x86/numa_emulation: Introduce uniform split capability
The current NUMA emulation capabilities for splitting System RAM by a fixed size or by a set number of nodes may result in some nodes being larger than others. The implementation prioritizes establishing a minimum usable memory size over satisfying the requested number of NUMA nodes. Introduce a uniform split capability that evenly partitions each physical NUMA node into N emulated nodes. For example numa=fake=3U creates 6 emulated nodes total on a system that has 2 physical nodes. This capability is useful for debugging and evaluating platform memory-side-cache capabilities as described by the ACPI HMAT (see 5.2.27.5 Memory Side Cache Information Structure in ACPI 6.2a) Compare numa=fake=6 that results in only 5 nodes being created against numa=fake=3U which takes the 2 physical nodes and evenly divides them. numa=fake=6 available: 5 nodes (0-4) node 0 cpus: 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 node 0 size: 2648 MB node 0 free: 2443 MB node 1 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 1 size: 2672 MB node 1 free: 2442 MB node 2 cpus: 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 node 2 size: 5291 MB node 2 free: 5278 MB node 3 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 3 size: 2677 MB node 3 free: 2665 MB node 4 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 4 size: 2676 MB node 4 free: 2663 MB node distances: node 0 1 2 3 4 0: 10 20 10 20 20 1: 20 10 20 10 10 2: 10 20 10 20 20 3: 20 10 20 10 10 4: 20 10 20 10 10 numa=fake=3U available: 6 nodes (0-5) node 0 cpus: 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 node 0 size: 2900 MB node 0 free: 2637 MB node 1 cpus: 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 node 1 size: 3023 MB node 1 free: 3012 MB node 2 cpus: 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 node 2 size: 2015 MB node 2 free: 2004 MB node 3 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 3 size: 2704 MB node 3 free: 2522 MB node 4 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 4 size: 2709 MB node 4 free: 2698 MB node 5 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 5 size: 2612 MB node 5 free: 2601 MB node distances: node 0 1 2 3 4 5 0: 10 10 10 20 20 20 1: 10 10 10 20 20 20 2: 10 10 10 20 20 20 3: 20 20 20 10 10 10 4: 20 20 20 10 10 10 5: 20 20 20 10 10 10 Signed-off-by: Dan Williams <dan.j.williams@intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: linux-mm@kvack.org Link: http://lkml.kernel.org/r/153089328617.27680.14930758266174305832.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
This commit is contained in:
parent
3b6c62f363
commit
cc9aec03e5
|
@ -156,6 +156,10 @@ NUMA
|
|||
If given as an integer, fills all system RAM with N fake nodes
|
||||
interleaved over physical nodes.
|
||||
|
||||
numa=fake=<N>U
|
||||
If given as an integer followed by 'U', it will divide each
|
||||
physical node into N emulated nodes.
|
||||
|
||||
ACPI
|
||||
|
||||
acpi=off Don't enable ACPI
|
||||
|
|
|
@ -198,40 +198,73 @@ static u64 __init find_end_of_node(u64 start, u64 max_addr, u64 size)
|
|||
return end;
|
||||
}
|
||||
|
||||
static u64 uniform_size(u64 max_addr, u64 base, u64 hole, int nr_nodes)
|
||||
{
|
||||
unsigned long max_pfn = PHYS_PFN(max_addr);
|
||||
unsigned long base_pfn = PHYS_PFN(base);
|
||||
unsigned long hole_pfns = PHYS_PFN(hole);
|
||||
|
||||
return PFN_PHYS((max_pfn - base_pfn - hole_pfns) / nr_nodes);
|
||||
}
|
||||
|
||||
/*
|
||||
* Sets up fake nodes of `size' interleaved over physical nodes ranging from
|
||||
* `addr' to `max_addr'.
|
||||
*
|
||||
* Returns zero on success or negative on error.
|
||||
*/
|
||||
static int __init split_nodes_size_interleave(struct numa_meminfo *ei,
|
||||
static int __init split_nodes_size_interleave_uniform(struct numa_meminfo *ei,
|
||||
struct numa_meminfo *pi,
|
||||
u64 addr, u64 max_addr, u64 size)
|
||||
u64 addr, u64 max_addr, u64 size,
|
||||
int nr_nodes, struct numa_memblk *pblk,
|
||||
int nid)
|
||||
{
|
||||
nodemask_t physnode_mask = numa_nodes_parsed;
|
||||
int i, ret, uniform = 0;
|
||||
u64 min_size;
|
||||
int nid = 0;
|
||||
int i, ret;
|
||||
|
||||
if (!size)
|
||||
if ((!size && !nr_nodes) || (nr_nodes && !pblk))
|
||||
return -1;
|
||||
|
||||
/*
|
||||
* The limit on emulated nodes is MAX_NUMNODES, so the size per node is
|
||||
* increased accordingly if the requested size is too small. This
|
||||
* creates a uniform distribution of node sizes across the entire
|
||||
* machine (but not necessarily over physical nodes).
|
||||
* In the 'uniform' case split the passed in physical node by
|
||||
* nr_nodes, in the non-uniform case, ignore the passed in
|
||||
* physical block and try to create nodes of at least size
|
||||
* @size.
|
||||
*
|
||||
* In the uniform case, split the nodes strictly by physical
|
||||
* capacity, i.e. ignore holes. In the non-uniform case account
|
||||
* for holes and treat @size as a minimum floor.
|
||||
*/
|
||||
min_size = (max_addr - addr - mem_hole_size(addr, max_addr)) / MAX_NUMNODES;
|
||||
min_size = max(min_size, FAKE_NODE_MIN_SIZE);
|
||||
if ((min_size & FAKE_NODE_MIN_HASH_MASK) < min_size)
|
||||
min_size = (min_size + FAKE_NODE_MIN_SIZE) &
|
||||
FAKE_NODE_MIN_HASH_MASK;
|
||||
if (!nr_nodes)
|
||||
nr_nodes = MAX_NUMNODES;
|
||||
else {
|
||||
nodes_clear(physnode_mask);
|
||||
node_set(pblk->nid, physnode_mask);
|
||||
uniform = 1;
|
||||
}
|
||||
|
||||
if (uniform) {
|
||||
min_size = uniform_size(max_addr, addr, 0, nr_nodes);
|
||||
size = min_size;
|
||||
} else {
|
||||
/*
|
||||
* The limit on emulated nodes is MAX_NUMNODES, so the
|
||||
* size per node is increased accordingly if the
|
||||
* requested size is too small. This creates a uniform
|
||||
* distribution of node sizes across the entire machine
|
||||
* (but not necessarily over physical nodes).
|
||||
*/
|
||||
min_size = uniform_size(max_addr, addr,
|
||||
mem_hole_size(addr, max_addr), nr_nodes);
|
||||
}
|
||||
min_size = ALIGN(max(min_size, FAKE_NODE_MIN_SIZE), FAKE_NODE_MIN_SIZE);
|
||||
if (size < min_size) {
|
||||
pr_err("Fake node size %LuMB too small, increasing to %LuMB\n",
|
||||
size >> 20, min_size >> 20);
|
||||
size = min_size;
|
||||
}
|
||||
size &= FAKE_NODE_MIN_HASH_MASK;
|
||||
size = ALIGN_DOWN(size, FAKE_NODE_MIN_SIZE);
|
||||
|
||||
/*
|
||||
* Fill physical nodes with fake nodes of size until there is no memory
|
||||
|
@ -248,10 +281,14 @@ static int __init split_nodes_size_interleave(struct numa_meminfo *ei,
|
|||
node_clear(i, physnode_mask);
|
||||
continue;
|
||||
}
|
||||
|
||||
start = pi->blk[phys_blk].start;
|
||||
limit = pi->blk[phys_blk].end;
|
||||
|
||||
end = find_end_of_node(start, limit, size);
|
||||
if (uniform)
|
||||
end = start + size;
|
||||
else
|
||||
end = find_end_of_node(start, limit, size);
|
||||
/*
|
||||
* If there won't be at least FAKE_NODE_MIN_SIZE of
|
||||
* non-reserved memory in ZONE_DMA32 for the next node,
|
||||
|
@ -266,7 +303,8 @@ static int __init split_nodes_size_interleave(struct numa_meminfo *ei,
|
|||
* next node, this one must extend to the end of the
|
||||
* physical node.
|
||||
*/
|
||||
if (limit - end - mem_hole_size(end, limit) < size)
|
||||
if ((limit - end - mem_hole_size(end, limit) < size)
|
||||
&& !uniform)
|
||||
end = limit;
|
||||
|
||||
ret = emu_setup_memblk(ei, pi, nid++ % MAX_NUMNODES,
|
||||
|
@ -276,7 +314,15 @@ static int __init split_nodes_size_interleave(struct numa_meminfo *ei,
|
|||
return ret;
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
return nid;
|
||||
}
|
||||
|
||||
static int __init split_nodes_size_interleave(struct numa_meminfo *ei,
|
||||
struct numa_meminfo *pi,
|
||||
u64 addr, u64 max_addr, u64 size)
|
||||
{
|
||||
return split_nodes_size_interleave_uniform(ei, pi, addr, max_addr, size,
|
||||
0, NULL, NUMA_NO_NODE);
|
||||
}
|
||||
|
||||
int __init setup_emu2phys_nid(int *dfl_phys_nid)
|
||||
|
@ -346,7 +392,28 @@ void __init numa_emulation(struct numa_meminfo *numa_meminfo, int numa_dist_cnt)
|
|||
* the fixed node size. Otherwise, if it is just a single number N,
|
||||
* split the system RAM into N fake nodes.
|
||||
*/
|
||||
if (strchr(emu_cmdline, 'M') || strchr(emu_cmdline, 'G')) {
|
||||
if (strchr(emu_cmdline, 'U')) {
|
||||
nodemask_t physnode_mask = numa_nodes_parsed;
|
||||
unsigned long n;
|
||||
int nid = 0;
|
||||
|
||||
n = simple_strtoul(emu_cmdline, &emu_cmdline, 0);
|
||||
ret = -1;
|
||||
for_each_node_mask(i, physnode_mask) {
|
||||
ret = split_nodes_size_interleave_uniform(&ei, &pi,
|
||||
pi.blk[i].start, pi.blk[i].end, 0,
|
||||
n, &pi.blk[i], nid);
|
||||
if (ret < 0)
|
||||
break;
|
||||
if (ret < n) {
|
||||
pr_info("%s: phys: %d only got %d of %ld nodes, failing\n",
|
||||
__func__, i, ret, n);
|
||||
ret = -1;
|
||||
break;
|
||||
}
|
||||
nid = ret;
|
||||
}
|
||||
} else if (strchr(emu_cmdline, 'M') || strchr(emu_cmdline, 'G')) {
|
||||
u64 size;
|
||||
|
||||
size = memparse(emu_cmdline, &emu_cmdline);
|
||||
|
|
Loading…
Reference in New Issue