Merge branch 'efi-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull EFI updates from Ingo Molnar:
 "The biggest change in this cycle was the addition of ARM CPER error
  decoding when printing EFI errors into the kernel log.

  There are also misc smaller updates: documentation update, cleanups
  and an EFI memory map permissions quirk"

* 'efi-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/efi: Clarify that reset attack mitigation needs appropriate userspace
  efi: Parse ARM error information value
  efi: Move ARM CPER code to new file
  efi: Use PTR_ERR_OR_ZERO()
  arm64/efi: Ignore EFI_MEMORY_XP attribute if RP and/or WP are set
  efi/capsule-loader: Fix pr_err() string to end with newline
This commit is contained in:
Linus Torvalds 2018-01-30 10:42:39 -08:00
commit b8dbf73086
8 changed files with 422 additions and 123 deletions

View File

@ -48,7 +48,9 @@ static __init pteval_t create_mapping_protection(efi_memory_desc_t *md)
return pgprot_val(PAGE_KERNEL_ROX); return pgprot_val(PAGE_KERNEL_ROX);
/* RW- */ /* RW- */
if (attr & EFI_MEMORY_XP || type != EFI_RUNTIME_SERVICES_CODE) if (((attr & (EFI_MEMORY_RP | EFI_MEMORY_WP | EFI_MEMORY_XP)) ==
EFI_MEMORY_XP) ||
type != EFI_RUNTIME_SERVICES_CODE)
return pgprot_val(PAGE_KERNEL); return pgprot_val(PAGE_KERNEL);
/* RWX */ /* RWX */

View File

@ -159,13 +159,21 @@ config RESET_ATTACK_MITIGATION
using the TCG Platform Reset Attack Mitigation specification. This using the TCG Platform Reset Attack Mitigation specification. This
protects against an attacker forcibly rebooting the system while it protects against an attacker forcibly rebooting the system while it
still contains secrets in RAM, booting another OS and extracting the still contains secrets in RAM, booting another OS and extracting the
secrets. secrets. This should only be enabled when userland is configured to
clear the MemoryOverwriteRequest flag on clean shutdown after secrets
have been evicted, since otherwise it will trigger even on clean
reboots.
endmenu endmenu
config UEFI_CPER config UEFI_CPER
bool bool
config UEFI_CPER_ARM
bool
depends on UEFI_CPER && ( ARM || ARM64 )
default y
config EFI_DEV_PATH_PARSER config EFI_DEV_PATH_PARSER
bool bool
depends on ACPI depends on ACPI

View File

@ -30,3 +30,4 @@ arm-obj-$(CONFIG_EFI) := arm-init.o arm-runtime.o
obj-$(CONFIG_ARM) += $(arm-obj-y) obj-$(CONFIG_ARM) += $(arm-obj-y)
obj-$(CONFIG_ARM64) += $(arm-obj-y) obj-$(CONFIG_ARM64) += $(arm-obj-y)
obj-$(CONFIG_EFI_CAPSULE_LOADER) += capsule-loader.o obj-$(CONFIG_EFI_CAPSULE_LOADER) += capsule-loader.o
obj-$(CONFIG_UEFI_CPER_ARM) += cper-arm.o

View File

@ -45,7 +45,7 @@ int __efi_capsule_setup_info(struct capsule_info *cap_info)
pages_needed = ALIGN(cap_info->total_size, PAGE_SIZE) / PAGE_SIZE; pages_needed = ALIGN(cap_info->total_size, PAGE_SIZE) / PAGE_SIZE;
if (pages_needed == 0) { if (pages_needed == 0) {
pr_err("invalid capsule size"); pr_err("invalid capsule size\n");
return -EINVAL; return -EINVAL;
} }

View File

@ -0,0 +1,356 @@
/*
* UEFI Common Platform Error Record (CPER) support
*
* Copyright (C) 2017, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License version
* 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/time.h>
#include <linux/cper.h>
#include <linux/dmi.h>
#include <linux/acpi.h>
#include <linux/pci.h>
#include <linux/aer.h>
#include <linux/printk.h>
#include <linux/bcd.h>
#include <acpi/ghes.h>
#include <ras/ras_event.h>
#define INDENT_SP " "
static const char * const arm_reg_ctx_strs[] = {
"AArch32 general purpose registers",
"AArch32 EL1 context registers",
"AArch32 EL2 context registers",
"AArch32 secure context registers",
"AArch64 general purpose registers",
"AArch64 EL1 context registers",
"AArch64 EL2 context registers",
"AArch64 EL3 context registers",
"Misc. system register structure",
};
static const char * const arm_err_trans_type_strs[] = {
"Instruction",
"Data Access",
"Generic",
};
static const char * const arm_bus_err_op_strs[] = {
"Generic error (type cannot be determined)",
"Generic read (type of instruction or data request cannot be determined)",
"Generic write (type of instruction of data request cannot be determined)",
"Data read",
"Data write",
"Instruction fetch",
"Prefetch",
};
static const char * const arm_cache_err_op_strs[] = {
"Generic error (type cannot be determined)",
"Generic read (type of instruction or data request cannot be determined)",
"Generic write (type of instruction of data request cannot be determined)",
"Data read",
"Data write",
"Instruction fetch",
"Prefetch",
"Eviction",
"Snooping (processor initiated a cache snoop that resulted in an error)",
"Snooped (processor raised a cache error caused by another processor or device snooping its cache)",
"Management",
};
static const char * const arm_tlb_err_op_strs[] = {
"Generic error (type cannot be determined)",
"Generic read (type of instruction or data request cannot be determined)",
"Generic write (type of instruction of data request cannot be determined)",
"Data read",
"Data write",
"Instruction fetch",
"Prefetch",
"Local management operation (processor initiated a TLB management operation that resulted in an error)",
"External management operation (processor raised a TLB error caused by another processor or device broadcasting TLB operations)",
};
static const char * const arm_bus_err_part_type_strs[] = {
"Local processor originated request",
"Local processor responded to request",
"Local processor observed",
"Generic",
};
static const char * const arm_bus_err_addr_space_strs[] = {
"External Memory Access",
"Internal Memory Access",
"Unknown",
"Device Memory Access",
};
static void cper_print_arm_err_info(const char *pfx, u32 type,
u64 error_info)
{
u8 trans_type, op_type, level, participation_type, address_space;
u16 mem_attributes;
bool proc_context_corrupt, corrected, precise_pc, restartable_pc;
bool time_out, access_mode;
/* If the type is unknown, bail. */
if (type > CPER_ARM_MAX_TYPE)
return;
/*
* Vendor type errors have error information values that are vendor
* specific.
*/
if (type == CPER_ARM_VENDOR_ERROR)
return;
if (error_info & CPER_ARM_ERR_VALID_TRANSACTION_TYPE) {
trans_type = ((error_info >> CPER_ARM_ERR_TRANSACTION_SHIFT)
& CPER_ARM_ERR_TRANSACTION_MASK);
if (trans_type < ARRAY_SIZE(arm_err_trans_type_strs)) {
printk("%stransaction type: %s\n", pfx,
arm_err_trans_type_strs[trans_type]);
}
}
if (error_info & CPER_ARM_ERR_VALID_OPERATION_TYPE) {
op_type = ((error_info >> CPER_ARM_ERR_OPERATION_SHIFT)
& CPER_ARM_ERR_OPERATION_MASK);
switch (type) {
case CPER_ARM_CACHE_ERROR:
if (op_type < ARRAY_SIZE(arm_cache_err_op_strs)) {
printk("%soperation type: %s\n", pfx,
arm_cache_err_op_strs[op_type]);
}
break;
case CPER_ARM_TLB_ERROR:
if (op_type < ARRAY_SIZE(arm_tlb_err_op_strs)) {
printk("%soperation type: %s\n", pfx,
arm_tlb_err_op_strs[op_type]);
}
break;
case CPER_ARM_BUS_ERROR:
if (op_type < ARRAY_SIZE(arm_bus_err_op_strs)) {
printk("%soperation type: %s\n", pfx,
arm_bus_err_op_strs[op_type]);
}
break;
}
}
if (error_info & CPER_ARM_ERR_VALID_LEVEL) {
level = ((error_info >> CPER_ARM_ERR_LEVEL_SHIFT)
& CPER_ARM_ERR_LEVEL_MASK);
switch (type) {
case CPER_ARM_CACHE_ERROR:
printk("%scache level: %d\n", pfx, level);
break;
case CPER_ARM_TLB_ERROR:
printk("%sTLB level: %d\n", pfx, level);
break;
case CPER_ARM_BUS_ERROR:
printk("%saffinity level at which the bus error occurred: %d\n",
pfx, level);
break;
}
}
if (error_info & CPER_ARM_ERR_VALID_PROC_CONTEXT_CORRUPT) {
proc_context_corrupt = ((error_info >> CPER_ARM_ERR_PC_CORRUPT_SHIFT)
& CPER_ARM_ERR_PC_CORRUPT_MASK);
if (proc_context_corrupt)
printk("%sprocessor context corrupted\n", pfx);
else
printk("%sprocessor context not corrupted\n", pfx);
}
if (error_info & CPER_ARM_ERR_VALID_CORRECTED) {
corrected = ((error_info >> CPER_ARM_ERR_CORRECTED_SHIFT)
& CPER_ARM_ERR_CORRECTED_MASK);
if (corrected)
printk("%sthe error has been corrected\n", pfx);
else
printk("%sthe error has not been corrected\n", pfx);
}
if (error_info & CPER_ARM_ERR_VALID_PRECISE_PC) {
precise_pc = ((error_info >> CPER_ARM_ERR_PRECISE_PC_SHIFT)
& CPER_ARM_ERR_PRECISE_PC_MASK);
if (precise_pc)
printk("%sPC is precise\n", pfx);
else
printk("%sPC is imprecise\n", pfx);
}
if (error_info & CPER_ARM_ERR_VALID_RESTARTABLE_PC) {
restartable_pc = ((error_info >> CPER_ARM_ERR_RESTARTABLE_PC_SHIFT)
& CPER_ARM_ERR_RESTARTABLE_PC_MASK);
if (restartable_pc)
printk("%sProgram execution can be restarted reliably at the PC associated with the error.\n", pfx);
}
/* The rest of the fields are specific to bus errors */
if (type != CPER_ARM_BUS_ERROR)
return;
if (error_info & CPER_ARM_ERR_VALID_PARTICIPATION_TYPE) {
participation_type = ((error_info >> CPER_ARM_ERR_PARTICIPATION_TYPE_SHIFT)
& CPER_ARM_ERR_PARTICIPATION_TYPE_MASK);
if (participation_type < ARRAY_SIZE(arm_bus_err_part_type_strs)) {
printk("%sparticipation type: %s\n", pfx,
arm_bus_err_part_type_strs[participation_type]);
}
}
if (error_info & CPER_ARM_ERR_VALID_TIME_OUT) {
time_out = ((error_info >> CPER_ARM_ERR_TIME_OUT_SHIFT)
& CPER_ARM_ERR_TIME_OUT_MASK);
if (time_out)
printk("%srequest timed out\n", pfx);
}
if (error_info & CPER_ARM_ERR_VALID_ADDRESS_SPACE) {
address_space = ((error_info >> CPER_ARM_ERR_ADDRESS_SPACE_SHIFT)
& CPER_ARM_ERR_ADDRESS_SPACE_MASK);
if (address_space < ARRAY_SIZE(arm_bus_err_addr_space_strs)) {
printk("%saddress space: %s\n", pfx,
arm_bus_err_addr_space_strs[address_space]);
}
}
if (error_info & CPER_ARM_ERR_VALID_MEM_ATTRIBUTES) {
mem_attributes = ((error_info >> CPER_ARM_ERR_MEM_ATTRIBUTES_SHIFT)
& CPER_ARM_ERR_MEM_ATTRIBUTES_MASK);
printk("%smemory access attributes:0x%x\n", pfx, mem_attributes);
}
if (error_info & CPER_ARM_ERR_VALID_ACCESS_MODE) {
access_mode = ((error_info >> CPER_ARM_ERR_ACCESS_MODE_SHIFT)
& CPER_ARM_ERR_ACCESS_MODE_MASK);
if (access_mode)
printk("%saccess mode: normal\n", pfx);
else
printk("%saccess mode: secure\n", pfx);
}
}
void cper_print_proc_arm(const char *pfx,
const struct cper_sec_proc_arm *proc)
{
int i, len, max_ctx_type;
struct cper_arm_err_info *err_info;
struct cper_arm_ctx_info *ctx_info;
char newpfx[64], infopfx[64];
printk("%sMIDR: 0x%016llx\n", pfx, proc->midr);
len = proc->section_length - (sizeof(*proc) +
proc->err_info_num * (sizeof(*err_info)));
if (len < 0) {
printk("%ssection length: %d\n", pfx, proc->section_length);
printk("%ssection length is too small\n", pfx);
printk("%sfirmware-generated error record is incorrect\n", pfx);
printk("%sERR_INFO_NUM is %d\n", pfx, proc->err_info_num);
return;
}
if (proc->validation_bits & CPER_ARM_VALID_MPIDR)
printk("%sMultiprocessor Affinity Register (MPIDR): 0x%016llx\n",
pfx, proc->mpidr);
if (proc->validation_bits & CPER_ARM_VALID_AFFINITY_LEVEL)
printk("%serror affinity level: %d\n", pfx,
proc->affinity_level);
if (proc->validation_bits & CPER_ARM_VALID_RUNNING_STATE) {
printk("%srunning state: 0x%x\n", pfx, proc->running_state);
printk("%sPower State Coordination Interface state: %d\n",
pfx, proc->psci_state);
}
snprintf(newpfx, sizeof(newpfx), "%s%s", pfx, INDENT_SP);
err_info = (struct cper_arm_err_info *)(proc + 1);
for (i = 0; i < proc->err_info_num; i++) {
printk("%sError info structure %d:\n", pfx, i);
printk("%snum errors: %d\n", pfx, err_info->multiple_error + 1);
if (err_info->validation_bits & CPER_ARM_INFO_VALID_FLAGS) {
if (err_info->flags & CPER_ARM_INFO_FLAGS_FIRST)
printk("%sfirst error captured\n", newpfx);
if (err_info->flags & CPER_ARM_INFO_FLAGS_LAST)
printk("%slast error captured\n", newpfx);
if (err_info->flags & CPER_ARM_INFO_FLAGS_PROPAGATED)
printk("%spropagated error captured\n",
newpfx);
if (err_info->flags & CPER_ARM_INFO_FLAGS_OVERFLOW)
printk("%soverflow occurred, error info is incomplete\n",
newpfx);
}
printk("%serror_type: %d, %s\n", newpfx, err_info->type,
err_info->type < ARRAY_SIZE(cper_proc_error_type_strs) ?
cper_proc_error_type_strs[err_info->type] : "unknown");
if (err_info->validation_bits & CPER_ARM_INFO_VALID_ERR_INFO) {
printk("%serror_info: 0x%016llx\n", newpfx,
err_info->error_info);
snprintf(infopfx, sizeof(infopfx), "%s%s", newpfx, INDENT_SP);
cper_print_arm_err_info(infopfx, err_info->type,
err_info->error_info);
}
if (err_info->validation_bits & CPER_ARM_INFO_VALID_VIRT_ADDR)
printk("%svirtual fault address: 0x%016llx\n",
newpfx, err_info->virt_fault_addr);
if (err_info->validation_bits & CPER_ARM_INFO_VALID_PHYSICAL_ADDR)
printk("%sphysical fault address: 0x%016llx\n",
newpfx, err_info->physical_fault_addr);
err_info += 1;
}
ctx_info = (struct cper_arm_ctx_info *)err_info;
max_ctx_type = ARRAY_SIZE(arm_reg_ctx_strs) - 1;
for (i = 0; i < proc->context_info_num; i++) {
int size = sizeof(*ctx_info) + ctx_info->size;
printk("%sContext info structure %d:\n", pfx, i);
if (len < size) {
printk("%ssection length is too small\n", newpfx);
printk("%sfirmware-generated error record is incorrect\n", pfx);
return;
}
if (ctx_info->type > max_ctx_type) {
printk("%sInvalid context type: %d (max: %d)\n",
newpfx, ctx_info->type, max_ctx_type);
return;
}
printk("%sregister context type: %s\n", newpfx,
arm_reg_ctx_strs[ctx_info->type]);
print_hex_dump(newpfx, "", DUMP_PREFIX_OFFSET, 16, 4,
(ctx_info + 1), ctx_info->size, 0);
len -= size;
ctx_info = (struct cper_arm_ctx_info *)((long)ctx_info + size);
}
if (len > 0) {
printk("%sVendor specific error info has %u bytes:\n", pfx,
len);
print_hex_dump(newpfx, "", DUMP_PREFIX_OFFSET, 16, 4, ctx_info,
len, true);
}
}

View File

@ -122,7 +122,7 @@ static const char * const proc_isa_strs[] = {
"ARM A64", "ARM A64",
}; };
static const char * const proc_error_type_strs[] = { const char * const cper_proc_error_type_strs[] = {
"cache error", "cache error",
"TLB error", "TLB error",
"bus error", "bus error",
@ -157,8 +157,8 @@ static void cper_print_proc_generic(const char *pfx,
if (proc->validation_bits & CPER_PROC_VALID_ERROR_TYPE) { if (proc->validation_bits & CPER_PROC_VALID_ERROR_TYPE) {
printk("%s""error_type: 0x%02x\n", pfx, proc->proc_error_type); printk("%s""error_type: 0x%02x\n", pfx, proc->proc_error_type);
cper_print_bits(pfx, proc->proc_error_type, cper_print_bits(pfx, proc->proc_error_type,
proc_error_type_strs, cper_proc_error_type_strs,
ARRAY_SIZE(proc_error_type_strs)); ARRAY_SIZE(cper_proc_error_type_strs));
} }
if (proc->validation_bits & CPER_PROC_VALID_OPERATION) if (proc->validation_bits & CPER_PROC_VALID_OPERATION)
printk("%s""operation: %d, %s\n", pfx, proc->operation, printk("%s""operation: %d, %s\n", pfx, proc->operation,
@ -188,122 +188,6 @@ static void cper_print_proc_generic(const char *pfx,
printk("%s""IP: 0x%016llx\n", pfx, proc->ip); printk("%s""IP: 0x%016llx\n", pfx, proc->ip);
} }
#if defined(CONFIG_ARM64) || defined(CONFIG_ARM)
static const char * const arm_reg_ctx_strs[] = {
"AArch32 general purpose registers",
"AArch32 EL1 context registers",
"AArch32 EL2 context registers",
"AArch32 secure context registers",
"AArch64 general purpose registers",
"AArch64 EL1 context registers",
"AArch64 EL2 context registers",
"AArch64 EL3 context registers",
"Misc. system register structure",
};
static void cper_print_proc_arm(const char *pfx,
const struct cper_sec_proc_arm *proc)
{
int i, len, max_ctx_type;
struct cper_arm_err_info *err_info;
struct cper_arm_ctx_info *ctx_info;
char newpfx[64];
printk("%sMIDR: 0x%016llx\n", pfx, proc->midr);
len = proc->section_length - (sizeof(*proc) +
proc->err_info_num * (sizeof(*err_info)));
if (len < 0) {
printk("%ssection length: %d\n", pfx, proc->section_length);
printk("%ssection length is too small\n", pfx);
printk("%sfirmware-generated error record is incorrect\n", pfx);
printk("%sERR_INFO_NUM is %d\n", pfx, proc->err_info_num);
return;
}
if (proc->validation_bits & CPER_ARM_VALID_MPIDR)
printk("%sMultiprocessor Affinity Register (MPIDR): 0x%016llx\n",
pfx, proc->mpidr);
if (proc->validation_bits & CPER_ARM_VALID_AFFINITY_LEVEL)
printk("%serror affinity level: %d\n", pfx,
proc->affinity_level);
if (proc->validation_bits & CPER_ARM_VALID_RUNNING_STATE) {
printk("%srunning state: 0x%x\n", pfx, proc->running_state);
printk("%sPower State Coordination Interface state: %d\n",
pfx, proc->psci_state);
}
snprintf(newpfx, sizeof(newpfx), "%s%s", pfx, INDENT_SP);
err_info = (struct cper_arm_err_info *)(proc + 1);
for (i = 0; i < proc->err_info_num; i++) {
printk("%sError info structure %d:\n", pfx, i);
printk("%snum errors: %d\n", pfx, err_info->multiple_error + 1);
if (err_info->validation_bits & CPER_ARM_INFO_VALID_FLAGS) {
if (err_info->flags & CPER_ARM_INFO_FLAGS_FIRST)
printk("%sfirst error captured\n", newpfx);
if (err_info->flags & CPER_ARM_INFO_FLAGS_LAST)
printk("%slast error captured\n", newpfx);
if (err_info->flags & CPER_ARM_INFO_FLAGS_PROPAGATED)
printk("%spropagated error captured\n",
newpfx);
if (err_info->flags & CPER_ARM_INFO_FLAGS_OVERFLOW)
printk("%soverflow occurred, error info is incomplete\n",
newpfx);
}
printk("%serror_type: %d, %s\n", newpfx, err_info->type,
err_info->type < ARRAY_SIZE(proc_error_type_strs) ?
proc_error_type_strs[err_info->type] : "unknown");
if (err_info->validation_bits & CPER_ARM_INFO_VALID_ERR_INFO)
printk("%serror_info: 0x%016llx\n", newpfx,
err_info->error_info);
if (err_info->validation_bits & CPER_ARM_INFO_VALID_VIRT_ADDR)
printk("%svirtual fault address: 0x%016llx\n",
newpfx, err_info->virt_fault_addr);
if (err_info->validation_bits & CPER_ARM_INFO_VALID_PHYSICAL_ADDR)
printk("%sphysical fault address: 0x%016llx\n",
newpfx, err_info->physical_fault_addr);
err_info += 1;
}
ctx_info = (struct cper_arm_ctx_info *)err_info;
max_ctx_type = ARRAY_SIZE(arm_reg_ctx_strs) - 1;
for (i = 0; i < proc->context_info_num; i++) {
int size = sizeof(*ctx_info) + ctx_info->size;
printk("%sContext info structure %d:\n", pfx, i);
if (len < size) {
printk("%ssection length is too small\n", newpfx);
printk("%sfirmware-generated error record is incorrect\n", pfx);
return;
}
if (ctx_info->type > max_ctx_type) {
printk("%sInvalid context type: %d (max: %d)\n",
newpfx, ctx_info->type, max_ctx_type);
return;
}
printk("%sregister context type: %s\n", newpfx,
arm_reg_ctx_strs[ctx_info->type]);
print_hex_dump(newpfx, "", DUMP_PREFIX_OFFSET, 16, 4,
(ctx_info + 1), ctx_info->size, 0);
len -= size;
ctx_info = (struct cper_arm_ctx_info *)((long)ctx_info + size);
}
if (len > 0) {
printk("%sVendor specific error info has %u bytes:\n", pfx,
len);
print_hex_dump(newpfx, "", DUMP_PREFIX_OFFSET, 16, 4, ctx_info,
len, true);
}
}
#endif
static const char * const mem_err_type_strs[] = { static const char * const mem_err_type_strs[] = {
"unknown", "unknown",
"no error", "no error",

View File

@ -608,7 +608,7 @@ static int __init efi_load_efivars(void)
return 0; return 0;
pdev = platform_device_register_simple("efivars", 0, NULL, 0); pdev = platform_device_register_simple("efivars", 0, NULL, 0);
return IS_ERR(pdev) ? PTR_ERR(pdev) : 0; return PTR_ERR_OR_ZERO(pdev);
} }
device_initcall(efi_load_efivars); device_initcall(efi_load_efivars);
#endif #endif

View File

@ -275,6 +275,50 @@ enum {
#define CPER_ARM_INFO_FLAGS_PROPAGATED BIT(2) #define CPER_ARM_INFO_FLAGS_PROPAGATED BIT(2)
#define CPER_ARM_INFO_FLAGS_OVERFLOW BIT(3) #define CPER_ARM_INFO_FLAGS_OVERFLOW BIT(3)
#define CPER_ARM_CACHE_ERROR 0
#define CPER_ARM_TLB_ERROR 1
#define CPER_ARM_BUS_ERROR 2
#define CPER_ARM_VENDOR_ERROR 3
#define CPER_ARM_MAX_TYPE CPER_ARM_VENDOR_ERROR
#define CPER_ARM_ERR_VALID_TRANSACTION_TYPE BIT(0)
#define CPER_ARM_ERR_VALID_OPERATION_TYPE BIT(1)
#define CPER_ARM_ERR_VALID_LEVEL BIT(2)
#define CPER_ARM_ERR_VALID_PROC_CONTEXT_CORRUPT BIT(3)
#define CPER_ARM_ERR_VALID_CORRECTED BIT(4)
#define CPER_ARM_ERR_VALID_PRECISE_PC BIT(5)
#define CPER_ARM_ERR_VALID_RESTARTABLE_PC BIT(6)
#define CPER_ARM_ERR_VALID_PARTICIPATION_TYPE BIT(7)
#define CPER_ARM_ERR_VALID_TIME_OUT BIT(8)
#define CPER_ARM_ERR_VALID_ADDRESS_SPACE BIT(9)
#define CPER_ARM_ERR_VALID_MEM_ATTRIBUTES BIT(10)
#define CPER_ARM_ERR_VALID_ACCESS_MODE BIT(11)
#define CPER_ARM_ERR_TRANSACTION_SHIFT 16
#define CPER_ARM_ERR_TRANSACTION_MASK GENMASK(1,0)
#define CPER_ARM_ERR_OPERATION_SHIFT 18
#define CPER_ARM_ERR_OPERATION_MASK GENMASK(3,0)
#define CPER_ARM_ERR_LEVEL_SHIFT 22
#define CPER_ARM_ERR_LEVEL_MASK GENMASK(2,0)
#define CPER_ARM_ERR_PC_CORRUPT_SHIFT 25
#define CPER_ARM_ERR_PC_CORRUPT_MASK GENMASK(0,0)
#define CPER_ARM_ERR_CORRECTED_SHIFT 26
#define CPER_ARM_ERR_CORRECTED_MASK GENMASK(0,0)
#define CPER_ARM_ERR_PRECISE_PC_SHIFT 27
#define CPER_ARM_ERR_PRECISE_PC_MASK GENMASK(0,0)
#define CPER_ARM_ERR_RESTARTABLE_PC_SHIFT 28
#define CPER_ARM_ERR_RESTARTABLE_PC_MASK GENMASK(0,0)
#define CPER_ARM_ERR_PARTICIPATION_TYPE_SHIFT 29
#define CPER_ARM_ERR_PARTICIPATION_TYPE_MASK GENMASK(1,0)
#define CPER_ARM_ERR_TIME_OUT_SHIFT 31
#define CPER_ARM_ERR_TIME_OUT_MASK GENMASK(0,0)
#define CPER_ARM_ERR_ADDRESS_SPACE_SHIFT 32
#define CPER_ARM_ERR_ADDRESS_SPACE_MASK GENMASK(1,0)
#define CPER_ARM_ERR_MEM_ATTRIBUTES_SHIFT 34
#define CPER_ARM_ERR_MEM_ATTRIBUTES_MASK GENMASK(8,0)
#define CPER_ARM_ERR_ACCESS_MODE_SHIFT 43
#define CPER_ARM_ERR_ACCESS_MODE_MASK GENMASK(0,0)
/* /*
* All tables and structs must be byte-packed to match CPER * All tables and structs must be byte-packed to match CPER
* specification, since the tables are provided by the system BIOS * specification, since the tables are provided by the system BIOS
@ -494,6 +538,8 @@ struct cper_sec_pcie {
/* Reset to default packing */ /* Reset to default packing */
#pragma pack() #pragma pack()
extern const char * const cper_proc_error_type_strs[4];
u64 cper_next_record_id(void); u64 cper_next_record_id(void);
const char *cper_severity_str(unsigned int); const char *cper_severity_str(unsigned int);
const char *cper_mem_err_type_str(unsigned int); const char *cper_mem_err_type_str(unsigned int);
@ -503,5 +549,7 @@ void cper_mem_err_pack(const struct cper_sec_mem_err *,
struct cper_mem_err_compact *); struct cper_mem_err_compact *);
const char *cper_mem_err_unpack(struct trace_seq *, const char *cper_mem_err_unpack(struct trace_seq *,
struct cper_mem_err_compact *); struct cper_mem_err_compact *);
void cper_print_proc_arm(const char *pfx,
const struct cper_sec_proc_arm *proc);
#endif #endif