Merge arm64 CPU suspend branch
* cpuidle: arm64: add PSCI CPU_SUSPEND based cpu_suspend support arm64: kernel: introduce cpu_init_idle CPU operation arm64: kernel: refactor the CPU suspend API for retention states Documentation: arm: define DT idle states bindings
This commit is contained in:
commit
c2eb6b6139
|
@ -219,6 +219,12 @@ nodes to be present and contain the properties described below.
|
|||
Value type: <phandle>
|
||||
Definition: Specifies the ACC[2] node associated with this CPU.
|
||||
|
||||
- cpu-idle-states
|
||||
Usage: Optional
|
||||
Value type: <prop-encoded-array>
|
||||
Definition:
|
||||
# List of phandles to idle state nodes supported
|
||||
by this cpu [3].
|
||||
|
||||
Example 1 (dual-cluster big.LITTLE system 32-bit):
|
||||
|
||||
|
@ -415,3 +421,5 @@ cpus {
|
|||
--
|
||||
[1] arm/msm/qcom,saw2.txt
|
||||
[2] arm/msm/qcom,kpss-acc.txt
|
||||
[3] ARM Linux kernel documentation - idle states bindings
|
||||
Documentation/devicetree/bindings/arm/idle-states.txt
|
||||
|
|
|
@ -0,0 +1,679 @@
|
|||
==========================================
|
||||
ARM idle states binding description
|
||||
==========================================
|
||||
|
||||
==========================================
|
||||
1 - Introduction
|
||||
==========================================
|
||||
|
||||
ARM systems contain HW capable of managing power consumption dynamically,
|
||||
where cores can be put in different low-power states (ranging from simple
|
||||
wfi to power gating) according to OS PM policies. The CPU states representing
|
||||
the range of dynamic idle states that a processor can enter at run-time, can be
|
||||
specified through device tree bindings representing the parameters required
|
||||
to enter/exit specific idle states on a given processor.
|
||||
|
||||
According to the Server Base System Architecture document (SBSA, [3]), the
|
||||
power states an ARM CPU can be put into are identified by the following list:
|
||||
|
||||
- Running
|
||||
- Idle_standby
|
||||
- Idle_retention
|
||||
- Sleep
|
||||
- Off
|
||||
|
||||
The power states described in the SBSA document define the basic CPU states on
|
||||
top of which ARM platforms implement power management schemes that allow an OS
|
||||
PM implementation to put the processor in different idle states (which include
|
||||
states listed above; "off" state is not an idle state since it does not have
|
||||
wake-up capabilities, hence it is not considered in this document).
|
||||
|
||||
Idle state parameters (eg entry latency) are platform specific and need to be
|
||||
characterized with bindings that provide the required information to OS PM
|
||||
code so that it can build the required tables and use them at runtime.
|
||||
|
||||
The device tree binding definition for ARM idle states is the subject of this
|
||||
document.
|
||||
|
||||
===========================================
|
||||
2 - idle-states definitions
|
||||
===========================================
|
||||
|
||||
Idle states are characterized for a specific system through a set of
|
||||
timing and energy related properties, that underline the HW behaviour
|
||||
triggered upon idle states entry and exit.
|
||||
|
||||
The following diagram depicts the CPU execution phases and related timing
|
||||
properties required to enter and exit an idle state:
|
||||
|
||||
..__[EXEC]__|__[PREP]__|__[ENTRY]__|__[IDLE]__|__[EXIT]__|__[EXEC]__..
|
||||
| | | | |
|
||||
|
||||
|<------ entry ------->|
|
||||
| latency |
|
||||
|<- exit ->|
|
||||
| latency |
|
||||
|<-------- min-residency -------->|
|
||||
|<------- wakeup-latency ------->|
|
||||
|
||||
Diagram 1: CPU idle state execution phases
|
||||
|
||||
EXEC: Normal CPU execution.
|
||||
|
||||
PREP: Preparation phase before committing the hardware to idle mode
|
||||
like cache flushing. This is abortable on pending wake-up
|
||||
event conditions. The abort latency is assumed to be negligible
|
||||
(i.e. less than the ENTRY + EXIT duration). If aborted, CPU
|
||||
goes back to EXEC. This phase is optional. If not abortable,
|
||||
this should be included in the ENTRY phase instead.
|
||||
|
||||
ENTRY: The hardware is committed to idle mode. This period must run
|
||||
to completion up to IDLE before anything else can happen.
|
||||
|
||||
IDLE: This is the actual energy-saving idle period. This may last
|
||||
between 0 and infinite time, until a wake-up event occurs.
|
||||
|
||||
EXIT: Period during which the CPU is brought back to operational
|
||||
mode (EXEC).
|
||||
|
||||
entry-latency: Worst case latency required to enter the idle state. The
|
||||
exit-latency may be guaranteed only after entry-latency has passed.
|
||||
|
||||
min-residency: Minimum period, including preparation and entry, for a given
|
||||
idle state to be worthwhile energywise.
|
||||
|
||||
wakeup-latency: Maximum delay between the signaling of a wake-up event and the
|
||||
CPU being able to execute normal code again. If not specified, this is assumed
|
||||
to be entry-latency + exit-latency.
|
||||
|
||||
These timing parameters can be used by an OS in different circumstances.
|
||||
|
||||
An idle CPU requires the expected min-residency time to select the most
|
||||
appropriate idle state based on the expected expiry time of the next IRQ
|
||||
(ie wake-up) that causes the CPU to return to the EXEC phase.
|
||||
|
||||
An operating system scheduler may need to compute the shortest wake-up delay
|
||||
for CPUs in the system by detecting how long will it take to get a CPU out
|
||||
of an idle state, eg:
|
||||
|
||||
wakeup-delay = exit-latency + max(entry-latency - (now - entry-timestamp), 0)
|
||||
|
||||
In other words, the scheduler can make its scheduling decision by selecting
|
||||
(eg waking-up) the CPU with the shortest wake-up latency.
|
||||
The wake-up latency must take into account the entry latency if that period
|
||||
has not expired. The abortable nature of the PREP period can be ignored
|
||||
if it cannot be relied upon (e.g. the PREP deadline may occur much sooner than
|
||||
the worst case since it depends on the CPU operating conditions, ie caches
|
||||
state).
|
||||
|
||||
An OS has to reliably probe the wakeup-latency since some devices can enforce
|
||||
latency constraints guarantees to work properly, so the OS has to detect the
|
||||
worst case wake-up latency it can incur if a CPU is allowed to enter an
|
||||
idle state, and possibly to prevent that to guarantee reliable device
|
||||
functioning.
|
||||
|
||||
The min-residency time parameter deserves further explanation since it is
|
||||
expressed in time units but must factor in energy consumption coefficients.
|
||||
|
||||
The energy consumption of a cpu when it enters a power state can be roughly
|
||||
characterised by the following graph:
|
||||
|
||||
|
|
||||
|
|
||||
|
|
||||
e |
|
||||
n | /---
|
||||
e | /------
|
||||
r | /------
|
||||
g | /-----
|
||||
y | /------
|
||||
| ----
|
||||
| /|
|
||||
| / |
|
||||
| / |
|
||||
| / |
|
||||
| / |
|
||||
| / |
|
||||
|/ |
|
||||
-----|-------+----------------------------------
|
||||
0| 1 time(ms)
|
||||
|
||||
Graph 1: Energy vs time example
|
||||
|
||||
The graph is split in two parts delimited by time 1ms on the X-axis.
|
||||
The graph curve with X-axis values = { x | 0 < x < 1ms } has a steep slope
|
||||
and denotes the energy costs incurred whilst entering and leaving the idle
|
||||
state.
|
||||
The graph curve in the area delimited by X-axis values = {x | x > 1ms } has
|
||||
shallower slope and essentially represents the energy consumption of the idle
|
||||
state.
|
||||
|
||||
min-residency is defined for a given idle state as the minimum expected
|
||||
residency time for a state (inclusive of preparation and entry) after
|
||||
which choosing that state become the most energy efficient option. A good
|
||||
way to visualise this, is by taking the same graph above and comparing some
|
||||
states energy consumptions plots.
|
||||
|
||||
For sake of simplicity, let's consider a system with two idle states IDLE1,
|
||||
and IDLE2:
|
||||
|
||||
|
|
||||
|
|
||||
|
|
||||
| /-- IDLE1
|
||||
e | /---
|
||||
n | /----
|
||||
e | /---
|
||||
r | /-----/--------- IDLE2
|
||||
g | /-------/---------
|
||||
y | ------------ /---|
|
||||
| / /---- |
|
||||
| / /--- |
|
||||
| / /---- |
|
||||
| / /--- |
|
||||
| --- |
|
||||
| / |
|
||||
| / |
|
||||
|/ | time
|
||||
---/----------------------------+------------------------
|
||||
|IDLE1-energy < IDLE2-energy | IDLE2-energy < IDLE1-energy
|
||||
|
|
||||
IDLE2-min-residency
|
||||
|
||||
Graph 2: idle states min-residency example
|
||||
|
||||
In graph 2 above, that takes into account idle states entry/exit energy
|
||||
costs, it is clear that if the idle state residency time (ie time till next
|
||||
wake-up IRQ) is less than IDLE2-min-residency, IDLE1 is the better idle state
|
||||
choice energywise.
|
||||
|
||||
This is mainly down to the fact that IDLE1 entry/exit energy costs are lower
|
||||
than IDLE2.
|
||||
|
||||
However, the lower power consumption (ie shallower energy curve slope) of idle
|
||||
state IDLE2 implies that after a suitable time, IDLE2 becomes more energy
|
||||
efficient.
|
||||
|
||||
The time at which IDLE2 becomes more energy efficient than IDLE1 (and other
|
||||
shallower states in a system with multiple idle states) is defined
|
||||
IDLE2-min-residency and corresponds to the time when energy consumption of
|
||||
IDLE1 and IDLE2 states breaks even.
|
||||
|
||||
The definitions provided in this section underpin the idle states
|
||||
properties specification that is the subject of the following sections.
|
||||
|
||||
===========================================
|
||||
3 - idle-states node
|
||||
===========================================
|
||||
|
||||
ARM processor idle states are defined within the idle-states node, which is
|
||||
a direct child of the cpus node [1] and provides a container where the
|
||||
processor idle states, defined as device tree nodes, are listed.
|
||||
|
||||
- idle-states node
|
||||
|
||||
Usage: Optional - On ARM systems, it is a container of processor idle
|
||||
states nodes. If the system does not provide CPU
|
||||
power management capabilities or the processor just
|
||||
supports idle_standby an idle-states node is not
|
||||
required.
|
||||
|
||||
Description: idle-states node is a container node, where its
|
||||
subnodes describe the CPU idle states.
|
||||
|
||||
Node name must be "idle-states".
|
||||
|
||||
The idle-states node's parent node must be the cpus node.
|
||||
|
||||
The idle-states node's child nodes can be:
|
||||
|
||||
- one or more state nodes
|
||||
|
||||
Any other configuration is considered invalid.
|
||||
|
||||
An idle-states node defines the following properties:
|
||||
|
||||
- entry-method
|
||||
Value type: <stringlist>
|
||||
Usage and definition depend on ARM architecture version.
|
||||
# On ARM v8 64-bit this property is required and must
|
||||
be one of:
|
||||
- "psci" (see bindings in [2])
|
||||
# On ARM 32-bit systems this property is optional
|
||||
|
||||
The nodes describing the idle states (state) can only be defined within the
|
||||
idle-states node, any other configuration is considered invalid and therefore
|
||||
must be ignored.
|
||||
|
||||
===========================================
|
||||
4 - state node
|
||||
===========================================
|
||||
|
||||
A state node represents an idle state description and must be defined as
|
||||
follows:
|
||||
|
||||
- state node
|
||||
|
||||
Description: must be child of the idle-states node
|
||||
|
||||
The state node name shall follow standard device tree naming
|
||||
rules ([5], 2.2.1 "Node names"), in particular state nodes which
|
||||
are siblings within a single common parent must be given a unique name.
|
||||
|
||||
The idle state entered by executing the wfi instruction (idle_standby
|
||||
SBSA,[3][4]) is considered standard on all ARM platforms and therefore
|
||||
must not be listed.
|
||||
|
||||
With the definitions provided above, the following list represents
|
||||
the valid properties for a state node:
|
||||
|
||||
- compatible
|
||||
Usage: Required
|
||||
Value type: <stringlist>
|
||||
Definition: Must be "arm,idle-state".
|
||||
|
||||
- local-timer-stop
|
||||
Usage: See definition
|
||||
Value type: <none>
|
||||
Definition: if present the CPU local timer control logic is
|
||||
lost on state entry, otherwise it is retained.
|
||||
|
||||
- entry-latency-us
|
||||
Usage: Required
|
||||
Value type: <prop-encoded-array>
|
||||
Definition: u32 value representing worst case latency in
|
||||
microseconds required to enter the idle state.
|
||||
The exit-latency-us duration may be guaranteed
|
||||
only after entry-latency-us has passed.
|
||||
|
||||
- exit-latency-us
|
||||
Usage: Required
|
||||
Value type: <prop-encoded-array>
|
||||
Definition: u32 value representing worst case latency
|
||||
in microseconds required to exit the idle state.
|
||||
|
||||
- min-residency-us
|
||||
Usage: Required
|
||||
Value type: <prop-encoded-array>
|
||||
Definition: u32 value representing minimum residency duration
|
||||
in microseconds, inclusive of preparation and
|
||||
entry, for this idle state to be considered
|
||||
worthwhile energy wise (refer to section 2 of
|
||||
this document for a complete description).
|
||||
|
||||
- wakeup-latency-us:
|
||||
Usage: Optional
|
||||
Value type: <prop-encoded-array>
|
||||
Definition: u32 value representing maximum delay between the
|
||||
signaling of a wake-up event and the CPU being
|
||||
able to execute normal code again. If omitted,
|
||||
this is assumed to be equal to:
|
||||
|
||||
entry-latency-us + exit-latency-us
|
||||
|
||||
It is important to supply this value on systems
|
||||
where the duration of PREP phase (see diagram 1,
|
||||
section 2) is non-neglibigle.
|
||||
In such systems entry-latency-us + exit-latency-us
|
||||
will exceed wakeup-latency-us by this duration.
|
||||
|
||||
In addition to the properties listed above, a state node may require
|
||||
additional properties specifics to the entry-method defined in the
|
||||
idle-states node, please refer to the entry-method bindings
|
||||
documentation for properties definitions.
|
||||
|
||||
===========================================
|
||||
4 - Examples
|
||||
===========================================
|
||||
|
||||
Example 1 (ARM 64-bit, 16-cpu system, PSCI enable-method):
|
||||
|
||||
cpus {
|
||||
#size-cells = <0>;
|
||||
#address-cells = <2>;
|
||||
|
||||
CPU0: cpu@0 {
|
||||
device_type = "cpu";
|
||||
compatible = "arm,cortex-a57";
|
||||
reg = <0x0 0x0>;
|
||||
enable-method = "psci";
|
||||
cpu-idle-states = <&CPU_RETENTION_0_0 &CPU_SLEEP_0_0
|
||||
&CLUSTER_RETENTION_0 &CLUSTER_SLEEP_0>;
|
||||
};
|
||||
|
||||
CPU1: cpu@1 {
|
||||
device_type = "cpu";
|
||||
compatible = "arm,cortex-a57";
|
||||
reg = <0x0 0x1>;
|
||||
enable-method = "psci";
|
||||
cpu-idle-states = <&CPU_RETENTION_0_0 &CPU_SLEEP_0_0
|
||||
&CLUSTER_RETENTION_0 &CLUSTER_SLEEP_0>;
|
||||
};
|
||||
|
||||
CPU2: cpu@100 {
|
||||
device_type = "cpu";
|
||||
compatible = "arm,cortex-a57";
|
||||
reg = <0x0 0x100>;
|
||||
enable-method = "psci";
|
||||
cpu-idle-states = <&CPU_RETENTION_0_0 &CPU_SLEEP_0_0
|
||||
&CLUSTER_RETENTION_0 &CLUSTER_SLEEP_0>;
|
||||
};
|
||||
|
||||
CPU3: cpu@101 {
|
||||
device_type = "cpu";
|
||||
compatible = "arm,cortex-a57";
|
||||
reg = <0x0 0x101>;
|
||||
enable-method = "psci";
|
||||
cpu-idle-states = <&CPU_RETENTION_0_0 &CPU_SLEEP_0_0
|
||||
&CLUSTER_RETENTION_0 &CLUSTER_SLEEP_0>;
|
||||
};
|
||||
|
||||
CPU4: cpu@10000 {
|
||||
device_type = "cpu";
|
||||
compatible = "arm,cortex-a57";
|
||||
reg = <0x0 0x10000>;
|
||||
enable-method = "psci";
|
||||
cpu-idle-states = <&CPU_RETENTION_0_0 &CPU_SLEEP_0_0
|
||||
&CLUSTER_RETENTION_0 &CLUSTER_SLEEP_0>;
|
||||
};
|
||||
|
||||
CPU5: cpu@10001 {
|
||||
device_type = "cpu";
|
||||
compatible = "arm,cortex-a57";
|
||||
reg = <0x0 0x10001>;
|
||||
enable-method = "psci";
|
||||
cpu-idle-states = <&CPU_RETENTION_0_0 &CPU_SLEEP_0_0
|
||||
&CLUSTER_RETENTION_0 &CLUSTER_SLEEP_0>;
|
||||
};
|
||||
|
||||
CPU6: cpu@10100 {
|
||||
device_type = "cpu";
|
||||
compatible = "arm,cortex-a57";
|
||||
reg = <0x0 0x10100>;
|
||||
enable-method = "psci";
|
||||
cpu-idle-states = <&CPU_RETENTION_0_0 &CPU_SLEEP_0_0
|
||||
&CLUSTER_RETENTION_0 &CLUSTER_SLEEP_0>;
|
||||
};
|
||||
|
||||
CPU7: cpu@10101 {
|
||||
device_type = "cpu";
|
||||
compatible = "arm,cortex-a57";
|
||||
reg = <0x0 0x10101>;
|
||||
enable-method = "psci";
|
||||
cpu-idle-states = <&CPU_RETENTION_0_0 &CPU_SLEEP_0_0
|
||||
&CLUSTER_RETENTION_0 &CLUSTER_SLEEP_0>;
|
||||
};
|
||||
|
||||
CPU8: cpu@100000000 {
|
||||
device_type = "cpu";
|
||||
compatible = "arm,cortex-a53";
|
||||
reg = <0x1 0x0>;
|
||||
enable-method = "psci";
|
||||
cpu-idle-states = <&CPU_RETENTION_1_0 &CPU_SLEEP_1_0
|
||||
&CLUSTER_RETENTION_1 &CLUSTER_SLEEP_1>;
|
||||
};
|
||||
|
||||
CPU9: cpu@100000001 {
|
||||
device_type = "cpu";
|
||||
compatible = "arm,cortex-a53";
|
||||
reg = <0x1 0x1>;
|
||||
enable-method = "psci";
|
||||
cpu-idle-states = <&CPU_RETENTION_1_0 &CPU_SLEEP_1_0
|
||||
&CLUSTER_RETENTION_1 &CLUSTER_SLEEP_1>;
|
||||
};
|
||||
|
||||
CPU10: cpu@100000100 {
|
||||
device_type = "cpu";
|
||||
compatible = "arm,cortex-a53";
|
||||
reg = <0x1 0x100>;
|
||||
enable-method = "psci";
|
||||
cpu-idle-states = <&CPU_RETENTION_1_0 &CPU_SLEEP_1_0
|
||||
&CLUSTER_RETENTION_1 &CLUSTER_SLEEP_1>;
|
||||
};
|
||||
|
||||
CPU11: cpu@100000101 {
|
||||
device_type = "cpu";
|
||||
compatible = "arm,cortex-a53";
|
||||
reg = <0x1 0x101>;
|
||||
enable-method = "psci";
|
||||
cpu-idle-states = <&CPU_RETENTION_1_0 &CPU_SLEEP_1_0
|
||||
&CLUSTER_RETENTION_1 &CLUSTER_SLEEP_1>;
|
||||
};
|
||||
|
||||
CPU12: cpu@100010000 {
|
||||
device_type = "cpu";
|
||||
compatible = "arm,cortex-a53";
|
||||
reg = <0x1 0x10000>;
|
||||
enable-method = "psci";
|
||||
cpu-idle-states = <&CPU_RETENTION_1_0 &CPU_SLEEP_1_0
|
||||
&CLUSTER_RETENTION_1 &CLUSTER_SLEEP_1>;
|
||||
};
|
||||
|
||||
CPU13: cpu@100010001 {
|
||||
device_type = "cpu";
|
||||
compatible = "arm,cortex-a53";
|
||||
reg = <0x1 0x10001>;
|
||||
enable-method = "psci";
|
||||
cpu-idle-states = <&CPU_RETENTION_1_0 &CPU_SLEEP_1_0
|
||||
&CLUSTER_RETENTION_1 &CLUSTER_SLEEP_1>;
|
||||
};
|
||||
|
||||
CPU14: cpu@100010100 {
|
||||
device_type = "cpu";
|
||||
compatible = "arm,cortex-a53";
|
||||
reg = <0x1 0x10100>;
|
||||
enable-method = "psci";
|
||||
cpu-idle-states = <&CPU_RETENTION_1_0 &CPU_SLEEP_1_0
|
||||
&CLUSTER_RETENTION_1 &CLUSTER_SLEEP_1>;
|
||||
};
|
||||
|
||||
CPU15: cpu@100010101 {
|
||||
device_type = "cpu";
|
||||
compatible = "arm,cortex-a53";
|
||||
reg = <0x1 0x10101>;
|
||||
enable-method = "psci";
|
||||
cpu-idle-states = <&CPU_RETENTION_1_0 &CPU_SLEEP_1_0
|
||||
&CLUSTER_RETENTION_1 &CLUSTER_SLEEP_1>;
|
||||
};
|
||||
|
||||
idle-states {
|
||||
entry-method = "arm,psci";
|
||||
|
||||
CPU_RETENTION_0_0: cpu-retention-0-0 {
|
||||
compatible = "arm,idle-state";
|
||||
arm,psci-suspend-param = <0x0010000>;
|
||||
entry-latency-us = <20>;
|
||||
exit-latency-us = <40>;
|
||||
min-residency-us = <80>;
|
||||
};
|
||||
|
||||
CLUSTER_RETENTION_0: cluster-retention-0 {
|
||||
compatible = "arm,idle-state";
|
||||
local-timer-stop;
|
||||
arm,psci-suspend-param = <0x1010000>;
|
||||
entry-latency-us = <50>;
|
||||
exit-latency-us = <100>;
|
||||
min-residency-us = <250>;
|
||||
wakeup-latency-us = <130>;
|
||||
};
|
||||
|
||||
CPU_SLEEP_0_0: cpu-sleep-0-0 {
|
||||
compatible = "arm,idle-state";
|
||||
local-timer-stop;
|
||||
arm,psci-suspend-param = <0x0010000>;
|
||||
entry-latency-us = <250>;
|
||||
exit-latency-us = <500>;
|
||||
min-residency-us = <950>;
|
||||
};
|
||||
|
||||
CLUSTER_SLEEP_0: cluster-sleep-0 {
|
||||
compatible = "arm,idle-state";
|
||||
local-timer-stop;
|
||||
arm,psci-suspend-param = <0x1010000>;
|
||||
entry-latency-us = <600>;
|
||||
exit-latency-us = <1100>;
|
||||
min-residency-us = <2700>;
|
||||
wakeup-latency-us = <1500>;
|
||||
};
|
||||
|
||||
CPU_RETENTION_1_0: cpu-retention-1-0 {
|
||||
compatible = "arm,idle-state";
|
||||
arm,psci-suspend-param = <0x0010000>;
|
||||
entry-latency-us = <20>;
|
||||
exit-latency-us = <40>;
|
||||
min-residency-us = <90>;
|
||||
};
|
||||
|
||||
CLUSTER_RETENTION_1: cluster-retention-1 {
|
||||
compatible = "arm,idle-state";
|
||||
local-timer-stop;
|
||||
arm,psci-suspend-param = <0x1010000>;
|
||||
entry-latency-us = <50>;
|
||||
exit-latency-us = <100>;
|
||||
min-residency-us = <270>;
|
||||
wakeup-latency-us = <100>;
|
||||
};
|
||||
|
||||
CPU_SLEEP_1_0: cpu-sleep-1-0 {
|
||||
compatible = "arm,idle-state";
|
||||
local-timer-stop;
|
||||
arm,psci-suspend-param = <0x0010000>;
|
||||
entry-latency-us = <70>;
|
||||
exit-latency-us = <100>;
|
||||
min-residency-us = <300>;
|
||||
wakeup-latency-us = <150>;
|
||||
};
|
||||
|
||||
CLUSTER_SLEEP_1: cluster-sleep-1 {
|
||||
compatible = "arm,idle-state";
|
||||
local-timer-stop;
|
||||
arm,psci-suspend-param = <0x1010000>;
|
||||
entry-latency-us = <500>;
|
||||
exit-latency-us = <1200>;
|
||||
min-residency-us = <3500>;
|
||||
wakeup-latency-us = <1300>;
|
||||
};
|
||||
};
|
||||
|
||||
};
|
||||
|
||||
Example 2 (ARM 32-bit, 8-cpu system, two clusters):
|
||||
|
||||
cpus {
|
||||
#size-cells = <0>;
|
||||
#address-cells = <1>;
|
||||
|
||||
CPU0: cpu@0 {
|
||||
device_type = "cpu";
|
||||
compatible = "arm,cortex-a15";
|
||||
reg = <0x0>;
|
||||
cpu-idle-states = <&CPU_SLEEP_0_0 &CLUSTER_SLEEP_0>;
|
||||
};
|
||||
|
||||
CPU1: cpu@1 {
|
||||
device_type = "cpu";
|
||||
compatible = "arm,cortex-a15";
|
||||
reg = <0x1>;
|
||||
cpu-idle-states = <&CPU_SLEEP_0_0 &CLUSTER_SLEEP_0>;
|
||||
};
|
||||
|
||||
CPU2: cpu@2 {
|
||||
device_type = "cpu";
|
||||
compatible = "arm,cortex-a15";
|
||||
reg = <0x2>;
|
||||
cpu-idle-states = <&CPU_SLEEP_0_0 &CLUSTER_SLEEP_0>;
|
||||
};
|
||||
|
||||
CPU3: cpu@3 {
|
||||
device_type = "cpu";
|
||||
compatible = "arm,cortex-a15";
|
||||
reg = <0x3>;
|
||||
cpu-idle-states = <&CPU_SLEEP_0_0 &CLUSTER_SLEEP_0>;
|
||||
};
|
||||
|
||||
CPU4: cpu@100 {
|
||||
device_type = "cpu";
|
||||
compatible = "arm,cortex-a7";
|
||||
reg = <0x100>;
|
||||
cpu-idle-states = <&CPU_SLEEP_1_0 &CLUSTER_SLEEP_1>;
|
||||
};
|
||||
|
||||
CPU5: cpu@101 {
|
||||
device_type = "cpu";
|
||||
compatible = "arm,cortex-a7";
|
||||
reg = <0x101>;
|
||||
cpu-idle-states = <&CPU_SLEEP_1_0 &CLUSTER_SLEEP_1>;
|
||||
};
|
||||
|
||||
CPU6: cpu@102 {
|
||||
device_type = "cpu";
|
||||
compatible = "arm,cortex-a7";
|
||||
reg = <0x102>;
|
||||
cpu-idle-states = <&CPU_SLEEP_1_0 &CLUSTER_SLEEP_1>;
|
||||
};
|
||||
|
||||
CPU7: cpu@103 {
|
||||
device_type = "cpu";
|
||||
compatible = "arm,cortex-a7";
|
||||
reg = <0x103>;
|
||||
cpu-idle-states = <&CPU_SLEEP_1_0 &CLUSTER_SLEEP_1>;
|
||||
};
|
||||
|
||||
idle-states {
|
||||
CPU_SLEEP_0_0: cpu-sleep-0-0 {
|
||||
compatible = "arm,idle-state";
|
||||
local-timer-stop;
|
||||
entry-latency-us = <200>;
|
||||
exit-latency-us = <100>;
|
||||
min-residency-us = <400>;
|
||||
wakeup-latency-us = <250>;
|
||||
};
|
||||
|
||||
CLUSTER_SLEEP_0: cluster-sleep-0 {
|
||||
compatible = "arm,idle-state";
|
||||
local-timer-stop;
|
||||
entry-latency-us = <500>;
|
||||
exit-latency-us = <1500>;
|
||||
min-residency-us = <2500>;
|
||||
wakeup-latency-us = <1700>;
|
||||
};
|
||||
|
||||
CPU_SLEEP_1_0: cpu-sleep-1-0 {
|
||||
compatible = "arm,idle-state";
|
||||
local-timer-stop;
|
||||
entry-latency-us = <300>;
|
||||
exit-latency-us = <500>;
|
||||
min-residency-us = <900>;
|
||||
wakeup-latency-us = <600>;
|
||||
};
|
||||
|
||||
CLUSTER_SLEEP_1: cluster-sleep-1 {
|
||||
compatible = "arm,idle-state";
|
||||
local-timer-stop;
|
||||
entry-latency-us = <800>;
|
||||
exit-latency-us = <2000>;
|
||||
min-residency-us = <6500>;
|
||||
wakeup-latency-us = <2300>;
|
||||
};
|
||||
};
|
||||
|
||||
};
|
||||
|
||||
===========================================
|
||||
5 - References
|
||||
===========================================
|
||||
|
||||
[1] ARM Linux Kernel documentation - CPUs bindings
|
||||
Documentation/devicetree/bindings/arm/cpus.txt
|
||||
|
||||
[2] ARM Linux Kernel documentation - PSCI bindings
|
||||
Documentation/devicetree/bindings/arm/psci.txt
|
||||
|
||||
[3] ARM Server Base System Architecture (SBSA)
|
||||
http://infocenter.arm.com/help/index.jsp
|
||||
|
||||
[4] ARM Architecture Reference Manuals
|
||||
http://infocenter.arm.com/help/index.jsp
|
||||
|
||||
[5] ePAPR standard
|
||||
https://www.power.org/documentation/epapr-version-1-1/
|
|
@ -50,6 +50,16 @@ Main node optional properties:
|
|||
|
||||
- migrate : Function ID for MIGRATE operation
|
||||
|
||||
Device tree nodes that require usage of PSCI CPU_SUSPEND function (ie idle
|
||||
state nodes, as per bindings in [1]) must specify the following properties:
|
||||
|
||||
- arm,psci-suspend-param
|
||||
Usage: Required for state nodes[1] if the corresponding
|
||||
idle-states node entry-method property is set
|
||||
to "psci".
|
||||
Value type: <u32>
|
||||
Definition: power_state parameter to pass to the PSCI
|
||||
suspend call.
|
||||
|
||||
Example:
|
||||
|
||||
|
@ -64,7 +74,6 @@ Case 1: PSCI v0.1 only.
|
|||
migrate = <0x95c10003>;
|
||||
};
|
||||
|
||||
|
||||
Case 2: PSCI v0.2 only
|
||||
|
||||
psci {
|
||||
|
@ -88,3 +97,6 @@ Case 3: PSCI v0.2 and PSCI v0.1.
|
|||
|
||||
...
|
||||
};
|
||||
|
||||
[1] Kernel documentation - ARM idle states bindings
|
||||
Documentation/devicetree/bindings/arm/idle-states.txt
|
||||
|
|
|
@ -28,6 +28,8 @@ struct device_node;
|
|||
* enable-method property.
|
||||
* @cpu_init: Reads any data necessary for a specific enable-method from the
|
||||
* devicetree, for a given cpu node and proposed logical id.
|
||||
* @cpu_init_idle: Reads any data necessary to initialize CPU idle states from
|
||||
* devicetree, for a given cpu node and proposed logical id.
|
||||
* @cpu_prepare: Early one-time preparation step for a cpu. If there is a
|
||||
* mechanism for doing so, tests whether it is possible to boot
|
||||
* the given CPU.
|
||||
|
@ -47,6 +49,7 @@ struct device_node;
|
|||
struct cpu_operations {
|
||||
const char *name;
|
||||
int (*cpu_init)(struct device_node *, unsigned int);
|
||||
int (*cpu_init_idle)(struct device_node *, unsigned int);
|
||||
int (*cpu_prepare)(unsigned int);
|
||||
int (*cpu_boot)(unsigned int);
|
||||
void (*cpu_postboot)(void);
|
||||
|
|
|
@ -0,0 +1,13 @@
|
|||
#ifndef __ASM_CPUIDLE_H
|
||||
#define __ASM_CPUIDLE_H
|
||||
|
||||
#ifdef CONFIG_CPU_IDLE
|
||||
extern int cpu_init_idle(unsigned int cpu);
|
||||
#else
|
||||
static inline int cpu_init_idle(unsigned int cpu)
|
||||
{
|
||||
return -EOPNOTSUPP;
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif
|
|
@ -21,6 +21,7 @@ struct sleep_save_sp {
|
|||
phys_addr_t save_ptr_stash_phys;
|
||||
};
|
||||
|
||||
extern int __cpu_suspend(unsigned long arg, int (*fn)(unsigned long));
|
||||
extern void cpu_resume(void);
|
||||
extern int cpu_suspend(unsigned long);
|
||||
|
||||
|
|
|
@ -26,6 +26,7 @@ arm64-obj-$(CONFIG_PERF_EVENTS) += perf_regs.o
|
|||
arm64-obj-$(CONFIG_HW_PERF_EVENTS) += perf_event.o
|
||||
arm64-obj-$(CONFIG_HAVE_HW_BREAKPOINT) += hw_breakpoint.o
|
||||
arm64-obj-$(CONFIG_ARM64_CPU_SUSPEND) += sleep.o suspend.o
|
||||
arm64-obj-$(CONFIG_CPU_IDLE) += cpuidle.o
|
||||
arm64-obj-$(CONFIG_JUMP_LABEL) += jump_label.o
|
||||
arm64-obj-$(CONFIG_KGDB) += kgdb.o
|
||||
arm64-obj-$(CONFIG_EFI) += efi.o efi-stub.o efi-entry.o
|
||||
|
|
|
@ -0,0 +1,31 @@
|
|||
/*
|
||||
* ARM64 CPU idle arch support
|
||||
*
|
||||
* Copyright (C) 2014 ARM Ltd.
|
||||
* Author: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License version 2 as
|
||||
* published by the Free Software Foundation.
|
||||
*/
|
||||
|
||||
#include <linux/of.h>
|
||||
#include <linux/of_device.h>
|
||||
|
||||
#include <asm/cpuidle.h>
|
||||
#include <asm/cpu_ops.h>
|
||||
|
||||
int cpu_init_idle(unsigned int cpu)
|
||||
{
|
||||
int ret = -EOPNOTSUPP;
|
||||
struct device_node *cpu_node = of_cpu_device_node_get(cpu);
|
||||
|
||||
if (!cpu_node)
|
||||
return -ENODEV;
|
||||
|
||||
if (cpu_ops[cpu] && cpu_ops[cpu]->cpu_init_idle)
|
||||
ret = cpu_ops[cpu]->cpu_init_idle(cpu_node, cpu);
|
||||
|
||||
of_node_put(cpu_node);
|
||||
return ret;
|
||||
}
|
|
@ -21,6 +21,7 @@
|
|||
#include <linux/reboot.h>
|
||||
#include <linux/pm.h>
|
||||
#include <linux/delay.h>
|
||||
#include <linux/slab.h>
|
||||
#include <uapi/linux/psci.h>
|
||||
|
||||
#include <asm/compiler.h>
|
||||
|
@ -28,6 +29,7 @@
|
|||
#include <asm/errno.h>
|
||||
#include <asm/psci.h>
|
||||
#include <asm/smp_plat.h>
|
||||
#include <asm/suspend.h>
|
||||
#include <asm/system_misc.h>
|
||||
|
||||
#define PSCI_POWER_STATE_TYPE_STANDBY 0
|
||||
|
@ -65,6 +67,8 @@ enum psci_function {
|
|||
PSCI_FN_MAX,
|
||||
};
|
||||
|
||||
static DEFINE_PER_CPU_READ_MOSTLY(struct psci_power_state *, psci_power_state);
|
||||
|
||||
static u32 psci_function_id[PSCI_FN_MAX];
|
||||
|
||||
static int psci_to_linux_errno(int errno)
|
||||
|
@ -93,6 +97,18 @@ static u32 psci_power_state_pack(struct psci_power_state state)
|
|||
& PSCI_0_2_POWER_STATE_AFFL_MASK);
|
||||
}
|
||||
|
||||
static void psci_power_state_unpack(u32 power_state,
|
||||
struct psci_power_state *state)
|
||||
{
|
||||
state->id = (power_state & PSCI_0_2_POWER_STATE_ID_MASK) >>
|
||||
PSCI_0_2_POWER_STATE_ID_SHIFT;
|
||||
state->type = (power_state & PSCI_0_2_POWER_STATE_TYPE_MASK) >>
|
||||
PSCI_0_2_POWER_STATE_TYPE_SHIFT;
|
||||
state->affinity_level =
|
||||
(power_state & PSCI_0_2_POWER_STATE_AFFL_MASK) >>
|
||||
PSCI_0_2_POWER_STATE_AFFL_SHIFT;
|
||||
}
|
||||
|
||||
/*
|
||||
* The following two functions are invoked via the invoke_psci_fn pointer
|
||||
* and will not be inlined, allowing us to piggyback on the AAPCS.
|
||||
|
@ -199,6 +215,63 @@ static int psci_migrate_info_type(void)
|
|||
return err;
|
||||
}
|
||||
|
||||
static int __maybe_unused cpu_psci_cpu_init_idle(struct device_node *cpu_node,
|
||||
unsigned int cpu)
|
||||
{
|
||||
int i, ret, count = 0;
|
||||
struct psci_power_state *psci_states;
|
||||
struct device_node *state_node;
|
||||
|
||||
/*
|
||||
* If the PSCI cpu_suspend function hook has not been initialized
|
||||
* idle states must not be enabled, so bail out
|
||||
*/
|
||||
if (!psci_ops.cpu_suspend)
|
||||
return -EOPNOTSUPP;
|
||||
|
||||
/* Count idle states */
|
||||
while ((state_node = of_parse_phandle(cpu_node, "cpu-idle-states",
|
||||
count))) {
|
||||
count++;
|
||||
of_node_put(state_node);
|
||||
}
|
||||
|
||||
if (!count)
|
||||
return -ENODEV;
|
||||
|
||||
psci_states = kcalloc(count, sizeof(*psci_states), GFP_KERNEL);
|
||||
if (!psci_states)
|
||||
return -ENOMEM;
|
||||
|
||||
for (i = 0; i < count; i++) {
|
||||
u32 psci_power_state;
|
||||
|
||||
state_node = of_parse_phandle(cpu_node, "cpu-idle-states", i);
|
||||
|
||||
ret = of_property_read_u32(state_node,
|
||||
"arm,psci-suspend-param",
|
||||
&psci_power_state);
|
||||
if (ret) {
|
||||
pr_warn(" * %s missing arm,psci-suspend-param property\n",
|
||||
state_node->full_name);
|
||||
of_node_put(state_node);
|
||||
goto free_mem;
|
||||
}
|
||||
|
||||
of_node_put(state_node);
|
||||
pr_debug("psci-power-state %#x index %d\n", psci_power_state,
|
||||
i);
|
||||
psci_power_state_unpack(psci_power_state, &psci_states[i]);
|
||||
}
|
||||
/* Idle states parsed correctly, initialize per-cpu pointer */
|
||||
per_cpu(psci_power_state, cpu) = psci_states;
|
||||
return 0;
|
||||
|
||||
free_mem:
|
||||
kfree(psci_states);
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int get_set_conduit_method(struct device_node *np)
|
||||
{
|
||||
const char *method;
|
||||
|
@ -436,8 +509,39 @@ static int cpu_psci_cpu_kill(unsigned int cpu)
|
|||
#endif
|
||||
#endif
|
||||
|
||||
static int psci_suspend_finisher(unsigned long index)
|
||||
{
|
||||
struct psci_power_state *state = __get_cpu_var(psci_power_state);
|
||||
|
||||
return psci_ops.cpu_suspend(state[index - 1],
|
||||
virt_to_phys(cpu_resume));
|
||||
}
|
||||
|
||||
static int __maybe_unused cpu_psci_cpu_suspend(unsigned long index)
|
||||
{
|
||||
int ret;
|
||||
struct psci_power_state *state = __get_cpu_var(psci_power_state);
|
||||
/*
|
||||
* idle state index 0 corresponds to wfi, should never be called
|
||||
* from the cpu_suspend operations
|
||||
*/
|
||||
if (WARN_ON_ONCE(!index))
|
||||
return -EINVAL;
|
||||
|
||||
if (state->type == PSCI_POWER_STATE_TYPE_STANDBY)
|
||||
ret = psci_ops.cpu_suspend(state[index - 1], 0);
|
||||
else
|
||||
ret = __cpu_suspend(index, psci_suspend_finisher);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
const struct cpu_operations cpu_psci_ops = {
|
||||
.name = "psci",
|
||||
#ifdef CONFIG_CPU_IDLE
|
||||
.cpu_init_idle = cpu_psci_cpu_init_idle,
|
||||
.cpu_suspend = cpu_psci_cpu_suspend,
|
||||
#endif
|
||||
#ifdef CONFIG_SMP
|
||||
.cpu_init = cpu_psci_cpu_init,
|
||||
.cpu_prepare = cpu_psci_cpu_prepare,
|
||||
|
|
|
@ -49,28 +49,39 @@
|
|||
orr \dst, \dst, \mask // dst|=(aff3>>rs3)
|
||||
.endm
|
||||
/*
|
||||
* Save CPU state for a suspend. This saves callee registers, and allocates
|
||||
* space on the kernel stack to save the CPU specific registers + some
|
||||
* other data for resume.
|
||||
* Save CPU state for a suspend and execute the suspend finisher.
|
||||
* On success it will return 0 through cpu_resume - ie through a CPU
|
||||
* soft/hard reboot from the reset vector.
|
||||
* On failure it returns the suspend finisher return value or force
|
||||
* -EOPNOTSUPP if the finisher erroneously returns 0 (the suspend finisher
|
||||
* is not allowed to return, if it does this must be considered failure).
|
||||
* It saves callee registers, and allocates space on the kernel stack
|
||||
* to save the CPU specific registers + some other data for resume.
|
||||
*
|
||||
* x0 = suspend finisher argument
|
||||
* x1 = suspend finisher function pointer
|
||||
*/
|
||||
ENTRY(__cpu_suspend)
|
||||
ENTRY(__cpu_suspend_enter)
|
||||
stp x29, lr, [sp, #-96]!
|
||||
stp x19, x20, [sp,#16]
|
||||
stp x21, x22, [sp,#32]
|
||||
stp x23, x24, [sp,#48]
|
||||
stp x25, x26, [sp,#64]
|
||||
stp x27, x28, [sp,#80]
|
||||
/*
|
||||
* Stash suspend finisher and its argument in x20 and x19
|
||||
*/
|
||||
mov x19, x0
|
||||
mov x20, x1
|
||||
mov x2, sp
|
||||
sub sp, sp, #CPU_SUSPEND_SZ // allocate cpu_suspend_ctx
|
||||
mov x1, sp
|
||||
mov x0, sp
|
||||
/*
|
||||
* x1 now points to struct cpu_suspend_ctx allocated on the stack
|
||||
* x0 now points to struct cpu_suspend_ctx allocated on the stack
|
||||
*/
|
||||
str x2, [x1, #CPU_CTX_SP]
|
||||
ldr x2, =sleep_save_sp
|
||||
ldr x2, [x2, #SLEEP_SAVE_SP_VIRT]
|
||||
str x2, [x0, #CPU_CTX_SP]
|
||||
ldr x1, =sleep_save_sp
|
||||
ldr x1, [x1, #SLEEP_SAVE_SP_VIRT]
|
||||
#ifdef CONFIG_SMP
|
||||
mrs x7, mpidr_el1
|
||||
ldr x9, =mpidr_hash
|
||||
|
@ -82,11 +93,21 @@ ENTRY(__cpu_suspend)
|
|||
ldp w3, w4, [x9, #MPIDR_HASH_SHIFTS]
|
||||
ldp w5, w6, [x9, #(MPIDR_HASH_SHIFTS + 8)]
|
||||
compute_mpidr_hash x8, x3, x4, x5, x6, x7, x10
|
||||
add x2, x2, x8, lsl #3
|
||||
add x1, x1, x8, lsl #3
|
||||
#endif
|
||||
bl __cpu_suspend_finisher
|
||||
bl __cpu_suspend_save
|
||||
/*
|
||||
* Grab suspend finisher in x20 and its argument in x19
|
||||
*/
|
||||
mov x0, x19
|
||||
mov x1, x20
|
||||
/*
|
||||
* We are ready for power down, fire off the suspend finisher
|
||||
* in x1, with argument in x0
|
||||
*/
|
||||
blr x1
|
||||
/*
|
||||
* Never gets here, unless suspend fails.
|
||||
* Never gets here, unless suspend finisher fails.
|
||||
* Successful cpu_suspend should return from cpu_resume, returning
|
||||
* through this code path is considered an error
|
||||
* If the return value is set to 0 force x0 = -EOPNOTSUPP
|
||||
|
@ -103,7 +124,7 @@ ENTRY(__cpu_suspend)
|
|||
ldp x27, x28, [sp, #80]
|
||||
ldp x29, lr, [sp], #96
|
||||
ret
|
||||
ENDPROC(__cpu_suspend)
|
||||
ENDPROC(__cpu_suspend_enter)
|
||||
.ltorg
|
||||
|
||||
/*
|
||||
|
|
|
@ -9,22 +9,19 @@
|
|||
#include <asm/suspend.h>
|
||||
#include <asm/tlbflush.h>
|
||||
|
||||
extern int __cpu_suspend(unsigned long);
|
||||
extern int __cpu_suspend_enter(unsigned long arg, int (*fn)(unsigned long));
|
||||
/*
|
||||
* This is called by __cpu_suspend() to save the state, and do whatever
|
||||
* This is called by __cpu_suspend_enter() to save the state, and do whatever
|
||||
* flushing is required to ensure that when the CPU goes to sleep we have
|
||||
* the necessary data available when the caches are not searched.
|
||||
*
|
||||
* @arg: Argument to pass to suspend operations
|
||||
* @ptr: CPU context virtual address
|
||||
* @save_ptr: address of the location where the context physical address
|
||||
* must be saved
|
||||
* ptr: CPU context virtual address
|
||||
* save_ptr: address of the location where the context physical address
|
||||
* must be saved
|
||||
*/
|
||||
int __cpu_suspend_finisher(unsigned long arg, struct cpu_suspend_ctx *ptr,
|
||||
phys_addr_t *save_ptr)
|
||||
void notrace __cpu_suspend_save(struct cpu_suspend_ctx *ptr,
|
||||
phys_addr_t *save_ptr)
|
||||
{
|
||||
int cpu = smp_processor_id();
|
||||
|
||||
*save_ptr = virt_to_phys(ptr);
|
||||
|
||||
cpu_do_suspend(ptr);
|
||||
|
@ -35,8 +32,6 @@ int __cpu_suspend_finisher(unsigned long arg, struct cpu_suspend_ctx *ptr,
|
|||
*/
|
||||
__flush_dcache_area(ptr, sizeof(*ptr));
|
||||
__flush_dcache_area(save_ptr, sizeof(*save_ptr));
|
||||
|
||||
return cpu_ops[cpu]->cpu_suspend(arg);
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -56,15 +51,15 @@ void __init cpu_suspend_set_dbg_restorer(void (*hw_bp_restore)(void *))
|
|||
}
|
||||
|
||||
/**
|
||||
* cpu_suspend
|
||||
* cpu_suspend() - function to enter a low-power state
|
||||
* @arg: argument to pass to CPU suspend operations
|
||||
*
|
||||
* @arg: argument to pass to the finisher function
|
||||
* Return: 0 on success, -EOPNOTSUPP if CPU suspend hook not initialized, CPU
|
||||
* operations back-end error code otherwise.
|
||||
*/
|
||||
int cpu_suspend(unsigned long arg)
|
||||
{
|
||||
struct mm_struct *mm = current->active_mm;
|
||||
int ret, cpu = smp_processor_id();
|
||||
unsigned long flags;
|
||||
int cpu = smp_processor_id();
|
||||
|
||||
/*
|
||||
* If cpu_ops have not been registered or suspend
|
||||
|
@ -72,6 +67,21 @@ int cpu_suspend(unsigned long arg)
|
|||
*/
|
||||
if (!cpu_ops[cpu] || !cpu_ops[cpu]->cpu_suspend)
|
||||
return -EOPNOTSUPP;
|
||||
return cpu_ops[cpu]->cpu_suspend(arg);
|
||||
}
|
||||
|
||||
/*
|
||||
* __cpu_suspend
|
||||
*
|
||||
* arg: argument to pass to the finisher function
|
||||
* fn: finisher function pointer
|
||||
*
|
||||
*/
|
||||
int __cpu_suspend(unsigned long arg, int (*fn)(unsigned long))
|
||||
{
|
||||
struct mm_struct *mm = current->active_mm;
|
||||
int ret;
|
||||
unsigned long flags;
|
||||
|
||||
/*
|
||||
* From this point debug exceptions are disabled to prevent
|
||||
|
@ -86,7 +96,7 @@ int cpu_suspend(unsigned long arg)
|
|||
* page tables, so that the thread address space is properly
|
||||
* set-up on function return.
|
||||
*/
|
||||
ret = __cpu_suspend(arg);
|
||||
ret = __cpu_suspend_enter(arg, fn);
|
||||
if (ret == 0) {
|
||||
cpu_switch_mm(mm->pgd, mm);
|
||||
flush_tlb_all();
|
||||
|
@ -95,7 +105,7 @@ int cpu_suspend(unsigned long arg)
|
|||
* Restore per-cpu offset before any kernel
|
||||
* subsystem relying on it has a chance to run.
|
||||
*/
|
||||
set_my_cpu_offset(per_cpu_offset(cpu));
|
||||
set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
|
||||
|
||||
/*
|
||||
* Restore HW breakpoint registers to sane values
|
||||
|
|
Loading…
Reference in New Issue