hrtimer_cancel(&apic->lapic_timer.timer);
/* In case the sw timer triggered in the window */
if (atomic_read(&apic->lapic_timer.pending))
cancel_hv_tscdeadline(apic);
}
trace_kvm_hv_timer_state(apic->vcpu->vcpu_id,
apic->lapic_timer.hv_timer_in_use);
return apic->lapic_timer.hv_timer_in_use;
}
void kvm_lapic_switch_to_hv_timer(struct kvm_vcpu *vcpu)
{
struct kvm_lapic *apic = vcpu->arch.apic;
WARN_ON(apic->lapic_timer.hv_timer_in_use);
if (apic_lvtt_tscdeadline(apic))
start_hv_tscdeadline(apic);
start_hv_timer(apic);
}
EXPORT_SYMBOL_GPL(kvm_lapic_switch_to_hv_timer);
@ -1413,62 +1496,28 @@ void kvm_lapic_switch_to_sw_timer(struct kvm_vcpu *vcpu)
if (!apic->lapic_timer.hv_timer_in_use)
return;
cancel_hv_tscdeadline(apic);
cancel_hv_timer(apic);
if (atomic_read(&apic->lapic_timer.pending))
return;
start_sw_tscdeadline(apic);
if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic))
start_sw_period(apic);
else if (apic_lvtt_tscdeadline(apic))
start_sw_tscdeadline(apic);
}
EXPORT_SYMBOL_GPL(kvm_lapic_switch_to_sw_timer);
static void start_apic_timer(struct kvm_lapic *apic)
{
ktime_t now;
atomic_set(&apic->lapic_timer.pending, 0);
if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) {
/* lapic timer in oneshot or periodic mode */
now = apic->lapic_timer.timer.base->get_time();
apic->lapic_timer.period = (u64)kvm_lapic_get_reg(apic, APIC_TMICT)
* APIC_BUS_CYCLE_NS * apic->divide_count;
if (!apic->lapic_timer.period)
return;
/*
* Do not allow the guest to program periodic timers with small
* interval, since the hrtimers are not throttled by the host
* scheduler.
*/
if (apic_lvtt_period(apic)) {
s64 min_period = min_timer_period_us * 1000LL;
if (apic->lapic_timer.period < min_period) {
pr_info_ratelimited(
"kvm: vcpu %i: requested %lld ns "
"lapic timer period limited to %lld ns\n",
apic->vcpu->vcpu_id,
apic->lapic_timer.period, min_period);
apic->lapic_timer.period = min_period;
}
}
hrtimer_start(&apic->lapic_timer.timer,
ktime_add_ns(now, apic->lapic_timer.period),
HRTIMER_MODE_ABS_PINNED);
apic_debug("%s: bus cycle is %" PRId64 "ns, now 0x%016"
PRIx64 ", "
"timer initial count 0x%x, period %lldns, "
"expire @ 0x%016" PRIx64 ".\n", __func__,
APIC_BUS_CYCLE_NS, ktime_to_ns(now),
kvm_lapic_get_reg(apic, APIC_TMICT),
apic->lapic_timer.period,
ktime_to_ns(ktime_add_ns(now,
apic->lapic_timer.period)));
if (set_target_expiration(apic) &&
!(kvm_x86_ops->set_hv_timer && start_hv_timer(apic)))
start_sw_period(apic);
} else if (apic_lvtt_tscdeadline(apic)) {
if (!(kvm_x86_ops->set_hv_timer && start_hv_tscdeadline(apic)))
if (!(kvm_x86_ops->set_hv_timer && start_hv_timer(apic)))
start_sw_tscdeadline(apic);
}
}
@ -1701,13 +1750,22 @@ void kvm_free_lapic(struct kvm_vcpu *vcpu)
* LAPIC interface
*----------------------------------------------------------------------
*/
u64 kvm_get_lapic_target_expiration_tsc(struct kvm_vcpu *vcpu)
{
struct kvm_lapic *apic = vcpu->arch.apic;
if (!lapic_in_kernel(vcpu))
return 0;
return apic->lapic_timer.tscdeadline;
}
u64 kvm_get_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu)
{
struct kvm_lapic *apic = vcpu->arch.apic;
if (!lapic_in_kernel(vcpu) || apic_lvtt_oneshot(apic) ||
apic_lvtt_period(apic))
if (!lapic_in_kernel(vcpu) ||
!apic_lvtt_tscdeadline(apic))
return 0;
return apic->lapic_timer.tscdeadline;
@ -1748,14 +1806,17 @@ void kvm_lapic_set_base(struct kvm_vcpu *vcpu, u64 value)
u64 old_value = vcpu->arch.apic_base;
struct kvm_lapic *apic = vcpu->arch.apic;
if (!apic) {
if (!apic)
value |= MSR_IA32_APICBASE_BSP;
vcpu->arch.apic_base = value;
return;
}
vcpu->arch.apic_base = value;
if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE)
kvm_update_cpuid(vcpu);
if (!apic)
return;
/* update jump label if enable bit changes */
if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE) {
if (value & MSR_IA32_APICBASE_ENABLE) {
@ -1909,6 +1970,7 @@ static enum hrtimer_restart apic_timer_fn(struct hrtimer *data)
apic_timer_expired(apic);
if (lapic_is_periodic(apic)) {
advance_periodic_target_expiration(apic);
hrtimer_add_expires_ns(&ktimer->timer, ktimer->period);
return HRTIMER_RESTART;
} else
@ -1993,6 +2055,10 @@ void kvm_inject_apic_timer_irqs(struct kvm_vcpu *vcpu)
kvm_apic_local_deliver(apic, APIC_LVTT);
if (apic_lvtt_tscdeadline(apic))
apic->lapic_timer.tscdeadline = 0;
if (apic_lvtt_oneshot(apic)) {
apic->lapic_timer.tscdeadline = 0;
apic->lapic_timer.target_expiration = ktime_set(0, 0);
}
atomic_set(&apic->lapic_timer.pending, 0);
}
}

View File

@ -15,6 +15,7 @@
struct kvm_timer {
struct hrtimer timer;
s64 period; /* unit: ns */
ktime_t target_expiration;
u32 timer_mode;
u32 timer_mode_mask;
u64 tscdeadline;
@ -85,6 +86,7 @@ int kvm_apic_get_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s);
int kvm_apic_set_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s);
int kvm_lapic_find_highest_irr(struct kvm_vcpu *vcpu);
u64 kvm_get_lapic_target_expiration_tsc(struct kvm_vcpu *vcpu);
u64 kvm_get_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu);
void kvm_set_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu, u64 data);

View File

@ -1660,17 +1660,9 @@ int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
* This has some overhead, but not as much as the cost of swapping
* out actively used pages or breaking up actively used hugepages.
*/
if (!shadow_accessed_mask) {
/*
* We are holding the kvm->mmu_lock, and we are blowing up
* shadow PTEs. MMU notifier consumers need to be kept at bay.
* This is correct as long as we don't decouple the mmu_lock
* protected regions (like invalidate_range_start|end does).
*/
kvm->mmu_notifier_seq++;
if (!shadow_accessed_mask)
return kvm_handle_hva_range(kvm, start, end, 0,
kvm_unmap_rmapp);
}
return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
}
@ -4509,7 +4501,7 @@ static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
}
int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u64 error_code,
void *insn, int insn_len)
{
int r, emulation_type = EMULTYPE_RETRY;
@ -4528,12 +4520,28 @@ int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
return r;
}
r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
r = vcpu->arch.mmu.page_fault(vcpu, cr2, lower_32_bits(error_code),
false);
if (r < 0)
return r;
if (!r)
return 1;
/*
* Before emulating the instruction, check if the error code
* was due to a RO violation while translating the guest page.
* This can occur when using nested virtualization with nested
* paging in both guests. If true, we simply unprotect the page
* and resume the guest.
*
* Note: AMD only (since it supports the PFERR_GUEST_PAGE_MASK used
* in PFERR_NEXT_GUEST_PAGE)
*/
if (error_code == PFERR_NESTED_GUEST_PAGE) {
kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2));
return 1;
}
if (mmio_info_in_cache(vcpu, cr2, direct))
emulation_type = 0;
emulate:
@ -4967,7 +4975,7 @@ void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots)
* zap all shadow pages.
*/
if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) {
printk_ratelimited(KERN_DEBUG "kvm: zapping shadow pages for mmio generation wraparound\n");
kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
kvm_mmu_invalidate_zap_all_pages(kvm);
}
}

View File

@ -2074,7 +2074,7 @@ static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
static int pf_interception(struct vcpu_svm *svm)
{
u64 fault_address = svm->vmcb->control.exit_info_2;
u32 error_code;
u64 error_code;
int r = 1;
switch (svm->apf_reason) {
@ -2270,7 +2270,7 @@ static int io_interception(struct vcpu_svm *svm)
++svm->vcpu.stat.io_exits;
string = (io_info & SVM_IOIO_STR_MASK) != 0;
in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
if (string || in)
if (string)
return emulate_instruction(vcpu, 0) == EMULATE_DONE;
port = io_info >> 16;
@ -2278,7 +2278,8 @@ static int io_interception(struct vcpu_svm *svm)
svm->next_rip = svm->vmcb->control.exit_info_2;
skip_emulated_instruction(&svm->vcpu);
return kvm_fast_pio_out(vcpu, size, port);
return in ? kvm_fast_pio_in(vcpu, size, port)
: kvm_fast_pio_out(vcpu, size, port);
}
static int nmi_interception(struct vcpu_svm *svm)
@ -3150,8 +3151,7 @@ static int skinit_interception(struct vcpu_svm *svm)
static int wbinvd_interception(struct vcpu_svm *svm)
{
kvm_emulate_wbinvd(&svm->vcpu);
return 1;
return kvm_emulate_wbinvd(&svm->vcpu);
}
static int xsetbv_interception(struct vcpu_svm *svm)
@ -3238,8 +3238,7 @@ static int task_switch_interception(struct vcpu_svm *svm)
static int cpuid_interception(struct vcpu_svm *svm)
{
svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
kvm_emulate_cpuid(&svm->vcpu);
return 1;
return kvm_emulate_cpuid(&svm->vcpu);
}
static int iret_interception(struct vcpu_svm *svm)
@ -3275,9 +3274,7 @@ static int rdpmc_interception(struct vcpu_svm *svm)
return emulate_on_interception(svm);
err = kvm_rdpmc(&svm->vcpu);
kvm_complete_insn_gp(&svm->vcpu, err);
return 1;
return kvm_complete_insn_gp(&svm->vcpu, err);
}
static bool check_selective_cr0_intercepted(struct vcpu_svm *svm,
@ -3374,9 +3371,7 @@ static int cr_interception(struct vcpu_svm *svm)
}
kvm_register_write(&svm->vcpu, reg, val);
}
kvm_complete_insn_gp(&svm->vcpu, err);
return 1;
return kvm_complete_insn_gp(&svm->vcpu, err);
}
static int dr_interception(struct vcpu_svm *svm)

File diff suppressed because it is too large Load Diff

View File

@ -434,12 +434,14 @@ void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
}
EXPORT_SYMBOL_GPL(kvm_requeue_exception);
void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
{
if (err)
kvm_inject_gp(vcpu, 0);
else
kvm_x86_ops->skip_emulated_instruction(vcpu);
return kvm_skip_emulated_instruction(vcpu);
return 1;
}
EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
@ -573,7 +575,7 @@ int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
}
EXPORT_SYMBOL_GPL(load_pdptrs);
static bool pdptrs_changed(struct kvm_vcpu *vcpu)
bool pdptrs_changed(struct kvm_vcpu *vcpu)
{
u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
bool changed = true;
@ -599,6 +601,7 @@ static bool pdptrs_changed(struct kvm_vcpu *vcpu)
return changed;
}
EXPORT_SYMBOL_GPL(pdptrs_changed);
int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
{
@ -2178,7 +2181,6 @@ int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
break;
case MSR_KVM_SYSTEM_TIME_NEW:
case MSR_KVM_SYSTEM_TIME: {
u64 gpa_offset;
struct kvm_arch *ka = &vcpu->kvm->arch;
kvmclock_reset(vcpu);
@ -2200,8 +2202,6 @@ int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
if (!(data & 1))
break;
gpa_offset = data & ~(PAGE_MASK | 1);
if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
&vcpu->arch.pv_time, data & ~1ULL,
sizeof(struct pvclock_vcpu_time_info)))
@ -2296,7 +2296,7 @@ int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
if (kvm_pmu_is_valid_msr(vcpu, msr))
return kvm_pmu_set_msr(vcpu, msr_info);
if (!ignore_msrs) {
vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
msr, data);
return 1;
} else {
@ -2508,7 +2508,8 @@ int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
if (!ignore_msrs) {
vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr_info->index);
vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
msr_info->index);
return 1;
} else {
vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr_info->index);
@ -2812,7 +2813,7 @@ void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
}
if (kvm_lapic_hv_timer_in_use(vcpu) &&
kvm_x86_ops->set_hv_timer(vcpu,
kvm_get_lapic_tscdeadline_msr(vcpu)))
kvm_get_lapic_target_expiration_tsc(vcpu)))
kvm_lapic_switch_to_sw_timer(vcpu);
/*
* On a host with synchronized TSC, there is no need to update
@ -4832,7 +4833,7 @@ static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
}
int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
{
if (!need_emulate_wbinvd(vcpu))
return X86EMUL_CONTINUE;
@ -4852,8 +4853,8 @@ int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
{
kvm_x86_ops->skip_emulated_instruction(vcpu);
return kvm_emulate_wbinvd_noskip(vcpu);
kvm_emulate_wbinvd_noskip(vcpu);
return kvm_skip_emulated_instruction(vcpu);
}
EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
@ -5451,7 +5452,6 @@ static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflag
kvm_run->exit_reason = KVM_EXIT_DEBUG;
*r = EMULATE_USER_EXIT;
} else {
vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
/*
* "Certain debug exceptions may clear bit 0-3. The
* remaining contents of the DR6 register are never
@ -5464,6 +5464,17 @@ static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflag
}
}
int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
{
unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
int r = EMULATE_DONE;
kvm_x86_ops->skip_emulated_instruction(vcpu);
kvm_vcpu_check_singlestep(vcpu, rflags, &r);
return r == EMULATE_DONE;
}
EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
{
if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
@ -5649,6 +5660,49 @@ int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
}
EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
{
unsigned long val;
/* We should only ever be called with arch.pio.count equal to 1 */
BUG_ON(vcpu->arch.pio.count != 1);
/* For size less than 4 we merge, else we zero extend */
val = (vcpu->arch.pio.size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX)
: 0;
/*
* Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
* the copy and tracing
*/
emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
vcpu->arch.pio.port, &val, 1);
kvm_register_write(vcpu, VCPU_REGS_RAX, val);
return 1;
}
int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, unsigned short port)
{
unsigned long val;
int ret;
/* For size less than 4 we merge, else we zero extend */
val = (size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) : 0;
ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
&val, 1);
if (ret) {
kvm_register_write(vcpu, VCPU_REGS_RAX, val);
return ret;
}
vcpu->arch.complete_userspace_io = complete_fast_pio_in;
return 0;
}
EXPORT_SYMBOL_GPL(kvm_fast_pio_in);
static int kvmclock_cpu_down_prep(unsigned int cpu)
{
__this_cpu_write(cpu_tsc_khz, 0);
@ -5998,8 +6052,12 @@ EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
int kvm_emulate_halt(struct kvm_vcpu *vcpu)
{
kvm_x86_ops->skip_emulated_instruction(vcpu);
return kvm_vcpu_halt(vcpu);
int ret = kvm_skip_emulated_instruction(vcpu);
/*
* TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
* KVM_EXIT_DEBUG here.
*/
return kvm_vcpu_halt(vcpu) && ret;
}
EXPORT_SYMBOL_GPL(kvm_emulate_halt);
@ -6030,9 +6088,9 @@ void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
{
unsigned long nr, a0, a1, a2, a3, ret;
int op_64_bit, r = 1;
int op_64_bit, r;
kvm_x86_ops->skip_emulated_instruction(vcpu);
r = kvm_skip_emulated_instruction(vcpu);
if (kvm_hv_hypercall_enabled(vcpu->kvm))
return kvm_hv_hypercall(vcpu);

View File

@ -295,10 +295,10 @@
#define GITS_BASER_InnerShareable \
GIC_BASER_SHAREABILITY(GITS_BASER, InnerShareable)
#define GITS_BASER_PAGE_SIZE_SHIFT (8)
#define GITS_BASER_PAGE_SIZE_4K (0UL << GITS_BASER_PAGE_SIZE_SHIFT)
#define GITS_BASER_PAGE_SIZE_16K (1UL << GITS_BASER_PAGE_SIZE_SHIFT)
#define GITS_BASER_PAGE_SIZE_64K (2UL << GITS_BASER_PAGE_SIZE_SHIFT)
#define GITS_BASER_PAGE_SIZE_MASK (3UL << GITS_BASER_PAGE_SIZE_SHIFT)
#define GITS_BASER_PAGE_SIZE_4K (0ULL << GITS_BASER_PAGE_SIZE_SHIFT)
#define GITS_BASER_PAGE_SIZE_16K (1ULL << GITS_BASER_PAGE_SIZE_SHIFT)
#define GITS_BASER_PAGE_SIZE_64K (2ULL << GITS_BASER_PAGE_SIZE_SHIFT)
#define GITS_BASER_PAGE_SIZE_MASK (3ULL << GITS_BASER_PAGE_SIZE_SHIFT)
#define GITS_BASER_PAGES_MAX 256
#define GITS_BASER_PAGES_SHIFT (0)
#define GITS_BASER_NR_PAGES(r) (((r) & 0xff) + 1)

View File

@ -438,6 +438,9 @@ struct kvm {
pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
#define kvm_debug(fmt, ...) \
pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
#define kvm_debug_ratelimited(fmt, ...) \
pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \
## __VA_ARGS__)
#define kvm_pr_unimpl(fmt, ...) \
pr_err_ratelimited("kvm [%i]: " fmt, \
task_tgid_nr(current), ## __VA_ARGS__)
@ -449,6 +452,9 @@ struct kvm {
#define vcpu_debug(vcpu, fmt, ...) \
kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
#define vcpu_debug_ratelimited(vcpu, fmt, ...) \
kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \
## __VA_ARGS__)
#define vcpu_err(vcpu, fmt, ...) \
kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
@ -1108,6 +1114,10 @@ static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu)
extern bool kvm_rebooting;
extern unsigned int halt_poll_ns;
extern unsigned int halt_poll_ns_grow;
extern unsigned int halt_poll_ns_shrink;
struct kvm_device {
struct kvm_device_ops *ops;
struct kvm *kvm;

View File

@ -651,6 +651,9 @@ struct kvm_enable_cap {
};
/* for KVM_PPC_GET_PVINFO */
#define KVM_PPC_PVINFO_FLAGS_EV_IDLE (1<<0)
struct kvm_ppc_pvinfo {
/* out */
__u32 flags;
@ -682,8 +685,6 @@ struct kvm_ppc_smmu_info {
struct kvm_ppc_one_seg_page_size sps[KVM_PPC_PAGE_SIZES_MAX_SZ];
};
#define KVM_PPC_PVINFO_FLAGS_EV_IDLE (1<<0)
#define KVMIO 0xAE
/* machine type bits, to be used as argument to KVM_CREATE_VM */

View File

@ -425,6 +425,11 @@ int kvm_timer_hyp_init(void)
info = arch_timer_get_kvm_info();
timecounter = &info->timecounter;
if (!timecounter->cc) {
kvm_err("kvm_arch_timer: uninitialized timecounter\n");
return -ENODEV;
}
if (info->virtual_irq <= 0) {
kvm_err("kvm_arch_timer: invalid virtual timer IRQ: %d\n",
info->virtual_irq);
@ -498,17 +503,7 @@ int kvm_timer_enable(struct kvm_vcpu *vcpu)
if (ret)
return ret;
/*
* There is a potential race here between VCPUs starting for the first
* time, which may be enabling the timer multiple times. That doesn't
* hurt though, because we're just setting a variable to the same
* variable that it already was. The important thing is that all
* VCPUs have the enabled variable set, before entering the guest, if
* the arch timers are enabled.
*/
if (timecounter)
timer->enabled = 1;
timer->enabled = 1;
return 0;
}

View File

@ -632,21 +632,22 @@ static bool vgic_its_check_id(struct vgic_its *its, u64 baser, int id)
int index;
u64 indirect_ptr;
gfn_t gfn;
int esz = GITS_BASER_ENTRY_SIZE(baser);
if (!(baser & GITS_BASER_INDIRECT)) {
phys_addr_t addr;
if (id >= (l1_tbl_size / GITS_BASER_ENTRY_SIZE(baser)))
if (id >= (l1_tbl_size / esz))
return false;
addr = BASER_ADDRESS(baser) + id * GITS_BASER_ENTRY_SIZE(baser);
addr = BASER_ADDRESS(baser) + id * esz;
gfn = addr >> PAGE_SHIFT;
return kvm_is_visible_gfn(its->dev->kvm, gfn);
}
/* calculate and check the index into the 1st level */
index = id / (SZ_64K / GITS_BASER_ENTRY_SIZE(baser));
index = id / (SZ_64K / esz);
if (index >= (l1_tbl_size / sizeof(u64)))
return false;
@ -670,8 +671,8 @@ static bool vgic_its_check_id(struct vgic_its *its, u64 baser, int id)
indirect_ptr &= GENMASK_ULL(51, 16);
/* Find the address of the actual entry */
index = id % (SZ_64K / GITS_BASER_ENTRY_SIZE(baser));
indirect_ptr += index * GITS_BASER_ENTRY_SIZE(baser);
index = id % (SZ_64K / esz);
indirect_ptr += index * esz;
gfn = indirect_ptr >> PAGE_SHIFT;
return kvm_is_visible_gfn(its->dev->kvm, gfn);

View File

@ -221,11 +221,9 @@ int kvm_register_vgic_device(unsigned long type)
ret = kvm_register_device_ops(&kvm_arm_vgic_v3_ops,
KVM_DEV_TYPE_ARM_VGIC_V3);
#ifdef CONFIG_KVM_ARM_VGIC_V3_ITS
if (ret)
break;
ret = kvm_vgic_register_its_device();
#endif
break;
}

View File

@ -129,6 +129,7 @@ static void vgic_mmio_write_target(struct kvm_vcpu *vcpu,
unsigned long val)
{
u32 intid = VGIC_ADDR_TO_INTID(addr, 8);
u8 cpu_mask = GENMASK(atomic_read(&vcpu->kvm->online_vcpus) - 1, 0);
int i;
/* GICD_ITARGETSR[0-7] are read-only */
@ -141,7 +142,7 @@ static void vgic_mmio_write_target(struct kvm_vcpu *vcpu,
spin_lock(&irq->irq_lock);
irq->targets = (val >> (i * 8)) & 0xff;
irq->targets = (val >> (i * 8)) & cpu_mask;
target = irq->targets ? __ffs(irq->targets) : 0;
irq->target_vcpu = kvm_get_vcpu(vcpu->kvm, target);

View File

@ -42,7 +42,6 @@ u64 update_64bit_reg(u64 reg, unsigned int offset, unsigned int len,
return reg | ((u64)val << lower);
}
#ifdef CONFIG_KVM_ARM_VGIC_V3_ITS
bool vgic_has_its(struct kvm *kvm)
{
struct vgic_dist *dist = &kvm->arch.vgic;
@ -52,7 +51,6 @@ bool vgic_has_its(struct kvm *kvm)
return dist->has_its;
}
#endif
static unsigned long vgic_mmio_read_v3_misc(struct kvm_vcpu *vcpu,
gpa_t addr, unsigned int len)

View File

@ -84,37 +84,11 @@ int vgic_v3_probe(const struct gic_kvm_info *info);
int vgic_v3_map_resources(struct kvm *kvm);
int vgic_register_redist_iodevs(struct kvm *kvm, gpa_t dist_base_address);
#ifdef CONFIG_KVM_ARM_VGIC_V3_ITS
int vgic_register_its_iodevs(struct kvm *kvm);
bool vgic_has_its(struct kvm *kvm);
int kvm_vgic_register_its_device(void);
void vgic_enable_lpis(struct kvm_vcpu *vcpu);
int vgic_its_inject_msi(struct kvm *kvm, struct kvm_msi *msi);
#else
static inline int vgic_register_its_iodevs(struct kvm *kvm)
{
return -ENODEV;
}
static inline bool vgic_has_its(struct kvm *kvm)
{
return false;
}
static inline int kvm_vgic_register_its_device(void)
{
return -ENODEV;
}
static inline void vgic_enable_lpis(struct kvm_vcpu *vcpu)
{
}
static inline int vgic_its_inject_msi(struct kvm *kvm, struct kvm_msi *msi)
{
return -ENODEV;
}
#endif
int kvm_register_vgic_device(unsigned long type);
int vgic_lazy_init(struct kvm *kvm);

View File

@ -70,16 +70,19 @@ MODULE_AUTHOR("Qumranet");
MODULE_LICENSE("GPL");
/* Architectures should define their poll value according to the halt latency */
static unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR);
EXPORT_SYMBOL_GPL(halt_poll_ns);
/* Default doubles per-vcpu halt_poll_ns. */
static unsigned int halt_poll_ns_grow = 2;
unsigned int halt_poll_ns_grow = 2;
module_param(halt_poll_ns_grow, uint, S_IRUGO | S_IWUSR);
EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
/* Default resets per-vcpu halt_poll_ns . */
static unsigned int halt_poll_ns_shrink;
unsigned int halt_poll_ns_shrink;
module_param(halt_poll_ns_shrink, uint, S_IRUGO | S_IWUSR);
EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
/*
* Ordering of locks:
@ -595,7 +598,7 @@ static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
stat_data->kvm = kvm;
stat_data->offset = p->offset;
kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
if (!debugfs_create_file(p->name, 0444,
if (!debugfs_create_file(p->name, 0644,
kvm->debugfs_dentry,
stat_data,
stat_fops_per_vm[p->kind]))
@ -3669,11 +3672,23 @@ static int vm_stat_get_per_vm(void *data, u64 *val)
return 0;
}
static int vm_stat_clear_per_vm(void *data, u64 val)
{
struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
if (val)
return -EINVAL;
*(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
return 0;
}
static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
{
__simple_attr_check_format("%llu\n", 0ull);
return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
NULL, "%llu\n");
vm_stat_clear_per_vm, "%llu\n");
}
static const struct file_operations vm_stat_get_per_vm_fops = {
@ -3699,11 +3714,26 @@ static int vcpu_stat_get_per_vm(void *data, u64 *val)
return 0;
}
static int vcpu_stat_clear_per_vm(void *data, u64 val)
{
int i;
struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
struct kvm_vcpu *vcpu;
if (val)
return -EINVAL;
kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
*(u64 *)((void *)vcpu + stat_data->offset) = 0;
return 0;
}
static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
{
__simple_attr_check_format("%llu\n", 0ull);
return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
NULL, "%llu\n");
vcpu_stat_clear_per_vm, "%llu\n");
}
static const struct file_operations vcpu_stat_get_per_vm_fops = {
@ -3738,7 +3768,26 @@ static int vm_stat_get(void *_offset, u64 *val)
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
static int vm_stat_clear(void *_offset, u64 val)
{
unsigned offset = (long)_offset;
struct kvm *kvm;
struct kvm_stat_data stat_tmp = {.offset = offset};
if (val)
return -EINVAL;
spin_lock(&kvm_lock);
list_for_each_entry(kvm, &vm_list, vm_list) {
stat_tmp.kvm = kvm;
vm_stat_clear_per_vm((void *)&stat_tmp, 0);
}
spin_unlock(&kvm_lock);
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
static int vcpu_stat_get(void *_offset, u64 *val)
{
@ -3758,7 +3807,27 @@ static int vcpu_stat_get(void *_offset, u64 *val)
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
static int vcpu_stat_clear(void *_offset, u64 val)
{
unsigned offset = (long)_offset;
struct kvm *kvm;
struct kvm_stat_data stat_tmp = {.offset = offset};
if (val)
return -EINVAL;
spin_lock(&kvm_lock);
list_for_each_entry(kvm, &vm_list, vm_list) {
stat_tmp.kvm = kvm;
vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
}
spin_unlock(&kvm_lock);
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
"%llu\n");
static const struct file_operations *stat_fops[] = {
[KVM_STAT_VCPU] = &vcpu_stat_fops,
@ -3776,7 +3845,7 @@ static int kvm_init_debug(void)
kvm_debugfs_num_entries = 0;
for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
if (!debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
if (!debugfs_create_file(p->name, 0644, kvm_debugfs_dir,
(void *)(long)p->offset,
stat_fops[p->kind]))
goto out_dir;