docs: fprobe: Add fprobe description to ftrace-use.rst
Add a documentation of fprobe for the user who needs this interface. Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Tested-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/164735294272.1084943.12372175959382037397.stgit@devnote2
This commit is contained in:
parent
ab51e15d53
commit
aba09b44a9
|
@ -0,0 +1,174 @@
|
|||
.. SPDX-License-Identifier: GPL-2.0
|
||||
|
||||
==================================
|
||||
Fprobe - Function entry/exit probe
|
||||
==================================
|
||||
|
||||
.. Author: Masami Hiramatsu <mhiramat@kernel.org>
|
||||
|
||||
Introduction
|
||||
============
|
||||
|
||||
Fprobe is a function entry/exit probe mechanism based on ftrace.
|
||||
Instead of using ftrace full feature, if you only want to attach callbacks
|
||||
on function entry and exit, similar to the kprobes and kretprobes, you can
|
||||
use fprobe. Compared with kprobes and kretprobes, fprobe gives faster
|
||||
instrumentation for multiple functions with single handler. This document
|
||||
describes how to use fprobe.
|
||||
|
||||
The usage of fprobe
|
||||
===================
|
||||
|
||||
The fprobe is a wrapper of ftrace (+ kretprobe-like return callback) to
|
||||
attach callbacks to multiple function entry and exit. User needs to set up
|
||||
the `struct fprobe` and pass it to `register_fprobe()`.
|
||||
|
||||
Typically, `fprobe` data structure is initialized with the `entry_handler`
|
||||
and/or `exit_handler` as below.
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
struct fprobe fp = {
|
||||
.entry_handler = my_entry_callback,
|
||||
.exit_handler = my_exit_callback,
|
||||
};
|
||||
|
||||
To enable the fprobe, call one of register_fprobe(), register_fprobe_ips(), and
|
||||
register_fprobe_syms(). These functions register the fprobe with different types
|
||||
of parameters.
|
||||
|
||||
The register_fprobe() enables a fprobe by function-name filters.
|
||||
E.g. this enables @fp on "func*()" function except "func2()".::
|
||||
|
||||
register_fprobe(&fp, "func*", "func2");
|
||||
|
||||
The register_fprobe_ips() enables a fprobe by ftrace-location addresses.
|
||||
E.g.
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
unsigned long ips[] = { 0x.... };
|
||||
|
||||
register_fprobe_ips(&fp, ips, ARRAY_SIZE(ips));
|
||||
|
||||
And the register_fprobe_syms() enables a fprobe by symbol names.
|
||||
E.g.
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
char syms[] = {"func1", "func2", "func3"};
|
||||
|
||||
register_fprobe_syms(&fp, syms, ARRAY_SIZE(syms));
|
||||
|
||||
To disable (remove from functions) this fprobe, call::
|
||||
|
||||
unregister_fprobe(&fp);
|
||||
|
||||
You can temporally (soft) disable the fprobe by::
|
||||
|
||||
disable_fprobe(&fp);
|
||||
|
||||
and resume by::
|
||||
|
||||
enable_fprobe(&fp);
|
||||
|
||||
The above is defined by including the header::
|
||||
|
||||
#include <linux/fprobe.h>
|
||||
|
||||
Same as ftrace, the registered callbacks will start being called some time
|
||||
after the register_fprobe() is called and before it returns. See
|
||||
:file:`Documentation/trace/ftrace.rst`.
|
||||
|
||||
Also, the unregister_fprobe() will guarantee that the both enter and exit
|
||||
handlers are no longer being called by functions after unregister_fprobe()
|
||||
returns as same as unregister_ftrace_function().
|
||||
|
||||
The fprobe entry/exit handler
|
||||
=============================
|
||||
|
||||
The prototype of the entry/exit callback function is as follows:
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
void callback_func(struct fprobe *fp, unsigned long entry_ip, struct pt_regs *regs);
|
||||
|
||||
Note that both entry and exit callbacks have same ptototype. The @entry_ip is
|
||||
saved at function entry and passed to exit handler.
|
||||
|
||||
@fp
|
||||
This is the address of `fprobe` data structure related to this handler.
|
||||
You can embed the `fprobe` to your data structure and get it by
|
||||
container_of() macro from @fp. The @fp must not be NULL.
|
||||
|
||||
@entry_ip
|
||||
This is the ftrace address of the traced function (both entry and exit).
|
||||
Note that this may not be the actual entry address of the function but
|
||||
the address where the ftrace is instrumented.
|
||||
|
||||
@regs
|
||||
This is the `pt_regs` data structure at the entry and exit. Note that
|
||||
the instruction pointer of @regs may be different from the @entry_ip
|
||||
in the entry_handler. If you need traced instruction pointer, you need
|
||||
to use @entry_ip. On the other hand, in the exit_handler, the instruction
|
||||
pointer of @regs is set to the currect return address.
|
||||
|
||||
Share the callbacks with kprobes
|
||||
================================
|
||||
|
||||
Since the recursion safeness of the fprobe (and ftrace) is a bit different
|
||||
from the kprobes, this may cause an issue if user wants to run the same
|
||||
code from the fprobe and the kprobes.
|
||||
|
||||
Kprobes has per-cpu 'current_kprobe' variable which protects the kprobe
|
||||
handler from recursion in all cases. On the other hand, fprobe uses
|
||||
only ftrace_test_recursion_trylock(). This allows interrupt context to
|
||||
call another (or same) fprobe while the fprobe user handler is running.
|
||||
|
||||
This is not a matter if the common callback code has its own recursion
|
||||
detection, or it can handle the recursion in the different contexts
|
||||
(normal/interrupt/NMI.)
|
||||
But if it relies on the 'current_kprobe' recursion lock, it has to check
|
||||
kprobe_running() and use kprobe_busy_*() APIs.
|
||||
|
||||
Fprobe has FPROBE_FL_KPROBE_SHARED flag to do this. If your common callback
|
||||
code will be shared with kprobes, please set FPROBE_FL_KPROBE_SHARED
|
||||
*before* registering the fprobe, like:
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
fprobe.flags = FPROBE_FL_KPROBE_SHARED;
|
||||
|
||||
register_fprobe(&fprobe, "func*", NULL);
|
||||
|
||||
This will protect your common callback from the nested call.
|
||||
|
||||
The missed counter
|
||||
==================
|
||||
|
||||
The `fprobe` data structure has `fprobe::nmissed` counter field as same as
|
||||
kprobes.
|
||||
This counter counts up when;
|
||||
|
||||
- fprobe fails to take ftrace_recursion lock. This usually means that a function
|
||||
which is traced by other ftrace users is called from the entry_handler.
|
||||
|
||||
- fprobe fails to setup the function exit because of the shortage of rethook
|
||||
(the shadow stack for hooking the function return.)
|
||||
|
||||
The `fprobe::nmissed` field counts up in both cases. Therefore, the former
|
||||
skips both of entry and exit callback and the latter skips the exit
|
||||
callback, but in both case the counter will increase by 1.
|
||||
|
||||
Note that if you set the FTRACE_OPS_FL_RECURSION and/or FTRACE_OPS_FL_RCU to
|
||||
`fprobe::ops::flags` (ftrace_ops::flags) when registering the fprobe, this
|
||||
counter may not work correctly, because ftrace skips the fprobe function which
|
||||
increase the counter.
|
||||
|
||||
|
||||
Functions and structures
|
||||
========================
|
||||
|
||||
.. kernel-doc:: include/linux/fprobe.h
|
||||
.. kernel-doc:: kernel/trace/fprobe.c
|
||||
|
|
@ -9,6 +9,7 @@ Linux Tracing Technologies
|
|||
tracepoint-analysis
|
||||
ftrace
|
||||
ftrace-uses
|
||||
fprobe
|
||||
kprobes
|
||||
kprobetrace
|
||||
uprobetracer
|
||||
|
|
Loading…
Reference in New Issue