srcu: Introduce CLASSIC_SRCU Kconfig option

The TREE_SRCU rewrite is large and a bit on the non-simple side, so
this commit helps reduce risk by allowing the old v4.11 SRCU algorithm
to be selected using a new CLASSIC_SRCU Kconfig option that depends
on RCU_EXPERT.  The default is to use the new TREE_SRCU and TINY_SRCU
algorithms, in order to help get these the testing that they need.
However, if your users do not require the update-side scalability that
is to be provided by TREE_SRCU, select RCU_EXPERT and then CLASSIC_SRCU
to revert back to the old classic SRCU algorithm.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit is contained in:
Paul E. McKenney 2017-03-25 17:23:44 -07:00
parent 32071141b2
commit dad81a2026
7 changed files with 934 additions and 155 deletions

View File

@ -60,6 +60,8 @@ int init_srcu_struct(struct srcu_struct *sp);
#include <linux/srcutiny.h> #include <linux/srcutiny.h>
#elif defined(CONFIG_TREE_SRCU) #elif defined(CONFIG_TREE_SRCU)
#include <linux/srcutree.h> #include <linux/srcutree.h>
#elif defined(CONFIG_CLASSIC_SRCU)
#include <linux/srcuclassic.h>
#else #else
#error "Unknown SRCU implementation specified to kernel configuration" #error "Unknown SRCU implementation specified to kernel configuration"
#endif #endif

101
include/linux/srcuclassic.h Normal file
View File

@ -0,0 +1,101 @@
/*
* Sleepable Read-Copy Update mechanism for mutual exclusion,
* classic v4.11 variant.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you can access it online at
* http://www.gnu.org/licenses/gpl-2.0.html.
*
* Copyright (C) IBM Corporation, 2017
*
* Author: Paul McKenney <paulmck@us.ibm.com>
*/
#ifndef _LINUX_SRCU_CLASSIC_H
#define _LINUX_SRCU_CLASSIC_H
struct srcu_array {
unsigned long lock_count[2];
unsigned long unlock_count[2];
};
struct rcu_batch {
struct rcu_head *head, **tail;
};
#define RCU_BATCH_INIT(name) { NULL, &(name.head) }
struct srcu_struct {
unsigned long completed;
struct srcu_array __percpu *per_cpu_ref;
spinlock_t queue_lock; /* protect ->batch_queue, ->running */
bool running;
/* callbacks just queued */
struct rcu_batch batch_queue;
/* callbacks try to do the first check_zero */
struct rcu_batch batch_check0;
/* callbacks done with the first check_zero and the flip */
struct rcu_batch batch_check1;
struct rcu_batch batch_done;
struct delayed_work work;
#ifdef CONFIG_DEBUG_LOCK_ALLOC
struct lockdep_map dep_map;
#endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
};
void process_srcu(struct work_struct *work);
#define __SRCU_STRUCT_INIT(name) \
{ \
.completed = -300, \
.per_cpu_ref = &name##_srcu_array, \
.queue_lock = __SPIN_LOCK_UNLOCKED(name.queue_lock), \
.running = false, \
.batch_queue = RCU_BATCH_INIT(name.batch_queue), \
.batch_check0 = RCU_BATCH_INIT(name.batch_check0), \
.batch_check1 = RCU_BATCH_INIT(name.batch_check1), \
.batch_done = RCU_BATCH_INIT(name.batch_done), \
.work = __DELAYED_WORK_INITIALIZER(name.work, process_srcu, 0),\
__SRCU_DEP_MAP_INIT(name) \
}
/*
* Define and initialize a srcu struct at build time.
* Do -not- call init_srcu_struct() nor cleanup_srcu_struct() on it.
*
* Note that although DEFINE_STATIC_SRCU() hides the name from other
* files, the per-CPU variable rules nevertheless require that the
* chosen name be globally unique. These rules also prohibit use of
* DEFINE_STATIC_SRCU() within a function. If these rules are too
* restrictive, declare the srcu_struct manually. For example, in
* each file:
*
* static struct srcu_struct my_srcu;
*
* Then, before the first use of each my_srcu, manually initialize it:
*
* init_srcu_struct(&my_srcu);
*
* See include/linux/percpu-defs.h for the rules on per-CPU variables.
*/
#define __DEFINE_SRCU(name, is_static) \
static DEFINE_PER_CPU(struct srcu_array, name##_srcu_array);\
is_static struct srcu_struct name = __SRCU_STRUCT_INIT(name)
#define DEFINE_SRCU(name) __DEFINE_SRCU(name, /* not static */)
#define DEFINE_STATIC_SRCU(name) __DEFINE_SRCU(name, static)
void synchronize_srcu_expedited(struct srcu_struct *sp);
void srcu_barrier(struct srcu_struct *sp);
unsigned long srcu_batches_completed(struct srcu_struct *sp);
#endif

View File

@ -526,15 +526,32 @@ config SRCU
permits arbitrary sleeping or blocking within RCU read-side critical permits arbitrary sleeping or blocking within RCU read-side critical
sections. sections.
config CLASSIC_SRCU
bool "Use v4.11 classic SRCU implementation"
default n
depends on RCU_EXPERT && SRCU
help
This option selects the traditional well-tested classic SRCU
implementation from v4.11, as might be desired for enterprise
Linux distributions. Without this option, the shiny new
Tiny SRCU and Tree SRCU implementations are used instead.
At some point, it is hoped that Tiny SRCU and Tree SRCU
will accumulate enough test time and confidence to allow
Classic SRCU to be dropped entirely.
Say Y if you need a rock-solid SRCU.
Say N if you would like help test Tree SRCU.
config TINY_SRCU config TINY_SRCU
bool bool
default y if TINY_RCU default y if TINY_RCU && !CLASSIC_SRCU
help help
This option selects the single-CPU non-preemptible version of SRCU. This option selects the single-CPU non-preemptible version of SRCU.
config TREE_SRCU config TREE_SRCU
bool bool
default y if !TINY_RCU default y if !TINY_RCU && !CLASSIC_SRCU
help help
This option selects the full-fledged version of SRCU. This option selects the full-fledged version of SRCU.

View File

@ -3,7 +3,8 @@
KCOV_INSTRUMENT := n KCOV_INSTRUMENT := n
obj-y += update.o sync.o obj-y += update.o sync.o
obj-$(CONFIG_TREE_SRCU) += srcu.o obj-$(CONFIG_CLASSIC_SRCU) += srcu.o
obj-$(CONFIG_TREE_SRCU) += srcutree.o
obj-$(CONFIG_TINY_SRCU) += srcutiny.o obj-$(CONFIG_TINY_SRCU) += srcutiny.o
obj-$(CONFIG_RCU_TORTURE_TEST) += rcutorture.o obj-$(CONFIG_RCU_TORTURE_TEST) += rcutorture.o
obj-$(CONFIG_RCU_PERF_TEST) += rcuperf.o obj-$(CONFIG_RCU_PERF_TEST) += rcuperf.o

View File

@ -562,7 +562,7 @@ static void srcu_torture_stats(void)
int __maybe_unused cpu; int __maybe_unused cpu;
int idx; int idx;
#ifdef CONFIG_TREE_SRCU #if defined(CONFIG_TREE_SRCU) || defined(CONFIG_CLASSIC_SRCU)
idx = srcu_ctlp->completed & 0x1; idx = srcu_ctlp->completed & 0x1;
pr_alert("%s%s Tree SRCU per-CPU(idx=%d):", pr_alert("%s%s Tree SRCU per-CPU(idx=%d):",
torture_type, TORTURE_FLAG, idx); torture_type, TORTURE_FLAG, idx);

View File

@ -36,16 +36,75 @@
#include <linux/delay.h> #include <linux/delay.h>
#include <linux/srcu.h> #include <linux/srcu.h>
#include <linux/rcu_node_tree.h>
#include "rcu.h" #include "rcu.h"
/*
* Initialize an rcu_batch structure to empty.
*/
static inline void rcu_batch_init(struct rcu_batch *b)
{
b->head = NULL;
b->tail = &b->head;
}
/*
* Enqueue a callback onto the tail of the specified rcu_batch structure.
*/
static inline void rcu_batch_queue(struct rcu_batch *b, struct rcu_head *head)
{
*b->tail = head;
b->tail = &head->next;
}
/*
* Is the specified rcu_batch structure empty?
*/
static inline bool rcu_batch_empty(struct rcu_batch *b)
{
return b->tail == &b->head;
}
/*
* Remove the callback at the head of the specified rcu_batch structure
* and return a pointer to it, or return NULL if the structure is empty.
*/
static inline struct rcu_head *rcu_batch_dequeue(struct rcu_batch *b)
{
struct rcu_head *head;
if (rcu_batch_empty(b))
return NULL;
head = b->head;
b->head = head->next;
if (b->tail == &head->next)
rcu_batch_init(b);
return head;
}
/*
* Move all callbacks from the rcu_batch structure specified by "from" to
* the structure specified by "to".
*/
static inline void rcu_batch_move(struct rcu_batch *to, struct rcu_batch *from)
{
if (!rcu_batch_empty(from)) {
*to->tail = from->head;
to->tail = from->tail;
rcu_batch_init(from);
}
}
static int init_srcu_struct_fields(struct srcu_struct *sp) static int init_srcu_struct_fields(struct srcu_struct *sp)
{ {
sp->completed = 0; sp->completed = 0;
sp->srcu_gp_seq = 0;
atomic_set(&sp->srcu_exp_cnt, 0);
spin_lock_init(&sp->queue_lock); spin_lock_init(&sp->queue_lock);
rcu_segcblist_init(&sp->srcu_cblist); sp->running = false;
rcu_batch_init(&sp->batch_queue);
rcu_batch_init(&sp->batch_check0);
rcu_batch_init(&sp->batch_check1);
rcu_batch_init(&sp->batch_done);
INIT_DELAYED_WORK(&sp->work, process_srcu); INIT_DELAYED_WORK(&sp->work, process_srcu);
sp->per_cpu_ref = alloc_percpu(struct srcu_array); sp->per_cpu_ref = alloc_percpu(struct srcu_array);
return sp->per_cpu_ref ? 0 : -ENOMEM; return sp->per_cpu_ref ? 0 : -ENOMEM;
@ -180,8 +239,6 @@ static bool srcu_readers_active(struct srcu_struct *sp)
return sum; return sum;
} }
#define SRCU_INTERVAL 1
/** /**
* cleanup_srcu_struct - deconstruct a sleep-RCU structure * cleanup_srcu_struct - deconstruct a sleep-RCU structure
* @sp: structure to clean up. * @sp: structure to clean up.
@ -197,16 +254,8 @@ static bool srcu_readers_active(struct srcu_struct *sp)
*/ */
void cleanup_srcu_struct(struct srcu_struct *sp) void cleanup_srcu_struct(struct srcu_struct *sp)
{ {
WARN_ON_ONCE(atomic_read(&sp->srcu_exp_cnt));
if (WARN_ON(srcu_readers_active(sp))) if (WARN_ON(srcu_readers_active(sp)))
return; /* Leakage unless caller handles error. */ return; /* Leakage unless caller handles error. */
if (WARN_ON(!rcu_segcblist_empty(&sp->srcu_cblist)))
return; /* Leakage unless caller handles error. */
flush_delayed_work(&sp->work);
if (WARN_ON(rcu_seq_state(READ_ONCE(sp->srcu_gp_seq)) != SRCU_STATE_IDLE)) {
pr_info("cleanup_srcu_struct: Active srcu_struct %lu CBs %c state: %d\n", rcu_segcblist_n_cbs(&sp->srcu_cblist), ".E"[rcu_segcblist_empty(&sp->srcu_cblist)], rcu_seq_state(READ_ONCE(sp->srcu_gp_seq)));
return; /* Caller forgot to stop doing call_srcu()? */
}
free_percpu(sp->per_cpu_ref); free_percpu(sp->per_cpu_ref);
sp->per_cpu_ref = NULL; sp->per_cpu_ref = NULL;
} }
@ -245,36 +294,26 @@ EXPORT_SYMBOL_GPL(__srcu_read_unlock);
* We use an adaptive strategy for synchronize_srcu() and especially for * We use an adaptive strategy for synchronize_srcu() and especially for
* synchronize_srcu_expedited(). We spin for a fixed time period * synchronize_srcu_expedited(). We spin for a fixed time period
* (defined below) to allow SRCU readers to exit their read-side critical * (defined below) to allow SRCU readers to exit their read-side critical
* sections. If there are still some readers after a few microseconds, * sections. If there are still some readers after 10 microseconds,
* we repeatedly block for 1-millisecond time periods. * we repeatedly block for 1-millisecond time periods. This approach
* has done well in testing, so there is no need for a config parameter.
*/ */
#define SRCU_RETRY_CHECK_DELAY 5 #define SRCU_RETRY_CHECK_DELAY 5
#define SYNCHRONIZE_SRCU_TRYCOUNT 2
#define SYNCHRONIZE_SRCU_EXP_TRYCOUNT 12
/* /*
* Start an SRCU grace period. * @@@ Wait until all pre-existing readers complete. Such readers
*/ * will have used the index specified by "idx".
static void srcu_gp_start(struct srcu_struct *sp) * the caller should ensures the ->completed is not changed while checking
{ * and idx = (->completed & 1) ^ 1
int state;
rcu_segcblist_accelerate(&sp->srcu_cblist,
rcu_seq_snap(&sp->srcu_gp_seq));
rcu_seq_start(&sp->srcu_gp_seq);
state = rcu_seq_state(READ_ONCE(sp->srcu_gp_seq));
WARN_ON_ONCE(state != SRCU_STATE_SCAN1);
}
/*
* Wait until all readers counted by array index idx complete, but
* loop an additional time if there is an expedited grace period pending.
* The caller must ensure that ->completed is not changed while checking.
*/ */
static bool try_check_zero(struct srcu_struct *sp, int idx, int trycount) static bool try_check_zero(struct srcu_struct *sp, int idx, int trycount)
{ {
for (;;) { for (;;) {
if (srcu_readers_active_idx_check(sp, idx)) if (srcu_readers_active_idx_check(sp, idx))
return true; return true;
if (--trycount + !!atomic_read(&sp->srcu_exp_cnt) <= 0) if (--trycount <= 0)
return false; return false;
udelay(SRCU_RETRY_CHECK_DELAY); udelay(SRCU_RETRY_CHECK_DELAY);
} }
@ -299,19 +338,6 @@ static void srcu_flip(struct srcu_struct *sp)
smp_mb(); /* D */ /* Pairs with C. */ smp_mb(); /* D */ /* Pairs with C. */
} }
/*
* End an SRCU grace period.
*/
static void srcu_gp_end(struct srcu_struct *sp)
{
rcu_seq_end(&sp->srcu_gp_seq);
spin_lock_irq(&sp->queue_lock);
rcu_segcblist_advance(&sp->srcu_cblist,
rcu_seq_current(&sp->srcu_gp_seq));
spin_unlock_irq(&sp->queue_lock);
}
/* /*
* Enqueue an SRCU callback on the specified srcu_struct structure, * Enqueue an SRCU callback on the specified srcu_struct structure,
* initiating grace-period processing if it is not already running. * initiating grace-period processing if it is not already running.
@ -348,24 +374,26 @@ void call_srcu(struct srcu_struct *sp, struct rcu_head *head,
head->func = func; head->func = func;
spin_lock_irqsave(&sp->queue_lock, flags); spin_lock_irqsave(&sp->queue_lock, flags);
smp_mb__after_unlock_lock(); /* Caller's prior accesses before GP. */ smp_mb__after_unlock_lock(); /* Caller's prior accesses before GP. */
rcu_segcblist_enqueue(&sp->srcu_cblist, head, false); rcu_batch_queue(&sp->batch_queue, head);
if (rcu_seq_state(READ_ONCE(sp->srcu_gp_seq)) == SRCU_STATE_IDLE) { if (!sp->running) {
srcu_gp_start(sp); sp->running = true;
queue_delayed_work(system_power_efficient_wq, &sp->work, 0); queue_delayed_work(system_power_efficient_wq, &sp->work, 0);
} }
spin_unlock_irqrestore(&sp->queue_lock, flags); spin_unlock_irqrestore(&sp->queue_lock, flags);
} }
EXPORT_SYMBOL_GPL(call_srcu); EXPORT_SYMBOL_GPL(call_srcu);
static void srcu_reschedule(struct srcu_struct *sp, unsigned long delay); static void srcu_advance_batches(struct srcu_struct *sp, int trycount);
static void srcu_reschedule(struct srcu_struct *sp);
/* /*
* Helper function for synchronize_srcu() and synchronize_srcu_expedited(). * Helper function for synchronize_srcu() and synchronize_srcu_expedited().
*/ */
static void __synchronize_srcu(struct srcu_struct *sp) static void __synchronize_srcu(struct srcu_struct *sp, int trycount)
{ {
struct rcu_synchronize rcu; struct rcu_synchronize rcu;
struct rcu_head *head = &rcu.head; struct rcu_head *head = &rcu.head;
bool done = false;
RCU_LOCKDEP_WARN(lock_is_held(&sp->dep_map) || RCU_LOCKDEP_WARN(lock_is_held(&sp->dep_map) ||
lock_is_held(&rcu_bh_lock_map) || lock_is_held(&rcu_bh_lock_map) ||
@ -373,8 +401,6 @@ static void __synchronize_srcu(struct srcu_struct *sp)
lock_is_held(&rcu_sched_lock_map), lock_is_held(&rcu_sched_lock_map),
"Illegal synchronize_srcu() in same-type SRCU (or in RCU) read-side critical section"); "Illegal synchronize_srcu() in same-type SRCU (or in RCU) read-side critical section");
if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
return;
might_sleep(); might_sleep();
init_completion(&rcu.completion); init_completion(&rcu.completion);
@ -382,47 +408,31 @@ static void __synchronize_srcu(struct srcu_struct *sp)
head->func = wakeme_after_rcu; head->func = wakeme_after_rcu;
spin_lock_irq(&sp->queue_lock); spin_lock_irq(&sp->queue_lock);
smp_mb__after_unlock_lock(); /* Caller's prior accesses before GP. */ smp_mb__after_unlock_lock(); /* Caller's prior accesses before GP. */
if (rcu_seq_state(READ_ONCE(sp->srcu_gp_seq)) == SRCU_STATE_IDLE) { if (!sp->running) {
/* steal the processing owner */ /* steal the processing owner */
rcu_segcblist_enqueue(&sp->srcu_cblist, head, false); sp->running = true;
srcu_gp_start(sp); rcu_batch_queue(&sp->batch_check0, head);
spin_unlock_irq(&sp->queue_lock); spin_unlock_irq(&sp->queue_lock);
srcu_advance_batches(sp, trycount);
if (!rcu_batch_empty(&sp->batch_done)) {
BUG_ON(sp->batch_done.head != head);
rcu_batch_dequeue(&sp->batch_done);
done = true;
}
/* give the processing owner to work_struct */ /* give the processing owner to work_struct */
srcu_reschedule(sp, 0); srcu_reschedule(sp);
} else { } else {
rcu_segcblist_enqueue(&sp->srcu_cblist, head, false); rcu_batch_queue(&sp->batch_queue, head);
spin_unlock_irq(&sp->queue_lock); spin_unlock_irq(&sp->queue_lock);
} }
wait_for_completion(&rcu.completion); if (!done) {
smp_mb(); /* Caller's later accesses after GP. */ wait_for_completion(&rcu.completion);
} smp_mb(); /* Caller's later accesses after GP. */
/**
* synchronize_srcu_expedited - Brute-force SRCU grace period
* @sp: srcu_struct with which to synchronize.
*
* Wait for an SRCU grace period to elapse, but be more aggressive about
* spinning rather than blocking when waiting.
*
* Note that synchronize_srcu_expedited() has the same deadlock and
* memory-ordering properties as does synchronize_srcu().
*/
void synchronize_srcu_expedited(struct srcu_struct *sp)
{
bool do_norm = rcu_gp_is_normal();
if (!do_norm) {
atomic_inc(&sp->srcu_exp_cnt);
smp_mb__after_atomic(); /* increment before GP. */
}
__synchronize_srcu(sp);
if (!do_norm) {
smp_mb__before_atomic(); /* GP before decrement. */
atomic_dec(&sp->srcu_exp_cnt);
} }
} }
EXPORT_SYMBOL_GPL(synchronize_srcu_expedited);
/** /**
* synchronize_srcu - wait for prior SRCU read-side critical-section completion * synchronize_srcu - wait for prior SRCU read-side critical-section completion
@ -465,13 +475,28 @@ EXPORT_SYMBOL_GPL(synchronize_srcu_expedited);
*/ */
void synchronize_srcu(struct srcu_struct *sp) void synchronize_srcu(struct srcu_struct *sp)
{ {
if (rcu_gp_is_expedited()) __synchronize_srcu(sp, (rcu_gp_is_expedited() && !rcu_gp_is_normal())
synchronize_srcu_expedited(sp); ? SYNCHRONIZE_SRCU_EXP_TRYCOUNT
else : SYNCHRONIZE_SRCU_TRYCOUNT);
__synchronize_srcu(sp);
} }
EXPORT_SYMBOL_GPL(synchronize_srcu); EXPORT_SYMBOL_GPL(synchronize_srcu);
/**
* synchronize_srcu_expedited - Brute-force SRCU grace period
* @sp: srcu_struct with which to synchronize.
*
* Wait for an SRCU grace period to elapse, but be more aggressive about
* spinning rather than blocking when waiting.
*
* Note that synchronize_srcu_expedited() has the same deadlock and
* memory-ordering properties as does synchronize_srcu().
*/
void synchronize_srcu_expedited(struct srcu_struct *sp)
{
__synchronize_srcu(sp, SYNCHRONIZE_SRCU_EXP_TRYCOUNT);
}
EXPORT_SYMBOL_GPL(synchronize_srcu_expedited);
/** /**
* srcu_barrier - Wait until all in-flight call_srcu() callbacks complete. * srcu_barrier - Wait until all in-flight call_srcu() callbacks complete.
* @sp: srcu_struct on which to wait for in-flight callbacks. * @sp: srcu_struct on which to wait for in-flight callbacks.
@ -495,13 +520,29 @@ unsigned long srcu_batches_completed(struct srcu_struct *sp)
} }
EXPORT_SYMBOL_GPL(srcu_batches_completed); EXPORT_SYMBOL_GPL(srcu_batches_completed);
#define SRCU_CALLBACK_BATCH 10
#define SRCU_INTERVAL 1
/*
* Move any new SRCU callbacks to the first stage of the SRCU grace
* period pipeline.
*/
static void srcu_collect_new(struct srcu_struct *sp)
{
if (!rcu_batch_empty(&sp->batch_queue)) {
spin_lock_irq(&sp->queue_lock);
rcu_batch_move(&sp->batch_check0, &sp->batch_queue);
spin_unlock_irq(&sp->queue_lock);
}
}
/* /*
* Core SRCU state machine. Advance callbacks from ->batch_check0 to * Core SRCU state machine. Advance callbacks from ->batch_check0 to
* ->batch_check1 and then to ->batch_done as readers drain. * ->batch_check1 and then to ->batch_done as readers drain.
*/ */
static void srcu_advance_batches(struct srcu_struct *sp) static void srcu_advance_batches(struct srcu_struct *sp, int trycount)
{ {
int idx; int idx = 1 ^ (sp->completed & 1);
/* /*
* Because readers might be delayed for an extended period after * Because readers might be delayed for an extended period after
@ -509,44 +550,50 @@ static void srcu_advance_batches(struct srcu_struct *sp)
* might well be readers using both idx=0 and idx=1. We therefore * might well be readers using both idx=0 and idx=1. We therefore
* need to wait for readers to clear from both index values before * need to wait for readers to clear from both index values before
* invoking a callback. * invoking a callback.
*
* The load-acquire ensures that we see the accesses performed
* by the prior grace period.
*/ */
idx = rcu_seq_state(smp_load_acquire(&sp->srcu_gp_seq)); /* ^^^ */
if (idx == SRCU_STATE_IDLE) {
spin_lock_irq(&sp->queue_lock);
if (rcu_segcblist_empty(&sp->srcu_cblist)) {
spin_unlock_irq(&sp->queue_lock);
return;
}
idx = rcu_seq_state(READ_ONCE(sp->srcu_gp_seq));
if (idx == SRCU_STATE_IDLE)
srcu_gp_start(sp);
spin_unlock_irq(&sp->queue_lock);
if (idx != SRCU_STATE_IDLE)
return; /* Someone else started the grace period. */
}
if (rcu_seq_state(READ_ONCE(sp->srcu_gp_seq)) == SRCU_STATE_SCAN1) { if (rcu_batch_empty(&sp->batch_check0) &&
idx = 1 ^ (sp->completed & 1); rcu_batch_empty(&sp->batch_check1))
if (!try_check_zero(sp, idx, 1)) return; /* no callbacks need to be advanced */
return; /* readers present, retry later. */
srcu_flip(sp);
rcu_seq_set_state(&sp->srcu_gp_seq, SRCU_STATE_SCAN2);
}
if (rcu_seq_state(READ_ONCE(sp->srcu_gp_seq)) == SRCU_STATE_SCAN2) { if (!try_check_zero(sp, idx, trycount))
return; /* failed to advance, will try after SRCU_INTERVAL */
/* /*
* SRCU read-side critical sections are normally short, * The callbacks in ->batch_check1 have already done with their
* so check at least twice in quick succession after a flip. * first zero check and flip back when they were enqueued on
*/ * ->batch_check0 in a previous invocation of srcu_advance_batches().
idx = 1 ^ (sp->completed & 1); * (Presumably try_check_zero() returned false during that
if (!try_check_zero(sp, idx, 2)) * invocation, leaving the callbacks stranded on ->batch_check1.)
return; /* readers present, retry after later. */ * They are therefore ready to invoke, so move them to ->batch_done.
srcu_gp_end(sp); */
} rcu_batch_move(&sp->batch_done, &sp->batch_check1);
if (rcu_batch_empty(&sp->batch_check0))
return; /* no callbacks need to be advanced */
srcu_flip(sp);
/*
* The callbacks in ->batch_check0 just finished their
* first check zero and flip, so move them to ->batch_check1
* for future checking on the other idx.
*/
rcu_batch_move(&sp->batch_check1, &sp->batch_check0);
/*
* SRCU read-side critical sections are normally short, so check
* at least twice in quick succession after a flip.
*/
trycount = trycount < 2 ? 2 : trycount;
if (!try_check_zero(sp, idx^1, trycount))
return; /* failed to advance, will try after SRCU_INTERVAL */
/*
* The callbacks in ->batch_check1 have now waited for all
* pre-existing readers using both idx values. They are therefore
* ready to invoke, so move them to ->batch_done.
*/
rcu_batch_move(&sp->batch_done, &sp->batch_check1);
} }
/* /*
@ -557,48 +604,45 @@ static void srcu_advance_batches(struct srcu_struct *sp)
*/ */
static void srcu_invoke_callbacks(struct srcu_struct *sp) static void srcu_invoke_callbacks(struct srcu_struct *sp)
{ {
struct rcu_cblist ready_cbs; int i;
struct rcu_head *rhp; struct rcu_head *head;
spin_lock_irq(&sp->queue_lock); for (i = 0; i < SRCU_CALLBACK_BATCH; i++) {
if (!rcu_segcblist_ready_cbs(&sp->srcu_cblist)) { head = rcu_batch_dequeue(&sp->batch_done);
spin_unlock_irq(&sp->queue_lock); if (!head)
return; break;
}
rcu_cblist_init(&ready_cbs);
rcu_segcblist_extract_done_cbs(&sp->srcu_cblist, &ready_cbs);
spin_unlock_irq(&sp->queue_lock);
rhp = rcu_cblist_dequeue(&ready_cbs);
for (; rhp != NULL; rhp = rcu_cblist_dequeue(&ready_cbs)) {
local_bh_disable(); local_bh_disable();
rhp->func(rhp); head->func(head);
local_bh_enable(); local_bh_enable();
} }
spin_lock_irq(&sp->queue_lock);
rcu_segcblist_insert_count(&sp->srcu_cblist, &ready_cbs);
spin_unlock_irq(&sp->queue_lock);
} }
/* /*
* Finished one round of SRCU grace period. Start another if there are * Finished one round of SRCU grace period. Start another if there are
* more SRCU callbacks queued, otherwise put SRCU into not-running state. * more SRCU callbacks queued, otherwise put SRCU into not-running state.
*/ */
static void srcu_reschedule(struct srcu_struct *sp, unsigned long delay) static void srcu_reschedule(struct srcu_struct *sp)
{ {
bool pending = true; bool pending = true;
int state;
if (rcu_segcblist_empty(&sp->srcu_cblist)) { if (rcu_batch_empty(&sp->batch_done) &&
rcu_batch_empty(&sp->batch_check1) &&
rcu_batch_empty(&sp->batch_check0) &&
rcu_batch_empty(&sp->batch_queue)) {
spin_lock_irq(&sp->queue_lock); spin_lock_irq(&sp->queue_lock);
state = rcu_seq_state(READ_ONCE(sp->srcu_gp_seq)); if (rcu_batch_empty(&sp->batch_done) &&
if (rcu_segcblist_empty(&sp->srcu_cblist) && rcu_batch_empty(&sp->batch_check1) &&
state == SRCU_STATE_IDLE) rcu_batch_empty(&sp->batch_check0) &&
rcu_batch_empty(&sp->batch_queue)) {
sp->running = false;
pending = false; pending = false;
}
spin_unlock_irq(&sp->queue_lock); spin_unlock_irq(&sp->queue_lock);
} }
if (pending) if (pending)
queue_delayed_work(system_power_efficient_wq, &sp->work, delay); queue_delayed_work(system_power_efficient_wq,
&sp->work, SRCU_INTERVAL);
} }
/* /*
@ -610,8 +654,9 @@ void process_srcu(struct work_struct *work)
sp = container_of(work, struct srcu_struct, work.work); sp = container_of(work, struct srcu_struct, work.work);
srcu_advance_batches(sp); srcu_collect_new(sp);
srcu_advance_batches(sp, 1);
srcu_invoke_callbacks(sp); srcu_invoke_callbacks(sp);
srcu_reschedule(sp, atomic_read(&sp->srcu_exp_cnt) ? 0 : SRCU_INTERVAL); srcu_reschedule(sp);
} }
EXPORT_SYMBOL_GPL(process_srcu); EXPORT_SYMBOL_GPL(process_srcu);

613
kernel/rcu/srcutree.c Normal file
View File

@ -0,0 +1,613 @@
/*
* Sleepable Read-Copy Update mechanism for mutual exclusion.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you can access it online at
* http://www.gnu.org/licenses/gpl-2.0.html.
*
* Copyright (C) IBM Corporation, 2006
* Copyright (C) Fujitsu, 2012
*
* Author: Paul McKenney <paulmck@us.ibm.com>
* Lai Jiangshan <laijs@cn.fujitsu.com>
*
* For detailed explanation of Read-Copy Update mechanism see -
* Documentation/RCU/ *.txt
*
*/
#include <linux/export.h>
#include <linux/mutex.h>
#include <linux/percpu.h>
#include <linux/preempt.h>
#include <linux/rcupdate_wait.h>
#include <linux/sched.h>
#include <linux/smp.h>
#include <linux/delay.h>
#include <linux/srcu.h>
#include <linux/rcu_node_tree.h>
#include "rcu.h"
static int init_srcu_struct_fields(struct srcu_struct *sp)
{
sp->completed = 0;
sp->srcu_gp_seq = 0;
atomic_set(&sp->srcu_exp_cnt, 0);
spin_lock_init(&sp->queue_lock);
rcu_segcblist_init(&sp->srcu_cblist);
INIT_DELAYED_WORK(&sp->work, process_srcu);
sp->per_cpu_ref = alloc_percpu(struct srcu_array);
return sp->per_cpu_ref ? 0 : -ENOMEM;
}
#ifdef CONFIG_DEBUG_LOCK_ALLOC
int __init_srcu_struct(struct srcu_struct *sp, const char *name,
struct lock_class_key *key)
{
/* Don't re-initialize a lock while it is held. */
debug_check_no_locks_freed((void *)sp, sizeof(*sp));
lockdep_init_map(&sp->dep_map, name, key, 0);
return init_srcu_struct_fields(sp);
}
EXPORT_SYMBOL_GPL(__init_srcu_struct);
#else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
/**
* init_srcu_struct - initialize a sleep-RCU structure
* @sp: structure to initialize.
*
* Must invoke this on a given srcu_struct before passing that srcu_struct
* to any other function. Each srcu_struct represents a separate domain
* of SRCU protection.
*/
int init_srcu_struct(struct srcu_struct *sp)
{
return init_srcu_struct_fields(sp);
}
EXPORT_SYMBOL_GPL(init_srcu_struct);
#endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
/*
* Returns approximate total of the readers' ->lock_count[] values for the
* rank of per-CPU counters specified by idx.
*/
static unsigned long srcu_readers_lock_idx(struct srcu_struct *sp, int idx)
{
int cpu;
unsigned long sum = 0;
for_each_possible_cpu(cpu) {
struct srcu_array *cpuc = per_cpu_ptr(sp->per_cpu_ref, cpu);
sum += READ_ONCE(cpuc->lock_count[idx]);
}
return sum;
}
/*
* Returns approximate total of the readers' ->unlock_count[] values for the
* rank of per-CPU counters specified by idx.
*/
static unsigned long srcu_readers_unlock_idx(struct srcu_struct *sp, int idx)
{
int cpu;
unsigned long sum = 0;
for_each_possible_cpu(cpu) {
struct srcu_array *cpuc = per_cpu_ptr(sp->per_cpu_ref, cpu);
sum += READ_ONCE(cpuc->unlock_count[idx]);
}
return sum;
}
/*
* Return true if the number of pre-existing readers is determined to
* be zero.
*/
static bool srcu_readers_active_idx_check(struct srcu_struct *sp, int idx)
{
unsigned long unlocks;
unlocks = srcu_readers_unlock_idx(sp, idx);
/*
* Make sure that a lock is always counted if the corresponding
* unlock is counted. Needs to be a smp_mb() as the read side may
* contain a read from a variable that is written to before the
* synchronize_srcu() in the write side. In this case smp_mb()s
* A and B act like the store buffering pattern.
*
* This smp_mb() also pairs with smp_mb() C to prevent accesses
* after the synchronize_srcu() from being executed before the
* grace period ends.
*/
smp_mb(); /* A */
/*
* If the locks are the same as the unlocks, then there must have
* been no readers on this index at some time in between. This does
* not mean that there are no more readers, as one could have read
* the current index but not have incremented the lock counter yet.
*
* Possible bug: There is no guarantee that there haven't been
* ULONG_MAX increments of ->lock_count[] since the unlocks were
* counted, meaning that this could return true even if there are
* still active readers. Since there are no memory barriers around
* srcu_flip(), the CPU is not required to increment ->completed
* before running srcu_readers_unlock_idx(), which means that there
* could be an arbitrarily large number of critical sections that
* execute after srcu_readers_unlock_idx() but use the old value
* of ->completed.
*/
return srcu_readers_lock_idx(sp, idx) == unlocks;
}
/**
* srcu_readers_active - returns true if there are readers. and false
* otherwise
* @sp: which srcu_struct to count active readers (holding srcu_read_lock).
*
* Note that this is not an atomic primitive, and can therefore suffer
* severe errors when invoked on an active srcu_struct. That said, it
* can be useful as an error check at cleanup time.
*/
static bool srcu_readers_active(struct srcu_struct *sp)
{
int cpu;
unsigned long sum = 0;
for_each_possible_cpu(cpu) {
struct srcu_array *cpuc = per_cpu_ptr(sp->per_cpu_ref, cpu);
sum += READ_ONCE(cpuc->lock_count[0]);
sum += READ_ONCE(cpuc->lock_count[1]);
sum -= READ_ONCE(cpuc->unlock_count[0]);
sum -= READ_ONCE(cpuc->unlock_count[1]);
}
return sum;
}
#define SRCU_INTERVAL 1
/**
* cleanup_srcu_struct - deconstruct a sleep-RCU structure
* @sp: structure to clean up.
*
* Must invoke this after you are finished using a given srcu_struct that
* was initialized via init_srcu_struct(), else you leak memory.
*/
void cleanup_srcu_struct(struct srcu_struct *sp)
{
WARN_ON_ONCE(atomic_read(&sp->srcu_exp_cnt));
if (WARN_ON(srcu_readers_active(sp)))
return; /* Leakage unless caller handles error. */
if (WARN_ON(!rcu_segcblist_empty(&sp->srcu_cblist)))
return; /* Leakage unless caller handles error. */
flush_delayed_work(&sp->work);
if (WARN_ON(rcu_seq_state(READ_ONCE(sp->srcu_gp_seq)) != SRCU_STATE_IDLE)) {
pr_info("cleanup_srcu_struct: Active srcu_struct %lu CBs %c state: %d\n", rcu_segcblist_n_cbs(&sp->srcu_cblist), ".E"[rcu_segcblist_empty(&sp->srcu_cblist)], rcu_seq_state(READ_ONCE(sp->srcu_gp_seq)));
return; /* Caller forgot to stop doing call_srcu()? */
}
free_percpu(sp->per_cpu_ref);
sp->per_cpu_ref = NULL;
}
EXPORT_SYMBOL_GPL(cleanup_srcu_struct);
/*
* Counts the new reader in the appropriate per-CPU element of the
* srcu_struct. Must be called from process context.
* Returns an index that must be passed to the matching srcu_read_unlock().
*/
int __srcu_read_lock(struct srcu_struct *sp)
{
int idx;
idx = READ_ONCE(sp->completed) & 0x1;
__this_cpu_inc(sp->per_cpu_ref->lock_count[idx]);
smp_mb(); /* B */ /* Avoid leaking the critical section. */
return idx;
}
EXPORT_SYMBOL_GPL(__srcu_read_lock);
/*
* Removes the count for the old reader from the appropriate per-CPU
* element of the srcu_struct. Note that this may well be a different
* CPU than that which was incremented by the corresponding srcu_read_lock().
* Must be called from process context.
*/
void __srcu_read_unlock(struct srcu_struct *sp, int idx)
{
smp_mb(); /* C */ /* Avoid leaking the critical section. */
this_cpu_inc(sp->per_cpu_ref->unlock_count[idx]);
}
EXPORT_SYMBOL_GPL(__srcu_read_unlock);
/*
* We use an adaptive strategy for synchronize_srcu() and especially for
* synchronize_srcu_expedited(). We spin for a fixed time period
* (defined below) to allow SRCU readers to exit their read-side critical
* sections. If there are still some readers after a few microseconds,
* we repeatedly block for 1-millisecond time periods.
*/
#define SRCU_RETRY_CHECK_DELAY 5
/*
* Start an SRCU grace period.
*/
static void srcu_gp_start(struct srcu_struct *sp)
{
int state;
rcu_segcblist_accelerate(&sp->srcu_cblist,
rcu_seq_snap(&sp->srcu_gp_seq));
rcu_seq_start(&sp->srcu_gp_seq);
state = rcu_seq_state(READ_ONCE(sp->srcu_gp_seq));
WARN_ON_ONCE(state != SRCU_STATE_SCAN1);
}
/*
* Wait until all readers counted by array index idx complete, but
* loop an additional time if there is an expedited grace period pending.
* The caller must ensure that ->completed is not changed while checking.
*/
static bool try_check_zero(struct srcu_struct *sp, int idx, int trycount)
{
for (;;) {
if (srcu_readers_active_idx_check(sp, idx))
return true;
if (--trycount + !!atomic_read(&sp->srcu_exp_cnt) <= 0)
return false;
udelay(SRCU_RETRY_CHECK_DELAY);
}
}
/*
* Increment the ->completed counter so that future SRCU readers will
* use the other rank of the ->(un)lock_count[] arrays. This allows
* us to wait for pre-existing readers in a starvation-free manner.
*/
static void srcu_flip(struct srcu_struct *sp)
{
WRITE_ONCE(sp->completed, sp->completed + 1);
/*
* Ensure that if the updater misses an __srcu_read_unlock()
* increment, that task's next __srcu_read_lock() will see the
* above counter update. Note that both this memory barrier
* and the one in srcu_readers_active_idx_check() provide the
* guarantee for __srcu_read_lock().
*/
smp_mb(); /* D */ /* Pairs with C. */
}
/*
* End an SRCU grace period.
*/
static void srcu_gp_end(struct srcu_struct *sp)
{
rcu_seq_end(&sp->srcu_gp_seq);
spin_lock_irq(&sp->queue_lock);
rcu_segcblist_advance(&sp->srcu_cblist,
rcu_seq_current(&sp->srcu_gp_seq));
spin_unlock_irq(&sp->queue_lock);
}
/*
* Enqueue an SRCU callback on the specified srcu_struct structure,
* initiating grace-period processing if it is not already running.
*
* Note that all CPUs must agree that the grace period extended beyond
* all pre-existing SRCU read-side critical section. On systems with
* more than one CPU, this means that when "func()" is invoked, each CPU
* is guaranteed to have executed a full memory barrier since the end of
* its last corresponding SRCU read-side critical section whose beginning
* preceded the call to call_rcu(). It also means that each CPU executing
* an SRCU read-side critical section that continues beyond the start of
* "func()" must have executed a memory barrier after the call_rcu()
* but before the beginning of that SRCU read-side critical section.
* Note that these guarantees include CPUs that are offline, idle, or
* executing in user mode, as well as CPUs that are executing in the kernel.
*
* Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
* resulting SRCU callback function "func()", then both CPU A and CPU
* B are guaranteed to execute a full memory barrier during the time
* interval between the call to call_rcu() and the invocation of "func()".
* This guarantee applies even if CPU A and CPU B are the same CPU (but
* again only if the system has more than one CPU).
*
* Of course, these guarantees apply only for invocations of call_srcu(),
* srcu_read_lock(), and srcu_read_unlock() that are all passed the same
* srcu_struct structure.
*/
void call_srcu(struct srcu_struct *sp, struct rcu_head *head,
rcu_callback_t func)
{
unsigned long flags;
head->next = NULL;
head->func = func;
spin_lock_irqsave(&sp->queue_lock, flags);
smp_mb__after_unlock_lock(); /* Caller's prior accesses before GP. */
rcu_segcblist_enqueue(&sp->srcu_cblist, head, false);
if (rcu_seq_state(READ_ONCE(sp->srcu_gp_seq)) == SRCU_STATE_IDLE) {
srcu_gp_start(sp);
queue_delayed_work(system_power_efficient_wq, &sp->work, 0);
}
spin_unlock_irqrestore(&sp->queue_lock, flags);
}
EXPORT_SYMBOL_GPL(call_srcu);
static void srcu_reschedule(struct srcu_struct *sp, unsigned long delay);
/*
* Helper function for synchronize_srcu() and synchronize_srcu_expedited().
*/
static void __synchronize_srcu(struct srcu_struct *sp)
{
struct rcu_synchronize rcu;
struct rcu_head *head = &rcu.head;
RCU_LOCKDEP_WARN(lock_is_held(&sp->dep_map) ||
lock_is_held(&rcu_bh_lock_map) ||
lock_is_held(&rcu_lock_map) ||
lock_is_held(&rcu_sched_lock_map),
"Illegal synchronize_srcu() in same-type SRCU (or in RCU) read-side critical section");
if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
return;
might_sleep();
init_completion(&rcu.completion);
head->next = NULL;
head->func = wakeme_after_rcu;
spin_lock_irq(&sp->queue_lock);
smp_mb__after_unlock_lock(); /* Caller's prior accesses before GP. */
if (rcu_seq_state(READ_ONCE(sp->srcu_gp_seq)) == SRCU_STATE_IDLE) {
/* steal the processing owner */
rcu_segcblist_enqueue(&sp->srcu_cblist, head, false);
srcu_gp_start(sp);
spin_unlock_irq(&sp->queue_lock);
/* give the processing owner to work_struct */
srcu_reschedule(sp, 0);
} else {
rcu_segcblist_enqueue(&sp->srcu_cblist, head, false);
spin_unlock_irq(&sp->queue_lock);
}
wait_for_completion(&rcu.completion);
smp_mb(); /* Caller's later accesses after GP. */
}
/**
* synchronize_srcu_expedited - Brute-force SRCU grace period
* @sp: srcu_struct with which to synchronize.
*
* Wait for an SRCU grace period to elapse, but be more aggressive about
* spinning rather than blocking when waiting.
*
* Note that synchronize_srcu_expedited() has the same deadlock and
* memory-ordering properties as does synchronize_srcu().
*/
void synchronize_srcu_expedited(struct srcu_struct *sp)
{
bool do_norm = rcu_gp_is_normal();
if (!do_norm) {
atomic_inc(&sp->srcu_exp_cnt);
smp_mb__after_atomic(); /* increment before GP. */
}
__synchronize_srcu(sp);
if (!do_norm) {
smp_mb__before_atomic(); /* GP before decrement. */
atomic_dec(&sp->srcu_exp_cnt);
}
}
EXPORT_SYMBOL_GPL(synchronize_srcu_expedited);
/**
* synchronize_srcu - wait for prior SRCU read-side critical-section completion
* @sp: srcu_struct with which to synchronize.
*
* Wait for the count to drain to zero of both indexes. To avoid the
* possible starvation of synchronize_srcu(), it waits for the count of
* the index=((->completed & 1) ^ 1) to drain to zero at first,
* and then flip the completed and wait for the count of the other index.
*
* Can block; must be called from process context.
*
* Note that it is illegal to call synchronize_srcu() from the corresponding
* SRCU read-side critical section; doing so will result in deadlock.
* However, it is perfectly legal to call synchronize_srcu() on one
* srcu_struct from some other srcu_struct's read-side critical section,
* as long as the resulting graph of srcu_structs is acyclic.
*
* There are memory-ordering constraints implied by synchronize_srcu().
* On systems with more than one CPU, when synchronize_srcu() returns,
* each CPU is guaranteed to have executed a full memory barrier since
* the end of its last corresponding SRCU-sched read-side critical section
* whose beginning preceded the call to synchronize_srcu(). In addition,
* each CPU having an SRCU read-side critical section that extends beyond
* the return from synchronize_srcu() is guaranteed to have executed a
* full memory barrier after the beginning of synchronize_srcu() and before
* the beginning of that SRCU read-side critical section. Note that these
* guarantees include CPUs that are offline, idle, or executing in user mode,
* as well as CPUs that are executing in the kernel.
*
* Furthermore, if CPU A invoked synchronize_srcu(), which returned
* to its caller on CPU B, then both CPU A and CPU B are guaranteed
* to have executed a full memory barrier during the execution of
* synchronize_srcu(). This guarantee applies even if CPU A and CPU B
* are the same CPU, but again only if the system has more than one CPU.
*
* Of course, these memory-ordering guarantees apply only when
* synchronize_srcu(), srcu_read_lock(), and srcu_read_unlock() are
* passed the same srcu_struct structure.
*/
void synchronize_srcu(struct srcu_struct *sp)
{
if (rcu_gp_is_expedited())
synchronize_srcu_expedited(sp);
else
__synchronize_srcu(sp);
}
EXPORT_SYMBOL_GPL(synchronize_srcu);
/**
* srcu_barrier - Wait until all in-flight call_srcu() callbacks complete.
* @sp: srcu_struct on which to wait for in-flight callbacks.
*/
void srcu_barrier(struct srcu_struct *sp)
{
synchronize_srcu(sp);
}
EXPORT_SYMBOL_GPL(srcu_barrier);
/**
* srcu_batches_completed - return batches completed.
* @sp: srcu_struct on which to report batch completion.
*
* Report the number of batches, correlated with, but not necessarily
* precisely the same as, the number of grace periods that have elapsed.
*/
unsigned long srcu_batches_completed(struct srcu_struct *sp)
{
return sp->completed;
}
EXPORT_SYMBOL_GPL(srcu_batches_completed);
/*
* Core SRCU state machine. Advance callbacks from ->batch_check0 to
* ->batch_check1 and then to ->batch_done as readers drain.
*/
static void srcu_advance_batches(struct srcu_struct *sp)
{
int idx;
/*
* Because readers might be delayed for an extended period after
* fetching ->completed for their index, at any point in time there
* might well be readers using both idx=0 and idx=1. We therefore
* need to wait for readers to clear from both index values before
* invoking a callback.
*
* The load-acquire ensures that we see the accesses performed
* by the prior grace period.
*/
idx = rcu_seq_state(smp_load_acquire(&sp->srcu_gp_seq)); /* ^^^ */
if (idx == SRCU_STATE_IDLE) {
spin_lock_irq(&sp->queue_lock);
if (rcu_segcblist_empty(&sp->srcu_cblist)) {
spin_unlock_irq(&sp->queue_lock);
return;
}
idx = rcu_seq_state(READ_ONCE(sp->srcu_gp_seq));
if (idx == SRCU_STATE_IDLE)
srcu_gp_start(sp);
spin_unlock_irq(&sp->queue_lock);
if (idx != SRCU_STATE_IDLE)
return; /* Someone else started the grace period. */
}
if (rcu_seq_state(READ_ONCE(sp->srcu_gp_seq)) == SRCU_STATE_SCAN1) {
idx = 1 ^ (sp->completed & 1);
if (!try_check_zero(sp, idx, 1))
return; /* readers present, retry later. */
srcu_flip(sp);
rcu_seq_set_state(&sp->srcu_gp_seq, SRCU_STATE_SCAN2);
}
if (rcu_seq_state(READ_ONCE(sp->srcu_gp_seq)) == SRCU_STATE_SCAN2) {
/*
* SRCU read-side critical sections are normally short,
* so check at least twice in quick succession after a flip.
*/
idx = 1 ^ (sp->completed & 1);
if (!try_check_zero(sp, idx, 2))
return; /* readers present, retry after later. */
srcu_gp_end(sp);
}
}
/*
* Invoke a limited number of SRCU callbacks that have passed through
* their grace period. If there are more to do, SRCU will reschedule
* the workqueue. Note that needed memory barriers have been executed
* in this task's context by srcu_readers_active_idx_check().
*/
static void srcu_invoke_callbacks(struct srcu_struct *sp)
{
struct rcu_cblist ready_cbs;
struct rcu_head *rhp;
spin_lock_irq(&sp->queue_lock);
if (!rcu_segcblist_ready_cbs(&sp->srcu_cblist)) {
spin_unlock_irq(&sp->queue_lock);
return;
}
rcu_cblist_init(&ready_cbs);
rcu_segcblist_extract_done_cbs(&sp->srcu_cblist, &ready_cbs);
spin_unlock_irq(&sp->queue_lock);
rhp = rcu_cblist_dequeue(&ready_cbs);
for (; rhp != NULL; rhp = rcu_cblist_dequeue(&ready_cbs)) {
local_bh_disable();
rhp->func(rhp);
local_bh_enable();
}
spin_lock_irq(&sp->queue_lock);
rcu_segcblist_insert_count(&sp->srcu_cblist, &ready_cbs);
spin_unlock_irq(&sp->queue_lock);
}
/*
* Finished one round of SRCU grace period. Start another if there are
* more SRCU callbacks queued, otherwise put SRCU into not-running state.
*/
static void srcu_reschedule(struct srcu_struct *sp, unsigned long delay)
{
bool pending = true;
int state;
if (rcu_segcblist_empty(&sp->srcu_cblist)) {
spin_lock_irq(&sp->queue_lock);
state = rcu_seq_state(READ_ONCE(sp->srcu_gp_seq));
if (rcu_segcblist_empty(&sp->srcu_cblist) &&
state == SRCU_STATE_IDLE)
pending = false;
spin_unlock_irq(&sp->queue_lock);
}
if (pending)
queue_delayed_work(system_power_efficient_wq, &sp->work, delay);
}
/*
* This is the work-queue function that handles SRCU grace periods.
*/
void process_srcu(struct work_struct *work)
{
struct srcu_struct *sp;
sp = container_of(work, struct srcu_struct, work.work);
srcu_advance_batches(sp);
srcu_invoke_callbacks(sp);
srcu_reschedule(sp, atomic_read(&sp->srcu_exp_cnt) ? 0 : SRCU_INTERVAL);
}
EXPORT_SYMBOL_GPL(process_srcu);