crypto: cavium - Add the Virtual Function driver for CPT
Enable the CPT VF driver. CPT is the cryptographic Acceleration Unit in Octeon-tx series of processors. Signed-off-by: George Cherian <george.cherian@cavium.com> Reviewed-by: David Daney <david.daney@cavium.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This commit is contained in:
parent
9e2c7d9994
commit
c694b23329
|
@ -1,2 +1,3 @@
|
|||
obj-$(CONFIG_CAVIUM_CPT) += cptpf.o
|
||||
obj-$(CONFIG_CAVIUM_CPT) += cptpf.o cptvf.o
|
||||
cptpf-objs := cptpf_main.o cptpf_mbox.o
|
||||
cptvf-objs := cptvf_main.o cptvf_reqmanager.o cptvf_mbox.o cptvf_algs.o
|
||||
|
|
|
@ -0,0 +1,135 @@
|
|||
/*
|
||||
* Copyright (C) 2016 Cavium, Inc.
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify it
|
||||
* under the terms of version 2 of the GNU General Public License
|
||||
* as published by the Free Software Foundation.
|
||||
*/
|
||||
|
||||
#ifndef __CPTVF_H
|
||||
#define __CPTVF_H
|
||||
|
||||
#include <linux/list.h>
|
||||
#include "cpt_common.h"
|
||||
|
||||
/* Default command queue length */
|
||||
#define CPT_CMD_QLEN 2046
|
||||
#define CPT_CMD_QCHUNK_SIZE 1023
|
||||
|
||||
/* Default command timeout in seconds */
|
||||
#define CPT_COMMAND_TIMEOUT 4
|
||||
#define CPT_TIMER_THOLD 0xFFFF
|
||||
#define CPT_NUM_QS_PER_VF 1
|
||||
#define CPT_INST_SIZE 64
|
||||
#define CPT_NEXT_CHUNK_PTR_SIZE 8
|
||||
|
||||
#define CPT_VF_MSIX_VECTORS 2
|
||||
#define CPT_VF_INTR_MBOX_MASK BIT(0)
|
||||
#define CPT_VF_INTR_DOVF_MASK BIT(1)
|
||||
#define CPT_VF_INTR_IRDE_MASK BIT(2)
|
||||
#define CPT_VF_INTR_NWRP_MASK BIT(3)
|
||||
#define CPT_VF_INTR_SERR_MASK BIT(4)
|
||||
#define DMA_DIRECT_DIRECT 0 /* Input DIRECT, Output DIRECT */
|
||||
#define DMA_GATHER_SCATTER 1
|
||||
#define FROM_DPTR 1
|
||||
|
||||
/**
|
||||
* Enumeration cpt_vf_int_vec_e
|
||||
*
|
||||
* CPT VF MSI-X Vector Enumeration
|
||||
* Enumerates the MSI-X interrupt vectors.
|
||||
*/
|
||||
enum cpt_vf_int_vec_e {
|
||||
CPT_VF_INT_VEC_E_MISC = 0x00,
|
||||
CPT_VF_INT_VEC_E_DONE = 0x01
|
||||
};
|
||||
|
||||
struct command_chunk {
|
||||
u8 *head;
|
||||
dma_addr_t dma_addr;
|
||||
u32 size; /* Chunk size, max CPT_INST_CHUNK_MAX_SIZE */
|
||||
struct hlist_node nextchunk;
|
||||
};
|
||||
|
||||
struct command_queue {
|
||||
spinlock_t lock; /* command queue lock */
|
||||
u32 idx; /* Command queue host write idx */
|
||||
u32 nchunks; /* Number of command chunks */
|
||||
struct command_chunk *qhead; /* Command queue head, instructions
|
||||
* are inserted here
|
||||
*/
|
||||
struct hlist_head chead;
|
||||
};
|
||||
|
||||
struct command_qinfo {
|
||||
u32 cmd_size;
|
||||
u32 qchunksize; /* Command queue chunk size */
|
||||
struct command_queue queue[CPT_NUM_QS_PER_VF];
|
||||
};
|
||||
|
||||
struct pending_entry {
|
||||
u8 busy; /* Entry status (free/busy) */
|
||||
|
||||
volatile u64 *completion_addr; /* Completion address */
|
||||
void *post_arg;
|
||||
void (*callback)(int, void *); /* Kernel ASYNC request callabck */
|
||||
void *callback_arg; /* Kernel ASYNC request callabck arg */
|
||||
};
|
||||
|
||||
struct pending_queue {
|
||||
struct pending_entry *head; /* head of the queue */
|
||||
u32 front; /* Process work from here */
|
||||
u32 rear; /* Append new work here */
|
||||
atomic64_t pending_count;
|
||||
spinlock_t lock; /* Queue lock */
|
||||
};
|
||||
|
||||
struct pending_qinfo {
|
||||
u32 nr_queues; /* Number of queues supported */
|
||||
u32 qlen; /* Queue length */
|
||||
struct pending_queue queue[CPT_NUM_QS_PER_VF];
|
||||
};
|
||||
|
||||
#define for_each_pending_queue(qinfo, q, i) \
|
||||
for (i = 0, q = &qinfo->queue[i]; i < qinfo->nr_queues; i++, \
|
||||
q = &qinfo->queue[i])
|
||||
|
||||
struct cpt_vf {
|
||||
u16 flags; /* Flags to hold device status bits */
|
||||
u8 vfid; /* Device Index 0...CPT_MAX_VF_NUM */
|
||||
u8 vftype; /* VF type of SE_TYPE(1) or AE_TYPE(1) */
|
||||
u8 vfgrp; /* VF group (0 - 8) */
|
||||
u8 node; /* Operating node: Bits (46:44) in BAR0 address */
|
||||
u8 priority; /* VF priority ring: 1-High proirity round
|
||||
* robin ring;0-Low priority round robin ring;
|
||||
*/
|
||||
struct pci_dev *pdev; /* pci device handle */
|
||||
void __iomem *reg_base; /* Register start address */
|
||||
void *wqe_info; /* BH worker info */
|
||||
/* MSI-X */
|
||||
bool msix_enabled;
|
||||
struct msix_entry msix_entries[CPT_VF_MSIX_VECTORS];
|
||||
bool irq_allocated[CPT_VF_MSIX_VECTORS];
|
||||
cpumask_var_t affinity_mask[CPT_VF_MSIX_VECTORS];
|
||||
/* Command and Pending queues */
|
||||
u32 qsize;
|
||||
u32 nr_queues;
|
||||
struct command_qinfo cqinfo; /* Command queue information */
|
||||
struct pending_qinfo pqinfo; /* Pending queue information */
|
||||
/* VF-PF mailbox communication */
|
||||
bool pf_acked;
|
||||
bool pf_nacked;
|
||||
};
|
||||
|
||||
int cptvf_send_vf_up(struct cpt_vf *cptvf);
|
||||
int cptvf_send_vf_down(struct cpt_vf *cptvf);
|
||||
int cptvf_send_vf_to_grp_msg(struct cpt_vf *cptvf);
|
||||
int cptvf_send_vf_priority_msg(struct cpt_vf *cptvf);
|
||||
int cptvf_send_vq_size_msg(struct cpt_vf *cptvf);
|
||||
int cptvf_check_pf_ready(struct cpt_vf *cptvf);
|
||||
void cptvf_handle_mbox_intr(struct cpt_vf *cptvf);
|
||||
void cvm_crypto_exit(void);
|
||||
int cvm_crypto_init(struct cpt_vf *cptvf);
|
||||
void vq_post_process(struct cpt_vf *cptvf, u32 qno);
|
||||
void cptvf_write_vq_doorbell(struct cpt_vf *cptvf, u32 val);
|
||||
#endif /* __CPTVF_H */
|
|
@ -0,0 +1,444 @@
|
|||
|
||||
/*
|
||||
* Copyright (C) 2016 Cavium, Inc.
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify it
|
||||
* under the terms of version 2 of the GNU General Public License
|
||||
* as published by the Free Software Foundation.
|
||||
*/
|
||||
|
||||
#include <crypto/aes.h>
|
||||
#include <crypto/algapi.h>
|
||||
#include <crypto/authenc.h>
|
||||
#include <crypto/cryptd.h>
|
||||
#include <crypto/crypto_wq.h>
|
||||
#include <crypto/des.h>
|
||||
#include <crypto/xts.h>
|
||||
#include <linux/crypto.h>
|
||||
#include <linux/err.h>
|
||||
#include <linux/list.h>
|
||||
#include <linux/scatterlist.h>
|
||||
|
||||
#include "cptvf.h"
|
||||
#include "cptvf_algs.h"
|
||||
|
||||
struct cpt_device_handle {
|
||||
void *cdev[MAX_DEVICES];
|
||||
u32 dev_count;
|
||||
};
|
||||
|
||||
static struct cpt_device_handle dev_handle;
|
||||
|
||||
static void cvm_callback(u32 status, void *arg)
|
||||
{
|
||||
struct crypto_async_request *req = (struct crypto_async_request *)arg;
|
||||
|
||||
req->complete(req, !status);
|
||||
}
|
||||
|
||||
static inline void update_input_iv(struct cpt_request_info *req_info,
|
||||
u8 *iv, u32 enc_iv_len,
|
||||
u32 *argcnt)
|
||||
{
|
||||
/* Setting the iv information */
|
||||
req_info->in[*argcnt].vptr = (void *)iv;
|
||||
req_info->in[*argcnt].size = enc_iv_len;
|
||||
req_info->req.dlen += enc_iv_len;
|
||||
|
||||
++(*argcnt);
|
||||
}
|
||||
|
||||
static inline void update_output_iv(struct cpt_request_info *req_info,
|
||||
u8 *iv, u32 enc_iv_len,
|
||||
u32 *argcnt)
|
||||
{
|
||||
/* Setting the iv information */
|
||||
req_info->out[*argcnt].vptr = (void *)iv;
|
||||
req_info->out[*argcnt].size = enc_iv_len;
|
||||
req_info->rlen += enc_iv_len;
|
||||
|
||||
++(*argcnt);
|
||||
}
|
||||
|
||||
static inline void update_input_data(struct cpt_request_info *req_info,
|
||||
struct scatterlist *inp_sg,
|
||||
u32 nbytes, u32 *argcnt)
|
||||
{
|
||||
req_info->req.dlen += nbytes;
|
||||
|
||||
while (nbytes) {
|
||||
u32 len = min(nbytes, inp_sg->length);
|
||||
u8 *ptr = sg_virt(inp_sg);
|
||||
|
||||
req_info->in[*argcnt].vptr = (void *)ptr;
|
||||
req_info->in[*argcnt].size = len;
|
||||
nbytes -= len;
|
||||
|
||||
++(*argcnt);
|
||||
++inp_sg;
|
||||
}
|
||||
}
|
||||
|
||||
static inline void update_output_data(struct cpt_request_info *req_info,
|
||||
struct scatterlist *outp_sg,
|
||||
u32 nbytes, u32 *argcnt)
|
||||
{
|
||||
req_info->rlen += nbytes;
|
||||
|
||||
while (nbytes) {
|
||||
u32 len = min(nbytes, outp_sg->length);
|
||||
u8 *ptr = sg_virt(outp_sg);
|
||||
|
||||
req_info->out[*argcnt].vptr = (void *)ptr;
|
||||
req_info->out[*argcnt].size = len;
|
||||
nbytes -= len;
|
||||
++(*argcnt);
|
||||
++outp_sg;
|
||||
}
|
||||
}
|
||||
|
||||
static inline u32 create_ctx_hdr(struct ablkcipher_request *req, u32 enc,
|
||||
u32 cipher_type, u32 aes_key_type,
|
||||
u32 *argcnt)
|
||||
{
|
||||
struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
|
||||
struct cvm_enc_ctx *ctx = crypto_ablkcipher_ctx(tfm);
|
||||
struct cvm_req_ctx *rctx = ablkcipher_request_ctx(req);
|
||||
struct fc_context *fctx = &rctx->fctx;
|
||||
u64 *offset_control = &rctx->control_word;
|
||||
u32 enc_iv_len = crypto_ablkcipher_ivsize(tfm);
|
||||
struct cpt_request_info *req_info = &rctx->cpt_req;
|
||||
u64 *ctrl_flags = NULL;
|
||||
|
||||
req_info->ctrl.s.grp = 0;
|
||||
req_info->ctrl.s.dma_mode = DMA_GATHER_SCATTER;
|
||||
req_info->ctrl.s.se_req = SE_CORE_REQ;
|
||||
|
||||
req_info->req.opcode.s.major = MAJOR_OP_FC |
|
||||
DMA_MODE_FLAG(DMA_GATHER_SCATTER);
|
||||
if (enc)
|
||||
req_info->req.opcode.s.minor = 2;
|
||||
else
|
||||
req_info->req.opcode.s.minor = 3;
|
||||
|
||||
req_info->req.param1 = req->nbytes; /* Encryption Data length */
|
||||
req_info->req.param2 = 0; /*Auth data length */
|
||||
|
||||
fctx->enc.enc_ctrl.e.enc_cipher = cipher_type;
|
||||
fctx->enc.enc_ctrl.e.aes_key = aes_key_type;
|
||||
fctx->enc.enc_ctrl.e.iv_source = FROM_DPTR;
|
||||
|
||||
if (cipher_type == AES_XTS)
|
||||
memcpy(fctx->enc.encr_key, ctx->enc_key, ctx->key_len * 2);
|
||||
else
|
||||
memcpy(fctx->enc.encr_key, ctx->enc_key, ctx->key_len);
|
||||
ctrl_flags = (u64 *)&fctx->enc.enc_ctrl.flags;
|
||||
*ctrl_flags = cpu_to_be64(*ctrl_flags);
|
||||
|
||||
*offset_control = cpu_to_be64(((u64)(enc_iv_len) << 16));
|
||||
/* Storing Packet Data Information in offset
|
||||
* Control Word First 8 bytes
|
||||
*/
|
||||
req_info->in[*argcnt].vptr = (u8 *)offset_control;
|
||||
req_info->in[*argcnt].size = CONTROL_WORD_LEN;
|
||||
req_info->req.dlen += CONTROL_WORD_LEN;
|
||||
++(*argcnt);
|
||||
|
||||
req_info->in[*argcnt].vptr = (u8 *)fctx;
|
||||
req_info->in[*argcnt].size = sizeof(struct fc_context);
|
||||
req_info->req.dlen += sizeof(struct fc_context);
|
||||
|
||||
++(*argcnt);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static inline u32 create_input_list(struct ablkcipher_request *req, u32 enc,
|
||||
u32 cipher_type, u32 aes_key_type,
|
||||
u32 enc_iv_len)
|
||||
{
|
||||
struct cvm_req_ctx *rctx = ablkcipher_request_ctx(req);
|
||||
struct cpt_request_info *req_info = &rctx->cpt_req;
|
||||
u32 argcnt = 0;
|
||||
|
||||
create_ctx_hdr(req, enc, cipher_type, aes_key_type, &argcnt);
|
||||
update_input_iv(req_info, req->info, enc_iv_len, &argcnt);
|
||||
update_input_data(req_info, req->src, req->nbytes, &argcnt);
|
||||
req_info->incnt = argcnt;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static inline void store_cb_info(struct ablkcipher_request *req,
|
||||
struct cpt_request_info *req_info)
|
||||
{
|
||||
req_info->callback = (void *)cvm_callback;
|
||||
req_info->callback_arg = (void *)&req->base;
|
||||
}
|
||||
|
||||
static inline void create_output_list(struct ablkcipher_request *req,
|
||||
u32 cipher_type,
|
||||
u32 enc_iv_len)
|
||||
{
|
||||
struct cvm_req_ctx *rctx = ablkcipher_request_ctx(req);
|
||||
struct cpt_request_info *req_info = &rctx->cpt_req;
|
||||
u32 argcnt = 0;
|
||||
|
||||
/* OUTPUT Buffer Processing
|
||||
* AES encryption/decryption output would be
|
||||
* received in the following format
|
||||
*
|
||||
* ------IV--------|------ENCRYPTED/DECRYPTED DATA-----|
|
||||
* [ 16 Bytes/ [ Request Enc/Dec/ DATA Len AES CBC ]
|
||||
*/
|
||||
/* Reading IV information */
|
||||
update_output_iv(req_info, req->info, enc_iv_len, &argcnt);
|
||||
update_output_data(req_info, req->dst, req->nbytes, &argcnt);
|
||||
req_info->outcnt = argcnt;
|
||||
}
|
||||
|
||||
static inline int cvm_enc_dec(struct ablkcipher_request *req, u32 enc,
|
||||
u32 cipher_type)
|
||||
{
|
||||
struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
|
||||
struct cvm_enc_ctx *ctx = crypto_ablkcipher_ctx(tfm);
|
||||
u32 key_type = AES_128_BIT;
|
||||
struct cvm_req_ctx *rctx = ablkcipher_request_ctx(req);
|
||||
u32 enc_iv_len = crypto_ablkcipher_ivsize(tfm);
|
||||
struct fc_context *fctx = &rctx->fctx;
|
||||
struct cpt_request_info *req_info = &rctx->cpt_req;
|
||||
void *cdev = NULL;
|
||||
int status;
|
||||
|
||||
switch (ctx->key_len) {
|
||||
case 16:
|
||||
key_type = AES_128_BIT;
|
||||
break;
|
||||
case 24:
|
||||
key_type = AES_192_BIT;
|
||||
break;
|
||||
case 32:
|
||||
if (cipher_type == AES_XTS)
|
||||
key_type = AES_128_BIT;
|
||||
else
|
||||
key_type = AES_256_BIT;
|
||||
break;
|
||||
case 64:
|
||||
if (cipher_type == AES_XTS)
|
||||
key_type = AES_256_BIT;
|
||||
else
|
||||
return -EINVAL;
|
||||
break;
|
||||
default:
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
if (cipher_type == DES3_CBC)
|
||||
key_type = 0;
|
||||
|
||||
memset(req_info, 0, sizeof(struct cpt_request_info));
|
||||
memset(fctx, 0, sizeof(struct fc_context));
|
||||
create_input_list(req, enc, cipher_type, key_type, enc_iv_len);
|
||||
create_output_list(req, cipher_type, enc_iv_len);
|
||||
store_cb_info(req, req_info);
|
||||
cdev = dev_handle.cdev[smp_processor_id()];
|
||||
status = cptvf_do_request(cdev, req_info);
|
||||
/* We perform an asynchronous send and once
|
||||
* the request is completed the driver would
|
||||
* intimate through registered call back functions
|
||||
*/
|
||||
|
||||
if (status)
|
||||
return status;
|
||||
else
|
||||
return -EINPROGRESS;
|
||||
}
|
||||
|
||||
int cvm_des3_encrypt_cbc(struct ablkcipher_request *req)
|
||||
{
|
||||
return cvm_enc_dec(req, true, DES3_CBC);
|
||||
}
|
||||
|
||||
int cvm_des3_decrypt_cbc(struct ablkcipher_request *req)
|
||||
{
|
||||
return cvm_enc_dec(req, false, DES3_CBC);
|
||||
}
|
||||
|
||||
int cvm_aes_encrypt_xts(struct ablkcipher_request *req)
|
||||
{
|
||||
return cvm_enc_dec(req, true, AES_XTS);
|
||||
}
|
||||
|
||||
int cvm_aes_decrypt_xts(struct ablkcipher_request *req)
|
||||
{
|
||||
return cvm_enc_dec(req, false, AES_XTS);
|
||||
}
|
||||
|
||||
int cvm_aes_encrypt_cbc(struct ablkcipher_request *req)
|
||||
{
|
||||
return cvm_enc_dec(req, true, AES_CBC);
|
||||
}
|
||||
|
||||
int cvm_aes_decrypt_cbc(struct ablkcipher_request *req)
|
||||
{
|
||||
return cvm_enc_dec(req, false, AES_CBC);
|
||||
}
|
||||
|
||||
int cvm_xts_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
|
||||
u32 keylen)
|
||||
{
|
||||
struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
|
||||
struct cvm_enc_ctx *ctx = crypto_tfm_ctx(tfm);
|
||||
int err;
|
||||
const u8 *key1 = key;
|
||||
const u8 *key2 = key + (keylen / 2);
|
||||
|
||||
err = xts_check_key(tfm, key, keylen);
|
||||
if (err)
|
||||
return err;
|
||||
ctx->key_len = keylen;
|
||||
memcpy(ctx->enc_key, key1, keylen / 2);
|
||||
memcpy(ctx->enc_key + KEY2_OFFSET, key2, keylen / 2);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
int cvm_enc_dec_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
|
||||
u32 keylen)
|
||||
{
|
||||
struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
|
||||
struct cvm_enc_ctx *ctx = crypto_tfm_ctx(tfm);
|
||||
|
||||
if ((keylen == 16) || (keylen == 24) || (keylen == 32)) {
|
||||
ctx->key_len = keylen;
|
||||
memcpy(ctx->enc_key, key, keylen);
|
||||
return 0;
|
||||
}
|
||||
crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
|
||||
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
int cvm_enc_dec_init(struct crypto_tfm *tfm)
|
||||
{
|
||||
struct cvm_enc_ctx *ctx = crypto_tfm_ctx(tfm);
|
||||
|
||||
memset(ctx, 0, sizeof(*ctx));
|
||||
tfm->crt_ablkcipher.reqsize = sizeof(struct cvm_req_ctx) +
|
||||
sizeof(struct ablkcipher_request);
|
||||
/* Additional memory for ablkcipher_request is
|
||||
* allocated since the cryptd daemon uses
|
||||
* this memory for request_ctx information
|
||||
*/
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
struct crypto_alg algs[] = { {
|
||||
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
|
||||
.cra_blocksize = AES_BLOCK_SIZE,
|
||||
.cra_ctxsize = sizeof(struct cvm_enc_ctx),
|
||||
.cra_alignmask = 7,
|
||||
.cra_priority = 4001,
|
||||
.cra_name = "xts(aes)",
|
||||
.cra_driver_name = "cavium-xts-aes",
|
||||
.cra_type = &crypto_ablkcipher_type,
|
||||
.cra_u = {
|
||||
.ablkcipher = {
|
||||
.ivsize = AES_BLOCK_SIZE,
|
||||
.min_keysize = 2 * AES_MIN_KEY_SIZE,
|
||||
.max_keysize = 2 * AES_MAX_KEY_SIZE,
|
||||
.setkey = cvm_xts_setkey,
|
||||
.encrypt = cvm_aes_encrypt_xts,
|
||||
.decrypt = cvm_aes_decrypt_xts,
|
||||
},
|
||||
},
|
||||
.cra_init = cvm_enc_dec_init,
|
||||
.cra_module = THIS_MODULE,
|
||||
}, {
|
||||
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
|
||||
.cra_blocksize = AES_BLOCK_SIZE,
|
||||
.cra_ctxsize = sizeof(struct cvm_enc_ctx),
|
||||
.cra_alignmask = 7,
|
||||
.cra_priority = 4001,
|
||||
.cra_name = "cbc(aes)",
|
||||
.cra_driver_name = "cavium-cbc-aes",
|
||||
.cra_type = &crypto_ablkcipher_type,
|
||||
.cra_u = {
|
||||
.ablkcipher = {
|
||||
.ivsize = AES_BLOCK_SIZE,
|
||||
.min_keysize = AES_MIN_KEY_SIZE,
|
||||
.max_keysize = AES_MAX_KEY_SIZE,
|
||||
.setkey = cvm_enc_dec_setkey,
|
||||
.encrypt = cvm_aes_encrypt_cbc,
|
||||
.decrypt = cvm_aes_decrypt_cbc,
|
||||
},
|
||||
},
|
||||
.cra_init = cvm_enc_dec_init,
|
||||
.cra_module = THIS_MODULE,
|
||||
}, {
|
||||
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
|
||||
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
|
||||
.cra_ctxsize = sizeof(struct cvm_des3_ctx),
|
||||
.cra_alignmask = 7,
|
||||
.cra_priority = 4001,
|
||||
.cra_name = "cbc(des3_ede)",
|
||||
.cra_driver_name = "cavium-cbc-des3_ede",
|
||||
.cra_type = &crypto_ablkcipher_type,
|
||||
.cra_u = {
|
||||
.ablkcipher = {
|
||||
.min_keysize = DES3_EDE_KEY_SIZE,
|
||||
.max_keysize = DES3_EDE_KEY_SIZE,
|
||||
.ivsize = DES_BLOCK_SIZE,
|
||||
.setkey = cvm_enc_dec_setkey,
|
||||
.encrypt = cvm_des3_encrypt_cbc,
|
||||
.decrypt = cvm_des3_decrypt_cbc,
|
||||
},
|
||||
},
|
||||
.cra_init = cvm_enc_dec_init,
|
||||
.cra_module = THIS_MODULE,
|
||||
} };
|
||||
|
||||
static inline int cav_register_algs(void)
|
||||
{
|
||||
int err = 0;
|
||||
|
||||
err = crypto_register_algs(algs, ARRAY_SIZE(algs));
|
||||
if (err)
|
||||
return err;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static inline void cav_unregister_algs(void)
|
||||
{
|
||||
crypto_unregister_algs(algs, ARRAY_SIZE(algs));
|
||||
}
|
||||
|
||||
int cvm_crypto_init(struct cpt_vf *cptvf)
|
||||
{
|
||||
struct pci_dev *pdev = cptvf->pdev;
|
||||
u32 dev_count;
|
||||
|
||||
dev_count = dev_handle.dev_count;
|
||||
dev_handle.cdev[dev_count] = cptvf;
|
||||
dev_handle.dev_count++;
|
||||
|
||||
if (dev_count == 3) {
|
||||
if (cav_register_algs()) {
|
||||
dev_err(&pdev->dev, "Error in registering crypto algorithms\n");
|
||||
return -EINVAL;
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
void cvm_crypto_exit(void)
|
||||
{
|
||||
u32 dev_count;
|
||||
|
||||
dev_count = --dev_handle.dev_count;
|
||||
if (!dev_count)
|
||||
cav_unregister_algs();
|
||||
}
|
|
@ -0,0 +1,113 @@
|
|||
/*
|
||||
* Copyright (C) 2016 Cavium, Inc.
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify it
|
||||
* under the terms of version 2 of the GNU General Public License
|
||||
* as published by the Free Software Foundation.
|
||||
*/
|
||||
|
||||
#ifndef _CPTVF_ALGS_H_
|
||||
#define _CPTVF_ALGS_H_
|
||||
|
||||
#include "request_manager.h"
|
||||
|
||||
#define MAX_DEVICES 16
|
||||
#define MAJOR_OP_FC 0x33
|
||||
#define MAX_ENC_KEY_SIZE 32
|
||||
#define MAX_HASH_KEY_SIZE 64
|
||||
#define MAX_KEY_SIZE (MAX_ENC_KEY_SIZE + MAX_HASH_KEY_SIZE)
|
||||
#define CONTROL_WORD_LEN 8
|
||||
#define KEY2_OFFSET 48
|
||||
|
||||
#define DMA_MODE_FLAG(dma_mode) \
|
||||
(((dma_mode) == DMA_GATHER_SCATTER) ? (1 << 7) : 0)
|
||||
|
||||
enum req_type {
|
||||
AE_CORE_REQ,
|
||||
SE_CORE_REQ,
|
||||
};
|
||||
|
||||
enum cipher_type {
|
||||
DES3_CBC = 0x1,
|
||||
DES3_ECB = 0x2,
|
||||
AES_CBC = 0x3,
|
||||
AES_ECB = 0x4,
|
||||
AES_CFB = 0x5,
|
||||
AES_CTR = 0x6,
|
||||
AES_GCM = 0x7,
|
||||
AES_XTS = 0x8
|
||||
};
|
||||
|
||||
enum aes_type {
|
||||
AES_128_BIT = 0x1,
|
||||
AES_192_BIT = 0x2,
|
||||
AES_256_BIT = 0x3
|
||||
};
|
||||
|
||||
union encr_ctrl {
|
||||
u64 flags;
|
||||
struct {
|
||||
#if defined(__BIG_ENDIAN_BITFIELD)
|
||||
u64 enc_cipher:4;
|
||||
u64 reserved1:1;
|
||||
u64 aes_key:2;
|
||||
u64 iv_source:1;
|
||||
u64 hash_type:4;
|
||||
u64 reserved2:3;
|
||||
u64 auth_input_type:1;
|
||||
u64 mac_len:8;
|
||||
u64 reserved3:8;
|
||||
u64 encr_offset:16;
|
||||
u64 iv_offset:8;
|
||||
u64 auth_offset:8;
|
||||
#else
|
||||
u64 auth_offset:8;
|
||||
u64 iv_offset:8;
|
||||
u64 encr_offset:16;
|
||||
u64 reserved3:8;
|
||||
u64 mac_len:8;
|
||||
u64 auth_input_type:1;
|
||||
u64 reserved2:3;
|
||||
u64 hash_type:4;
|
||||
u64 iv_source:1;
|
||||
u64 aes_key:2;
|
||||
u64 reserved1:1;
|
||||
u64 enc_cipher:4;
|
||||
#endif
|
||||
} e;
|
||||
};
|
||||
|
||||
struct enc_context {
|
||||
union encr_ctrl enc_ctrl;
|
||||
u8 encr_key[32];
|
||||
u8 encr_iv[16];
|
||||
};
|
||||
|
||||
struct fchmac_context {
|
||||
u8 ipad[64];
|
||||
u8 opad[64]; /* or OPAD */
|
||||
};
|
||||
|
||||
struct fc_context {
|
||||
struct enc_context enc;
|
||||
struct fchmac_context hmac;
|
||||
};
|
||||
|
||||
struct cvm_enc_ctx {
|
||||
u32 key_len;
|
||||
u8 enc_key[MAX_KEY_SIZE];
|
||||
};
|
||||
|
||||
struct cvm_des3_ctx {
|
||||
u32 key_len;
|
||||
u8 des3_key[MAX_KEY_SIZE];
|
||||
};
|
||||
|
||||
struct cvm_req_ctx {
|
||||
struct cpt_request_info cpt_req;
|
||||
u64 control_word;
|
||||
struct fc_context fctx;
|
||||
};
|
||||
|
||||
int cptvf_do_request(void *cptvf, struct cpt_request_info *req);
|
||||
#endif /*_CPTVF_ALGS_H_*/
|
|
@ -0,0 +1,936 @@
|
|||
/*
|
||||
* Copyright (C) 2016 Cavium, Inc.
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of version 2 of the GNU General Public License
|
||||
* as published by the Free Software Foundation.
|
||||
*/
|
||||
|
||||
#include <linux/interrupt.h>
|
||||
#include <linux/module.h>
|
||||
|
||||
#include "cptvf.h"
|
||||
|
||||
#define DRV_NAME "thunder-cptvf"
|
||||
#define DRV_VERSION "1.0"
|
||||
|
||||
struct cptvf_wqe {
|
||||
struct tasklet_struct twork;
|
||||
void *cptvf;
|
||||
u32 qno;
|
||||
};
|
||||
|
||||
struct cptvf_wqe_info {
|
||||
struct cptvf_wqe vq_wqe[CPT_NUM_QS_PER_VF];
|
||||
};
|
||||
|
||||
static void vq_work_handler(unsigned long data)
|
||||
{
|
||||
struct cptvf_wqe_info *cwqe_info = (struct cptvf_wqe_info *)data;
|
||||
struct cptvf_wqe *cwqe = &cwqe_info->vq_wqe[0];
|
||||
|
||||
vq_post_process(cwqe->cptvf, cwqe->qno);
|
||||
}
|
||||
|
||||
static int init_worker_threads(struct cpt_vf *cptvf)
|
||||
{
|
||||
struct pci_dev *pdev = cptvf->pdev;
|
||||
struct cptvf_wqe_info *cwqe_info;
|
||||
int i;
|
||||
|
||||
cwqe_info = kzalloc(sizeof(*cwqe_info), GFP_KERNEL);
|
||||
if (!cwqe_info)
|
||||
return -ENOMEM;
|
||||
|
||||
if (cptvf->nr_queues) {
|
||||
dev_info(&pdev->dev, "Creating VQ worker threads (%d)\n",
|
||||
cptvf->nr_queues);
|
||||
}
|
||||
|
||||
for (i = 0; i < cptvf->nr_queues; i++) {
|
||||
tasklet_init(&cwqe_info->vq_wqe[i].twork, vq_work_handler,
|
||||
(u64)cwqe_info);
|
||||
cwqe_info->vq_wqe[i].qno = i;
|
||||
cwqe_info->vq_wqe[i].cptvf = cptvf;
|
||||
}
|
||||
|
||||
cptvf->wqe_info = cwqe_info;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void cleanup_worker_threads(struct cpt_vf *cptvf)
|
||||
{
|
||||
struct cptvf_wqe_info *cwqe_info;
|
||||
struct pci_dev *pdev = cptvf->pdev;
|
||||
int i;
|
||||
|
||||
cwqe_info = (struct cptvf_wqe_info *)cptvf->wqe_info;
|
||||
if (!cwqe_info)
|
||||
return;
|
||||
|
||||
if (cptvf->nr_queues) {
|
||||
dev_info(&pdev->dev, "Cleaning VQ worker threads (%u)\n",
|
||||
cptvf->nr_queues);
|
||||
}
|
||||
|
||||
for (i = 0; i < cptvf->nr_queues; i++)
|
||||
tasklet_kill(&cwqe_info->vq_wqe[i].twork);
|
||||
|
||||
kzfree(cwqe_info);
|
||||
cptvf->wqe_info = NULL;
|
||||
}
|
||||
|
||||
static void free_pending_queues(struct pending_qinfo *pqinfo)
|
||||
{
|
||||
int i;
|
||||
struct pending_queue *queue;
|
||||
|
||||
for_each_pending_queue(pqinfo, queue, i) {
|
||||
if (!queue->head)
|
||||
continue;
|
||||
|
||||
/* free single queue */
|
||||
kzfree((queue->head));
|
||||
|
||||
queue->front = 0;
|
||||
queue->rear = 0;
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
pqinfo->qlen = 0;
|
||||
pqinfo->nr_queues = 0;
|
||||
}
|
||||
|
||||
static int alloc_pending_queues(struct pending_qinfo *pqinfo, u32 qlen,
|
||||
u32 nr_queues)
|
||||
{
|
||||
u32 i;
|
||||
size_t size;
|
||||
int ret;
|
||||
struct pending_queue *queue = NULL;
|
||||
|
||||
pqinfo->nr_queues = nr_queues;
|
||||
pqinfo->qlen = qlen;
|
||||
|
||||
size = (qlen * sizeof(struct pending_entry));
|
||||
|
||||
for_each_pending_queue(pqinfo, queue, i) {
|
||||
queue->head = kzalloc((size), GFP_KERNEL);
|
||||
if (!queue->head) {
|
||||
ret = -ENOMEM;
|
||||
goto pending_qfail;
|
||||
}
|
||||
|
||||
queue->front = 0;
|
||||
queue->rear = 0;
|
||||
atomic64_set((&queue->pending_count), (0));
|
||||
|
||||
/* init queue spin lock */
|
||||
spin_lock_init(&queue->lock);
|
||||
}
|
||||
|
||||
return 0;
|
||||
|
||||
pending_qfail:
|
||||
free_pending_queues(pqinfo);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int init_pending_queues(struct cpt_vf *cptvf, u32 qlen, u32 nr_queues)
|
||||
{
|
||||
struct pci_dev *pdev = cptvf->pdev;
|
||||
int ret;
|
||||
|
||||
if (!nr_queues)
|
||||
return 0;
|
||||
|
||||
ret = alloc_pending_queues(&cptvf->pqinfo, qlen, nr_queues);
|
||||
if (ret) {
|
||||
dev_err(&pdev->dev, "failed to setup pending queues (%u)\n",
|
||||
nr_queues);
|
||||
return ret;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void cleanup_pending_queues(struct cpt_vf *cptvf)
|
||||
{
|
||||
struct pci_dev *pdev = cptvf->pdev;
|
||||
|
||||
if (!cptvf->nr_queues)
|
||||
return;
|
||||
|
||||
dev_info(&pdev->dev, "Cleaning VQ pending queue (%u)\n",
|
||||
cptvf->nr_queues);
|
||||
free_pending_queues(&cptvf->pqinfo);
|
||||
}
|
||||
|
||||
static void free_command_queues(struct cpt_vf *cptvf,
|
||||
struct command_qinfo *cqinfo)
|
||||
{
|
||||
int i;
|
||||
struct command_queue *queue = NULL;
|
||||
struct command_chunk *chunk = NULL;
|
||||
struct pci_dev *pdev = cptvf->pdev;
|
||||
struct hlist_node *node;
|
||||
|
||||
/* clean up for each queue */
|
||||
for (i = 0; i < cptvf->nr_queues; i++) {
|
||||
queue = &cqinfo->queue[i];
|
||||
if (hlist_empty(&cqinfo->queue[i].chead))
|
||||
continue;
|
||||
|
||||
hlist_for_each_entry_safe(chunk, node, &cqinfo->queue[i].chead,
|
||||
nextchunk) {
|
||||
dma_free_coherent(&pdev->dev, chunk->size,
|
||||
chunk->head,
|
||||
chunk->dma_addr);
|
||||
chunk->head = NULL;
|
||||
chunk->dma_addr = 0;
|
||||
hlist_del(&chunk->nextchunk);
|
||||
kzfree(chunk);
|
||||
}
|
||||
|
||||
queue->nchunks = 0;
|
||||
queue->idx = 0;
|
||||
}
|
||||
|
||||
/* common cleanup */
|
||||
cqinfo->cmd_size = 0;
|
||||
}
|
||||
|
||||
static int alloc_command_queues(struct cpt_vf *cptvf,
|
||||
struct command_qinfo *cqinfo, size_t cmd_size,
|
||||
u32 qlen)
|
||||
{
|
||||
int i;
|
||||
size_t q_size;
|
||||
struct command_queue *queue = NULL;
|
||||
struct pci_dev *pdev = cptvf->pdev;
|
||||
|
||||
/* common init */
|
||||
cqinfo->cmd_size = cmd_size;
|
||||
/* Qsize in dwords, needed for SADDR config, 1-next chunk pointer */
|
||||
cptvf->qsize = min(qlen, cqinfo->qchunksize) *
|
||||
CPT_NEXT_CHUNK_PTR_SIZE + 1;
|
||||
/* Qsize in bytes to create space for alignment */
|
||||
q_size = qlen * cqinfo->cmd_size;
|
||||
|
||||
/* per queue initialization */
|
||||
for (i = 0; i < cptvf->nr_queues; i++) {
|
||||
size_t c_size = 0;
|
||||
size_t rem_q_size = q_size;
|
||||
struct command_chunk *curr = NULL, *first = NULL, *last = NULL;
|
||||
u32 qcsize_bytes = cqinfo->qchunksize * cqinfo->cmd_size;
|
||||
|
||||
queue = &cqinfo->queue[i];
|
||||
INIT_HLIST_HEAD(&cqinfo->queue[i].chead);
|
||||
do {
|
||||
curr = kzalloc(sizeof(*curr), GFP_KERNEL);
|
||||
if (!curr)
|
||||
goto cmd_qfail;
|
||||
|
||||
c_size = (rem_q_size > qcsize_bytes) ? qcsize_bytes :
|
||||
rem_q_size;
|
||||
curr->head = (u8 *)dma_zalloc_coherent(&pdev->dev,
|
||||
c_size + CPT_NEXT_CHUNK_PTR_SIZE,
|
||||
&curr->dma_addr, GFP_KERNEL);
|
||||
if (!curr->head) {
|
||||
dev_err(&pdev->dev, "Command Q (%d) chunk (%d) allocation failed\n",
|
||||
i, queue->nchunks);
|
||||
goto cmd_qfail;
|
||||
}
|
||||
|
||||
curr->size = c_size;
|
||||
if (queue->nchunks == 0) {
|
||||
hlist_add_head(&curr->nextchunk,
|
||||
&cqinfo->queue[i].chead);
|
||||
first = curr;
|
||||
} else {
|
||||
hlist_add_behind(&curr->nextchunk,
|
||||
&last->nextchunk);
|
||||
}
|
||||
|
||||
queue->nchunks++;
|
||||
rem_q_size -= c_size;
|
||||
if (last)
|
||||
*((u64 *)(&last->head[last->size])) = (u64)curr->dma_addr;
|
||||
|
||||
last = curr;
|
||||
} while (rem_q_size);
|
||||
|
||||
/* Make the queue circular */
|
||||
/* Tie back last chunk entry to head */
|
||||
curr = first;
|
||||
*((u64 *)(&last->head[last->size])) = (u64)curr->dma_addr;
|
||||
queue->qhead = curr;
|
||||
spin_lock_init(&queue->lock);
|
||||
}
|
||||
return 0;
|
||||
|
||||
cmd_qfail:
|
||||
free_command_queues(cptvf, cqinfo);
|
||||
return -ENOMEM;
|
||||
}
|
||||
|
||||
static int init_command_queues(struct cpt_vf *cptvf, u32 qlen)
|
||||
{
|
||||
struct pci_dev *pdev = cptvf->pdev;
|
||||
int ret;
|
||||
|
||||
/* setup AE command queues */
|
||||
ret = alloc_command_queues(cptvf, &cptvf->cqinfo, CPT_INST_SIZE,
|
||||
qlen);
|
||||
if (ret) {
|
||||
dev_err(&pdev->dev, "failed to allocate AE command queues (%u)\n",
|
||||
cptvf->nr_queues);
|
||||
return ret;
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
static void cleanup_command_queues(struct cpt_vf *cptvf)
|
||||
{
|
||||
struct pci_dev *pdev = cptvf->pdev;
|
||||
|
||||
if (!cptvf->nr_queues)
|
||||
return;
|
||||
|
||||
dev_info(&pdev->dev, "Cleaning VQ command queue (%u)\n",
|
||||
cptvf->nr_queues);
|
||||
free_command_queues(cptvf, &cptvf->cqinfo);
|
||||
}
|
||||
|
||||
static void cptvf_sw_cleanup(struct cpt_vf *cptvf)
|
||||
{
|
||||
cleanup_worker_threads(cptvf);
|
||||
cleanup_pending_queues(cptvf);
|
||||
cleanup_command_queues(cptvf);
|
||||
}
|
||||
|
||||
static int cptvf_sw_init(struct cpt_vf *cptvf, u32 qlen, u32 nr_queues)
|
||||
{
|
||||
struct pci_dev *pdev = cptvf->pdev;
|
||||
int ret = 0;
|
||||
u32 max_dev_queues = 0;
|
||||
|
||||
max_dev_queues = CPT_NUM_QS_PER_VF;
|
||||
/* possible cpus */
|
||||
nr_queues = min_t(u32, nr_queues, max_dev_queues);
|
||||
cptvf->nr_queues = nr_queues;
|
||||
|
||||
ret = init_command_queues(cptvf, qlen);
|
||||
if (ret) {
|
||||
dev_err(&pdev->dev, "Failed to setup command queues (%u)\n",
|
||||
nr_queues);
|
||||
return ret;
|
||||
}
|
||||
|
||||
ret = init_pending_queues(cptvf, qlen, nr_queues);
|
||||
if (ret) {
|
||||
dev_err(&pdev->dev, "Failed to setup pending queues (%u)\n",
|
||||
nr_queues);
|
||||
goto setup_pqfail;
|
||||
}
|
||||
|
||||
/* Create worker threads for BH processing */
|
||||
ret = init_worker_threads(cptvf);
|
||||
if (ret) {
|
||||
dev_err(&pdev->dev, "Failed to setup worker threads\n");
|
||||
goto init_work_fail;
|
||||
}
|
||||
|
||||
return 0;
|
||||
|
||||
init_work_fail:
|
||||
cleanup_worker_threads(cptvf);
|
||||
cleanup_pending_queues(cptvf);
|
||||
|
||||
setup_pqfail:
|
||||
cleanup_command_queues(cptvf);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
static void cptvf_disable_msix(struct cpt_vf *cptvf)
|
||||
{
|
||||
if (cptvf->msix_enabled) {
|
||||
pci_disable_msix(cptvf->pdev);
|
||||
cptvf->msix_enabled = 0;
|
||||
}
|
||||
}
|
||||
|
||||
static int cptvf_enable_msix(struct cpt_vf *cptvf)
|
||||
{
|
||||
int i, ret;
|
||||
|
||||
for (i = 0; i < CPT_VF_MSIX_VECTORS; i++)
|
||||
cptvf->msix_entries[i].entry = i;
|
||||
|
||||
ret = pci_enable_msix(cptvf->pdev, cptvf->msix_entries,
|
||||
CPT_VF_MSIX_VECTORS);
|
||||
if (ret) {
|
||||
dev_err(&cptvf->pdev->dev, "Request for #%d msix vectors failed\n",
|
||||
CPT_VF_MSIX_VECTORS);
|
||||
return ret;
|
||||
}
|
||||
|
||||
cptvf->msix_enabled = 1;
|
||||
/* Mark MSIX enabled */
|
||||
cptvf->flags |= CPT_FLAG_MSIX_ENABLED;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void cptvf_free_all_interrupts(struct cpt_vf *cptvf)
|
||||
{
|
||||
int irq;
|
||||
|
||||
for (irq = 0; irq < CPT_VF_MSIX_VECTORS; irq++) {
|
||||
if (cptvf->irq_allocated[irq])
|
||||
irq_set_affinity_hint(cptvf->msix_entries[irq].vector,
|
||||
NULL);
|
||||
free_cpumask_var(cptvf->affinity_mask[irq]);
|
||||
free_irq(cptvf->msix_entries[irq].vector, cptvf);
|
||||
cptvf->irq_allocated[irq] = false;
|
||||
}
|
||||
}
|
||||
|
||||
static void cptvf_write_vq_ctl(struct cpt_vf *cptvf, bool val)
|
||||
{
|
||||
union cptx_vqx_ctl vqx_ctl;
|
||||
|
||||
vqx_ctl.u = cpt_read_csr64(cptvf->reg_base, CPTX_VQX_CTL(0, 0));
|
||||
vqx_ctl.s.ena = val;
|
||||
cpt_write_csr64(cptvf->reg_base, CPTX_VQX_CTL(0, 0), vqx_ctl.u);
|
||||
}
|
||||
|
||||
void cptvf_write_vq_doorbell(struct cpt_vf *cptvf, u32 val)
|
||||
{
|
||||
union cptx_vqx_doorbell vqx_dbell;
|
||||
|
||||
vqx_dbell.u = cpt_read_csr64(cptvf->reg_base,
|
||||
CPTX_VQX_DOORBELL(0, 0));
|
||||
vqx_dbell.s.dbell_cnt = val * 8; /* Num of Instructions * 8 words */
|
||||
cpt_write_csr64(cptvf->reg_base, CPTX_VQX_DOORBELL(0, 0),
|
||||
vqx_dbell.u);
|
||||
}
|
||||
|
||||
static void cptvf_write_vq_inprog(struct cpt_vf *cptvf, u8 val)
|
||||
{
|
||||
union cptx_vqx_inprog vqx_inprg;
|
||||
|
||||
vqx_inprg.u = cpt_read_csr64(cptvf->reg_base, CPTX_VQX_INPROG(0, 0));
|
||||
vqx_inprg.s.inflight = val;
|
||||
cpt_write_csr64(cptvf->reg_base, CPTX_VQX_INPROG(0, 0), vqx_inprg.u);
|
||||
}
|
||||
|
||||
static void cptvf_write_vq_done_numwait(struct cpt_vf *cptvf, u32 val)
|
||||
{
|
||||
union cptx_vqx_done_wait vqx_dwait;
|
||||
|
||||
vqx_dwait.u = cpt_read_csr64(cptvf->reg_base,
|
||||
CPTX_VQX_DONE_WAIT(0, 0));
|
||||
vqx_dwait.s.num_wait = val;
|
||||
cpt_write_csr64(cptvf->reg_base, CPTX_VQX_DONE_WAIT(0, 0),
|
||||
vqx_dwait.u);
|
||||
}
|
||||
|
||||
static void cptvf_write_vq_done_timewait(struct cpt_vf *cptvf, u16 time)
|
||||
{
|
||||
union cptx_vqx_done_wait vqx_dwait;
|
||||
|
||||
vqx_dwait.u = cpt_read_csr64(cptvf->reg_base,
|
||||
CPTX_VQX_DONE_WAIT(0, 0));
|
||||
vqx_dwait.s.time_wait = time;
|
||||
cpt_write_csr64(cptvf->reg_base, CPTX_VQX_DONE_WAIT(0, 0),
|
||||
vqx_dwait.u);
|
||||
}
|
||||
|
||||
static void cptvf_enable_swerr_interrupts(struct cpt_vf *cptvf)
|
||||
{
|
||||
union cptx_vqx_misc_ena_w1s vqx_misc_ena;
|
||||
|
||||
vqx_misc_ena.u = cpt_read_csr64(cptvf->reg_base,
|
||||
CPTX_VQX_MISC_ENA_W1S(0, 0));
|
||||
/* Set mbox(0) interupts for the requested vf */
|
||||
vqx_misc_ena.s.swerr = 1;
|
||||
cpt_write_csr64(cptvf->reg_base, CPTX_VQX_MISC_ENA_W1S(0, 0),
|
||||
vqx_misc_ena.u);
|
||||
}
|
||||
|
||||
static void cptvf_enable_mbox_interrupts(struct cpt_vf *cptvf)
|
||||
{
|
||||
union cptx_vqx_misc_ena_w1s vqx_misc_ena;
|
||||
|
||||
vqx_misc_ena.u = cpt_read_csr64(cptvf->reg_base,
|
||||
CPTX_VQX_MISC_ENA_W1S(0, 0));
|
||||
/* Set mbox(0) interupts for the requested vf */
|
||||
vqx_misc_ena.s.mbox = 1;
|
||||
cpt_write_csr64(cptvf->reg_base, CPTX_VQX_MISC_ENA_W1S(0, 0),
|
||||
vqx_misc_ena.u);
|
||||
}
|
||||
|
||||
static void cptvf_enable_done_interrupts(struct cpt_vf *cptvf)
|
||||
{
|
||||
union cptx_vqx_done_ena_w1s vqx_done_ena;
|
||||
|
||||
vqx_done_ena.u = cpt_read_csr64(cptvf->reg_base,
|
||||
CPTX_VQX_DONE_ENA_W1S(0, 0));
|
||||
/* Set DONE interrupt for the requested vf */
|
||||
vqx_done_ena.s.done = 1;
|
||||
cpt_write_csr64(cptvf->reg_base, CPTX_VQX_DONE_ENA_W1S(0, 0),
|
||||
vqx_done_ena.u);
|
||||
}
|
||||
|
||||
static void cptvf_clear_dovf_intr(struct cpt_vf *cptvf)
|
||||
{
|
||||
union cptx_vqx_misc_int vqx_misc_int;
|
||||
|
||||
vqx_misc_int.u = cpt_read_csr64(cptvf->reg_base,
|
||||
CPTX_VQX_MISC_INT(0, 0));
|
||||
/* W1C for the VF */
|
||||
vqx_misc_int.s.dovf = 1;
|
||||
cpt_write_csr64(cptvf->reg_base, CPTX_VQX_MISC_INT(0, 0),
|
||||
vqx_misc_int.u);
|
||||
}
|
||||
|
||||
static void cptvf_clear_irde_intr(struct cpt_vf *cptvf)
|
||||
{
|
||||
union cptx_vqx_misc_int vqx_misc_int;
|
||||
|
||||
vqx_misc_int.u = cpt_read_csr64(cptvf->reg_base,
|
||||
CPTX_VQX_MISC_INT(0, 0));
|
||||
/* W1C for the VF */
|
||||
vqx_misc_int.s.irde = 1;
|
||||
cpt_write_csr64(cptvf->reg_base, CPTX_VQX_MISC_INT(0, 0),
|
||||
vqx_misc_int.u);
|
||||
}
|
||||
|
||||
static void cptvf_clear_nwrp_intr(struct cpt_vf *cptvf)
|
||||
{
|
||||
union cptx_vqx_misc_int vqx_misc_int;
|
||||
|
||||
vqx_misc_int.u = cpt_read_csr64(cptvf->reg_base,
|
||||
CPTX_VQX_MISC_INT(0, 0));
|
||||
/* W1C for the VF */
|
||||
vqx_misc_int.s.nwrp = 1;
|
||||
cpt_write_csr64(cptvf->reg_base,
|
||||
CPTX_VQX_MISC_INT(0, 0), vqx_misc_int.u);
|
||||
}
|
||||
|
||||
static void cptvf_clear_mbox_intr(struct cpt_vf *cptvf)
|
||||
{
|
||||
union cptx_vqx_misc_int vqx_misc_int;
|
||||
|
||||
vqx_misc_int.u = cpt_read_csr64(cptvf->reg_base,
|
||||
CPTX_VQX_MISC_INT(0, 0));
|
||||
/* W1C for the VF */
|
||||
vqx_misc_int.s.mbox = 1;
|
||||
cpt_write_csr64(cptvf->reg_base, CPTX_VQX_MISC_INT(0, 0),
|
||||
vqx_misc_int.u);
|
||||
}
|
||||
|
||||
static void cptvf_clear_swerr_intr(struct cpt_vf *cptvf)
|
||||
{
|
||||
union cptx_vqx_misc_int vqx_misc_int;
|
||||
|
||||
vqx_misc_int.u = cpt_read_csr64(cptvf->reg_base,
|
||||
CPTX_VQX_MISC_INT(0, 0));
|
||||
/* W1C for the VF */
|
||||
vqx_misc_int.s.swerr = 1;
|
||||
cpt_write_csr64(cptvf->reg_base, CPTX_VQX_MISC_INT(0, 0),
|
||||
vqx_misc_int.u);
|
||||
}
|
||||
|
||||
static u64 cptvf_read_vf_misc_intr_status(struct cpt_vf *cptvf)
|
||||
{
|
||||
return cpt_read_csr64(cptvf->reg_base, CPTX_VQX_MISC_INT(0, 0));
|
||||
}
|
||||
|
||||
static irqreturn_t cptvf_misc_intr_handler(int irq, void *cptvf_irq)
|
||||
{
|
||||
struct cpt_vf *cptvf = (struct cpt_vf *)cptvf_irq;
|
||||
struct pci_dev *pdev = cptvf->pdev;
|
||||
u64 intr;
|
||||
|
||||
intr = cptvf_read_vf_misc_intr_status(cptvf);
|
||||
/*Check for MISC interrupt types*/
|
||||
if (likely(intr & CPT_VF_INTR_MBOX_MASK)) {
|
||||
dev_err(&pdev->dev, "Mailbox interrupt 0x%llx on CPT VF %d\n",
|
||||
intr, cptvf->vfid);
|
||||
cptvf_handle_mbox_intr(cptvf);
|
||||
cptvf_clear_mbox_intr(cptvf);
|
||||
} else if (unlikely(intr & CPT_VF_INTR_DOVF_MASK)) {
|
||||
cptvf_clear_dovf_intr(cptvf);
|
||||
/*Clear doorbell count*/
|
||||
cptvf_write_vq_doorbell(cptvf, 0);
|
||||
dev_err(&pdev->dev, "Doorbell overflow error interrupt 0x%llx on CPT VF %d\n",
|
||||
intr, cptvf->vfid);
|
||||
} else if (unlikely(intr & CPT_VF_INTR_IRDE_MASK)) {
|
||||
cptvf_clear_irde_intr(cptvf);
|
||||
dev_err(&pdev->dev, "Instruction NCB read error interrupt 0x%llx on CPT VF %d\n",
|
||||
intr, cptvf->vfid);
|
||||
} else if (unlikely(intr & CPT_VF_INTR_NWRP_MASK)) {
|
||||
cptvf_clear_nwrp_intr(cptvf);
|
||||
dev_err(&pdev->dev, "NCB response write error interrupt 0x%llx on CPT VF %d\n",
|
||||
intr, cptvf->vfid);
|
||||
} else if (unlikely(intr & CPT_VF_INTR_SERR_MASK)) {
|
||||
cptvf_clear_swerr_intr(cptvf);
|
||||
dev_err(&pdev->dev, "Software error interrupt 0x%llx on CPT VF %d\n",
|
||||
intr, cptvf->vfid);
|
||||
} else {
|
||||
dev_err(&pdev->dev, "Unhandled interrupt in CPT VF %d\n",
|
||||
cptvf->vfid);
|
||||
}
|
||||
|
||||
return IRQ_HANDLED;
|
||||
}
|
||||
|
||||
static inline struct cptvf_wqe *get_cptvf_vq_wqe(struct cpt_vf *cptvf,
|
||||
int qno)
|
||||
{
|
||||
struct cptvf_wqe_info *nwqe_info;
|
||||
|
||||
if (unlikely(qno >= cptvf->nr_queues))
|
||||
return NULL;
|
||||
nwqe_info = (struct cptvf_wqe_info *)cptvf->wqe_info;
|
||||
|
||||
return &nwqe_info->vq_wqe[qno];
|
||||
}
|
||||
|
||||
static inline u32 cptvf_read_vq_done_count(struct cpt_vf *cptvf)
|
||||
{
|
||||
union cptx_vqx_done vqx_done;
|
||||
|
||||
vqx_done.u = cpt_read_csr64(cptvf->reg_base, CPTX_VQX_DONE(0, 0));
|
||||
return vqx_done.s.done;
|
||||
}
|
||||
|
||||
static inline void cptvf_write_vq_done_ack(struct cpt_vf *cptvf,
|
||||
u32 ackcnt)
|
||||
{
|
||||
union cptx_vqx_done_ack vqx_dack_cnt;
|
||||
|
||||
vqx_dack_cnt.u = cpt_read_csr64(cptvf->reg_base,
|
||||
CPTX_VQX_DONE_ACK(0, 0));
|
||||
vqx_dack_cnt.s.done_ack = ackcnt;
|
||||
cpt_write_csr64(cptvf->reg_base, CPTX_VQX_DONE_ACK(0, 0),
|
||||
vqx_dack_cnt.u);
|
||||
}
|
||||
|
||||
static irqreturn_t cptvf_done_intr_handler(int irq, void *cptvf_irq)
|
||||
{
|
||||
struct cpt_vf *cptvf = (struct cpt_vf *)cptvf_irq;
|
||||
struct pci_dev *pdev = cptvf->pdev;
|
||||
/* Read the number of completions */
|
||||
u32 intr = cptvf_read_vq_done_count(cptvf);
|
||||
|
||||
if (intr) {
|
||||
struct cptvf_wqe *wqe;
|
||||
|
||||
/* Acknowledge the number of
|
||||
* scheduled completions for processing
|
||||
*/
|
||||
cptvf_write_vq_done_ack(cptvf, intr);
|
||||
wqe = get_cptvf_vq_wqe(cptvf, 0);
|
||||
if (unlikely(!wqe)) {
|
||||
dev_err(&pdev->dev, "No work to schedule for VF (%d)",
|
||||
cptvf->vfid);
|
||||
return IRQ_NONE;
|
||||
}
|
||||
tasklet_hi_schedule(&wqe->twork);
|
||||
}
|
||||
|
||||
return IRQ_HANDLED;
|
||||
}
|
||||
|
||||
static int cptvf_register_misc_intr(struct cpt_vf *cptvf)
|
||||
{
|
||||
struct pci_dev *pdev = cptvf->pdev;
|
||||
int ret;
|
||||
|
||||
/* Register misc interrupt handlers */
|
||||
ret = request_irq(cptvf->msix_entries[CPT_VF_INT_VEC_E_MISC].vector,
|
||||
cptvf_misc_intr_handler, 0, "CPT VF misc intr",
|
||||
cptvf);
|
||||
if (ret)
|
||||
goto fail;
|
||||
|
||||
cptvf->irq_allocated[CPT_VF_INT_VEC_E_MISC] = true;
|
||||
|
||||
/* Enable mailbox interrupt */
|
||||
cptvf_enable_mbox_interrupts(cptvf);
|
||||
cptvf_enable_swerr_interrupts(cptvf);
|
||||
|
||||
return 0;
|
||||
|
||||
fail:
|
||||
dev_err(&pdev->dev, "Request misc irq failed");
|
||||
cptvf_free_all_interrupts(cptvf);
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int cptvf_register_done_intr(struct cpt_vf *cptvf)
|
||||
{
|
||||
struct pci_dev *pdev = cptvf->pdev;
|
||||
int ret;
|
||||
|
||||
/* Register DONE interrupt handlers */
|
||||
ret = request_irq(cptvf->msix_entries[CPT_VF_INT_VEC_E_DONE].vector,
|
||||
cptvf_done_intr_handler, 0, "CPT VF done intr",
|
||||
cptvf);
|
||||
if (ret)
|
||||
goto fail;
|
||||
|
||||
cptvf->irq_allocated[CPT_VF_INT_VEC_E_DONE] = true;
|
||||
|
||||
/* Enable mailbox interrupt */
|
||||
cptvf_enable_done_interrupts(cptvf);
|
||||
return 0;
|
||||
|
||||
fail:
|
||||
dev_err(&pdev->dev, "Request done irq failed\n");
|
||||
cptvf_free_all_interrupts(cptvf);
|
||||
return ret;
|
||||
}
|
||||
|
||||
static void cptvf_unregister_interrupts(struct cpt_vf *cptvf)
|
||||
{
|
||||
cptvf_free_all_interrupts(cptvf);
|
||||
cptvf_disable_msix(cptvf);
|
||||
}
|
||||
|
||||
static void cptvf_set_irq_affinity(struct cpt_vf *cptvf)
|
||||
{
|
||||
struct pci_dev *pdev = cptvf->pdev;
|
||||
int vec, cpu;
|
||||
int irqnum;
|
||||
|
||||
for (vec = 0; vec < CPT_VF_MSIX_VECTORS; vec++) {
|
||||
if (!cptvf->irq_allocated[vec])
|
||||
continue;
|
||||
|
||||
if (!zalloc_cpumask_var(&cptvf->affinity_mask[vec],
|
||||
GFP_KERNEL)) {
|
||||
dev_err(&pdev->dev, "Allocation failed for affinity_mask for VF %d",
|
||||
cptvf->vfid);
|
||||
return;
|
||||
}
|
||||
|
||||
cpu = cptvf->vfid % num_online_cpus();
|
||||
cpumask_set_cpu(cpumask_local_spread(cpu, cptvf->node),
|
||||
cptvf->affinity_mask[vec]);
|
||||
irqnum = cptvf->msix_entries[vec].vector;
|
||||
irq_set_affinity_hint(irqnum, cptvf->affinity_mask[vec]);
|
||||
}
|
||||
}
|
||||
|
||||
static void cptvf_write_vq_saddr(struct cpt_vf *cptvf, u64 val)
|
||||
{
|
||||
union cptx_vqx_saddr vqx_saddr;
|
||||
|
||||
vqx_saddr.u = val;
|
||||
cpt_write_csr64(cptvf->reg_base, CPTX_VQX_SADDR(0, 0), vqx_saddr.u);
|
||||
}
|
||||
|
||||
void cptvf_device_init(struct cpt_vf *cptvf)
|
||||
{
|
||||
u64 base_addr = 0;
|
||||
|
||||
/* Disable the VQ */
|
||||
cptvf_write_vq_ctl(cptvf, 0);
|
||||
/* Reset the doorbell */
|
||||
cptvf_write_vq_doorbell(cptvf, 0);
|
||||
/* Clear inflight */
|
||||
cptvf_write_vq_inprog(cptvf, 0);
|
||||
/* Write VQ SADDR */
|
||||
/* TODO: for now only one queue, so hard coded */
|
||||
base_addr = (u64)(cptvf->cqinfo.queue[0].qhead->dma_addr);
|
||||
cptvf_write_vq_saddr(cptvf, base_addr);
|
||||
/* Configure timerhold / coalescence */
|
||||
cptvf_write_vq_done_timewait(cptvf, CPT_TIMER_THOLD);
|
||||
cptvf_write_vq_done_numwait(cptvf, 1);
|
||||
/* Enable the VQ */
|
||||
cptvf_write_vq_ctl(cptvf, 1);
|
||||
/* Flag the VF ready */
|
||||
cptvf->flags |= CPT_FLAG_DEVICE_READY;
|
||||
}
|
||||
|
||||
static int cptvf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
|
||||
{
|
||||
struct device *dev = &pdev->dev;
|
||||
struct cpt_vf *cptvf;
|
||||
int err;
|
||||
|
||||
cptvf = devm_kzalloc(dev, sizeof(*cptvf), GFP_KERNEL);
|
||||
if (!cptvf)
|
||||
return -ENOMEM;
|
||||
|
||||
pci_set_drvdata(pdev, cptvf);
|
||||
cptvf->pdev = pdev;
|
||||
err = pci_enable_device(pdev);
|
||||
if (err) {
|
||||
dev_err(dev, "Failed to enable PCI device\n");
|
||||
pci_set_drvdata(pdev, NULL);
|
||||
return err;
|
||||
}
|
||||
|
||||
err = pci_request_regions(pdev, DRV_NAME);
|
||||
if (err) {
|
||||
dev_err(dev, "PCI request regions failed 0x%x\n", err);
|
||||
goto cptvf_err_disable_device;
|
||||
}
|
||||
/* Mark as VF driver */
|
||||
cptvf->flags |= CPT_FLAG_VF_DRIVER;
|
||||
err = pci_set_dma_mask(pdev, DMA_BIT_MASK(48));
|
||||
if (err) {
|
||||
dev_err(dev, "Unable to get usable DMA configuration\n");
|
||||
goto cptvf_err_release_regions;
|
||||
}
|
||||
|
||||
err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(48));
|
||||
if (err) {
|
||||
dev_err(dev, "Unable to get 48-bit DMA for consistent allocations\n");
|
||||
goto cptvf_err_release_regions;
|
||||
}
|
||||
|
||||
/* MAP PF's configuration registers */
|
||||
cptvf->reg_base = pcim_iomap(pdev, 0, 0);
|
||||
if (!cptvf->reg_base) {
|
||||
dev_err(dev, "Cannot map config register space, aborting\n");
|
||||
err = -ENOMEM;
|
||||
goto cptvf_err_release_regions;
|
||||
}
|
||||
|
||||
cptvf->node = dev_to_node(&pdev->dev);
|
||||
/* Enable MSI-X */
|
||||
err = cptvf_enable_msix(cptvf);
|
||||
if (err) {
|
||||
dev_err(dev, "cptvf_enable_msix() failed");
|
||||
goto cptvf_err_release_regions;
|
||||
}
|
||||
|
||||
/* Register mailbox interrupts */
|
||||
cptvf_register_misc_intr(cptvf);
|
||||
|
||||
/* Check ready with PF */
|
||||
/* Gets chip ID / device Id from PF if ready */
|
||||
err = cptvf_check_pf_ready(cptvf);
|
||||
if (err) {
|
||||
dev_err(dev, "PF not responding to READY msg");
|
||||
goto cptvf_err_release_regions;
|
||||
}
|
||||
|
||||
/* CPT VF software resources initialization */
|
||||
cptvf->cqinfo.qchunksize = CPT_CMD_QCHUNK_SIZE;
|
||||
err = cptvf_sw_init(cptvf, CPT_CMD_QLEN, CPT_NUM_QS_PER_VF);
|
||||
if (err) {
|
||||
dev_err(dev, "cptvf_sw_init() failed");
|
||||
goto cptvf_err_release_regions;
|
||||
}
|
||||
/* Convey VQ LEN to PF */
|
||||
err = cptvf_send_vq_size_msg(cptvf);
|
||||
if (err) {
|
||||
dev_err(dev, "PF not responding to QLEN msg");
|
||||
goto cptvf_err_release_regions;
|
||||
}
|
||||
|
||||
/* CPT VF device initialization */
|
||||
cptvf_device_init(cptvf);
|
||||
/* Send msg to PF to assign currnet Q to required group */
|
||||
cptvf->vfgrp = 1;
|
||||
err = cptvf_send_vf_to_grp_msg(cptvf);
|
||||
if (err) {
|
||||
dev_err(dev, "PF not responding to VF_GRP msg");
|
||||
goto cptvf_err_release_regions;
|
||||
}
|
||||
|
||||
cptvf->priority = 1;
|
||||
err = cptvf_send_vf_priority_msg(cptvf);
|
||||
if (err) {
|
||||
dev_err(dev, "PF not responding to VF_PRIO msg");
|
||||
goto cptvf_err_release_regions;
|
||||
}
|
||||
/* Register DONE interrupts */
|
||||
err = cptvf_register_done_intr(cptvf);
|
||||
if (err)
|
||||
goto cptvf_err_release_regions;
|
||||
|
||||
/* Set irq affinity masks */
|
||||
cptvf_set_irq_affinity(cptvf);
|
||||
/* Convey UP to PF */
|
||||
err = cptvf_send_vf_up(cptvf);
|
||||
if (err) {
|
||||
dev_err(dev, "PF not responding to UP msg");
|
||||
goto cptvf_up_fail;
|
||||
}
|
||||
err = cvm_crypto_init(cptvf);
|
||||
if (err) {
|
||||
dev_err(dev, "Algorithm register failed\n");
|
||||
goto cptvf_up_fail;
|
||||
}
|
||||
return 0;
|
||||
|
||||
cptvf_up_fail:
|
||||
cptvf_unregister_interrupts(cptvf);
|
||||
cptvf_err_release_regions:
|
||||
pci_release_regions(pdev);
|
||||
cptvf_err_disable_device:
|
||||
pci_disable_device(pdev);
|
||||
pci_set_drvdata(pdev, NULL);
|
||||
|
||||
return err;
|
||||
}
|
||||
|
||||
static void cptvf_remove(struct pci_dev *pdev)
|
||||
{
|
||||
struct cpt_vf *cptvf = pci_get_drvdata(pdev);
|
||||
|
||||
if (!cptvf)
|
||||
dev_err(&pdev->dev, "Invalid CPT-VF device\n");
|
||||
|
||||
/* Convey DOWN to PF */
|
||||
if (cptvf_send_vf_down(cptvf)) {
|
||||
dev_err(&pdev->dev, "PF not responding to DOWN msg");
|
||||
} else {
|
||||
cptvf_unregister_interrupts(cptvf);
|
||||
cptvf_sw_cleanup(cptvf);
|
||||
pci_set_drvdata(pdev, NULL);
|
||||
pci_release_regions(pdev);
|
||||
pci_disable_device(pdev);
|
||||
cvm_crypto_exit();
|
||||
}
|
||||
}
|
||||
|
||||
static void cptvf_shutdown(struct pci_dev *pdev)
|
||||
{
|
||||
cptvf_remove(pdev);
|
||||
}
|
||||
|
||||
/* Supported devices */
|
||||
static const struct pci_device_id cptvf_id_table[] = {
|
||||
{PCI_VDEVICE(CAVIUM, CPT_81XX_PCI_VF_DEVICE_ID), 0},
|
||||
{ 0, } /* end of table */
|
||||
};
|
||||
|
||||
static struct pci_driver cptvf_pci_driver = {
|
||||
.name = DRV_NAME,
|
||||
.id_table = cptvf_id_table,
|
||||
.probe = cptvf_probe,
|
||||
.remove = cptvf_remove,
|
||||
.shutdown = cptvf_shutdown,
|
||||
};
|
||||
|
||||
module_pci_driver(cptvf_pci_driver);
|
||||
|
||||
MODULE_AUTHOR("George Cherian <george.cherian@cavium.com>");
|
||||
MODULE_DESCRIPTION("Cavium Thunder CPT Virtual Function Driver");
|
||||
MODULE_LICENSE("GPL v2");
|
||||
MODULE_VERSION(DRV_VERSION);
|
||||
MODULE_DEVICE_TABLE(pci, cptvf_id_table);
|
|
@ -0,0 +1,211 @@
|
|||
/*
|
||||
* Copyright (C) 2016 Cavium, Inc.
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of version 2 of the GNU General Public License
|
||||
* as published by the Free Software Foundation.
|
||||
*/
|
||||
|
||||
#include "cptvf.h"
|
||||
|
||||
static void cptvf_send_msg_to_pf(struct cpt_vf *cptvf, struct cpt_mbox *mbx)
|
||||
{
|
||||
/* Writing mbox(1) causes interrupt */
|
||||
cpt_write_csr64(cptvf->reg_base, CPTX_VFX_PF_MBOXX(0, 0, 0),
|
||||
mbx->msg);
|
||||
cpt_write_csr64(cptvf->reg_base, CPTX_VFX_PF_MBOXX(0, 0, 1),
|
||||
mbx->data);
|
||||
}
|
||||
|
||||
/* ACKs PF's mailbox message
|
||||
*/
|
||||
void cptvf_mbox_send_ack(struct cpt_vf *cptvf, struct cpt_mbox *mbx)
|
||||
{
|
||||
mbx->msg = CPT_MBOX_MSG_TYPE_ACK;
|
||||
cptvf_send_msg_to_pf(cptvf, mbx);
|
||||
}
|
||||
|
||||
/* NACKs PF's mailbox message that VF is not able to
|
||||
* complete the action
|
||||
*/
|
||||
void cptvf_mbox_send_nack(struct cpt_vf *cptvf, struct cpt_mbox *mbx)
|
||||
{
|
||||
mbx->msg = CPT_MBOX_MSG_TYPE_NACK;
|
||||
cptvf_send_msg_to_pf(cptvf, mbx);
|
||||
}
|
||||
|
||||
/* Interrupt handler to handle mailbox messages from VFs */
|
||||
void cptvf_handle_mbox_intr(struct cpt_vf *cptvf)
|
||||
{
|
||||
struct cpt_mbox mbx = {};
|
||||
|
||||
/*
|
||||
* MBOX[0] contains msg
|
||||
* MBOX[1] contains data
|
||||
*/
|
||||
mbx.msg = cpt_read_csr64(cptvf->reg_base, CPTX_VFX_PF_MBOXX(0, 0, 0));
|
||||
mbx.data = cpt_read_csr64(cptvf->reg_base, CPTX_VFX_PF_MBOXX(0, 0, 1));
|
||||
dev_dbg(&cptvf->pdev->dev, "%s: Mailbox msg 0x%llx from PF\n",
|
||||
__func__, mbx.msg);
|
||||
switch (mbx.msg) {
|
||||
case CPT_MSG_READY:
|
||||
{
|
||||
cptvf->pf_acked = true;
|
||||
cptvf->vfid = mbx.data;
|
||||
dev_dbg(&cptvf->pdev->dev, "Received VFID %d\n", cptvf->vfid);
|
||||
break;
|
||||
}
|
||||
case CPT_MSG_QBIND_GRP:
|
||||
cptvf->pf_acked = true;
|
||||
cptvf->vftype = mbx.data;
|
||||
dev_dbg(&cptvf->pdev->dev, "VF %d type %s group %d\n",
|
||||
cptvf->vfid, ((mbx.data == SE_TYPES) ? "SE" : "AE"),
|
||||
cptvf->vfgrp);
|
||||
break;
|
||||
case CPT_MBOX_MSG_TYPE_ACK:
|
||||
cptvf->pf_acked = true;
|
||||
break;
|
||||
case CPT_MBOX_MSG_TYPE_NACK:
|
||||
cptvf->pf_nacked = true;
|
||||
break;
|
||||
default:
|
||||
dev_err(&cptvf->pdev->dev, "Invalid msg from PF, msg 0x%llx\n",
|
||||
mbx.msg);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
static int cptvf_send_msg_to_pf_timeout(struct cpt_vf *cptvf,
|
||||
struct cpt_mbox *mbx)
|
||||
{
|
||||
int timeout = CPT_MBOX_MSG_TIMEOUT;
|
||||
int sleep = 10;
|
||||
|
||||
cptvf->pf_acked = false;
|
||||
cptvf->pf_nacked = false;
|
||||
cptvf_send_msg_to_pf(cptvf, mbx);
|
||||
/* Wait for previous message to be acked, timeout 2sec */
|
||||
while (!cptvf->pf_acked) {
|
||||
if (cptvf->pf_nacked)
|
||||
return -EINVAL;
|
||||
msleep(sleep);
|
||||
if (cptvf->pf_acked)
|
||||
break;
|
||||
timeout -= sleep;
|
||||
if (!timeout) {
|
||||
dev_err(&cptvf->pdev->dev, "PF didn't ack to mbox msg %llx from VF%u\n",
|
||||
(mbx->msg & 0xFF), cptvf->vfid);
|
||||
return -EBUSY;
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Checks if VF is able to comminicate with PF
|
||||
* and also gets the CPT number this VF is associated to.
|
||||
*/
|
||||
int cptvf_check_pf_ready(struct cpt_vf *cptvf)
|
||||
{
|
||||
struct pci_dev *pdev = cptvf->pdev;
|
||||
struct cpt_mbox mbx = {};
|
||||
|
||||
mbx.msg = CPT_MSG_READY;
|
||||
if (cptvf_send_msg_to_pf_timeout(cptvf, &mbx)) {
|
||||
dev_err(&pdev->dev, "PF didn't respond to READY msg\n");
|
||||
return -EBUSY;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Communicate VQs size to PF to program CPT(0)_PF_Q(0-15)_CTL of the VF.
|
||||
* Must be ACKed.
|
||||
*/
|
||||
int cptvf_send_vq_size_msg(struct cpt_vf *cptvf)
|
||||
{
|
||||
struct pci_dev *pdev = cptvf->pdev;
|
||||
struct cpt_mbox mbx = {};
|
||||
|
||||
mbx.msg = CPT_MSG_QLEN;
|
||||
mbx.data = cptvf->qsize;
|
||||
if (cptvf_send_msg_to_pf_timeout(cptvf, &mbx)) {
|
||||
dev_err(&pdev->dev, "PF didn't respond to vq_size msg\n");
|
||||
return -EBUSY;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Communicate VF group required to PF and get the VQ binded to that group
|
||||
*/
|
||||
int cptvf_send_vf_to_grp_msg(struct cpt_vf *cptvf)
|
||||
{
|
||||
struct pci_dev *pdev = cptvf->pdev;
|
||||
struct cpt_mbox mbx = {};
|
||||
|
||||
mbx.msg = CPT_MSG_QBIND_GRP;
|
||||
/* Convey group of the VF */
|
||||
mbx.data = cptvf->vfgrp;
|
||||
if (cptvf_send_msg_to_pf_timeout(cptvf, &mbx)) {
|
||||
dev_err(&pdev->dev, "PF didn't respond to vf_type msg\n");
|
||||
return -EBUSY;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Communicate VF group required to PF and get the VQ binded to that group
|
||||
*/
|
||||
int cptvf_send_vf_priority_msg(struct cpt_vf *cptvf)
|
||||
{
|
||||
struct pci_dev *pdev = cptvf->pdev;
|
||||
struct cpt_mbox mbx = {};
|
||||
|
||||
mbx.msg = CPT_MSG_VQ_PRIORITY;
|
||||
/* Convey group of the VF */
|
||||
mbx.data = cptvf->priority;
|
||||
if (cptvf_send_msg_to_pf_timeout(cptvf, &mbx)) {
|
||||
dev_err(&pdev->dev, "PF didn't respond to vf_type msg\n");
|
||||
return -EBUSY;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Communicate to PF that VF is UP and running
|
||||
*/
|
||||
int cptvf_send_vf_up(struct cpt_vf *cptvf)
|
||||
{
|
||||
struct pci_dev *pdev = cptvf->pdev;
|
||||
struct cpt_mbox mbx = {};
|
||||
|
||||
mbx.msg = CPT_MSG_VF_UP;
|
||||
if (cptvf_send_msg_to_pf_timeout(cptvf, &mbx)) {
|
||||
dev_err(&pdev->dev, "PF didn't respond to UP msg\n");
|
||||
return -EBUSY;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Communicate to PF that VF is DOWN and running
|
||||
*/
|
||||
int cptvf_send_vf_down(struct cpt_vf *cptvf)
|
||||
{
|
||||
struct pci_dev *pdev = cptvf->pdev;
|
||||
struct cpt_mbox mbx = {};
|
||||
|
||||
mbx.msg = CPT_MSG_VF_DOWN;
|
||||
if (cptvf_send_msg_to_pf_timeout(cptvf, &mbx)) {
|
||||
dev_err(&pdev->dev, "PF didn't respond to DOWN msg\n");
|
||||
return -EBUSY;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
|
@ -0,0 +1,593 @@
|
|||
/*
|
||||
* Copyright (C) 2016 Cavium, Inc.
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of version 2 of the GNU General Public License
|
||||
* as published by the Free Software Foundation.
|
||||
*/
|
||||
|
||||
#include "cptvf.h"
|
||||
#include "request_manager.h"
|
||||
|
||||
/**
|
||||
* get_free_pending_entry - get free entry from pending queue
|
||||
* @param pqinfo: pending_qinfo structure
|
||||
* @param qno: queue number
|
||||
*/
|
||||
static struct pending_entry *get_free_pending_entry(struct pending_queue *q,
|
||||
int qlen)
|
||||
{
|
||||
struct pending_entry *ent = NULL;
|
||||
|
||||
ent = &q->head[q->rear];
|
||||
if (unlikely(ent->busy)) {
|
||||
ent = NULL;
|
||||
goto no_free_entry;
|
||||
}
|
||||
|
||||
q->rear++;
|
||||
if (unlikely(q->rear == qlen))
|
||||
q->rear = 0;
|
||||
|
||||
no_free_entry:
|
||||
return ent;
|
||||
}
|
||||
|
||||
static inline void pending_queue_inc_front(struct pending_qinfo *pqinfo,
|
||||
int qno)
|
||||
{
|
||||
struct pending_queue *queue = &pqinfo->queue[qno];
|
||||
|
||||
queue->front++;
|
||||
if (unlikely(queue->front == pqinfo->qlen))
|
||||
queue->front = 0;
|
||||
}
|
||||
|
||||
static int setup_sgio_components(struct cpt_vf *cptvf, struct buf_ptr *list,
|
||||
int buf_count, u8 *buffer)
|
||||
{
|
||||
int ret = 0, i, j;
|
||||
int components;
|
||||
struct sglist_component *sg_ptr = NULL;
|
||||
struct pci_dev *pdev = cptvf->pdev;
|
||||
|
||||
if (unlikely(!list)) {
|
||||
dev_err(&pdev->dev, "Input List pointer is NULL\n");
|
||||
return -EFAULT;
|
||||
}
|
||||
|
||||
for (i = 0; i < buf_count; i++) {
|
||||
if (likely(list[i].vptr)) {
|
||||
list[i].dma_addr = dma_map_single(&pdev->dev,
|
||||
list[i].vptr,
|
||||
list[i].size,
|
||||
DMA_BIDIRECTIONAL);
|
||||
if (unlikely(dma_mapping_error(&pdev->dev,
|
||||
list[i].dma_addr))) {
|
||||
dev_err(&pdev->dev, "DMA map kernel buffer failed for component: %d\n",
|
||||
i);
|
||||
ret = -EIO;
|
||||
goto sg_cleanup;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
components = buf_count / 4;
|
||||
sg_ptr = (struct sglist_component *)buffer;
|
||||
for (i = 0; i < components; i++) {
|
||||
sg_ptr->u.s.len0 = cpu_to_be16(list[i * 4 + 0].size);
|
||||
sg_ptr->u.s.len1 = cpu_to_be16(list[i * 4 + 1].size);
|
||||
sg_ptr->u.s.len2 = cpu_to_be16(list[i * 4 + 2].size);
|
||||
sg_ptr->u.s.len3 = cpu_to_be16(list[i * 4 + 3].size);
|
||||
sg_ptr->ptr0 = cpu_to_be64(list[i * 4 + 0].dma_addr);
|
||||
sg_ptr->ptr1 = cpu_to_be64(list[i * 4 + 1].dma_addr);
|
||||
sg_ptr->ptr2 = cpu_to_be64(list[i * 4 + 2].dma_addr);
|
||||
sg_ptr->ptr3 = cpu_to_be64(list[i * 4 + 3].dma_addr);
|
||||
sg_ptr++;
|
||||
}
|
||||
|
||||
components = buf_count % 4;
|
||||
|
||||
switch (components) {
|
||||
case 3:
|
||||
sg_ptr->u.s.len2 = cpu_to_be16(list[i * 4 + 2].size);
|
||||
sg_ptr->ptr2 = cpu_to_be64(list[i * 4 + 2].dma_addr);
|
||||
/* Fall through */
|
||||
case 2:
|
||||
sg_ptr->u.s.len1 = cpu_to_be16(list[i * 4 + 1].size);
|
||||
sg_ptr->ptr1 = cpu_to_be64(list[i * 4 + 1].dma_addr);
|
||||
/* Fall through */
|
||||
case 1:
|
||||
sg_ptr->u.s.len0 = cpu_to_be16(list[i * 4 + 0].size);
|
||||
sg_ptr->ptr0 = cpu_to_be64(list[i * 4 + 0].dma_addr);
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
|
||||
return ret;
|
||||
|
||||
sg_cleanup:
|
||||
for (j = 0; j < i; j++) {
|
||||
if (list[j].dma_addr) {
|
||||
dma_unmap_single(&pdev->dev, list[i].dma_addr,
|
||||
list[i].size, DMA_BIDIRECTIONAL);
|
||||
}
|
||||
|
||||
list[j].dma_addr = 0;
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
static inline int setup_sgio_list(struct cpt_vf *cptvf,
|
||||
struct cpt_info_buffer *info,
|
||||
struct cpt_request_info *req)
|
||||
{
|
||||
u16 g_sz_bytes = 0, s_sz_bytes = 0;
|
||||
int ret = 0;
|
||||
struct pci_dev *pdev = cptvf->pdev;
|
||||
|
||||
if (req->incnt > MAX_SG_IN_CNT || req->outcnt > MAX_SG_OUT_CNT) {
|
||||
dev_err(&pdev->dev, "Request SG components are higher than supported\n");
|
||||
ret = -EINVAL;
|
||||
goto scatter_gather_clean;
|
||||
}
|
||||
|
||||
/* Setup gather (input) components */
|
||||
g_sz_bytes = ((req->incnt + 3) / 4) * sizeof(struct sglist_component);
|
||||
info->gather_components = kzalloc(g_sz_bytes, GFP_KERNEL);
|
||||
if (!info->gather_components) {
|
||||
ret = -ENOMEM;
|
||||
goto scatter_gather_clean;
|
||||
}
|
||||
|
||||
ret = setup_sgio_components(cptvf, req->in,
|
||||
req->incnt,
|
||||
info->gather_components);
|
||||
if (ret) {
|
||||
dev_err(&pdev->dev, "Failed to setup gather list\n");
|
||||
ret = -EFAULT;
|
||||
goto scatter_gather_clean;
|
||||
}
|
||||
|
||||
/* Setup scatter (output) components */
|
||||
s_sz_bytes = ((req->outcnt + 3) / 4) * sizeof(struct sglist_component);
|
||||
info->scatter_components = kzalloc(s_sz_bytes, GFP_KERNEL);
|
||||
if (!info->scatter_components) {
|
||||
ret = -ENOMEM;
|
||||
goto scatter_gather_clean;
|
||||
}
|
||||
|
||||
ret = setup_sgio_components(cptvf, req->out,
|
||||
req->outcnt,
|
||||
info->scatter_components);
|
||||
if (ret) {
|
||||
dev_err(&pdev->dev, "Failed to setup gather list\n");
|
||||
ret = -EFAULT;
|
||||
goto scatter_gather_clean;
|
||||
}
|
||||
|
||||
/* Create and initialize DPTR */
|
||||
info->dlen = g_sz_bytes + s_sz_bytes + SG_LIST_HDR_SIZE;
|
||||
info->in_buffer = kzalloc(info->dlen, GFP_KERNEL);
|
||||
if (!info->in_buffer) {
|
||||
ret = -ENOMEM;
|
||||
goto scatter_gather_clean;
|
||||
}
|
||||
|
||||
((u16 *)info->in_buffer)[0] = req->outcnt;
|
||||
((u16 *)info->in_buffer)[1] = req->incnt;
|
||||
((u16 *)info->in_buffer)[2] = 0;
|
||||
((u16 *)info->in_buffer)[3] = 0;
|
||||
*(u64 *)info->in_buffer = cpu_to_be64p((u64 *)info->in_buffer);
|
||||
|
||||
memcpy(&info->in_buffer[8], info->gather_components,
|
||||
g_sz_bytes);
|
||||
memcpy(&info->in_buffer[8 + g_sz_bytes],
|
||||
info->scatter_components, s_sz_bytes);
|
||||
|
||||
info->dptr_baddr = dma_map_single(&pdev->dev,
|
||||
(void *)info->in_buffer,
|
||||
info->dlen,
|
||||
DMA_BIDIRECTIONAL);
|
||||
if (dma_mapping_error(&pdev->dev, info->dptr_baddr)) {
|
||||
dev_err(&pdev->dev, "Mapping DPTR Failed %d\n", info->dlen);
|
||||
ret = -EIO;
|
||||
goto scatter_gather_clean;
|
||||
}
|
||||
|
||||
/* Create and initialize RPTR */
|
||||
info->out_buffer = kzalloc(COMPLETION_CODE_SIZE, GFP_KERNEL);
|
||||
if (!info->out_buffer) {
|
||||
ret = -ENOMEM;
|
||||
goto scatter_gather_clean;
|
||||
}
|
||||
|
||||
*((u64 *)info->out_buffer) = ~((u64)COMPLETION_CODE_INIT);
|
||||
info->alternate_caddr = (u64 *)info->out_buffer;
|
||||
info->rptr_baddr = dma_map_single(&pdev->dev,
|
||||
(void *)info->out_buffer,
|
||||
COMPLETION_CODE_SIZE,
|
||||
DMA_BIDIRECTIONAL);
|
||||
if (dma_mapping_error(&pdev->dev, info->rptr_baddr)) {
|
||||
dev_err(&pdev->dev, "Mapping RPTR Failed %d\n",
|
||||
COMPLETION_CODE_SIZE);
|
||||
ret = -EIO;
|
||||
goto scatter_gather_clean;
|
||||
}
|
||||
|
||||
return 0;
|
||||
|
||||
scatter_gather_clean:
|
||||
return ret;
|
||||
}
|
||||
|
||||
int send_cpt_command(struct cpt_vf *cptvf, union cpt_inst_s *cmd,
|
||||
u32 qno)
|
||||
{
|
||||
struct pci_dev *pdev = cptvf->pdev;
|
||||
struct command_qinfo *qinfo = NULL;
|
||||
struct command_queue *queue;
|
||||
struct command_chunk *chunk;
|
||||
u8 *ent;
|
||||
int ret = 0;
|
||||
|
||||
if (unlikely(qno >= cptvf->nr_queues)) {
|
||||
dev_err(&pdev->dev, "Invalid queue (qno: %d, nr_queues: %d)\n",
|
||||
qno, cptvf->nr_queues);
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
qinfo = &cptvf->cqinfo;
|
||||
queue = &qinfo->queue[qno];
|
||||
/* lock commad queue */
|
||||
spin_lock(&queue->lock);
|
||||
ent = &queue->qhead->head[queue->idx * qinfo->cmd_size];
|
||||
memcpy(ent, (void *)cmd, qinfo->cmd_size);
|
||||
|
||||
if (++queue->idx >= queue->qhead->size / 64) {
|
||||
struct hlist_node *node;
|
||||
|
||||
hlist_for_each(node, &queue->chead) {
|
||||
chunk = hlist_entry(node, struct command_chunk,
|
||||
nextchunk);
|
||||
if (chunk == queue->qhead) {
|
||||
continue;
|
||||
} else {
|
||||
queue->qhead = chunk;
|
||||
break;
|
||||
}
|
||||
}
|
||||
queue->idx = 0;
|
||||
}
|
||||
/* make sure all memory stores are done before ringing doorbell */
|
||||
smp_wmb();
|
||||
cptvf_write_vq_doorbell(cptvf, 1);
|
||||
/* unlock command queue */
|
||||
spin_unlock(&queue->lock);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
void do_request_cleanup(struct cpt_vf *cptvf,
|
||||
struct cpt_info_buffer *info)
|
||||
{
|
||||
int i;
|
||||
struct pci_dev *pdev = cptvf->pdev;
|
||||
struct cpt_request_info *req;
|
||||
|
||||
if (info->dptr_baddr)
|
||||
dma_unmap_single(&pdev->dev, info->dptr_baddr,
|
||||
info->dlen, DMA_BIDIRECTIONAL);
|
||||
|
||||
if (info->rptr_baddr)
|
||||
dma_unmap_single(&pdev->dev, info->rptr_baddr,
|
||||
COMPLETION_CODE_SIZE, DMA_BIDIRECTIONAL);
|
||||
|
||||
if (info->comp_baddr)
|
||||
dma_unmap_single(&pdev->dev, info->comp_baddr,
|
||||
sizeof(union cpt_res_s), DMA_BIDIRECTIONAL);
|
||||
|
||||
if (info->req) {
|
||||
req = info->req;
|
||||
for (i = 0; i < req->outcnt; i++) {
|
||||
if (req->out[i].dma_addr)
|
||||
dma_unmap_single(&pdev->dev,
|
||||
req->out[i].dma_addr,
|
||||
req->out[i].size,
|
||||
DMA_BIDIRECTIONAL);
|
||||
}
|
||||
|
||||
for (i = 0; i < req->incnt; i++) {
|
||||
if (req->in[i].dma_addr)
|
||||
dma_unmap_single(&pdev->dev,
|
||||
req->in[i].dma_addr,
|
||||
req->in[i].size,
|
||||
DMA_BIDIRECTIONAL);
|
||||
}
|
||||
}
|
||||
|
||||
if (info->scatter_components)
|
||||
kzfree(info->scatter_components);
|
||||
|
||||
if (info->gather_components)
|
||||
kzfree(info->gather_components);
|
||||
|
||||
if (info->out_buffer)
|
||||
kzfree(info->out_buffer);
|
||||
|
||||
if (info->in_buffer)
|
||||
kzfree(info->in_buffer);
|
||||
|
||||
if (info->completion_addr)
|
||||
kzfree((void *)info->completion_addr);
|
||||
|
||||
kzfree(info);
|
||||
}
|
||||
|
||||
void do_post_process(struct cpt_vf *cptvf, struct cpt_info_buffer *info)
|
||||
{
|
||||
struct pci_dev *pdev = cptvf->pdev;
|
||||
|
||||
if (!info || !cptvf) {
|
||||
dev_err(&pdev->dev, "Input params are incorrect for post processing\n");
|
||||
return;
|
||||
}
|
||||
|
||||
do_request_cleanup(cptvf, info);
|
||||
}
|
||||
|
||||
static inline void process_pending_queue(struct cpt_vf *cptvf,
|
||||
struct pending_qinfo *pqinfo,
|
||||
int qno)
|
||||
{
|
||||
struct pci_dev *pdev = cptvf->pdev;
|
||||
struct pending_queue *pqueue = &pqinfo->queue[qno];
|
||||
struct pending_entry *pentry = NULL;
|
||||
struct cpt_info_buffer *info = NULL;
|
||||
union cpt_res_s *status = NULL;
|
||||
unsigned char ccode;
|
||||
|
||||
while (1) {
|
||||
spin_lock_bh(&pqueue->lock);
|
||||
pentry = &pqueue->head[pqueue->front];
|
||||
if (unlikely(!pentry->busy)) {
|
||||
spin_unlock_bh(&pqueue->lock);
|
||||
break;
|
||||
}
|
||||
|
||||
info = (struct cpt_info_buffer *)pentry->post_arg;
|
||||
if (unlikely(!info)) {
|
||||
dev_err(&pdev->dev, "Pending Entry post arg NULL\n");
|
||||
pending_queue_inc_front(pqinfo, qno);
|
||||
spin_unlock_bh(&pqueue->lock);
|
||||
continue;
|
||||
}
|
||||
|
||||
status = (union cpt_res_s *)pentry->completion_addr;
|
||||
ccode = status->s.compcode;
|
||||
if ((status->s.compcode == CPT_COMP_E_FAULT) ||
|
||||
(status->s.compcode == CPT_COMP_E_SWERR)) {
|
||||
dev_err(&pdev->dev, "Request failed with %s\n",
|
||||
(status->s.compcode == CPT_COMP_E_FAULT) ?
|
||||
"DMA Fault" : "Software error");
|
||||
pentry->completion_addr = NULL;
|
||||
pentry->busy = false;
|
||||
atomic64_dec((&pqueue->pending_count));
|
||||
pentry->post_arg = NULL;
|
||||
pending_queue_inc_front(pqinfo, qno);
|
||||
do_request_cleanup(cptvf, info);
|
||||
spin_unlock_bh(&pqueue->lock);
|
||||
break;
|
||||
} else if (status->s.compcode == COMPLETION_CODE_INIT) {
|
||||
/* check for timeout */
|
||||
if (time_after_eq(jiffies,
|
||||
(info->time_in +
|
||||
(CPT_COMMAND_TIMEOUT * HZ)))) {
|
||||
dev_err(&pdev->dev, "Request timed out");
|
||||
pentry->completion_addr = NULL;
|
||||
pentry->busy = false;
|
||||
atomic64_dec((&pqueue->pending_count));
|
||||
pentry->post_arg = NULL;
|
||||
pending_queue_inc_front(pqinfo, qno);
|
||||
do_request_cleanup(cptvf, info);
|
||||
spin_unlock_bh(&pqueue->lock);
|
||||
break;
|
||||
} else if ((*info->alternate_caddr ==
|
||||
(~COMPLETION_CODE_INIT)) &&
|
||||
(info->extra_time < TIME_IN_RESET_COUNT)) {
|
||||
info->time_in = jiffies;
|
||||
info->extra_time++;
|
||||
spin_unlock_bh(&pqueue->lock);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
pentry->completion_addr = NULL;
|
||||
pentry->busy = false;
|
||||
pentry->post_arg = NULL;
|
||||
atomic64_dec((&pqueue->pending_count));
|
||||
pending_queue_inc_front(pqinfo, qno);
|
||||
spin_unlock_bh(&pqueue->lock);
|
||||
|
||||
do_post_process(info->cptvf, info);
|
||||
/*
|
||||
* Calling callback after we find
|
||||
* that the request has been serviced
|
||||
*/
|
||||
pentry->callback(ccode, pentry->callback_arg);
|
||||
}
|
||||
}
|
||||
|
||||
int process_request(struct cpt_vf *cptvf, struct cpt_request_info *req)
|
||||
{
|
||||
int ret = 0, clear = 0, queue = 0;
|
||||
struct cpt_info_buffer *info = NULL;
|
||||
struct cptvf_request *cpt_req = NULL;
|
||||
union ctrl_info *ctrl = NULL;
|
||||
union cpt_res_s *result = NULL;
|
||||
struct pending_entry *pentry = NULL;
|
||||
struct pending_queue *pqueue = NULL;
|
||||
struct pci_dev *pdev = cptvf->pdev;
|
||||
u8 group = 0;
|
||||
struct cpt_vq_command vq_cmd;
|
||||
union cpt_inst_s cptinst;
|
||||
|
||||
info = kzalloc(sizeof(*info), GFP_KERNEL);
|
||||
if (unlikely(!info)) {
|
||||
dev_err(&pdev->dev, "Unable to allocate memory for info_buffer\n");
|
||||
return -ENOMEM;
|
||||
}
|
||||
|
||||
cpt_req = (struct cptvf_request *)&req->req;
|
||||
ctrl = (union ctrl_info *)&req->ctrl;
|
||||
|
||||
info->cptvf = cptvf;
|
||||
group = ctrl->s.grp;
|
||||
ret = setup_sgio_list(cptvf, info, req);
|
||||
if (ret) {
|
||||
dev_err(&pdev->dev, "Setting up SG list failed");
|
||||
goto request_cleanup;
|
||||
}
|
||||
|
||||
cpt_req->dlen = info->dlen;
|
||||
/*
|
||||
* Get buffer for union cpt_res_s response
|
||||
* structure and its physical address
|
||||
*/
|
||||
info->completion_addr = kzalloc(sizeof(union cpt_res_s), GFP_KERNEL);
|
||||
if (unlikely(!info->completion_addr)) {
|
||||
dev_err(&pdev->dev, "Unable to allocate memory for completion_addr\n");
|
||||
return -ENOMEM;
|
||||
}
|
||||
|
||||
result = (union cpt_res_s *)info->completion_addr;
|
||||
result->s.compcode = COMPLETION_CODE_INIT;
|
||||
info->comp_baddr = dma_map_single(&pdev->dev,
|
||||
(void *)info->completion_addr,
|
||||
sizeof(union cpt_res_s),
|
||||
DMA_BIDIRECTIONAL);
|
||||
if (dma_mapping_error(&pdev->dev, info->comp_baddr)) {
|
||||
dev_err(&pdev->dev, "mapping compptr Failed %lu\n",
|
||||
sizeof(union cpt_res_s));
|
||||
ret = -EFAULT;
|
||||
goto request_cleanup;
|
||||
}
|
||||
|
||||
/* Fill the VQ command */
|
||||
vq_cmd.cmd.u64 = 0;
|
||||
vq_cmd.cmd.s.opcode = cpu_to_be16(cpt_req->opcode.flags);
|
||||
vq_cmd.cmd.s.param1 = cpu_to_be16(cpt_req->param1);
|
||||
vq_cmd.cmd.s.param2 = cpu_to_be16(cpt_req->param2);
|
||||
vq_cmd.cmd.s.dlen = cpu_to_be16(cpt_req->dlen);
|
||||
|
||||
/* 64-bit swap for microcode data reads, not needed for addresses*/
|
||||
vq_cmd.cmd.u64 = cpu_to_be64(vq_cmd.cmd.u64);
|
||||
vq_cmd.dptr = info->dptr_baddr;
|
||||
vq_cmd.rptr = info->rptr_baddr;
|
||||
vq_cmd.cptr.u64 = 0;
|
||||
vq_cmd.cptr.s.grp = group;
|
||||
/* Get Pending Entry to submit command */
|
||||
/* Always queue 0, because 1 queue per VF */
|
||||
queue = 0;
|
||||
pqueue = &cptvf->pqinfo.queue[queue];
|
||||
|
||||
if (atomic64_read(&pqueue->pending_count) > PENDING_THOLD) {
|
||||
dev_err(&pdev->dev, "pending threshold reached\n");
|
||||
process_pending_queue(cptvf, &cptvf->pqinfo, queue);
|
||||
}
|
||||
|
||||
get_pending_entry:
|
||||
spin_lock_bh(&pqueue->lock);
|
||||
pentry = get_free_pending_entry(pqueue, cptvf->pqinfo.qlen);
|
||||
if (unlikely(!pentry)) {
|
||||
spin_unlock_bh(&pqueue->lock);
|
||||
if (clear == 0) {
|
||||
process_pending_queue(cptvf, &cptvf->pqinfo, queue);
|
||||
clear = 1;
|
||||
goto get_pending_entry;
|
||||
}
|
||||
dev_err(&pdev->dev, "Get free entry failed\n");
|
||||
dev_err(&pdev->dev, "queue: %d, rear: %d, front: %d\n",
|
||||
queue, pqueue->rear, pqueue->front);
|
||||
ret = -EFAULT;
|
||||
goto request_cleanup;
|
||||
}
|
||||
|
||||
pentry->completion_addr = info->completion_addr;
|
||||
pentry->post_arg = (void *)info;
|
||||
pentry->callback = req->callback;
|
||||
pentry->callback_arg = req->callback_arg;
|
||||
info->pentry = pentry;
|
||||
pentry->busy = true;
|
||||
atomic64_inc(&pqueue->pending_count);
|
||||
|
||||
/* Send CPT command */
|
||||
info->pentry = pentry;
|
||||
info->time_in = jiffies;
|
||||
info->req = req;
|
||||
|
||||
/* Create the CPT_INST_S type command for HW intrepretation */
|
||||
cptinst.s.doneint = true;
|
||||
cptinst.s.res_addr = (u64)info->comp_baddr;
|
||||
cptinst.s.tag = 0;
|
||||
cptinst.s.grp = 0;
|
||||
cptinst.s.wq_ptr = 0;
|
||||
cptinst.s.ei0 = vq_cmd.cmd.u64;
|
||||
cptinst.s.ei1 = vq_cmd.dptr;
|
||||
cptinst.s.ei2 = vq_cmd.rptr;
|
||||
cptinst.s.ei3 = vq_cmd.cptr.u64;
|
||||
|
||||
ret = send_cpt_command(cptvf, &cptinst, queue);
|
||||
spin_unlock_bh(&pqueue->lock);
|
||||
if (unlikely(ret)) {
|
||||
dev_err(&pdev->dev, "Send command failed for AE\n");
|
||||
ret = -EFAULT;
|
||||
goto request_cleanup;
|
||||
}
|
||||
|
||||
return 0;
|
||||
|
||||
request_cleanup:
|
||||
dev_dbg(&pdev->dev, "Failed to submit CPT command\n");
|
||||
do_request_cleanup(cptvf, info);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
void vq_post_process(struct cpt_vf *cptvf, u32 qno)
|
||||
{
|
||||
struct pci_dev *pdev = cptvf->pdev;
|
||||
|
||||
if (unlikely(qno > cptvf->nr_queues)) {
|
||||
dev_err(&pdev->dev, "Request for post processing on invalid pending queue: %u\n",
|
||||
qno);
|
||||
return;
|
||||
}
|
||||
|
||||
process_pending_queue(cptvf, &cptvf->pqinfo, qno);
|
||||
}
|
||||
|
||||
int cptvf_do_request(void *vfdev, struct cpt_request_info *req)
|
||||
{
|
||||
struct cpt_vf *cptvf = (struct cpt_vf *)vfdev;
|
||||
struct pci_dev *pdev = cptvf->pdev;
|
||||
|
||||
if (!cpt_device_ready(cptvf)) {
|
||||
dev_err(&pdev->dev, "CPT Device is not ready");
|
||||
return -ENODEV;
|
||||
}
|
||||
|
||||
if ((cptvf->vftype == SE_TYPES) && (!req->ctrl.s.se_req)) {
|
||||
dev_err(&pdev->dev, "CPTVF-%d of SE TYPE got AE request",
|
||||
cptvf->vfid);
|
||||
return -EINVAL;
|
||||
} else if ((cptvf->vftype == AE_TYPES) && (req->ctrl.s.se_req)) {
|
||||
dev_err(&pdev->dev, "CPTVF-%d of AE TYPE got SE request",
|
||||
cptvf->vfid);
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
return process_request(cptvf, req);
|
||||
}
|
|
@ -0,0 +1,147 @@
|
|||
/*
|
||||
* Copyright (C) 2016 Cavium, Inc.
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify it
|
||||
* under the terms of version 2 of the GNU General Public License
|
||||
* as published by the Free Software Foundation.
|
||||
*/
|
||||
|
||||
#ifndef __REQUEST_MANAGER_H
|
||||
#define __REQUEST_MANAGER_H
|
||||
|
||||
#include "cpt_common.h"
|
||||
|
||||
#define TIME_IN_RESET_COUNT 5
|
||||
#define COMPLETION_CODE_SIZE 8
|
||||
#define COMPLETION_CODE_INIT 0
|
||||
#define PENDING_THOLD 100
|
||||
#define MAX_SG_IN_CNT 12
|
||||
#define MAX_SG_OUT_CNT 13
|
||||
#define SG_LIST_HDR_SIZE 8
|
||||
#define MAX_BUF_CNT 16
|
||||
|
||||
union ctrl_info {
|
||||
u32 flags;
|
||||
struct {
|
||||
#if defined(__BIG_ENDIAN_BITFIELD)
|
||||
u32 reserved0:26;
|
||||
u32 grp:3; /* Group bits */
|
||||
u32 dma_mode:2; /* DMA mode */
|
||||
u32 se_req:1;/* To SE core */
|
||||
#else
|
||||
u32 se_req:1; /* To SE core */
|
||||
u32 dma_mode:2; /* DMA mode */
|
||||
u32 grp:3; /* Group bits */
|
||||
u32 reserved0:26;
|
||||
#endif
|
||||
} s;
|
||||
};
|
||||
|
||||
union opcode_info {
|
||||
u16 flags;
|
||||
struct {
|
||||
u8 major;
|
||||
u8 minor;
|
||||
} s;
|
||||
};
|
||||
|
||||
struct cptvf_request {
|
||||
union opcode_info opcode;
|
||||
u16 param1;
|
||||
u16 param2;
|
||||
u16 dlen;
|
||||
};
|
||||
|
||||
struct buf_ptr {
|
||||
u8 *vptr;
|
||||
dma_addr_t dma_addr;
|
||||
u16 size;
|
||||
};
|
||||
|
||||
struct cpt_request_info {
|
||||
u8 incnt; /* Number of input buffers */
|
||||
u8 outcnt; /* Number of output buffers */
|
||||
u16 rlen; /* Output length */
|
||||
union ctrl_info ctrl; /* User control information */
|
||||
struct cptvf_request req; /* Request Information (Core specific) */
|
||||
|
||||
struct buf_ptr in[MAX_BUF_CNT];
|
||||
struct buf_ptr out[MAX_BUF_CNT];
|
||||
|
||||
void (*callback)(int, void *); /* Kernel ASYNC request callabck */
|
||||
void *callback_arg; /* Kernel ASYNC request callabck arg */
|
||||
};
|
||||
|
||||
struct sglist_component {
|
||||
union {
|
||||
u64 len;
|
||||
struct {
|
||||
u16 len0;
|
||||
u16 len1;
|
||||
u16 len2;
|
||||
u16 len3;
|
||||
} s;
|
||||
} u;
|
||||
u64 ptr0;
|
||||
u64 ptr1;
|
||||
u64 ptr2;
|
||||
u64 ptr3;
|
||||
};
|
||||
|
||||
struct cpt_info_buffer {
|
||||
struct cpt_vf *cptvf;
|
||||
unsigned long time_in;
|
||||
u8 extra_time;
|
||||
|
||||
struct cpt_request_info *req;
|
||||
dma_addr_t dptr_baddr;
|
||||
u32 dlen;
|
||||
dma_addr_t rptr_baddr;
|
||||
dma_addr_t comp_baddr;
|
||||
u8 *in_buffer;
|
||||
u8 *out_buffer;
|
||||
u8 *gather_components;
|
||||
u8 *scatter_components;
|
||||
|
||||
struct pending_entry *pentry;
|
||||
volatile u64 *completion_addr;
|
||||
volatile u64 *alternate_caddr;
|
||||
};
|
||||
|
||||
/*
|
||||
* CPT_INST_S software command definitions
|
||||
* Words EI (0-3)
|
||||
*/
|
||||
union vq_cmd_word0 {
|
||||
u64 u64;
|
||||
struct {
|
||||
u16 opcode;
|
||||
u16 param1;
|
||||
u16 param2;
|
||||
u16 dlen;
|
||||
} s;
|
||||
};
|
||||
|
||||
union vq_cmd_word3 {
|
||||
u64 u64;
|
||||
struct {
|
||||
#if defined(__BIG_ENDIAN_BITFIELD)
|
||||
u64 grp:3;
|
||||
u64 cptr:61;
|
||||
#else
|
||||
u64 cptr:61;
|
||||
u64 grp:3;
|
||||
#endif
|
||||
} s;
|
||||
};
|
||||
|
||||
struct cpt_vq_command {
|
||||
union vq_cmd_word0 cmd;
|
||||
u64 dptr;
|
||||
u64 rptr;
|
||||
union vq_cmd_word3 cptr;
|
||||
};
|
||||
|
||||
void vq_post_process(struct cpt_vf *cptvf, u32 qno);
|
||||
int process_request(struct cpt_vf *cptvf, struct cpt_request_info *req);
|
||||
#endif /* __REQUEST_MANAGER_H */
|
Loading…
Reference in New Issue