blk-mq: fix issue with shared tag queue re-running
This patch attempts to make the case of hctx re-running on driver tag failure more robust. Without this patch, it's pretty easy to trigger a stall condition with shared tags. An example is using null_blk like this: modprobe null_blk queue_mode=2 nr_devices=4 shared_tags=1 submit_queues=1 hw_queue_depth=1 which sets up 4 devices, sharing the same tag set with a depth of 1. Running a fio job ala: [global] bs=4k rw=randread norandommap direct=1 ioengine=libaio iodepth=4 [nullb0] filename=/dev/nullb0 [nullb1] filename=/dev/nullb1 [nullb2] filename=/dev/nullb2 [nullb3] filename=/dev/nullb3 will inevitably end with one or more threads being stuck waiting for a scheduler tag. That IO is then stuck forever, until someone else triggers a run of the queue. Ensure that we always re-run the hardware queue, if the driver tag we were waiting for got freed before we added our leftover request entries back on the dispatch list. Reviewed-by: Bart Van Assche <bart.vanassche@wdc.com> Tested-by: Bart Van Assche <bart.vanassche@wdc.com> Reviewed-by: Ming Lei <ming.lei@redhat.com> Reviewed-by: Omar Sandoval <osandov@fb.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
This commit is contained in:
parent
e454d122e2
commit
eb619fdb2d
|
@ -179,7 +179,6 @@ static const char *const hctx_state_name[] = {
|
|||
HCTX_STATE_NAME(STOPPED),
|
||||
HCTX_STATE_NAME(TAG_ACTIVE),
|
||||
HCTX_STATE_NAME(SCHED_RESTART),
|
||||
HCTX_STATE_NAME(TAG_WAITING),
|
||||
HCTX_STATE_NAME(START_ON_RUN),
|
||||
};
|
||||
#undef HCTX_STATE_NAME
|
||||
|
|
|
@ -998,41 +998,55 @@ bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
|
|||
return rq->tag != -1;
|
||||
}
|
||||
|
||||
static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, int flags,
|
||||
void *key)
|
||||
static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
|
||||
int flags, void *key)
|
||||
{
|
||||
struct blk_mq_hw_ctx *hctx;
|
||||
|
||||
hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
|
||||
|
||||
list_del(&wait->entry);
|
||||
clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
|
||||
list_del_init(&wait->entry);
|
||||
blk_mq_run_hw_queue(hctx, true);
|
||||
return 1;
|
||||
}
|
||||
|
||||
static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
|
||||
static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx **hctx,
|
||||
struct request *rq)
|
||||
{
|
||||
struct blk_mq_hw_ctx *this_hctx = *hctx;
|
||||
wait_queue_entry_t *wait = &this_hctx->dispatch_wait;
|
||||
struct sbq_wait_state *ws;
|
||||
|
||||
/*
|
||||
* The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
|
||||
* The thread which wins the race to grab this bit adds the hardware
|
||||
* queue to the wait queue.
|
||||
*/
|
||||
if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
|
||||
test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
|
||||
if (!list_empty_careful(&wait->entry))
|
||||
return false;
|
||||
|
||||
init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
|
||||
ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);
|
||||
spin_lock(&this_hctx->lock);
|
||||
if (!list_empty(&wait->entry)) {
|
||||
spin_unlock(&this_hctx->lock);
|
||||
return false;
|
||||
}
|
||||
|
||||
ws = bt_wait_ptr(&this_hctx->tags->bitmap_tags, this_hctx);
|
||||
add_wait_queue(&ws->wait, wait);
|
||||
|
||||
/*
|
||||
* As soon as this returns, it's no longer safe to fiddle with
|
||||
* hctx->dispatch_wait, since a completion can wake up the wait queue
|
||||
* and unlock the bit.
|
||||
* It's possible that a tag was freed in the window between the
|
||||
* allocation failure and adding the hardware queue to the wait
|
||||
* queue.
|
||||
*/
|
||||
add_wait_queue(&ws->wait, &hctx->dispatch_wait);
|
||||
if (!blk_mq_get_driver_tag(rq, hctx, false)) {
|
||||
spin_unlock(&this_hctx->lock);
|
||||
return false;
|
||||
}
|
||||
|
||||
/*
|
||||
* We got a tag, remove ourselves from the wait queue to ensure
|
||||
* someone else gets the wakeup.
|
||||
*/
|
||||
spin_lock_irq(&ws->wait.lock);
|
||||
list_del_init(&wait->entry);
|
||||
spin_unlock_irq(&ws->wait.lock);
|
||||
spin_unlock(&this_hctx->lock);
|
||||
return true;
|
||||
}
|
||||
|
||||
|
@ -1041,6 +1055,7 @@ bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
|
|||
{
|
||||
struct blk_mq_hw_ctx *hctx;
|
||||
struct request *rq, *nxt;
|
||||
bool no_tag = false;
|
||||
int errors, queued;
|
||||
|
||||
if (list_empty(list))
|
||||
|
@ -1060,22 +1075,15 @@ bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
|
|||
if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
|
||||
/*
|
||||
* The initial allocation attempt failed, so we need to
|
||||
* rerun the hardware queue when a tag is freed.
|
||||
* rerun the hardware queue when a tag is freed. The
|
||||
* waitqueue takes care of that. If the queue is run
|
||||
* before we add this entry back on the dispatch list,
|
||||
* we'll re-run it below.
|
||||
*/
|
||||
if (!blk_mq_dispatch_wait_add(hctx)) {
|
||||
if (got_budget)
|
||||
blk_mq_put_dispatch_budget(hctx);
|
||||
break;
|
||||
}
|
||||
|
||||
/*
|
||||
* It's possible that a tag was freed in the window
|
||||
* between the allocation failure and adding the
|
||||
* hardware queue to the wait queue.
|
||||
*/
|
||||
if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
|
||||
if (!blk_mq_dispatch_wait_add(&hctx, rq)) {
|
||||
if (got_budget)
|
||||
blk_mq_put_dispatch_budget(hctx);
|
||||
no_tag = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
@ -1140,10 +1148,10 @@ bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
|
|||
* it is no longer set that means that it was cleared by another
|
||||
* thread and hence that a queue rerun is needed.
|
||||
*
|
||||
* If TAG_WAITING is set that means that an I/O scheduler has
|
||||
* been configured and another thread is waiting for a driver
|
||||
* tag. To guarantee fairness, do not rerun this hardware queue
|
||||
* but let the other thread grab the driver tag.
|
||||
* If 'no_tag' is set, that means that we failed getting
|
||||
* a driver tag with an I/O scheduler attached. If our dispatch
|
||||
* waitqueue is no longer active, ensure that we run the queue
|
||||
* AFTER adding our entries back to the list.
|
||||
*
|
||||
* If no I/O scheduler has been configured it is possible that
|
||||
* the hardware queue got stopped and restarted before requests
|
||||
|
@ -1155,8 +1163,8 @@ bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
|
|||
* returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
|
||||
* and dm-rq.
|
||||
*/
|
||||
if (!blk_mq_sched_needs_restart(hctx) &&
|
||||
!test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
|
||||
if (!blk_mq_sched_needs_restart(hctx) ||
|
||||
(no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
|
||||
blk_mq_run_hw_queue(hctx, true);
|
||||
}
|
||||
|
||||
|
@ -2020,6 +2028,9 @@ static int blk_mq_init_hctx(struct request_queue *q,
|
|||
|
||||
hctx->nr_ctx = 0;
|
||||
|
||||
init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
|
||||
INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
|
||||
|
||||
if (set->ops->init_hctx &&
|
||||
set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
|
||||
goto free_bitmap;
|
||||
|
|
|
@ -181,8 +181,7 @@ enum {
|
|||
BLK_MQ_S_STOPPED = 0,
|
||||
BLK_MQ_S_TAG_ACTIVE = 1,
|
||||
BLK_MQ_S_SCHED_RESTART = 2,
|
||||
BLK_MQ_S_TAG_WAITING = 3,
|
||||
BLK_MQ_S_START_ON_RUN = 4,
|
||||
BLK_MQ_S_START_ON_RUN = 3,
|
||||
|
||||
BLK_MQ_MAX_DEPTH = 10240,
|
||||
|
||||
|
|
Loading…
Reference in New Issue