Second batch of dma-mapping updates for 4.20:

- various swiotlb cleanups
  - do not dip into the ѕwiotlb pool for dma coherent allocations
  - add support for not cache coherent DMA to swiotlb
  - switch ARM64 to use the generic swiotlb_dma_ops
 -----BEGIN PGP SIGNATURE-----
 
 iQI/BAABCgApFiEEgdbnc3r/njty3Iq9D55TZVIEUYMFAlvTDNELHGhjaEBsc3Qu
 ZGUACgkQD55TZVIEUYOfdg//a4nGw5bTwj2uol/oS/vOdpE0otR3XpnNC3oopHd3
 3xbb0LUR12A0YJmV5Ao9iIRFc60boLNblZglho8Diqks3P9+nYWCQ2rQ+o7ZsfK9
 xGBNP0HrdGKPBzs9JodvhP/WBNWEReNbb6KwMe63LtDqUqNDNFmlYfxUgQ+fbgST
 ZscR7iHJT1Nl0PoJ0mVziPFDA5DFB6JN7z0nU9uddVXLM7MPOFVX/WsFdLZLg/8W
 /jgQ1gQ+gRMBSyctR8u+LG5KTxtYofiPo46lbyuSa5sx+cnZmjo7Uk5OZgs3soHn
 gnobSjxgNbPgt8ttaKoFtOpyuO/3cLQeObS8i2MQuzvYpUD/nBT5q6l8XZBAFQCc
 BkOe0qaBa2BrSG2O7BRgagHuSUjpgkxR3vyVT5e6eyr7uFk+LWslJKx4Uem3uIRf
 yfNQzx91Xaw7ypaF7//jVPeWucLFZuwYsy13ZAg5D71vYpZBkfgHoMSCrmZQT9o/
 V1ijmJy2ZDlGIKH95A0Utr6QKrci1drigg8Zce5A2E2EPAzTiro90ZeGT2tcJmVs
 LOrbxEN1Dctkkk5l6PJE3k4zYCP7rW4lbW7wPcLZrJoptsm3sQprE10zaAFGKks6
 vPLY615FK/JydJ9AIjx6PhFiY6M6Zb2er6CbRo18BjpqjKHgmK0A/uCbLhN+Qnac
 IoE=
 =pI5p
 -----END PGP SIGNATURE-----

Merge tag 'dma-mapping-4.20-1' of git://git.infradead.org/users/hch/dma-mapping

Pull more dma-mapping updates from Christoph Hellwig:

 - various swiotlb cleanups

 - do not dip into the ѕwiotlb pool for dma coherent allocations

 - add support for not cache coherent DMA to swiotlb

 - switch ARM64 to use the generic swiotlb_dma_ops

* tag 'dma-mapping-4.20-1' of git://git.infradead.org/users/hch/dma-mapping:
  arm64: use the generic swiotlb_dma_ops
  swiotlb: add support for non-coherent DMA
  swiotlb: don't dip into swiotlb pool for coherent allocations
  swiotlb: refactor swiotlb_map_page
  swiotlb: use swiotlb_map_page in swiotlb_map_sg_attrs
  swiotlb: merge swiotlb_unmap_page and unmap_single
  swiotlb: remove the overflow buffer
  swiotlb: do not panic on mapping failures
  swiotlb: mark is_swiotlb_buffer static
  swiotlb: remove a pointless comment
This commit is contained in:
Linus Torvalds 2018-10-26 11:29:17 -07:00
commit befa936331
9 changed files with 128 additions and 494 deletions

View File

@ -11,6 +11,8 @@ config ARM64
select ARCH_CLOCKSOURCE_DATA
select ARCH_HAS_DEBUG_VIRTUAL
select ARCH_HAS_DEVMEM_IS_ALLOWED
select ARCH_HAS_DMA_COHERENT_TO_PFN
select ARCH_HAS_DMA_MMAP_PGPROT
select ARCH_HAS_ACPI_TABLE_UPGRADE if ACPI
select ARCH_HAS_ELF_RANDOMIZE
select ARCH_HAS_FAST_MULTIPLIER
@ -24,6 +26,8 @@ config ARM64
select ARCH_HAS_SG_CHAIN
select ARCH_HAS_STRICT_KERNEL_RWX
select ARCH_HAS_STRICT_MODULE_RWX
select ARCH_HAS_SYNC_DMA_FOR_DEVICE
select ARCH_HAS_SYNC_DMA_FOR_CPU
select ARCH_HAS_SYSCALL_WRAPPER
select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST
select ARCH_HAVE_NMI_SAFE_CMPXCHG

View File

@ -23,7 +23,6 @@ struct dev_archdata {
#ifdef CONFIG_XEN
const struct dma_map_ops *dev_dma_ops;
#endif
bool dma_coherent;
};
struct pdev_archdata {

View File

@ -44,10 +44,13 @@ void arch_teardown_dma_ops(struct device *dev);
#define arch_teardown_dma_ops arch_teardown_dma_ops
#endif
/* do not use this function in a driver */
/*
* Do not use this function in a driver, it is only provided for
* arch/arm/mm/xen.c, which is used by arm64 as well.
*/
static inline bool is_device_dma_coherent(struct device *dev)
{
return dev->archdata.dma_coherent;
return dev->dma_coherent;
}
#endif /* __KERNEL__ */

View File

@ -25,6 +25,7 @@
#include <linux/slab.h>
#include <linux/genalloc.h>
#include <linux/dma-direct.h>
#include <linux/dma-noncoherent.h>
#include <linux/dma-contiguous.h>
#include <linux/vmalloc.h>
#include <linux/swiotlb.h>
@ -32,16 +33,6 @@
#include <asm/cacheflush.h>
static int swiotlb __ro_after_init;
static pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot,
bool coherent)
{
if (!coherent || (attrs & DMA_ATTR_WRITE_COMBINE))
return pgprot_writecombine(prot);
return prot;
}
static struct gen_pool *atomic_pool __ro_after_init;
#define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K
@ -91,18 +82,16 @@ static int __free_from_pool(void *start, size_t size)
return 1;
}
static void *__dma_alloc(struct device *dev, size_t size,
dma_addr_t *dma_handle, gfp_t flags,
unsigned long attrs)
void *arch_dma_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle,
gfp_t flags, unsigned long attrs)
{
struct page *page;
void *ptr, *coherent_ptr;
bool coherent = is_device_dma_coherent(dev);
pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL, false);
pgprot_t prot = pgprot_writecombine(PAGE_KERNEL);
size = PAGE_ALIGN(size);
if (!coherent && !gfpflags_allow_blocking(flags)) {
if (!gfpflags_allow_blocking(flags)) {
struct page *page = NULL;
void *addr = __alloc_from_pool(size, &page, flags);
@ -112,14 +101,10 @@ static void *__dma_alloc(struct device *dev, size_t size,
return addr;
}
ptr = swiotlb_alloc(dev, size, dma_handle, flags, attrs);
ptr = dma_direct_alloc_pages(dev, size, dma_handle, flags, attrs);
if (!ptr)
goto no_mem;
/* no need for non-cacheable mapping if coherent */
if (coherent)
return ptr;
/* remove any dirty cache lines on the kernel alias */
__dma_flush_area(ptr, size);
@ -133,132 +118,59 @@ static void *__dma_alloc(struct device *dev, size_t size,
return coherent_ptr;
no_map:
swiotlb_free(dev, size, ptr, *dma_handle, attrs);
dma_direct_free_pages(dev, size, ptr, *dma_handle, attrs);
no_mem:
return NULL;
}
static void __dma_free(struct device *dev, size_t size,
void *vaddr, dma_addr_t dma_handle,
unsigned long attrs)
void arch_dma_free(struct device *dev, size_t size, void *vaddr,
dma_addr_t dma_handle, unsigned long attrs)
{
void *swiotlb_addr = phys_to_virt(dma_to_phys(dev, dma_handle));
if (!__free_from_pool(vaddr, PAGE_ALIGN(size))) {
void *kaddr = phys_to_virt(dma_to_phys(dev, dma_handle));
size = PAGE_ALIGN(size);
if (!is_device_dma_coherent(dev)) {
if (__free_from_pool(vaddr, size))
return;
vunmap(vaddr);
dma_direct_free_pages(dev, size, kaddr, dma_handle, attrs);
}
swiotlb_free(dev, size, swiotlb_addr, dma_handle, attrs);
}
static dma_addr_t __swiotlb_map_page(struct device *dev, struct page *page,
unsigned long offset, size_t size,
enum dma_data_direction dir,
unsigned long attrs)
long arch_dma_coherent_to_pfn(struct device *dev, void *cpu_addr,
dma_addr_t dma_addr)
{
dma_addr_t dev_addr;
dev_addr = swiotlb_map_page(dev, page, offset, size, dir, attrs);
if (!is_device_dma_coherent(dev) &&
(attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
__dma_map_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
return dev_addr;
return __phys_to_pfn(dma_to_phys(dev, dma_addr));
}
static void __swiotlb_unmap_page(struct device *dev, dma_addr_t dev_addr,
size_t size, enum dma_data_direction dir,
unsigned long attrs)
pgprot_t arch_dma_mmap_pgprot(struct device *dev, pgprot_t prot,
unsigned long attrs)
{
if (!is_device_dma_coherent(dev) &&
(attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
__dma_unmap_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
swiotlb_unmap_page(dev, dev_addr, size, dir, attrs);
if (!dev_is_dma_coherent(dev) || (attrs & DMA_ATTR_WRITE_COMBINE))
return pgprot_writecombine(prot);
return prot;
}
static int __swiotlb_map_sg_attrs(struct device *dev, struct scatterlist *sgl,
int nelems, enum dma_data_direction dir,
unsigned long attrs)
void arch_sync_dma_for_device(struct device *dev, phys_addr_t paddr,
size_t size, enum dma_data_direction dir)
{
struct scatterlist *sg;
int i, ret;
__dma_map_area(phys_to_virt(paddr), size, dir);
}
ret = swiotlb_map_sg_attrs(dev, sgl, nelems, dir, attrs);
if (!is_device_dma_coherent(dev) &&
(attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
for_each_sg(sgl, sg, ret, i)
__dma_map_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
sg->length, dir);
void arch_sync_dma_for_cpu(struct device *dev, phys_addr_t paddr,
size_t size, enum dma_data_direction dir)
{
__dma_unmap_area(phys_to_virt(paddr), size, dir);
}
static int __swiotlb_get_sgtable_page(struct sg_table *sgt,
struct page *page, size_t size)
{
int ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
if (!ret)
sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
return ret;
}
static void __swiotlb_unmap_sg_attrs(struct device *dev,
struct scatterlist *sgl, int nelems,
enum dma_data_direction dir,
unsigned long attrs)
{
struct scatterlist *sg;
int i;
if (!is_device_dma_coherent(dev) &&
(attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
for_each_sg(sgl, sg, nelems, i)
__dma_unmap_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
sg->length, dir);
swiotlb_unmap_sg_attrs(dev, sgl, nelems, dir, attrs);
}
static void __swiotlb_sync_single_for_cpu(struct device *dev,
dma_addr_t dev_addr, size_t size,
enum dma_data_direction dir)
{
if (!is_device_dma_coherent(dev))
__dma_unmap_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
swiotlb_sync_single_for_cpu(dev, dev_addr, size, dir);
}
static void __swiotlb_sync_single_for_device(struct device *dev,
dma_addr_t dev_addr, size_t size,
enum dma_data_direction dir)
{
swiotlb_sync_single_for_device(dev, dev_addr, size, dir);
if (!is_device_dma_coherent(dev))
__dma_map_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
}
static void __swiotlb_sync_sg_for_cpu(struct device *dev,
struct scatterlist *sgl, int nelems,
enum dma_data_direction dir)
{
struct scatterlist *sg;
int i;
if (!is_device_dma_coherent(dev))
for_each_sg(sgl, sg, nelems, i)
__dma_unmap_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
sg->length, dir);
swiotlb_sync_sg_for_cpu(dev, sgl, nelems, dir);
}
static void __swiotlb_sync_sg_for_device(struct device *dev,
struct scatterlist *sgl, int nelems,
enum dma_data_direction dir)
{
struct scatterlist *sg;
int i;
swiotlb_sync_sg_for_device(dev, sgl, nelems, dir);
if (!is_device_dma_coherent(dev))
for_each_sg(sgl, sg, nelems, i)
__dma_map_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
sg->length, dir);
}
static int __swiotlb_mmap_pfn(struct vm_area_struct *vma,
unsigned long pfn, size_t size)
{
@ -277,74 +189,6 @@ static int __swiotlb_mmap_pfn(struct vm_area_struct *vma,
return ret;
}
static int __swiotlb_mmap(struct device *dev,
struct vm_area_struct *vma,
void *cpu_addr, dma_addr_t dma_addr, size_t size,
unsigned long attrs)
{
int ret;
unsigned long pfn = dma_to_phys(dev, dma_addr) >> PAGE_SHIFT;
vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot,
is_device_dma_coherent(dev));
if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
return ret;
return __swiotlb_mmap_pfn(vma, pfn, size);
}
static int __swiotlb_get_sgtable_page(struct sg_table *sgt,
struct page *page, size_t size)
{
int ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
if (!ret)
sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
return ret;
}
static int __swiotlb_get_sgtable(struct device *dev, struct sg_table *sgt,
void *cpu_addr, dma_addr_t handle, size_t size,
unsigned long attrs)
{
struct page *page = phys_to_page(dma_to_phys(dev, handle));
return __swiotlb_get_sgtable_page(sgt, page, size);
}
static int __swiotlb_dma_supported(struct device *hwdev, u64 mask)
{
if (swiotlb)
return swiotlb_dma_supported(hwdev, mask);
return 1;
}
static int __swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t addr)
{
if (swiotlb)
return swiotlb_dma_mapping_error(hwdev, addr);
return 0;
}
static const struct dma_map_ops arm64_swiotlb_dma_ops = {
.alloc = __dma_alloc,
.free = __dma_free,
.mmap = __swiotlb_mmap,
.get_sgtable = __swiotlb_get_sgtable,
.map_page = __swiotlb_map_page,
.unmap_page = __swiotlb_unmap_page,
.map_sg = __swiotlb_map_sg_attrs,
.unmap_sg = __swiotlb_unmap_sg_attrs,
.sync_single_for_cpu = __swiotlb_sync_single_for_cpu,
.sync_single_for_device = __swiotlb_sync_single_for_device,
.sync_sg_for_cpu = __swiotlb_sync_sg_for_cpu,
.sync_sg_for_device = __swiotlb_sync_sg_for_device,
.dma_supported = __swiotlb_dma_supported,
.mapping_error = __swiotlb_dma_mapping_error,
};
static int __init atomic_pool_init(void)
{
pgprot_t prot = __pgprot(PROT_NORMAL_NC);
@ -500,10 +344,6 @@ EXPORT_SYMBOL(dummy_dma_ops);
static int __init arm64_dma_init(void)
{
if (swiotlb_force == SWIOTLB_FORCE ||
max_pfn > (arm64_dma_phys_limit >> PAGE_SHIFT))
swiotlb = 1;
WARN_TAINT(ARCH_DMA_MINALIGN < cache_line_size(),
TAINT_CPU_OUT_OF_SPEC,
"ARCH_DMA_MINALIGN smaller than CTR_EL0.CWG (%d < %d)",
@ -528,7 +368,7 @@ static void *__iommu_alloc_attrs(struct device *dev, size_t size,
dma_addr_t *handle, gfp_t gfp,
unsigned long attrs)
{
bool coherent = is_device_dma_coherent(dev);
bool coherent = dev_is_dma_coherent(dev);
int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
size_t iosize = size;
void *addr;
@ -569,7 +409,7 @@ static void *__iommu_alloc_attrs(struct device *dev, size_t size,
addr = NULL;
}
} else if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL, coherent);
pgprot_t prot = arch_dma_mmap_pgprot(dev, PAGE_KERNEL, attrs);
struct page *page;
page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
@ -596,7 +436,7 @@ static void *__iommu_alloc_attrs(struct device *dev, size_t size,
size >> PAGE_SHIFT);
}
} else {
pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL, coherent);
pgprot_t prot = arch_dma_mmap_pgprot(dev, PAGE_KERNEL, attrs);
struct page **pages;
pages = iommu_dma_alloc(dev, iosize, gfp, attrs, ioprot,
@ -658,8 +498,7 @@ static int __iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
struct vm_struct *area;
int ret;
vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot,
is_device_dma_coherent(dev));
vma->vm_page_prot = arch_dma_mmap_pgprot(dev, vma->vm_page_prot, attrs);
if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
return ret;
@ -709,11 +548,11 @@ static void __iommu_sync_single_for_cpu(struct device *dev,
{
phys_addr_t phys;
if (is_device_dma_coherent(dev))
if (dev_is_dma_coherent(dev))
return;
phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dev_addr);
__dma_unmap_area(phys_to_virt(phys), size, dir);
arch_sync_dma_for_cpu(dev, phys, size, dir);
}
static void __iommu_sync_single_for_device(struct device *dev,
@ -722,11 +561,11 @@ static void __iommu_sync_single_for_device(struct device *dev,
{
phys_addr_t phys;
if (is_device_dma_coherent(dev))
if (dev_is_dma_coherent(dev))
return;
phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dev_addr);
__dma_map_area(phys_to_virt(phys), size, dir);
arch_sync_dma_for_device(dev, phys, size, dir);
}
static dma_addr_t __iommu_map_page(struct device *dev, struct page *page,
@ -734,7 +573,7 @@ static dma_addr_t __iommu_map_page(struct device *dev, struct page *page,
enum dma_data_direction dir,
unsigned long attrs)
{
bool coherent = is_device_dma_coherent(dev);
bool coherent = dev_is_dma_coherent(dev);
int prot = dma_info_to_prot(dir, coherent, attrs);
dma_addr_t dev_addr = iommu_dma_map_page(dev, page, offset, size, prot);
@ -762,11 +601,11 @@ static void __iommu_sync_sg_for_cpu(struct device *dev,
struct scatterlist *sg;
int i;
if (is_device_dma_coherent(dev))
if (dev_is_dma_coherent(dev))
return;
for_each_sg(sgl, sg, nelems, i)
__dma_unmap_area(sg_virt(sg), sg->length, dir);
arch_sync_dma_for_cpu(dev, sg_phys(sg), sg->length, dir);
}
static void __iommu_sync_sg_for_device(struct device *dev,
@ -776,18 +615,18 @@ static void __iommu_sync_sg_for_device(struct device *dev,
struct scatterlist *sg;
int i;
if (is_device_dma_coherent(dev))
if (dev_is_dma_coherent(dev))
return;
for_each_sg(sgl, sg, nelems, i)
__dma_map_area(sg_virt(sg), sg->length, dir);
arch_sync_dma_for_device(dev, sg_phys(sg), sg->length, dir);
}
static int __iommu_map_sg_attrs(struct device *dev, struct scatterlist *sgl,
int nelems, enum dma_data_direction dir,
unsigned long attrs)
{
bool coherent = is_device_dma_coherent(dev);
bool coherent = dev_is_dma_coherent(dev);
if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
__iommu_sync_sg_for_device(dev, sgl, nelems, dir);
@ -879,9 +718,9 @@ void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
const struct iommu_ops *iommu, bool coherent)
{
if (!dev->dma_ops)
dev->dma_ops = &arm64_swiotlb_dma_ops;
dev->dma_ops = &swiotlb_dma_ops;
dev->archdata.dma_coherent = coherent;
dev->dma_coherent = coherent;
__iommu_setup_dma_ops(dev, dma_base, size, iommu);
#ifdef CONFIG_XEN

View File

@ -11,7 +11,7 @@
*
*/
#include <linux/dma-mapping.h>
#include <linux/dma-direct.h>
#include <linux/memblock.h>
#include <linux/pfn.h>
#include <linux/of_platform.h>
@ -59,7 +59,7 @@ const struct dma_map_ops powerpc_swiotlb_dma_ops = {
.sync_single_for_device = swiotlb_sync_single_for_device,
.sync_sg_for_cpu = swiotlb_sync_sg_for_cpu,
.sync_sg_for_device = swiotlb_sync_sg_for_device,
.mapping_error = swiotlb_dma_mapping_error,
.mapping_error = dma_direct_mapping_error,
.get_required_mask = swiotlb_powerpc_get_required,
};

View File

@ -5,6 +5,8 @@
#include <linux/dma-mapping.h>
#include <linux/mem_encrypt.h>
#define DIRECT_MAPPING_ERROR 0
#ifdef CONFIG_ARCH_HAS_PHYS_TO_DMA
#include <asm/dma-direct.h>
#else

View File

@ -67,11 +67,6 @@ extern void swiotlb_tbl_sync_single(struct device *hwdev,
/* Accessory functions. */
void *swiotlb_alloc(struct device *hwdev, size_t size, dma_addr_t *dma_handle,
gfp_t flags, unsigned long attrs);
void swiotlb_free(struct device *dev, size_t size, void *vaddr,
dma_addr_t dma_addr, unsigned long attrs);
extern dma_addr_t swiotlb_map_page(struct device *dev, struct page *page,
unsigned long offset, size_t size,
enum dma_data_direction dir,
@ -106,9 +101,6 @@ extern void
swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
int nelems, enum dma_data_direction dir);
extern int
swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr);
extern int
swiotlb_dma_supported(struct device *hwdev, u64 mask);
@ -121,7 +113,6 @@ static inline unsigned int swiotlb_max_segment(void) { return 0; }
#endif
extern void swiotlb_print_info(void);
extern int is_swiotlb_buffer(phys_addr_t paddr);
extern void swiotlb_set_max_segment(unsigned int);
extern const struct dma_map_ops swiotlb_dma_ops;

View File

@ -14,8 +14,6 @@
#include <linux/pfn.h>
#include <linux/set_memory.h>
#define DIRECT_MAPPING_ERROR 0
/*
* Most architectures use ZONE_DMA for the first 16 Megabytes, but
* some use it for entirely different regions:

View File

@ -21,6 +21,7 @@
#include <linux/cache.h>
#include <linux/dma-direct.h>
#include <linux/dma-noncoherent.h>
#include <linux/mm.h>
#include <linux/export.h>
#include <linux/spinlock.h>
@ -72,13 +73,6 @@ static phys_addr_t io_tlb_start, io_tlb_end;
*/
static unsigned long io_tlb_nslabs;
/*
* When the IOMMU overflows we return a fallback buffer. This sets the size.
*/
static unsigned long io_tlb_overflow = 32*1024;
static phys_addr_t io_tlb_overflow_buffer;
/*
* This is a free list describing the number of free entries available from
* each index
@ -126,7 +120,6 @@ setup_io_tlb_npages(char *str)
return 0;
}
early_param("swiotlb", setup_io_tlb_npages);
/* make io_tlb_overflow tunable too? */
unsigned long swiotlb_nr_tbl(void)
{
@ -194,16 +187,10 @@ void __init swiotlb_update_mem_attributes(void)
bytes = PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT);
set_memory_decrypted((unsigned long)vaddr, bytes >> PAGE_SHIFT);
memset(vaddr, 0, bytes);
vaddr = phys_to_virt(io_tlb_overflow_buffer);
bytes = PAGE_ALIGN(io_tlb_overflow);
set_memory_decrypted((unsigned long)vaddr, bytes >> PAGE_SHIFT);
memset(vaddr, 0, bytes);
}
int __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose)
{
void *v_overflow_buffer;
unsigned long i, bytes;
bytes = nslabs << IO_TLB_SHIFT;
@ -212,17 +199,6 @@ int __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose)
io_tlb_start = __pa(tlb);
io_tlb_end = io_tlb_start + bytes;
/*
* Get the overflow emergency buffer
*/
v_overflow_buffer = memblock_virt_alloc_low_nopanic(
PAGE_ALIGN(io_tlb_overflow),
PAGE_SIZE);
if (!v_overflow_buffer)
return -ENOMEM;
io_tlb_overflow_buffer = __pa(v_overflow_buffer);
/*
* Allocate and initialize the free list array. This array is used
* to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
@ -330,7 +306,6 @@ int
swiotlb_late_init_with_tbl(char *tlb, unsigned long nslabs)
{
unsigned long i, bytes;
unsigned char *v_overflow_buffer;
bytes = nslabs << IO_TLB_SHIFT;
@ -341,19 +316,6 @@ swiotlb_late_init_with_tbl(char *tlb, unsigned long nslabs)
set_memory_decrypted((unsigned long)tlb, bytes >> PAGE_SHIFT);
memset(tlb, 0, bytes);
/*
* Get the overflow emergency buffer
*/
v_overflow_buffer = (void *)__get_free_pages(GFP_DMA,
get_order(io_tlb_overflow));
if (!v_overflow_buffer)
goto cleanup2;
set_memory_decrypted((unsigned long)v_overflow_buffer,
io_tlb_overflow >> PAGE_SHIFT);
memset(v_overflow_buffer, 0, io_tlb_overflow);
io_tlb_overflow_buffer = virt_to_phys(v_overflow_buffer);
/*
* Allocate and initialize the free list array. This array is used
* to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
@ -390,10 +352,6 @@ swiotlb_late_init_with_tbl(char *tlb, unsigned long nslabs)
sizeof(int)));
io_tlb_list = NULL;
cleanup3:
free_pages((unsigned long)v_overflow_buffer,
get_order(io_tlb_overflow));
io_tlb_overflow_buffer = 0;
cleanup2:
io_tlb_end = 0;
io_tlb_start = 0;
io_tlb_nslabs = 0;
@ -407,8 +365,6 @@ void __init swiotlb_exit(void)
return;
if (late_alloc) {
free_pages((unsigned long)phys_to_virt(io_tlb_overflow_buffer),
get_order(io_tlb_overflow));
free_pages((unsigned long)io_tlb_orig_addr,
get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
@ -416,8 +372,6 @@ void __init swiotlb_exit(void)
free_pages((unsigned long)phys_to_virt(io_tlb_start),
get_order(io_tlb_nslabs << IO_TLB_SHIFT));
} else {
memblock_free_late(io_tlb_overflow_buffer,
PAGE_ALIGN(io_tlb_overflow));
memblock_free_late(__pa(io_tlb_orig_addr),
PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)));
memblock_free_late(__pa(io_tlb_list),
@ -429,7 +383,7 @@ void __init swiotlb_exit(void)
max_segment = 0;
}
int is_swiotlb_buffer(phys_addr_t paddr)
static int is_swiotlb_buffer(phys_addr_t paddr)
{
return paddr >= io_tlb_start && paddr < io_tlb_end;
}
@ -590,26 +544,6 @@ phys_addr_t swiotlb_tbl_map_single(struct device *hwdev,
return tlb_addr;
}
/*
* Allocates bounce buffer and returns its physical address.
*/
static phys_addr_t
map_single(struct device *hwdev, phys_addr_t phys, size_t size,
enum dma_data_direction dir, unsigned long attrs)
{
dma_addr_t start_dma_addr;
if (swiotlb_force == SWIOTLB_NO_FORCE) {
dev_warn_ratelimited(hwdev, "Cannot do DMA to address %pa\n",
&phys);
return SWIOTLB_MAP_ERROR;
}
start_dma_addr = __phys_to_dma(hwdev, io_tlb_start);
return swiotlb_tbl_map_single(hwdev, start_dma_addr, phys, size,
dir, attrs);
}
/*
* tlb_addr is the physical address of the bounce buffer to unmap.
*/
@ -689,104 +623,32 @@ void swiotlb_tbl_sync_single(struct device *hwdev, phys_addr_t tlb_addr,
}
}
static inline bool dma_coherent_ok(struct device *dev, dma_addr_t addr,
size_t size)
static dma_addr_t swiotlb_bounce_page(struct device *dev, phys_addr_t *phys,
size_t size, enum dma_data_direction dir, unsigned long attrs)
{
u64 mask = DMA_BIT_MASK(32);
dma_addr_t dma_addr;
if (dev && dev->coherent_dma_mask)
mask = dev->coherent_dma_mask;
return addr + size - 1 <= mask;
}
static void *
swiotlb_alloc_buffer(struct device *dev, size_t size, dma_addr_t *dma_handle,
unsigned long attrs)
{
phys_addr_t phys_addr;
if (swiotlb_force == SWIOTLB_NO_FORCE)
goto out_warn;
phys_addr = swiotlb_tbl_map_single(dev,
__phys_to_dma(dev, io_tlb_start),
0, size, DMA_FROM_DEVICE, attrs);
if (phys_addr == SWIOTLB_MAP_ERROR)
goto out_warn;
*dma_handle = __phys_to_dma(dev, phys_addr);
if (!dma_coherent_ok(dev, *dma_handle, size))
goto out_unmap;
memset(phys_to_virt(phys_addr), 0, size);
return phys_to_virt(phys_addr);
out_unmap:
dev_warn(dev, "hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
(unsigned long long)dev->coherent_dma_mask,
(unsigned long long)*dma_handle);
/*
* DMA_TO_DEVICE to avoid memcpy in unmap_single.
* DMA_ATTR_SKIP_CPU_SYNC is optional.
*/
swiotlb_tbl_unmap_single(dev, phys_addr, size, DMA_TO_DEVICE,
DMA_ATTR_SKIP_CPU_SYNC);
out_warn:
if (!(attrs & DMA_ATTR_NO_WARN) && printk_ratelimit()) {
dev_warn(dev,
"swiotlb: coherent allocation failed, size=%zu\n",
size);
dump_stack();
if (unlikely(swiotlb_force == SWIOTLB_NO_FORCE)) {
dev_warn_ratelimited(dev,
"Cannot do DMA to address %pa\n", phys);
return DIRECT_MAPPING_ERROR;
}
return NULL;
}
static bool swiotlb_free_buffer(struct device *dev, size_t size,
dma_addr_t dma_addr)
{
phys_addr_t phys_addr = dma_to_phys(dev, dma_addr);
/* Oh well, have to allocate and map a bounce buffer. */
*phys = swiotlb_tbl_map_single(dev, __phys_to_dma(dev, io_tlb_start),
*phys, size, dir, attrs);
if (*phys == SWIOTLB_MAP_ERROR)
return DIRECT_MAPPING_ERROR;
WARN_ON_ONCE(irqs_disabled());
/* Ensure that the address returned is DMA'ble */
dma_addr = __phys_to_dma(dev, *phys);
if (unlikely(!dma_capable(dev, dma_addr, size))) {
swiotlb_tbl_unmap_single(dev, *phys, size, dir,
attrs | DMA_ATTR_SKIP_CPU_SYNC);
return DIRECT_MAPPING_ERROR;
}
if (!is_swiotlb_buffer(phys_addr))
return false;
/*
* DMA_TO_DEVICE to avoid memcpy in swiotlb_tbl_unmap_single.
* DMA_ATTR_SKIP_CPU_SYNC is optional.
*/
swiotlb_tbl_unmap_single(dev, phys_addr, size, DMA_TO_DEVICE,
DMA_ATTR_SKIP_CPU_SYNC);
return true;
}
static void
swiotlb_full(struct device *dev, size_t size, enum dma_data_direction dir,
int do_panic)
{
if (swiotlb_force == SWIOTLB_NO_FORCE)
return;
/*
* Ran out of IOMMU space for this operation. This is very bad.
* Unfortunately the drivers cannot handle this operation properly.
* unless they check for dma_mapping_error (most don't)
* When the mapping is small enough return a static buffer to limit
* the damage, or panic when the transfer is too big.
*/
dev_err_ratelimited(dev, "DMA: Out of SW-IOMMU space for %zu bytes\n",
size);
if (size <= io_tlb_overflow || !do_panic)
return;
if (dir == DMA_BIDIRECTIONAL)
panic("DMA: Random memory could be DMA accessed\n");
if (dir == DMA_FROM_DEVICE)
panic("DMA: Random memory could be DMA written\n");
if (dir == DMA_TO_DEVICE)
panic("DMA: Random memory could be DMA read\n");
return dma_addr;
}
/*
@ -801,7 +663,7 @@ dma_addr_t swiotlb_map_page(struct device *dev, struct page *page,
enum dma_data_direction dir,
unsigned long attrs)
{
phys_addr_t map, phys = page_to_phys(page) + offset;
phys_addr_t phys = page_to_phys(page) + offset;
dma_addr_t dev_addr = phys_to_dma(dev, phys);
BUG_ON(dir == DMA_NONE);
@ -810,28 +672,17 @@ dma_addr_t swiotlb_map_page(struct device *dev, struct page *page,
* we can safely return the device addr and not worry about bounce
* buffering it.
*/
if (dma_capable(dev, dev_addr, size) && swiotlb_force != SWIOTLB_FORCE)
return dev_addr;
trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force);
/* Oh well, have to allocate and map a bounce buffer. */
map = map_single(dev, phys, size, dir, attrs);
if (map == SWIOTLB_MAP_ERROR) {
swiotlb_full(dev, size, dir, 1);
return __phys_to_dma(dev, io_tlb_overflow_buffer);
if (!dma_capable(dev, dev_addr, size) ||
swiotlb_force == SWIOTLB_FORCE) {
trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force);
dev_addr = swiotlb_bounce_page(dev, &phys, size, dir, attrs);
}
dev_addr = __phys_to_dma(dev, map);
if (!dev_is_dma_coherent(dev) &&
(attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
arch_sync_dma_for_device(dev, phys, size, dir);
/* Ensure that the address returned is DMA'ble */
if (dma_capable(dev, dev_addr, size))
return dev_addr;
attrs |= DMA_ATTR_SKIP_CPU_SYNC;
swiotlb_tbl_unmap_single(dev, map, size, dir, attrs);
return __phys_to_dma(dev, io_tlb_overflow_buffer);
return dev_addr;
}
/*
@ -842,14 +693,18 @@ dma_addr_t swiotlb_map_page(struct device *dev, struct page *page,
* After this call, reads by the cpu to the buffer are guaranteed to see
* whatever the device wrote there.
*/
static void unmap_single(struct device *hwdev, dma_addr_t dev_addr,
size_t size, enum dma_data_direction dir,
unsigned long attrs)
void swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
size_t size, enum dma_data_direction dir,
unsigned long attrs)
{
phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
BUG_ON(dir == DMA_NONE);
if (!dev_is_dma_coherent(hwdev) &&
(attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
arch_sync_dma_for_cpu(hwdev, paddr, size, dir);
if (is_swiotlb_buffer(paddr)) {
swiotlb_tbl_unmap_single(hwdev, paddr, size, dir, attrs);
return;
@ -867,13 +722,6 @@ static void unmap_single(struct device *hwdev, dma_addr_t dev_addr,
dma_mark_clean(phys_to_virt(paddr), size);
}
void swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
size_t size, enum dma_data_direction dir,
unsigned long attrs)
{
unmap_single(hwdev, dev_addr, size, dir, attrs);
}
/*
* Make physical memory consistent for a single streaming mode DMA translation
* after a transfer.
@ -893,15 +741,17 @@ swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
BUG_ON(dir == DMA_NONE);
if (is_swiotlb_buffer(paddr)) {
if (!dev_is_dma_coherent(hwdev) && target == SYNC_FOR_CPU)
arch_sync_dma_for_cpu(hwdev, paddr, size, dir);
if (is_swiotlb_buffer(paddr))
swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target);
return;
}
if (dir != DMA_FROM_DEVICE)
return;
if (!dev_is_dma_coherent(hwdev) && target == SYNC_FOR_DEVICE)
arch_sync_dma_for_device(hwdev, paddr, size, dir);
dma_mark_clean(phys_to_virt(paddr), size);
if (!is_swiotlb_buffer(paddr) && dir == DMA_FROM_DEVICE)
dma_mark_clean(phys_to_virt(paddr), size);
}
void
@ -925,48 +775,31 @@ swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
* appropriate dma address and length. They are obtained via
* sg_dma_{address,length}(SG).
*
* NOTE: An implementation may be able to use a smaller number of
* DMA address/length pairs than there are SG table elements.
* (for example via virtual mapping capabilities)
* The routine returns the number of addr/length pairs actually
* used, at most nents.
*
* Device ownership issues as mentioned above for swiotlb_map_page are the
* same here.
*/
int
swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems,
swiotlb_map_sg_attrs(struct device *dev, struct scatterlist *sgl, int nelems,
enum dma_data_direction dir, unsigned long attrs)
{
struct scatterlist *sg;
int i;
BUG_ON(dir == DMA_NONE);
for_each_sg(sgl, sg, nelems, i) {
phys_addr_t paddr = sg_phys(sg);
dma_addr_t dev_addr = phys_to_dma(hwdev, paddr);
if (swiotlb_force == SWIOTLB_FORCE ||
!dma_capable(hwdev, dev_addr, sg->length)) {
phys_addr_t map = map_single(hwdev, sg_phys(sg),
sg->length, dir, attrs);
if (map == SWIOTLB_MAP_ERROR) {
/* Don't panic here, we expect map_sg users
to do proper error handling. */
swiotlb_full(hwdev, sg->length, dir, 0);
attrs |= DMA_ATTR_SKIP_CPU_SYNC;
swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
attrs);
sg_dma_len(sgl) = 0;
return 0;
}
sg->dma_address = __phys_to_dma(hwdev, map);
} else
sg->dma_address = dev_addr;
sg->dma_address = swiotlb_map_page(dev, sg_page(sg), sg->offset,
sg->length, dir, attrs);
if (sg->dma_address == DIRECT_MAPPING_ERROR)
goto out_error;
sg_dma_len(sg) = sg->length;
}
return nelems;
out_error:
swiotlb_unmap_sg_attrs(dev, sgl, i, dir,
attrs | DMA_ATTR_SKIP_CPU_SYNC);
sg_dma_len(sgl) = 0;
return 0;
}
/*
@ -984,7 +817,7 @@ swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
BUG_ON(dir == DMA_NONE);
for_each_sg(sgl, sg, nelems, i)
unmap_single(hwdev, sg->dma_address, sg_dma_len(sg), dir,
swiotlb_unmap_page(hwdev, sg->dma_address, sg_dma_len(sg), dir,
attrs);
}
@ -1022,12 +855,6 @@ swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
}
int
swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
{
return (dma_addr == __phys_to_dma(hwdev, io_tlb_overflow_buffer));
}
/*
* Return whether the given device DMA address mask can be supported
* properly. For example, if your device can only drive the low 24-bits
@ -1040,39 +867,10 @@ swiotlb_dma_supported(struct device *hwdev, u64 mask)
return __phys_to_dma(hwdev, io_tlb_end - 1) <= mask;
}
void *swiotlb_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle,
gfp_t gfp, unsigned long attrs)
{
void *vaddr;
/* temporary workaround: */
if (gfp & __GFP_NOWARN)
attrs |= DMA_ATTR_NO_WARN;
/*
* Don't print a warning when the first allocation attempt fails.
* swiotlb_alloc_coherent() will print a warning when the DMA memory
* allocation ultimately failed.
*/
gfp |= __GFP_NOWARN;
vaddr = dma_direct_alloc(dev, size, dma_handle, gfp, attrs);
if (!vaddr)
vaddr = swiotlb_alloc_buffer(dev, size, dma_handle, attrs);
return vaddr;
}
void swiotlb_free(struct device *dev, size_t size, void *vaddr,
dma_addr_t dma_addr, unsigned long attrs)
{
if (!swiotlb_free_buffer(dev, size, dma_addr))
dma_direct_free(dev, size, vaddr, dma_addr, attrs);
}
const struct dma_map_ops swiotlb_dma_ops = {
.mapping_error = swiotlb_dma_mapping_error,
.alloc = swiotlb_alloc,
.free = swiotlb_free,
.mapping_error = dma_direct_mapping_error,
.alloc = dma_direct_alloc,
.free = dma_direct_free,
.sync_single_for_cpu = swiotlb_sync_single_for_cpu,
.sync_single_for_device = swiotlb_sync_single_for_device,
.sync_sg_for_cpu = swiotlb_sync_sg_for_cpu,