Merge branch 'akpm' (patches from Andrew)

Merge fixes from Andrew Morton:
 "4 fixes"

* emailed patches from Andrew Morton <akpm@linux-foundation.org>:
  mm: thp: calculate the mapcount correctly for THP pages during WP faults
  ksm: fix conflict between mmput and scan_get_next_rmap_item
  ocfs2: fix posix_acl_create deadlock
  ocfs2: revert using ocfs2_acl_chmod to avoid inode cluster lock hang
This commit is contained in:
Linus Torvalds 2016-05-12 18:44:24 -07:00
commit a2ccb68b1e
13 changed files with 209 additions and 81 deletions

View File

@ -322,3 +322,90 @@ struct posix_acl *ocfs2_iop_get_acl(struct inode *inode, int type)
brelse(di_bh); brelse(di_bh);
return acl; return acl;
} }
int ocfs2_acl_chmod(struct inode *inode, struct buffer_head *bh)
{
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
struct posix_acl *acl;
int ret;
if (S_ISLNK(inode->i_mode))
return -EOPNOTSUPP;
if (!(osb->s_mount_opt & OCFS2_MOUNT_POSIX_ACL))
return 0;
acl = ocfs2_get_acl_nolock(inode, ACL_TYPE_ACCESS, bh);
if (IS_ERR(acl) || !acl)
return PTR_ERR(acl);
ret = __posix_acl_chmod(&acl, GFP_KERNEL, inode->i_mode);
if (ret)
return ret;
ret = ocfs2_set_acl(NULL, inode, NULL, ACL_TYPE_ACCESS,
acl, NULL, NULL);
posix_acl_release(acl);
return ret;
}
/*
* Initialize the ACLs of a new inode. If parent directory has default ACL,
* then clone to new inode. Called from ocfs2_mknod.
*/
int ocfs2_init_acl(handle_t *handle,
struct inode *inode,
struct inode *dir,
struct buffer_head *di_bh,
struct buffer_head *dir_bh,
struct ocfs2_alloc_context *meta_ac,
struct ocfs2_alloc_context *data_ac)
{
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
struct posix_acl *acl = NULL;
int ret = 0, ret2;
umode_t mode;
if (!S_ISLNK(inode->i_mode)) {
if (osb->s_mount_opt & OCFS2_MOUNT_POSIX_ACL) {
acl = ocfs2_get_acl_nolock(dir, ACL_TYPE_DEFAULT,
dir_bh);
if (IS_ERR(acl))
return PTR_ERR(acl);
}
if (!acl) {
mode = inode->i_mode & ~current_umask();
ret = ocfs2_acl_set_mode(inode, di_bh, handle, mode);
if (ret) {
mlog_errno(ret);
goto cleanup;
}
}
}
if ((osb->s_mount_opt & OCFS2_MOUNT_POSIX_ACL) && acl) {
if (S_ISDIR(inode->i_mode)) {
ret = ocfs2_set_acl(handle, inode, di_bh,
ACL_TYPE_DEFAULT, acl,
meta_ac, data_ac);
if (ret)
goto cleanup;
}
mode = inode->i_mode;
ret = __posix_acl_create(&acl, GFP_NOFS, &mode);
if (ret < 0)
return ret;
ret2 = ocfs2_acl_set_mode(inode, di_bh, handle, mode);
if (ret2) {
mlog_errno(ret2);
ret = ret2;
goto cleanup;
}
if (ret > 0) {
ret = ocfs2_set_acl(handle, inode,
di_bh, ACL_TYPE_ACCESS,
acl, meta_ac, data_ac);
}
}
cleanup:
posix_acl_release(acl);
return ret;
}

View File

@ -35,5 +35,10 @@ int ocfs2_set_acl(handle_t *handle,
struct posix_acl *acl, struct posix_acl *acl,
struct ocfs2_alloc_context *meta_ac, struct ocfs2_alloc_context *meta_ac,
struct ocfs2_alloc_context *data_ac); struct ocfs2_alloc_context *data_ac);
extern int ocfs2_acl_chmod(struct inode *, struct buffer_head *);
extern int ocfs2_init_acl(handle_t *, struct inode *, struct inode *,
struct buffer_head *, struct buffer_head *,
struct ocfs2_alloc_context *,
struct ocfs2_alloc_context *);
#endif /* OCFS2_ACL_H */ #endif /* OCFS2_ACL_H */

View File

@ -1268,20 +1268,20 @@ int ocfs2_setattr(struct dentry *dentry, struct iattr *attr)
if (size_change) if (size_change)
ocfs2_rw_unlock(inode, 1); ocfs2_rw_unlock(inode, 1);
bail: bail:
brelse(bh);
/* Release quota pointers in case we acquired them */ /* Release quota pointers in case we acquired them */
for (qtype = 0; qtype < OCFS2_MAXQUOTAS; qtype++) for (qtype = 0; qtype < OCFS2_MAXQUOTAS; qtype++)
dqput(transfer_to[qtype]); dqput(transfer_to[qtype]);
if (!status && attr->ia_valid & ATTR_MODE) { if (!status && attr->ia_valid & ATTR_MODE) {
status = posix_acl_chmod(inode, inode->i_mode); status = ocfs2_acl_chmod(inode, bh);
if (status < 0) if (status < 0)
mlog_errno(status); mlog_errno(status);
} }
if (inode_locked) if (inode_locked)
ocfs2_inode_unlock(inode, 1); ocfs2_inode_unlock(inode, 1);
brelse(bh);
return status; return status;
} }

View File

@ -259,7 +259,6 @@ static int ocfs2_mknod(struct inode *dir,
struct ocfs2_dir_lookup_result lookup = { NULL, }; struct ocfs2_dir_lookup_result lookup = { NULL, };
sigset_t oldset; sigset_t oldset;
int did_block_signals = 0; int did_block_signals = 0;
struct posix_acl *default_acl = NULL, *acl = NULL;
struct ocfs2_dentry_lock *dl = NULL; struct ocfs2_dentry_lock *dl = NULL;
trace_ocfs2_mknod(dir, dentry, dentry->d_name.len, dentry->d_name.name, trace_ocfs2_mknod(dir, dentry, dentry->d_name.len, dentry->d_name.name,
@ -367,12 +366,6 @@ static int ocfs2_mknod(struct inode *dir,
goto leave; goto leave;
} }
status = posix_acl_create(dir, &inode->i_mode, &default_acl, &acl);
if (status) {
mlog_errno(status);
goto leave;
}
handle = ocfs2_start_trans(osb, ocfs2_mknod_credits(osb->sb, handle = ocfs2_start_trans(osb, ocfs2_mknod_credits(osb->sb,
S_ISDIR(mode), S_ISDIR(mode),
xattr_credits)); xattr_credits));
@ -421,16 +414,8 @@ static int ocfs2_mknod(struct inode *dir,
inc_nlink(dir); inc_nlink(dir);
} }
if (default_acl) { status = ocfs2_init_acl(handle, inode, dir, new_fe_bh, parent_fe_bh,
status = ocfs2_set_acl(handle, inode, new_fe_bh,
ACL_TYPE_DEFAULT, default_acl,
meta_ac, data_ac); meta_ac, data_ac);
}
if (!status && acl) {
status = ocfs2_set_acl(handle, inode, new_fe_bh,
ACL_TYPE_ACCESS, acl,
meta_ac, data_ac);
}
if (status < 0) { if (status < 0) {
mlog_errno(status); mlog_errno(status);
@ -472,10 +457,6 @@ static int ocfs2_mknod(struct inode *dir,
d_instantiate(dentry, inode); d_instantiate(dentry, inode);
status = 0; status = 0;
leave: leave:
if (default_acl)
posix_acl_release(default_acl);
if (acl)
posix_acl_release(acl);
if (status < 0 && did_quota_inode) if (status < 0 && did_quota_inode)
dquot_free_inode(inode); dquot_free_inode(inode);
if (handle) if (handle)

View File

@ -4248,20 +4248,12 @@ static int ocfs2_reflink(struct dentry *old_dentry, struct inode *dir,
struct inode *inode = d_inode(old_dentry); struct inode *inode = d_inode(old_dentry);
struct buffer_head *old_bh = NULL; struct buffer_head *old_bh = NULL;
struct inode *new_orphan_inode = NULL; struct inode *new_orphan_inode = NULL;
struct posix_acl *default_acl, *acl;
umode_t mode;
if (!ocfs2_refcount_tree(OCFS2_SB(inode->i_sb))) if (!ocfs2_refcount_tree(OCFS2_SB(inode->i_sb)))
return -EOPNOTSUPP; return -EOPNOTSUPP;
mode = inode->i_mode;
error = posix_acl_create(dir, &mode, &default_acl, &acl);
if (error) {
mlog_errno(error);
return error;
}
error = ocfs2_create_inode_in_orphan(dir, mode, error = ocfs2_create_inode_in_orphan(dir, inode->i_mode,
&new_orphan_inode); &new_orphan_inode);
if (error) { if (error) {
mlog_errno(error); mlog_errno(error);
@ -4300,16 +4292,11 @@ static int ocfs2_reflink(struct dentry *old_dentry, struct inode *dir,
/* If the security isn't preserved, we need to re-initialize them. */ /* If the security isn't preserved, we need to re-initialize them. */
if (!preserve) { if (!preserve) {
error = ocfs2_init_security_and_acl(dir, new_orphan_inode, error = ocfs2_init_security_and_acl(dir, new_orphan_inode,
&new_dentry->d_name, &new_dentry->d_name);
default_acl, acl);
if (error) if (error)
mlog_errno(error); mlog_errno(error);
} }
out: out:
if (default_acl)
posix_acl_release(default_acl);
if (acl)
posix_acl_release(acl);
if (!error) { if (!error) {
error = ocfs2_mv_orphaned_inode_to_new(dir, new_orphan_inode, error = ocfs2_mv_orphaned_inode_to_new(dir, new_orphan_inode,
new_dentry); new_dentry);

View File

@ -7216,12 +7216,10 @@ int ocfs2_reflink_xattrs(struct inode *old_inode,
*/ */
int ocfs2_init_security_and_acl(struct inode *dir, int ocfs2_init_security_and_acl(struct inode *dir,
struct inode *inode, struct inode *inode,
const struct qstr *qstr, const struct qstr *qstr)
struct posix_acl *default_acl,
struct posix_acl *acl)
{ {
struct buffer_head *dir_bh = NULL;
int ret = 0; int ret = 0;
struct buffer_head *dir_bh = NULL;
ret = ocfs2_init_security_get(inode, dir, qstr, NULL); ret = ocfs2_init_security_get(inode, dir, qstr, NULL);
if (ret) { if (ret) {
@ -7234,11 +7232,9 @@ int ocfs2_init_security_and_acl(struct inode *dir,
mlog_errno(ret); mlog_errno(ret);
goto leave; goto leave;
} }
ret = ocfs2_init_acl(NULL, inode, dir, NULL, dir_bh, NULL, NULL);
if (!ret && default_acl) if (ret)
ret = ocfs2_iop_set_acl(inode, default_acl, ACL_TYPE_DEFAULT); mlog_errno(ret);
if (!ret && acl)
ret = ocfs2_iop_set_acl(inode, acl, ACL_TYPE_ACCESS);
ocfs2_inode_unlock(dir, 0); ocfs2_inode_unlock(dir, 0);
brelse(dir_bh); brelse(dir_bh);

View File

@ -94,7 +94,5 @@ int ocfs2_reflink_xattrs(struct inode *old_inode,
bool preserve_security); bool preserve_security);
int ocfs2_init_security_and_acl(struct inode *dir, int ocfs2_init_security_and_acl(struct inode *dir,
struct inode *inode, struct inode *inode,
const struct qstr *qstr, const struct qstr *qstr);
struct posix_acl *default_acl,
struct posix_acl *acl);
#endif /* OCFS2_XATTR_H */ #endif /* OCFS2_XATTR_H */

View File

@ -500,11 +500,20 @@ static inline int page_mapcount(struct page *page)
#ifdef CONFIG_TRANSPARENT_HUGEPAGE #ifdef CONFIG_TRANSPARENT_HUGEPAGE
int total_mapcount(struct page *page); int total_mapcount(struct page *page);
int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
#else #else
static inline int total_mapcount(struct page *page) static inline int total_mapcount(struct page *page)
{ {
return page_mapcount(page); return page_mapcount(page);
} }
static inline int page_trans_huge_mapcount(struct page *page,
int *total_mapcount)
{
int mapcount = page_mapcount(page);
if (total_mapcount)
*total_mapcount = mapcount;
return mapcount;
}
#endif #endif
static inline struct page *virt_to_head_page(const void *x) static inline struct page *virt_to_head_page(const void *x)

View File

@ -418,7 +418,7 @@ extern sector_t swapdev_block(int, pgoff_t);
extern int page_swapcount(struct page *); extern int page_swapcount(struct page *);
extern int swp_swapcount(swp_entry_t entry); extern int swp_swapcount(swp_entry_t entry);
extern struct swap_info_struct *page_swap_info(struct page *); extern struct swap_info_struct *page_swap_info(struct page *);
extern int reuse_swap_page(struct page *); extern bool reuse_swap_page(struct page *, int *);
extern int try_to_free_swap(struct page *); extern int try_to_free_swap(struct page *);
struct backing_dev_info; struct backing_dev_info;
@ -513,8 +513,8 @@ static inline int swp_swapcount(swp_entry_t entry)
return 0; return 0;
} }
#define reuse_swap_page(page) \ #define reuse_swap_page(page, total_mapcount) \
(!PageTransCompound(page) && page_mapcount(page) == 1) (page_trans_huge_mapcount(page, total_mapcount) == 1)
static inline int try_to_free_swap(struct page *page) static inline int try_to_free_swap(struct page *page)
{ {

View File

@ -1298,15 +1298,9 @@ int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page); VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
/* /*
* We can only reuse the page if nobody else maps the huge page or it's * We can only reuse the page if nobody else maps the huge page or it's
* part. We can do it by checking page_mapcount() on each sub-page, but * part.
* it's expensive.
* The cheaper way is to check page_count() to be equal 1: every
* mapcount takes page reference reference, so this way we can
* guarantee, that the PMD is the only mapping.
* This can give false negative if somebody pinned the page, but that's
* fine.
*/ */
if (page_mapcount(page) == 1 && page_count(page) == 1) { if (page_trans_huge_mapcount(page, NULL) == 1) {
pmd_t entry; pmd_t entry;
entry = pmd_mkyoung(orig_pmd); entry = pmd_mkyoung(orig_pmd);
entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
@ -2079,7 +2073,8 @@ static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
if (pte_write(pteval)) { if (pte_write(pteval)) {
writable = true; writable = true;
} else { } else {
if (PageSwapCache(page) && !reuse_swap_page(page)) { if (PageSwapCache(page) &&
!reuse_swap_page(page, NULL)) {
unlock_page(page); unlock_page(page);
result = SCAN_SWAP_CACHE_PAGE; result = SCAN_SWAP_CACHE_PAGE;
goto out; goto out;
@ -3222,6 +3217,64 @@ int total_mapcount(struct page *page)
return ret; return ret;
} }
/*
* This calculates accurately how many mappings a transparent hugepage
* has (unlike page_mapcount() which isn't fully accurate). This full
* accuracy is primarily needed to know if copy-on-write faults can
* reuse the page and change the mapping to read-write instead of
* copying them. At the same time this returns the total_mapcount too.
*
* The function returns the highest mapcount any one of the subpages
* has. If the return value is one, even if different processes are
* mapping different subpages of the transparent hugepage, they can
* all reuse it, because each process is reusing a different subpage.
*
* The total_mapcount is instead counting all virtual mappings of the
* subpages. If the total_mapcount is equal to "one", it tells the
* caller all mappings belong to the same "mm" and in turn the
* anon_vma of the transparent hugepage can become the vma->anon_vma
* local one as no other process may be mapping any of the subpages.
*
* It would be more accurate to replace page_mapcount() with
* page_trans_huge_mapcount(), however we only use
* page_trans_huge_mapcount() in the copy-on-write faults where we
* need full accuracy to avoid breaking page pinning, because
* page_trans_huge_mapcount() is slower than page_mapcount().
*/
int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
{
int i, ret, _total_mapcount, mapcount;
/* hugetlbfs shouldn't call it */
VM_BUG_ON_PAGE(PageHuge(page), page);
if (likely(!PageTransCompound(page))) {
mapcount = atomic_read(&page->_mapcount) + 1;
if (total_mapcount)
*total_mapcount = mapcount;
return mapcount;
}
page = compound_head(page);
_total_mapcount = ret = 0;
for (i = 0; i < HPAGE_PMD_NR; i++) {
mapcount = atomic_read(&page[i]._mapcount) + 1;
ret = max(ret, mapcount);
_total_mapcount += mapcount;
}
if (PageDoubleMap(page)) {
ret -= 1;
_total_mapcount -= HPAGE_PMD_NR;
}
mapcount = compound_mapcount(page);
ret += mapcount;
_total_mapcount += mapcount;
if (total_mapcount)
*total_mapcount = _total_mapcount;
return ret;
}
/* /*
* This function splits huge page into normal pages. @page can point to any * This function splits huge page into normal pages. @page can point to any
* subpage of huge page to split. Split doesn't change the position of @page. * subpage of huge page to split. Split doesn't change the position of @page.

View File

@ -783,6 +783,7 @@ static int unmerge_and_remove_all_rmap_items(void)
} }
remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list); remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
up_read(&mm->mmap_sem);
spin_lock(&ksm_mmlist_lock); spin_lock(&ksm_mmlist_lock);
ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next, ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
@ -794,12 +795,9 @@ static int unmerge_and_remove_all_rmap_items(void)
free_mm_slot(mm_slot); free_mm_slot(mm_slot);
clear_bit(MMF_VM_MERGEABLE, &mm->flags); clear_bit(MMF_VM_MERGEABLE, &mm->flags);
up_read(&mm->mmap_sem);
mmdrop(mm); mmdrop(mm);
} else { } else
spin_unlock(&ksm_mmlist_lock); spin_unlock(&ksm_mmlist_lock);
up_read(&mm->mmap_sem);
}
} }
/* Clean up stable nodes, but don't worry if some are still busy */ /* Clean up stable nodes, but don't worry if some are still busy */
@ -1663,8 +1661,15 @@ static struct rmap_item *scan_get_next_rmap_item(struct page **page)
up_read(&mm->mmap_sem); up_read(&mm->mmap_sem);
mmdrop(mm); mmdrop(mm);
} else { } else {
spin_unlock(&ksm_mmlist_lock);
up_read(&mm->mmap_sem); up_read(&mm->mmap_sem);
/*
* up_read(&mm->mmap_sem) first because after
* spin_unlock(&ksm_mmlist_lock) run, the "mm" may
* already have been freed under us by __ksm_exit()
* because the "mm_slot" is still hashed and
* ksm_scan.mm_slot doesn't point to it anymore.
*/
spin_unlock(&ksm_mmlist_lock);
} }
/* Repeat until we've completed scanning the whole list */ /* Repeat until we've completed scanning the whole list */

View File

@ -2373,6 +2373,7 @@ static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
* not dirty accountable. * not dirty accountable.
*/ */
if (PageAnon(old_page) && !PageKsm(old_page)) { if (PageAnon(old_page) && !PageKsm(old_page)) {
int total_mapcount;
if (!trylock_page(old_page)) { if (!trylock_page(old_page)) {
get_page(old_page); get_page(old_page);
pte_unmap_unlock(page_table, ptl); pte_unmap_unlock(page_table, ptl);
@ -2387,13 +2388,18 @@ static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
} }
put_page(old_page); put_page(old_page);
} }
if (reuse_swap_page(old_page)) { if (reuse_swap_page(old_page, &total_mapcount)) {
if (total_mapcount == 1) {
/* /*
* The page is all ours. Move it to our anon_vma so * The page is all ours. Move it to
* the rmap code will not search our parent or siblings. * our anon_vma so the rmap code will
* Protected against the rmap code by the page lock. * not search our parent or siblings.
* Protected against the rmap code by
* the page lock.
*/ */
page_move_anon_rmap(old_page, vma, address); page_move_anon_rmap(compound_head(old_page),
vma, address);
}
unlock_page(old_page); unlock_page(old_page);
return wp_page_reuse(mm, vma, address, page_table, ptl, return wp_page_reuse(mm, vma, address, page_table, ptl,
orig_pte, old_page, 0, 0); orig_pte, old_page, 0, 0);
@ -2617,7 +2623,7 @@ static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
inc_mm_counter_fast(mm, MM_ANONPAGES); inc_mm_counter_fast(mm, MM_ANONPAGES);
dec_mm_counter_fast(mm, MM_SWAPENTS); dec_mm_counter_fast(mm, MM_SWAPENTS);
pte = mk_pte(page, vma->vm_page_prot); pte = mk_pte(page, vma->vm_page_prot);
if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) { if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
pte = maybe_mkwrite(pte_mkdirty(pte), vma); pte = maybe_mkwrite(pte_mkdirty(pte), vma);
flags &= ~FAULT_FLAG_WRITE; flags &= ~FAULT_FLAG_WRITE;
ret |= VM_FAULT_WRITE; ret |= VM_FAULT_WRITE;

View File

@ -922,18 +922,19 @@ int swp_swapcount(swp_entry_t entry)
* to it. And as a side-effect, free up its swap: because the old content * to it. And as a side-effect, free up its swap: because the old content
* on disk will never be read, and seeking back there to write new content * on disk will never be read, and seeking back there to write new content
* later would only waste time away from clustering. * later would only waste time away from clustering.
*
* NOTE: total_mapcount should not be relied upon by the caller if
* reuse_swap_page() returns false, but it may be always overwritten
* (see the other implementation for CONFIG_SWAP=n).
*/ */
int reuse_swap_page(struct page *page) bool reuse_swap_page(struct page *page, int *total_mapcount)
{ {
int count; int count;
VM_BUG_ON_PAGE(!PageLocked(page), page); VM_BUG_ON_PAGE(!PageLocked(page), page);
if (unlikely(PageKsm(page))) if (unlikely(PageKsm(page)))
return 0; return false;
/* The page is part of THP and cannot be reused */ count = page_trans_huge_mapcount(page, total_mapcount);
if (PageTransCompound(page))
return 0;
count = page_mapcount(page);
if (count <= 1 && PageSwapCache(page)) { if (count <= 1 && PageSwapCache(page)) {
count += page_swapcount(page); count += page_swapcount(page);
if (count == 1 && !PageWriteback(page)) { if (count == 1 && !PageWriteback(page)) {