Char/Misc patches for 5.2-rc1 - part 2

Here is the "real" big set of char/misc driver patches for 5.2-rc1
 
 Loads of different driver subsystem stuff in here, all over the places:
   - thunderbolt driver updates
   - habanalabs driver updates
   - nvmem driver updates
   - extcon driver updates
   - intel_th driver updates
   - mei driver updates
   - coresight driver updates
   - soundwire driver cleanups and updates
   - fastrpc driver updates
   - other minor driver updates
   - chardev minor fixups
 
 Feels like this tree is getting to be a dumping ground of "small driver
 subsystems" these days.  Which is fine with me, if it makes things
 easier for those subsystem maintainers.
 
 All of these have been in linux-next for a while with no reported
 issues.
 
 Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
 -----BEGIN PGP SIGNATURE-----
 
 iGwEABECAC0WIQT0tgzFv3jCIUoxPcsxR9QN2y37KQUCXNHE2w8cZ3JlZ0Brcm9h
 aC5jb20ACgkQMUfUDdst+ykvyQCYj5vSHQ88yEU+bzwGzQQLOBWYIwCgm5Iku0Y3
 f6V3MvRffg4qUp3cGbU=
 =R37j
 -----END PGP SIGNATURE-----

Merge tag 'char-misc-5.2-rc1-part2' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/char-misc

Pull char/misc update part 2 from Greg KH:
 "Here is the "real" big set of char/misc driver patches for 5.2-rc1

  Loads of different driver subsystem stuff in here, all over the places:
   - thunderbolt driver updates
   - habanalabs driver updates
   - nvmem driver updates
   - extcon driver updates
   - intel_th driver updates
   - mei driver updates
   - coresight driver updates
   - soundwire driver cleanups and updates
   - fastrpc driver updates
   - other minor driver updates
   - chardev minor fixups

  Feels like this tree is getting to be a dumping ground of "small
  driver subsystems" these days. Which is fine with me, if it makes
  things easier for those subsystem maintainers.

  All of these have been in linux-next for a while with no reported
  issues"

* tag 'char-misc-5.2-rc1-part2' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/char-misc: (255 commits)
  intel_th: msu: Add current window tracking
  intel_th: msu: Add a sysfs attribute to trigger window switch
  intel_th: msu: Correct the block wrap detection
  intel_th: Add switch triggering support
  intel_th: gth: Factor out trace start/stop
  intel_th: msu: Factor out pipeline draining
  intel_th: msu: Switch over to scatterlist
  intel_th: msu: Replace open-coded list_{first,last,next}_entry variants
  intel_th: Only report useful IRQs to subdevices
  intel_th: msu: Start handling IRQs
  intel_th: pci: Use MSI interrupt signalling
  intel_th: Communicate IRQ via resource
  intel_th: Add "rtit" source device
  intel_th: Skip subdevices if their MMIO is missing
  intel_th: Rework resource passing between glue layers and core
  intel_th: SPDX-ify the documentation
  intel_th: msu: Fix single mode with IOMMU
  coresight: funnel: Support static funnel
  dt-bindings: arm: coresight: Unify funnel DT binding
  coresight: replicator: Add new device id for static replicator
  ...
This commit is contained in:
Linus Torvalds 2019-05-07 13:39:22 -07:00
commit f678d6da74
274 changed files with 10437 additions and 4362 deletions

View File

@ -6,6 +6,8 @@ Description:
This file allows user to read/write the raw NVMEM contents.
Permissions for write to this file depends on the nvmem
provider configuration.
Note: This file is only present if CONFIG_NVMEM_SYSFS
is enabled
ex:
hexdump /sys/bus/nvmem/devices/qfprom0/nvmem

View File

@ -30,4 +30,12 @@ Description: (RW) Configure MSC buffer size for "single" or "multi" modes.
there are no active users and tracing is not enabled) and then
allocates a new one.
What: /sys/bus/intel_th/devices/<intel_th_id>-msc<msc-id>/win_switch
Date: May 2019
KernelVersion: 5.2
Contact: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Description: (RW) Trigger window switch for the MSC's buffer, in
multi-window mode. In "multi" mode, accepts writes of "1", thereby
triggering a window switch for the buffer. Returns an error in any
other operating mode or attempts to write something other than "1".

View File

@ -65,3 +65,18 @@ Description: Display the ME firmware version.
<platform>:<major>.<minor>.<milestone>.<build_no>.
There can be up to three such blocks for different
FW components.
What: /sys/class/mei/meiN/dev_state
Date: Mar 2019
KernelVersion: 5.1
Contact: Tomas Winkler <tomas.winkler@intel.com>
Description: Display the ME device state.
The device state can have following values:
INITIALIZING
INIT_CLIENTS
ENABLED
RESETTING
DISABLED
POWER_DOWN
POWER_UP

View File

@ -8,7 +8,8 @@ through the intermediate links connecting the source to the currently selected
sink. Each CoreSight component device should use these properties to describe
its hardware characteristcs.
* Required properties for all components *except* non-configurable replicators:
* Required properties for all components *except* non-configurable replicators
and non-configurable funnels:
* compatible: These have to be supplemented with "arm,primecell" as
drivers are using the AMBA bus interface. Possible values include:
@ -24,8 +25,10 @@ its hardware characteristcs.
discovered at boot time when the device is probed.
"arm,coresight-tmc", "arm,primecell";
- Trace Funnel:
"arm,coresight-funnel", "arm,primecell";
- Trace Programmable Funnel:
"arm,coresight-dynamic-funnel", "arm,primecell";
"arm,coresight-funnel", "arm,primecell"; (OBSOLETE. For
backward compatibility and will be removed)
- Embedded Trace Macrocell (version 3.x) and
Program Flow Trace Macrocell:
@ -65,11 +68,17 @@ its hardware characteristcs.
"stm-stimulus-base", each corresponding to the areas defined in "reg".
* Required properties for devices that don't show up on the AMBA bus, such as
non-configurable replicators:
non-configurable replicators and non-configurable funnels:
* compatible: Currently supported value is (note the absence of the
AMBA markee):
- "arm,coresight-replicator"
- Coresight Non-configurable Replicator:
"arm,coresight-static-replicator";
"arm,coresight-replicator"; (OBSOLETE. For backward
compatibility and will be removed)
- Coresight Non-configurable Funnel:
"arm,coresight-static-funnel";
* port or ports: see "Graph bindings for Coresight" below.
@ -169,7 +178,7 @@ Example:
/* non-configurable replicators don't show up on the
* AMBA bus. As such no need to add "arm,primecell".
*/
compatible = "arm,coresight-replicator";
compatible = "arm,coresight-static-replicator";
out-ports {
#address-cells = <1>;
@ -200,8 +209,45 @@ Example:
};
};
funnel {
/*
* non-configurable funnel don't show up on the AMBA
* bus. As such no need to add "arm,primecell".
*/
compatible = "arm,coresight-static-funnel";
clocks = <&crg_ctrl HI3660_PCLK>;
clock-names = "apb_pclk";
out-ports {
port {
combo_funnel_out: endpoint {
remote-endpoint = <&top_funnel_in>;
};
};
};
in-ports {
#address-cells = <1>;
#size-cells = <0>;
port@0 {
reg = <0>;
combo_funnel_in0: endpoint {
remote-endpoint = <&cluster0_etf_out>;
};
};
port@1 {
reg = <1>;
combo_funnel_in1: endpoint {
remote-endpoint = <&cluster1_etf_out>;
};
};
};
};
funnel@20040000 {
compatible = "arm,coresight-funnel", "arm,primecell";
compatible = "arm,coresight-dynamic-funnel", "arm,primecell";
reg = <0 0x20040000 0 0x1000>;
clocks = <&oscclk6a>;

View File

@ -9,6 +9,7 @@ Required properties:
- compatible : Must be one of
"u-blox,neo-6m"
"u-blox,neo-8"
"u-blox,neo-m8"

View File

@ -0,0 +1,47 @@
======================================================================
Device tree bindings for Aspeed AST2400/AST2500 PCI-to-AHB Bridge Control Driver
======================================================================
The bridge is available on platforms with the VGA enabled on the Aspeed device.
In this case, the host has access to a 64KiB window into all of the BMC's
memory. The BMC can disable this bridge. If the bridge is enabled, the host
has read access to all the regions of memory, however the host only has read
and write access depending on a register controlled by the BMC.
Required properties:
===================
- compatible: must be one of:
- "aspeed,ast2400-p2a-ctrl"
- "aspeed,ast2500-p2a-ctrl"
Optional properties:
===================
- memory-region: A phandle to a reserved_memory region to be used for the PCI
to AHB mapping
The p2a-control node should be the child of a syscon node with the required
property:
- compatible : Should be one of the following:
"aspeed,ast2400-scu", "syscon", "simple-mfd"
"aspeed,g4-scu", "syscon", "simple-mfd"
"aspeed,ast2500-scu", "syscon", "simple-mfd"
"aspeed,g5-scu", "syscon", "simple-mfd"
Example
===================
g4 Example
----------
syscon: scu@1e6e2000 {
compatible = "aspeed,ast2400-scu", "syscon", "simple-mfd";
reg = <0x1e6e2000 0x1a8>;
p2a: p2a-control {
compatible = "aspeed,ast2400-p2a-ctrl";
memory-region = <&reserved_memory>;
};
};

View File

@ -8,11 +8,12 @@ Required properties:
"allwinner,sun8i-h3-sid"
"allwinner,sun50i-a64-sid"
"allwinner,sun50i-h5-sid"
"allwinner,sun50i-h6-sid"
- reg: Should contain registers location and length
= Data cells =
Are child nodes of qfprom, bindings of which as described in
Are child nodes of sunxi-sid, bindings of which as described in
bindings/nvmem/nvmem.txt
Example for sun4i:

View File

@ -1,7 +1,8 @@
Freescale i.MX6 On-Chip OTP Controller (OCOTP) device tree bindings
This binding represents the on-chip eFuse OTP controller found on
i.MX6Q/D, i.MX6DL/S, i.MX6SL, i.MX6SX, i.MX6UL, i.MX6ULL/ULZ and i.MX6SLL SoCs.
i.MX6Q/D, i.MX6DL/S, i.MX6SL, i.MX6SX, i.MX6UL, i.MX6ULL/ULZ, i.MX6SLL,
i.MX7D/S, i.MX7ULP and i.MX8MQ SoCs.
Required properties:
- compatible: should be one of
@ -13,6 +14,7 @@ Required properties:
"fsl,imx7d-ocotp" (i.MX7D/S),
"fsl,imx6sll-ocotp" (i.MX6SLL),
"fsl,imx7ulp-ocotp" (i.MX7ULP),
"fsl,imx8mq-ocotp" (i.MX8MQ),
followed by "syscon".
- #address-cells : Should be 1
- #size-cells : Should be 1

View File

@ -0,0 +1,31 @@
STMicroelectronics STM32 Factory-programmed data device tree bindings
This represents STM32 Factory-programmed read only non-volatile area: locked
flash, OTP, read-only HW regs... This contains various information such as:
analog calibration data for temperature sensor (e.g. TS_CAL1, TS_CAL2),
internal vref (VREFIN_CAL), unique device ID...
Required properties:
- compatible: Should be one of:
"st,stm32f4-otp"
"st,stm32mp15-bsec"
- reg: Offset and length of factory-programmed area.
- #address-cells: Should be '<1>'.
- #size-cells: Should be '<1>'.
Optional Data cells:
- Must be child nodes as described in nvmem.txt.
Example on stm32f4:
romem: nvmem@1fff7800 {
compatible = "st,stm32f4-otp";
reg = <0x1fff7800 0x400>;
#address-cells = <1>;
#size-cells = <1>;
/* Data cells: ts_cal1 at 0x1fff7a2c */
ts_cal1: calib@22c {
reg = <0x22c 0x2>;
};
...
};

View File

@ -1,3 +1,5 @@
.. SPDX-License-Identifier: GPL-2.0
=======================
Intel(R) Trace Hub (TH)
=======================

View File

@ -8068,6 +8068,7 @@ F: drivers/gpio/gpio-intel-mid.c
INTERCONNECT API
M: Georgi Djakov <georgi.djakov@linaro.org>
L: linux-pm@vger.kernel.org
S: Maintained
F: Documentation/interconnect/
F: Documentation/devicetree/bindings/interconnect/

View File

@ -3121,6 +3121,7 @@ static void binder_transaction(struct binder_proc *proc,
if (target_node && target_node->txn_security_ctx) {
u32 secid;
size_t added_size;
security_task_getsecid(proc->tsk, &secid);
ret = security_secid_to_secctx(secid, &secctx, &secctx_sz);
@ -3130,7 +3131,15 @@ static void binder_transaction(struct binder_proc *proc,
return_error_line = __LINE__;
goto err_get_secctx_failed;
}
extra_buffers_size += ALIGN(secctx_sz, sizeof(u64));
added_size = ALIGN(secctx_sz, sizeof(u64));
extra_buffers_size += added_size;
if (extra_buffers_size < added_size) {
/* integer overflow of extra_buffers_size */
return_error = BR_FAILED_REPLY;
return_error_param = EINVAL;
return_error_line = __LINE__;
goto err_bad_extra_size;
}
}
trace_binder_transaction(reply, t, target_node);
@ -3480,6 +3489,7 @@ static void binder_transaction(struct binder_proc *proc,
t->buffer->transaction = NULL;
binder_alloc_free_buf(&target_proc->alloc, t->buffer);
err_binder_alloc_buf_failed:
err_bad_extra_size:
if (secctx)
security_release_secctx(secctx, secctx_sz);
err_get_secctx_failed:

View File

@ -973,6 +973,8 @@ static acpi_status hpet_resources(struct acpi_resource *res, void *data)
if (ACPI_SUCCESS(status)) {
hdp->hd_phys_address = addr.address.minimum;
hdp->hd_address = ioremap(addr.address.minimum, addr.address.address_length);
if (!hdp->hd_address)
return AE_ERROR;
if (hpet_is_known(hdp)) {
iounmap(hdp->hd_address);

View File

@ -30,7 +30,7 @@ config EXTCON_ARIZONA
config EXTCON_AXP288
tristate "X-Power AXP288 EXTCON support"
depends on MFD_AXP20X && USB_SUPPORT && X86
depends on MFD_AXP20X && USB_SUPPORT && X86 && ACPI
select USB_ROLE_SWITCH
help
Say Y here to enable support for USB peripheral detection
@ -60,6 +60,13 @@ config EXTCON_INTEL_CHT_WC
Say Y here to enable extcon support for charger detection / control
on the Intel Cherrytrail Whiskey Cove PMIC.
config EXTCON_INTEL_MRFLD
tristate "Intel Merrifield Basin Cove PMIC extcon driver"
depends on INTEL_SOC_PMIC_MRFLD
help
Say Y here to enable extcon support for charger detection / control
on the Intel Merrifield Basin Cove PMIC.
config EXTCON_MAX14577
tristate "Maxim MAX14577/77836 EXTCON Support"
depends on MFD_MAX14577

View File

@ -11,6 +11,7 @@ obj-$(CONFIG_EXTCON_AXP288) += extcon-axp288.o
obj-$(CONFIG_EXTCON_GPIO) += extcon-gpio.o
obj-$(CONFIG_EXTCON_INTEL_INT3496) += extcon-intel-int3496.o
obj-$(CONFIG_EXTCON_INTEL_CHT_WC) += extcon-intel-cht-wc.o
obj-$(CONFIG_EXTCON_INTEL_MRFLD) += extcon-intel-mrfld.o
obj-$(CONFIG_EXTCON_MAX14577) += extcon-max14577.o
obj-$(CONFIG_EXTCON_MAX3355) += extcon-max3355.o
obj-$(CONFIG_EXTCON_MAX77693) += extcon-max77693.o

View File

@ -205,7 +205,7 @@ EXPORT_SYMBOL(devm_extcon_register_notifier);
/**
* devm_extcon_unregister_notifier()
- Resource-managed extcon_unregister_notifier()
* - Resource-managed extcon_unregister_notifier()
* @dev: the device owning the extcon device being created
* @edev: the extcon device
* @id: the unique id among the extcon enumeration

View File

@ -1726,6 +1726,16 @@ static int arizona_extcon_remove(struct platform_device *pdev)
struct arizona_extcon_info *info = platform_get_drvdata(pdev);
struct arizona *arizona = info->arizona;
int jack_irq_rise, jack_irq_fall;
bool change;
regmap_update_bits_check(arizona->regmap, ARIZONA_MIC_DETECT_1,
ARIZONA_MICD_ENA, 0,
&change);
if (change) {
regulator_disable(info->micvdd);
pm_runtime_put(info->dev);
}
gpiod_put(info->micd_pol_gpio);

View File

@ -17,6 +17,8 @@
#include <linux/regmap.h>
#include <linux/slab.h>
#include "extcon-intel.h"
#define CHT_WC_PHYCTRL 0x5e07
#define CHT_WC_CHGRCTRL0 0x5e16
@ -29,7 +31,15 @@
#define CHT_WC_CHGRCTRL0_DBPOFF BIT(6)
#define CHT_WC_CHGRCTRL0_CHR_WDT_NOKICK BIT(7)
#define CHT_WC_CHGRCTRL1 0x5e17
#define CHT_WC_CHGRCTRL1 0x5e17
#define CHT_WC_CHGRCTRL1_FUSB_INLMT_100 BIT(0)
#define CHT_WC_CHGRCTRL1_FUSB_INLMT_150 BIT(1)
#define CHT_WC_CHGRCTRL1_FUSB_INLMT_500 BIT(2)
#define CHT_WC_CHGRCTRL1_FUSB_INLMT_900 BIT(3)
#define CHT_WC_CHGRCTRL1_FUSB_INLMT_1500 BIT(4)
#define CHT_WC_CHGRCTRL1_FTEMP_EVENT BIT(5)
#define CHT_WC_CHGRCTRL1_OTGMODE BIT(6)
#define CHT_WC_CHGRCTRL1_DBPEN BIT(7)
#define CHT_WC_USBSRC 0x5e29
#define CHT_WC_USBSRC_STS_MASK GENMASK(1, 0)
@ -48,6 +58,13 @@
#define CHT_WC_USBSRC_TYPE_OTHER 8
#define CHT_WC_USBSRC_TYPE_DCP_EXTPHY 9
#define CHT_WC_CHGDISCTRL 0x5e2f
#define CHT_WC_CHGDISCTRL_OUT BIT(0)
/* 0 - open drain, 1 - regular push-pull output */
#define CHT_WC_CHGDISCTRL_DRV BIT(4)
/* 0 - pin is controlled by SW, 1 - by HW */
#define CHT_WC_CHGDISCTRL_FN BIT(6)
#define CHT_WC_PWRSRC_IRQ 0x6e03
#define CHT_WC_PWRSRC_IRQ_MASK 0x6e0f
#define CHT_WC_PWRSRC_STS 0x6e1e
@ -65,15 +82,6 @@
#define CHT_WC_VBUS_GPIO_CTLO_DRV_OD BIT(4)
#define CHT_WC_VBUS_GPIO_CTLO_DIR_OUT BIT(5)
enum cht_wc_usb_id {
USB_ID_OTG,
USB_ID_GND,
USB_ID_FLOAT,
USB_RID_A,
USB_RID_B,
USB_RID_C,
};
enum cht_wc_mux_select {
MUX_SEL_PMIC = 0,
MUX_SEL_SOC,
@ -101,9 +109,9 @@ static int cht_wc_extcon_get_id(struct cht_wc_extcon_data *ext, int pwrsrc_sts)
{
switch ((pwrsrc_sts & CHT_WC_PWRSRC_USBID_MASK) >> CHT_WC_PWRSRC_USBID_SHIFT) {
case CHT_WC_PWRSRC_RID_GND:
return USB_ID_GND;
return INTEL_USB_ID_GND;
case CHT_WC_PWRSRC_RID_FLOAT:
return USB_ID_FLOAT;
return INTEL_USB_ID_FLOAT;
case CHT_WC_PWRSRC_RID_ACA:
default:
/*
@ -111,7 +119,7 @@ static int cht_wc_extcon_get_id(struct cht_wc_extcon_data *ext, int pwrsrc_sts)
* the USBID GPADC channel here and determine ACA role
* based on that.
*/
return USB_ID_FLOAT;
return INTEL_USB_ID_FLOAT;
}
}
@ -198,6 +206,30 @@ static void cht_wc_extcon_set_5v_boost(struct cht_wc_extcon_data *ext,
dev_err(ext->dev, "Error writing Vbus GPIO CTLO: %d\n", ret);
}
static void cht_wc_extcon_set_otgmode(struct cht_wc_extcon_data *ext,
bool enable)
{
unsigned int val = enable ? CHT_WC_CHGRCTRL1_OTGMODE : 0;
int ret;
ret = regmap_update_bits(ext->regmap, CHT_WC_CHGRCTRL1,
CHT_WC_CHGRCTRL1_OTGMODE, val);
if (ret)
dev_err(ext->dev, "Error updating CHGRCTRL1 reg: %d\n", ret);
}
static void cht_wc_extcon_enable_charging(struct cht_wc_extcon_data *ext,
bool enable)
{
unsigned int val = enable ? 0 : CHT_WC_CHGDISCTRL_OUT;
int ret;
ret = regmap_update_bits(ext->regmap, CHT_WC_CHGDISCTRL,
CHT_WC_CHGDISCTRL_OUT, val);
if (ret)
dev_err(ext->dev, "Error updating CHGDISCTRL reg: %d\n", ret);
}
/* Small helper to sync EXTCON_CHG_USB_SDP and EXTCON_USB state */
static void cht_wc_extcon_set_state(struct cht_wc_extcon_data *ext,
unsigned int cable, bool state)
@ -221,11 +253,17 @@ static void cht_wc_extcon_pwrsrc_event(struct cht_wc_extcon_data *ext)
}
id = cht_wc_extcon_get_id(ext, pwrsrc_sts);
if (id == USB_ID_GND) {
if (id == INTEL_USB_ID_GND) {
cht_wc_extcon_enable_charging(ext, false);
cht_wc_extcon_set_otgmode(ext, true);
/* The 5v boost causes a false VBUS / SDP detect, skip */
goto charger_det_done;
}
cht_wc_extcon_set_otgmode(ext, false);
cht_wc_extcon_enable_charging(ext, true);
/* Plugged into a host/charger or not connected? */
if (!(pwrsrc_sts & CHT_WC_PWRSRC_VBUS)) {
/* Route D+ and D- to PMIC for future charger detection */
@ -248,7 +286,7 @@ static void cht_wc_extcon_pwrsrc_event(struct cht_wc_extcon_data *ext)
ext->previous_cable = cable;
}
ext->usb_host = ((id == USB_ID_GND) || (id == USB_RID_A));
ext->usb_host = ((id == INTEL_USB_ID_GND) || (id == INTEL_USB_RID_A));
extcon_set_state_sync(ext->edev, EXTCON_USB_HOST, ext->usb_host);
}
@ -278,6 +316,14 @@ static int cht_wc_extcon_sw_control(struct cht_wc_extcon_data *ext, bool enable)
{
int ret, mask, val;
val = enable ? 0 : CHT_WC_CHGDISCTRL_FN;
ret = regmap_update_bits(ext->regmap, CHT_WC_CHGDISCTRL,
CHT_WC_CHGDISCTRL_FN, val);
if (ret)
dev_err(ext->dev,
"Error setting sw control for CHGDIS pin: %d\n",
ret);
mask = CHT_WC_CHGRCTRL0_SWCONTROL | CHT_WC_CHGRCTRL0_CCSM_OFF;
val = enable ? mask : 0;
ret = regmap_update_bits(ext->regmap, CHT_WC_CHGRCTRL0, mask, val);
@ -329,7 +375,10 @@ static int cht_wc_extcon_probe(struct platform_device *pdev)
/* Enable sw control */
ret = cht_wc_extcon_sw_control(ext, true);
if (ret)
return ret;
goto disable_sw_control;
/* Disable charging by external battery charger */
cht_wc_extcon_enable_charging(ext, false);
/* Register extcon device */
ret = devm_extcon_dev_register(ext->dev, ext->edev);

View File

@ -0,0 +1,284 @@
// SPDX-License-Identifier: GPL-2.0
/*
* extcon driver for Basin Cove PMIC
*
* Copyright (c) 2019, Intel Corporation.
* Author: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
*/
#include <linux/extcon-provider.h>
#include <linux/interrupt.h>
#include <linux/mfd/intel_soc_pmic.h>
#include <linux/mfd/intel_soc_pmic_mrfld.h>
#include <linux/mod_devicetable.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include "extcon-intel.h"
#define BCOVE_USBIDCTRL 0x19
#define BCOVE_USBIDCTRL_ID BIT(0)
#define BCOVE_USBIDCTRL_ACA BIT(1)
#define BCOVE_USBIDCTRL_ALL (BCOVE_USBIDCTRL_ID | BCOVE_USBIDCTRL_ACA)
#define BCOVE_USBIDSTS 0x1a
#define BCOVE_USBIDSTS_GND BIT(0)
#define BCOVE_USBIDSTS_RARBRC_MASK GENMASK(2, 1)
#define BCOVE_USBIDSTS_RARBRC_SHIFT 1
#define BCOVE_USBIDSTS_NO_ACA 0
#define BCOVE_USBIDSTS_R_ID_A 1
#define BCOVE_USBIDSTS_R_ID_B 2
#define BCOVE_USBIDSTS_R_ID_C 3
#define BCOVE_USBIDSTS_FLOAT BIT(3)
#define BCOVE_USBIDSTS_SHORT BIT(4)
#define BCOVE_CHGRIRQ_ALL (BCOVE_CHGRIRQ_VBUSDET | BCOVE_CHGRIRQ_DCDET | \
BCOVE_CHGRIRQ_BATTDET | BCOVE_CHGRIRQ_USBIDDET)
#define BCOVE_CHGRCTRL0 0x4b
#define BCOVE_CHGRCTRL0_CHGRRESET BIT(0)
#define BCOVE_CHGRCTRL0_EMRGCHREN BIT(1)
#define BCOVE_CHGRCTRL0_EXTCHRDIS BIT(2)
#define BCOVE_CHGRCTRL0_SWCONTROL BIT(3)
#define BCOVE_CHGRCTRL0_TTLCK BIT(4)
#define BCOVE_CHGRCTRL0_BIT_5 BIT(5)
#define BCOVE_CHGRCTRL0_BIT_6 BIT(6)
#define BCOVE_CHGRCTRL0_CHR_WDT_NOKICK BIT(7)
struct mrfld_extcon_data {
struct device *dev;
struct regmap *regmap;
struct extcon_dev *edev;
unsigned int status;
unsigned int id;
};
static const unsigned int mrfld_extcon_cable[] = {
EXTCON_USB,
EXTCON_USB_HOST,
EXTCON_CHG_USB_SDP,
EXTCON_CHG_USB_CDP,
EXTCON_CHG_USB_DCP,
EXTCON_CHG_USB_ACA,
EXTCON_NONE,
};
static int mrfld_extcon_clear(struct mrfld_extcon_data *data, unsigned int reg,
unsigned int mask)
{
return regmap_update_bits(data->regmap, reg, mask, 0x00);
}
static int mrfld_extcon_set(struct mrfld_extcon_data *data, unsigned int reg,
unsigned int mask)
{
return regmap_update_bits(data->regmap, reg, mask, 0xff);
}
static int mrfld_extcon_sw_control(struct mrfld_extcon_data *data, bool enable)
{
unsigned int mask = BCOVE_CHGRCTRL0_SWCONTROL;
struct device *dev = data->dev;
int ret;
if (enable)
ret = mrfld_extcon_set(data, BCOVE_CHGRCTRL0, mask);
else
ret = mrfld_extcon_clear(data, BCOVE_CHGRCTRL0, mask);
if (ret)
dev_err(dev, "can't set SW control: %d\n", ret);
return ret;
}
static int mrfld_extcon_get_id(struct mrfld_extcon_data *data)
{
struct regmap *regmap = data->regmap;
unsigned int id;
bool ground;
int ret;
ret = regmap_read(regmap, BCOVE_USBIDSTS, &id);
if (ret)
return ret;
if (id & BCOVE_USBIDSTS_FLOAT)
return INTEL_USB_ID_FLOAT;
switch ((id & BCOVE_USBIDSTS_RARBRC_MASK) >> BCOVE_USBIDSTS_RARBRC_SHIFT) {
case BCOVE_USBIDSTS_R_ID_A:
return INTEL_USB_RID_A;
case BCOVE_USBIDSTS_R_ID_B:
return INTEL_USB_RID_B;
case BCOVE_USBIDSTS_R_ID_C:
return INTEL_USB_RID_C;
}
/*
* PMIC A0 reports USBIDSTS_GND = 1 for ID_GND,
* but PMIC B0 reports USBIDSTS_GND = 0 for ID_GND.
* Thus we must check this bit at last.
*/
ground = id & BCOVE_USBIDSTS_GND;
switch ('A' + BCOVE_MAJOR(data->id)) {
case 'A':
return ground ? INTEL_USB_ID_GND : INTEL_USB_ID_FLOAT;
case 'B':
return ground ? INTEL_USB_ID_FLOAT : INTEL_USB_ID_GND;
}
/* Unknown or unsupported type */
return INTEL_USB_ID_FLOAT;
}
static int mrfld_extcon_role_detect(struct mrfld_extcon_data *data)
{
unsigned int id;
bool usb_host;
int ret;
ret = mrfld_extcon_get_id(data);
if (ret < 0)
return ret;
id = ret;
usb_host = (id == INTEL_USB_ID_GND) || (id == INTEL_USB_RID_A);
extcon_set_state_sync(data->edev, EXTCON_USB_HOST, usb_host);
return 0;
}
static int mrfld_extcon_cable_detect(struct mrfld_extcon_data *data)
{
struct regmap *regmap = data->regmap;
unsigned int status, change;
int ret;
/*
* It seems SCU firmware clears the content of BCOVE_CHGRIRQ1
* and makes it useless for OS. Instead we compare a previously
* stored status to the current one, provided by BCOVE_SCHGRIRQ1.
*/
ret = regmap_read(regmap, BCOVE_SCHGRIRQ1, &status);
if (ret)
return ret;
change = status ^ data->status;
if (!change)
return -ENODATA;
if (change & BCOVE_CHGRIRQ_USBIDDET) {
ret = mrfld_extcon_role_detect(data);
if (ret)
return ret;
}
data->status = status;
return 0;
}
static irqreturn_t mrfld_extcon_interrupt(int irq, void *dev_id)
{
struct mrfld_extcon_data *data = dev_id;
int ret;
ret = mrfld_extcon_cable_detect(data);
mrfld_extcon_clear(data, BCOVE_MIRQLVL1, BCOVE_LVL1_CHGR);
return ret ? IRQ_NONE: IRQ_HANDLED;
}
static int mrfld_extcon_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct intel_soc_pmic *pmic = dev_get_drvdata(dev->parent);
struct regmap *regmap = pmic->regmap;
struct mrfld_extcon_data *data;
unsigned int id;
int irq, ret;
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return irq;
data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
if (!data)
return -ENOMEM;
data->dev = dev;
data->regmap = regmap;
data->edev = devm_extcon_dev_allocate(dev, mrfld_extcon_cable);
if (IS_ERR(data->edev))
return -ENOMEM;
ret = devm_extcon_dev_register(dev, data->edev);
if (ret < 0) {
dev_err(dev, "can't register extcon device: %d\n", ret);
return ret;
}
ret = devm_request_threaded_irq(dev, irq, NULL, mrfld_extcon_interrupt,
IRQF_ONESHOT | IRQF_SHARED, pdev->name,
data);
if (ret) {
dev_err(dev, "can't register IRQ handler: %d\n", ret);
return ret;
}
ret = regmap_read(regmap, BCOVE_ID, &id);
if (ret) {
dev_err(dev, "can't read PMIC ID: %d\n", ret);
return ret;
}
data->id = id;
ret = mrfld_extcon_sw_control(data, true);
if (ret)
return ret;
/* Get initial state */
mrfld_extcon_role_detect(data);
mrfld_extcon_clear(data, BCOVE_MIRQLVL1, BCOVE_LVL1_CHGR);
mrfld_extcon_clear(data, BCOVE_MCHGRIRQ1, BCOVE_CHGRIRQ_ALL);
mrfld_extcon_set(data, BCOVE_USBIDCTRL, BCOVE_USBIDCTRL_ALL);
platform_set_drvdata(pdev, data);
return 0;
}
static int mrfld_extcon_remove(struct platform_device *pdev)
{
struct mrfld_extcon_data *data = platform_get_drvdata(pdev);
mrfld_extcon_sw_control(data, false);
return 0;
}
static const struct platform_device_id mrfld_extcon_id_table[] = {
{ .name = "mrfld_bcove_pwrsrc" },
{}
};
MODULE_DEVICE_TABLE(platform, mrfld_extcon_id_table);
static struct platform_driver mrfld_extcon_driver = {
.driver = {
.name = "mrfld_bcove_pwrsrc",
},
.probe = mrfld_extcon_probe,
.remove = mrfld_extcon_remove,
.id_table = mrfld_extcon_id_table,
};
module_platform_driver(mrfld_extcon_driver);
MODULE_AUTHOR("Andy Shevchenko <andriy.shevchenko@linux.intel.com>");
MODULE_DESCRIPTION("extcon driver for Intel Merrifield Basin Cove PMIC");
MODULE_LICENSE("GPL v2");

View File

@ -0,0 +1,20 @@
/* SPDX-License-Identifier: GPL-2.0 */
/*
* Header file for Intel extcon hardware
*
* Copyright (C) 2019 Intel Corporation. All rights reserved.
*/
#ifndef __EXTCON_INTEL_H__
#define __EXTCON_INTEL_H__
enum extcon_intel_usb_id {
INTEL_USB_ID_OTG,
INTEL_USB_ID_GND,
INTEL_USB_ID_FLOAT,
INTEL_USB_RID_A,
INTEL_USB_RID_B,
INTEL_USB_RID_C,
};
#endif /* __EXTCON_INTEL_H__ */

View File

@ -254,7 +254,7 @@ static int vpd_section_destroy(struct vpd_section *sec)
static int vpd_sections_init(phys_addr_t physaddr)
{
struct vpd_cbmem __iomem *temp;
struct vpd_cbmem *temp;
struct vpd_cbmem header;
int ret = 0;
@ -262,7 +262,7 @@ static int vpd_sections_init(phys_addr_t physaddr)
if (!temp)
return -ENOMEM;
memcpy_fromio(&header, temp, sizeof(struct vpd_cbmem));
memcpy(&header, temp, sizeof(struct vpd_cbmem));
memunmap(temp);
if (header.magic != VPD_CBMEM_MAGIC)

View File

@ -130,6 +130,7 @@ static void ubx_remove(struct serdev_device *serdev)
#ifdef CONFIG_OF
static const struct of_device_id ubx_of_match[] = {
{ .compatible = "u-blox,neo-6m" },
{ .compatible = "u-blox,neo-8" },
{ .compatible = "u-blox,neo-m8" },
{},

View File

@ -75,20 +75,13 @@ config CORESIGHT_SOURCE_ETM4X
bool "CoreSight Embedded Trace Macrocell 4.x driver"
depends on ARM64
select CORESIGHT_LINKS_AND_SINKS
select PID_IN_CONTEXTIDR
help
This driver provides support for the ETM4.x tracer module, tracing the
instructions that a processor is executing. This is primarily useful
for instruction level tracing. Depending on the implemented version
data tracing may also be available.
config CORESIGHT_DYNAMIC_REPLICATOR
bool "CoreSight Programmable Replicator driver"
depends on CORESIGHT_LINKS_AND_SINKS
help
This enables support for dynamic CoreSight replicator link driver.
The programmable ATB replicator allows independent filtering of the
trace data based on the traceid.
config CORESIGHT_STM
bool "CoreSight System Trace Macrocell driver"
depends on (ARM && !(CPU_32v3 || CPU_32v4 || CPU_32v4T)) || ARM64

View File

@ -15,7 +15,6 @@ obj-$(CONFIG_CORESIGHT_SOURCE_ETM3X) += coresight-etm3x.o coresight-etm-cp14.o \
coresight-etm3x-sysfs.o
obj-$(CONFIG_CORESIGHT_SOURCE_ETM4X) += coresight-etm4x.o \
coresight-etm4x-sysfs.o
obj-$(CONFIG_CORESIGHT_DYNAMIC_REPLICATOR) += coresight-dynamic-replicator.o
obj-$(CONFIG_CORESIGHT_STM) += coresight-stm.o
obj-$(CONFIG_CORESIGHT_CPU_DEBUG) += coresight-cpu-debug.o
obj-$(CONFIG_CORESIGHT_CATU) += coresight-catu.o

View File

@ -485,12 +485,12 @@ static int catu_disable(struct coresight_device *csdev, void *__unused)
return rc;
}
const struct coresight_ops_helper catu_helper_ops = {
static const struct coresight_ops_helper catu_helper_ops = {
.enable = catu_enable,
.disable = catu_disable,
};
const struct coresight_ops catu_ops = {
static const struct coresight_ops catu_ops = {
.helper_ops = &catu_helper_ops,
};
@ -557,8 +557,9 @@ static int catu_probe(struct amba_device *adev, const struct amba_id *id)
drvdata->csdev = coresight_register(&catu_desc);
if (IS_ERR(drvdata->csdev))
ret = PTR_ERR(drvdata->csdev);
else
pm_runtime_put(&adev->dev);
out:
pm_runtime_put(&adev->dev);
return ret;
}

View File

@ -109,11 +109,6 @@ static inline bool coresight_is_catu_device(struct coresight_device *csdev)
return true;
}
#ifdef CONFIG_CORESIGHT_CATU
extern const struct etr_buf_operations etr_catu_buf_ops;
#else
/* Dummy declaration for the CATU ops */
static const struct etr_buf_operations etr_catu_buf_ops;
#endif
#endif

View File

@ -1,255 +0,0 @@
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2011-2015, The Linux Foundation. All rights reserved.
*/
#include <linux/amba/bus.h>
#include <linux/clk.h>
#include <linux/coresight.h>
#include <linux/device.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/of.h>
#include <linux/pm_runtime.h>
#include <linux/slab.h>
#include "coresight-priv.h"
#define REPLICATOR_IDFILTER0 0x000
#define REPLICATOR_IDFILTER1 0x004
/**
* struct replicator_state - specifics associated to a replicator component
* @base: memory mapped base address for this component.
* @dev: the device entity associated with this component
* @atclk: optional clock for the core parts of the replicator.
* @csdev: component vitals needed by the framework
*/
struct replicator_state {
void __iomem *base;
struct device *dev;
struct clk *atclk;
struct coresight_device *csdev;
};
/*
* replicator_reset : Reset the replicator configuration to sane values.
*/
static void replicator_reset(struct replicator_state *drvdata)
{
CS_UNLOCK(drvdata->base);
if (!coresight_claim_device_unlocked(drvdata->base)) {
writel_relaxed(0xff, drvdata->base + REPLICATOR_IDFILTER0);
writel_relaxed(0xff, drvdata->base + REPLICATOR_IDFILTER1);
coresight_disclaim_device_unlocked(drvdata->base);
}
CS_LOCK(drvdata->base);
}
static int replicator_enable(struct coresight_device *csdev, int inport,
int outport)
{
int rc = 0;
u32 reg;
struct replicator_state *drvdata = dev_get_drvdata(csdev->dev.parent);
switch (outport) {
case 0:
reg = REPLICATOR_IDFILTER0;
break;
case 1:
reg = REPLICATOR_IDFILTER1;
break;
default:
WARN_ON(1);
return -EINVAL;
}
CS_UNLOCK(drvdata->base);
if ((readl_relaxed(drvdata->base + REPLICATOR_IDFILTER0) == 0xff) &&
(readl_relaxed(drvdata->base + REPLICATOR_IDFILTER1) == 0xff))
rc = coresight_claim_device_unlocked(drvdata->base);
/* Ensure that the outport is enabled. */
if (!rc) {
writel_relaxed(0x00, drvdata->base + reg);
dev_dbg(drvdata->dev, "REPLICATOR enabled\n");
}
CS_LOCK(drvdata->base);
return rc;
}
static void replicator_disable(struct coresight_device *csdev, int inport,
int outport)
{
u32 reg;
struct replicator_state *drvdata = dev_get_drvdata(csdev->dev.parent);
switch (outport) {
case 0:
reg = REPLICATOR_IDFILTER0;
break;
case 1:
reg = REPLICATOR_IDFILTER1;
break;
default:
WARN_ON(1);
return;
}
CS_UNLOCK(drvdata->base);
/* disable the flow of ATB data through port */
writel_relaxed(0xff, drvdata->base + reg);
if ((readl_relaxed(drvdata->base + REPLICATOR_IDFILTER0) == 0xff) &&
(readl_relaxed(drvdata->base + REPLICATOR_IDFILTER1) == 0xff))
coresight_disclaim_device_unlocked(drvdata->base);
CS_LOCK(drvdata->base);
dev_dbg(drvdata->dev, "REPLICATOR disabled\n");
}
static const struct coresight_ops_link replicator_link_ops = {
.enable = replicator_enable,
.disable = replicator_disable,
};
static const struct coresight_ops replicator_cs_ops = {
.link_ops = &replicator_link_ops,
};
#define coresight_replicator_reg(name, offset) \
coresight_simple_reg32(struct replicator_state, name, offset)
coresight_replicator_reg(idfilter0, REPLICATOR_IDFILTER0);
coresight_replicator_reg(idfilter1, REPLICATOR_IDFILTER1);
static struct attribute *replicator_mgmt_attrs[] = {
&dev_attr_idfilter0.attr,
&dev_attr_idfilter1.attr,
NULL,
};
static const struct attribute_group replicator_mgmt_group = {
.attrs = replicator_mgmt_attrs,
.name = "mgmt",
};
static const struct attribute_group *replicator_groups[] = {
&replicator_mgmt_group,
NULL,
};
static int replicator_probe(struct amba_device *adev, const struct amba_id *id)
{
int ret;
struct device *dev = &adev->dev;
struct resource *res = &adev->res;
struct coresight_platform_data *pdata = NULL;
struct replicator_state *drvdata;
struct coresight_desc desc = { 0 };
struct device_node *np = adev->dev.of_node;
void __iomem *base;
if (np) {
pdata = of_get_coresight_platform_data(dev, np);
if (IS_ERR(pdata))
return PTR_ERR(pdata);
adev->dev.platform_data = pdata;
}
drvdata = devm_kzalloc(dev, sizeof(*drvdata), GFP_KERNEL);
if (!drvdata)
return -ENOMEM;
drvdata->dev = &adev->dev;
drvdata->atclk = devm_clk_get(&adev->dev, "atclk"); /* optional */
if (!IS_ERR(drvdata->atclk)) {
ret = clk_prepare_enable(drvdata->atclk);
if (ret)
return ret;
}
/* Validity for the resource is already checked by the AMBA core */
base = devm_ioremap_resource(dev, res);
if (IS_ERR(base))
return PTR_ERR(base);
drvdata->base = base;
dev_set_drvdata(dev, drvdata);
pm_runtime_put(&adev->dev);
desc.type = CORESIGHT_DEV_TYPE_LINK;
desc.subtype.link_subtype = CORESIGHT_DEV_SUBTYPE_LINK_SPLIT;
desc.ops = &replicator_cs_ops;
desc.pdata = adev->dev.platform_data;
desc.dev = &adev->dev;
desc.groups = replicator_groups;
drvdata->csdev = coresight_register(&desc);
if (!IS_ERR(drvdata->csdev)) {
replicator_reset(drvdata);
return 0;
}
return PTR_ERR(drvdata->csdev);
}
#ifdef CONFIG_PM
static int replicator_runtime_suspend(struct device *dev)
{
struct replicator_state *drvdata = dev_get_drvdata(dev);
if (drvdata && !IS_ERR(drvdata->atclk))
clk_disable_unprepare(drvdata->atclk);
return 0;
}
static int replicator_runtime_resume(struct device *dev)
{
struct replicator_state *drvdata = dev_get_drvdata(dev);
if (drvdata && !IS_ERR(drvdata->atclk))
clk_prepare_enable(drvdata->atclk);
return 0;
}
#endif
static const struct dev_pm_ops replicator_dev_pm_ops = {
SET_RUNTIME_PM_OPS(replicator_runtime_suspend,
replicator_runtime_resume,
NULL)
};
static const struct amba_id replicator_ids[] = {
{
.id = 0x000bb909,
.mask = 0x000fffff,
},
{
/* Coresight SoC-600 */
.id = 0x000bb9ec,
.mask = 0x000fffff,
},
{ 0, 0 },
};
static struct amba_driver replicator_driver = {
.drv = {
.name = "coresight-dynamic-replicator",
.pm = &replicator_dev_pm_ops,
.suppress_bind_attrs = true,
},
.probe = replicator_probe,
.id_table = replicator_ids,
};
builtin_amba_driver(replicator_driver);

View File

@ -5,6 +5,7 @@
* Description: CoreSight Embedded Trace Buffer driver
*/
#include <linux/atomic.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/types.h>
@ -71,6 +72,8 @@
* @miscdev: specifics to handle "/dev/xyz.etb" entry.
* @spinlock: only one at a time pls.
* @reading: synchronise user space access to etb buffer.
* @pid: Process ID of the process being monitored by the session
* that is using this component.
* @buf: area of memory where ETB buffer content gets sent.
* @mode: this ETB is being used.
* @buffer_depth: size of @buf.
@ -84,6 +87,7 @@ struct etb_drvdata {
struct miscdevice miscdev;
spinlock_t spinlock;
local_t reading;
pid_t pid;
u8 *buf;
u32 mode;
u32 buffer_depth;
@ -93,17 +97,9 @@ struct etb_drvdata {
static int etb_set_buffer(struct coresight_device *csdev,
struct perf_output_handle *handle);
static unsigned int etb_get_buffer_depth(struct etb_drvdata *drvdata)
static inline unsigned int etb_get_buffer_depth(struct etb_drvdata *drvdata)
{
u32 depth = 0;
pm_runtime_get_sync(drvdata->dev);
/* RO registers don't need locking */
depth = readl_relaxed(drvdata->base + ETB_RAM_DEPTH_REG);
pm_runtime_put(drvdata->dev);
return depth;
return readl_relaxed(drvdata->base + ETB_RAM_DEPTH_REG);
}
static void __etb_enable_hw(struct etb_drvdata *drvdata)
@ -159,14 +155,15 @@ static int etb_enable_sysfs(struct coresight_device *csdev)
goto out;
}
/* Nothing to do, the tracer is already enabled. */
if (drvdata->mode == CS_MODE_SYSFS)
goto out;
if (drvdata->mode == CS_MODE_DISABLED) {
ret = etb_enable_hw(drvdata);
if (ret)
goto out;
ret = etb_enable_hw(drvdata);
if (!ret)
drvdata->mode = CS_MODE_SYSFS;
}
atomic_inc(csdev->refcnt);
out:
spin_unlock_irqrestore(&drvdata->spinlock, flags);
return ret;
@ -175,29 +172,52 @@ static int etb_enable_sysfs(struct coresight_device *csdev)
static int etb_enable_perf(struct coresight_device *csdev, void *data)
{
int ret = 0;
pid_t pid;
unsigned long flags;
struct etb_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
struct perf_output_handle *handle = data;
spin_lock_irqsave(&drvdata->spinlock, flags);
/* No need to continue if the component is already in use. */
if (drvdata->mode != CS_MODE_DISABLED) {
/* No need to continue if the component is already in used by sysFS. */
if (drvdata->mode == CS_MODE_SYSFS) {
ret = -EBUSY;
goto out;
}
/* Get a handle on the pid of the process to monitor */
pid = task_pid_nr(handle->event->owner);
if (drvdata->pid != -1 && drvdata->pid != pid) {
ret = -EBUSY;
goto out;
}
/*
* No HW configuration is needed if the sink is already in
* use for this session.
*/
if (drvdata->pid == pid) {
atomic_inc(csdev->refcnt);
goto out;
}
/*
* We don't have an internal state to clean up if we fail to setup
* the perf buffer. So we can perform the step before we turn the
* ETB on and leave without cleaning up.
*/
ret = etb_set_buffer(csdev, (struct perf_output_handle *)data);
ret = etb_set_buffer(csdev, handle);
if (ret)
goto out;
ret = etb_enable_hw(drvdata);
if (!ret)
if (!ret) {
/* Associate with monitored process. */
drvdata->pid = pid;
drvdata->mode = CS_MODE_PERF;
atomic_inc(csdev->refcnt);
}
out:
spin_unlock_irqrestore(&drvdata->spinlock, flags);
@ -325,27 +345,35 @@ static void etb_disable_hw(struct etb_drvdata *drvdata)
coresight_disclaim_device(drvdata->base);
}
static void etb_disable(struct coresight_device *csdev)
static int etb_disable(struct coresight_device *csdev)
{
struct etb_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
unsigned long flags;
spin_lock_irqsave(&drvdata->spinlock, flags);
/* Disable the ETB only if it needs to */
if (drvdata->mode != CS_MODE_DISABLED) {
etb_disable_hw(drvdata);
drvdata->mode = CS_MODE_DISABLED;
if (atomic_dec_return(csdev->refcnt)) {
spin_unlock_irqrestore(&drvdata->spinlock, flags);
return -EBUSY;
}
/* Complain if we (somehow) got out of sync */
WARN_ON_ONCE(drvdata->mode == CS_MODE_DISABLED);
etb_disable_hw(drvdata);
/* Dissociate from monitored process. */
drvdata->pid = -1;
drvdata->mode = CS_MODE_DISABLED;
spin_unlock_irqrestore(&drvdata->spinlock, flags);
dev_dbg(drvdata->dev, "ETB disabled\n");
return 0;
}
static void *etb_alloc_buffer(struct coresight_device *csdev, int cpu,
void **pages, int nr_pages, bool overwrite)
static void *etb_alloc_buffer(struct coresight_device *csdev,
struct perf_event *event, void **pages,
int nr_pages, bool overwrite)
{
int node;
int node, cpu = event->cpu;
struct cs_buffers *buf;
if (cpu == -1)
@ -404,7 +432,7 @@ static unsigned long etb_update_buffer(struct coresight_device *csdev,
const u32 *barrier;
u32 read_ptr, write_ptr, capacity;
u32 status, read_data;
unsigned long offset, to_read;
unsigned long offset, to_read = 0, flags;
struct cs_buffers *buf = sink_config;
struct etb_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
@ -413,6 +441,12 @@ static unsigned long etb_update_buffer(struct coresight_device *csdev,
capacity = drvdata->buffer_depth * ETB_FRAME_SIZE_WORDS;
spin_lock_irqsave(&drvdata->spinlock, flags);
/* Don't do anything if another tracer is using this sink */
if (atomic_read(csdev->refcnt) != 1)
goto out;
__etb_disable_hw(drvdata);
CS_UNLOCK(drvdata->base);
@ -523,6 +557,8 @@ static unsigned long etb_update_buffer(struct coresight_device *csdev,
}
__etb_enable_hw(drvdata);
CS_LOCK(drvdata->base);
out:
spin_unlock_irqrestore(&drvdata->spinlock, flags);
return to_read;
}
@ -720,7 +756,6 @@ static int etb_probe(struct amba_device *adev, const struct amba_id *id)
spin_lock_init(&drvdata->spinlock);
drvdata->buffer_depth = etb_get_buffer_depth(drvdata);
pm_runtime_put(&adev->dev);
if (drvdata->buffer_depth & 0x80000000)
return -EINVAL;
@ -730,6 +765,9 @@ static int etb_probe(struct amba_device *adev, const struct amba_id *id)
if (!drvdata->buf)
return -ENOMEM;
/* This device is not associated with a session */
drvdata->pid = -1;
desc.type = CORESIGHT_DEV_TYPE_SINK;
desc.subtype.sink_subtype = CORESIGHT_DEV_SUBTYPE_SINK_BUFFER;
desc.ops = &etb_cs_ops;
@ -747,6 +785,7 @@ static int etb_probe(struct amba_device *adev, const struct amba_id *id)
if (ret)
goto err_misc_register;
pm_runtime_put(&adev->dev);
return 0;
err_misc_register:

View File

@ -29,6 +29,7 @@ static DEFINE_PER_CPU(struct coresight_device *, csdev_src);
/* ETMv3.5/PTM's ETMCR is 'config' */
PMU_FORMAT_ATTR(cycacc, "config:" __stringify(ETM_OPT_CYCACC));
PMU_FORMAT_ATTR(contextid, "config:" __stringify(ETM_OPT_CTXTID));
PMU_FORMAT_ATTR(timestamp, "config:" __stringify(ETM_OPT_TS));
PMU_FORMAT_ATTR(retstack, "config:" __stringify(ETM_OPT_RETSTK));
/* Sink ID - same for all ETMs */
@ -36,6 +37,7 @@ PMU_FORMAT_ATTR(sinkid, "config2:0-31");
static struct attribute *etm_config_formats_attr[] = {
&format_attr_cycacc.attr,
&format_attr_contextid.attr,
&format_attr_timestamp.attr,
&format_attr_retstack.attr,
&format_attr_sinkid.attr,
@ -118,23 +120,34 @@ static int etm_event_init(struct perf_event *event)
return ret;
}
static void free_sink_buffer(struct etm_event_data *event_data)
{
int cpu;
cpumask_t *mask = &event_data->mask;
struct coresight_device *sink;
if (WARN_ON(cpumask_empty(mask)))
return;
if (!event_data->snk_config)
return;
cpu = cpumask_first(mask);
sink = coresight_get_sink(etm_event_cpu_path(event_data, cpu));
sink_ops(sink)->free_buffer(event_data->snk_config);
}
static void free_event_data(struct work_struct *work)
{
int cpu;
cpumask_t *mask;
struct etm_event_data *event_data;
struct coresight_device *sink;
event_data = container_of(work, struct etm_event_data, work);
mask = &event_data->mask;
/* Free the sink buffers, if there are any */
if (event_data->snk_config && !WARN_ON(cpumask_empty(mask))) {
cpu = cpumask_first(mask);
sink = coresight_get_sink(etm_event_cpu_path(event_data, cpu));
if (sink_ops(sink)->free_buffer)
sink_ops(sink)->free_buffer(event_data->snk_config);
}
free_sink_buffer(event_data);
for_each_cpu(cpu, mask) {
struct list_head **ppath;
@ -213,7 +226,7 @@ static void *etm_setup_aux(struct perf_event *event, void **pages,
sink = coresight_get_enabled_sink(true);
}
if (!sink || !sink_ops(sink)->alloc_buffer)
if (!sink)
goto err;
mask = &event_data->mask;
@ -259,9 +272,12 @@ static void *etm_setup_aux(struct perf_event *event, void **pages,
if (cpu >= nr_cpu_ids)
goto err;
if (!sink_ops(sink)->alloc_buffer || !sink_ops(sink)->free_buffer)
goto err;
/* Allocate the sink buffer for this session */
event_data->snk_config =
sink_ops(sink)->alloc_buffer(sink, cpu, pages,
sink_ops(sink)->alloc_buffer(sink, event, pages,
nr_pages, overwrite);
if (!event_data->snk_config)
goto err;
@ -566,7 +582,8 @@ static int __init etm_perf_init(void)
{
int ret;
etm_pmu.capabilities = PERF_PMU_CAP_EXCLUSIVE;
etm_pmu.capabilities = (PERF_PMU_CAP_EXCLUSIVE |
PERF_PMU_CAP_ITRACE);
etm_pmu.attr_groups = etm_pmu_attr_groups;
etm_pmu.task_ctx_nr = perf_sw_context;

View File

@ -138,8 +138,11 @@ static int etm4_enable_hw(struct etmv4_drvdata *drvdata)
drvdata->base + TRCCNTVRn(i));
}
/* Resource selector pair 0 is always implemented and reserved */
for (i = 0; i < drvdata->nr_resource * 2; i++)
/*
* Resource selector pair 0 is always implemented and reserved. As
* such start at 2.
*/
for (i = 2; i < drvdata->nr_resource * 2; i++)
writel_relaxed(config->res_ctrl[i],
drvdata->base + TRCRSCTLRn(i));
@ -201,6 +204,91 @@ static void etm4_enable_hw_smp_call(void *info)
arg->rc = etm4_enable_hw(arg->drvdata);
}
/*
* The goal of function etm4_config_timestamp_event() is to configure a
* counter that will tell the tracer to emit a timestamp packet when it
* reaches zero. This is done in order to get a more fine grained idea
* of when instructions are executed so that they can be correlated
* with execution on other CPUs.
*
* To do this the counter itself is configured to self reload and
* TRCRSCTLR1 (always true) used to get the counter to decrement. From
* there a resource selector is configured with the counter and the
* timestamp control register to use the resource selector to trigger the
* event that will insert a timestamp packet in the stream.
*/
static int etm4_config_timestamp_event(struct etmv4_drvdata *drvdata)
{
int ctridx, ret = -EINVAL;
int counter, rselector;
u32 val = 0;
struct etmv4_config *config = &drvdata->config;
/* No point in trying if we don't have at least one counter */
if (!drvdata->nr_cntr)
goto out;
/* Find a counter that hasn't been initialised */
for (ctridx = 0; ctridx < drvdata->nr_cntr; ctridx++)
if (config->cntr_val[ctridx] == 0)
break;
/* All the counters have been configured already, bail out */
if (ctridx == drvdata->nr_cntr) {
pr_debug("%s: no available counter found\n", __func__);
ret = -ENOSPC;
goto out;
}
/*
* Searching for an available resource selector to use, starting at
* '2' since every implementation has at least 2 resource selector.
* ETMIDR4 gives the number of resource selector _pairs_,
* hence multiply by 2.
*/
for (rselector = 2; rselector < drvdata->nr_resource * 2; rselector++)
if (!config->res_ctrl[rselector])
break;
if (rselector == drvdata->nr_resource * 2) {
pr_debug("%s: no available resource selector found\n",
__func__);
ret = -ENOSPC;
goto out;
}
/* Remember what counter we used */
counter = 1 << ctridx;
/*
* Initialise original and reload counter value to the smallest
* possible value in order to get as much precision as we can.
*/
config->cntr_val[ctridx] = 1;
config->cntrldvr[ctridx] = 1;
/* Set the trace counter control register */
val = 0x1 << 16 | /* Bit 16, reload counter automatically */
0x0 << 7 | /* Select single resource selector */
0x1; /* Resource selector 1, i.e always true */
config->cntr_ctrl[ctridx] = val;
val = 0x2 << 16 | /* Group 0b0010 - Counter and sequencers */
counter << 0; /* Counter to use */
config->res_ctrl[rselector] = val;
val = 0x0 << 7 | /* Select single resource selector */
rselector; /* Resource selector */
config->ts_ctrl = val;
ret = 0;
out:
return ret;
}
static int etm4_parse_event_config(struct etmv4_drvdata *drvdata,
struct perf_event *event)
{
@ -236,9 +324,29 @@ static int etm4_parse_event_config(struct etmv4_drvdata *drvdata,
/* TRM: Must program this for cycacc to work */
config->ccctlr = ETM_CYC_THRESHOLD_DEFAULT;
}
if (attr->config & BIT(ETM_OPT_TS))
if (attr->config & BIT(ETM_OPT_TS)) {
/*
* Configure timestamps to be emitted at regular intervals in
* order to correlate instructions executed on different CPUs
* (CPU-wide trace scenarios).
*/
ret = etm4_config_timestamp_event(drvdata);
/*
* No need to go further if timestamp intervals can't
* be configured.
*/
if (ret)
goto out;
/* bit[11], Global timestamp tracing bit */
config->cfg |= BIT(11);
}
if (attr->config & BIT(ETM_OPT_CTXTID))
/* bit[6], Context ID tracing bit */
config->cfg |= BIT(ETM4_CFG_BIT_CTXTID);
/* return stack - enable if selected and supported */
if ((attr->config & BIT(ETM_OPT_RETSTK)) && drvdata->retstack)
/* bit[12], Return stack enable bit */

View File

@ -12,6 +12,8 @@
#include <linux/err.h>
#include <linux/fs.h>
#include <linux/slab.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/coresight.h>
#include <linux/amba/bus.h>
@ -43,7 +45,7 @@ struct funnel_drvdata {
unsigned long priority;
};
static int funnel_enable_hw(struct funnel_drvdata *drvdata, int port)
static int dynamic_funnel_enable_hw(struct funnel_drvdata *drvdata, int port)
{
u32 functl;
int rc = 0;
@ -71,17 +73,19 @@ static int funnel_enable_hw(struct funnel_drvdata *drvdata, int port)
static int funnel_enable(struct coresight_device *csdev, int inport,
int outport)
{
int rc;
int rc = 0;
struct funnel_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
rc = funnel_enable_hw(drvdata, inport);
if (drvdata->base)
rc = dynamic_funnel_enable_hw(drvdata, inport);
if (!rc)
dev_dbg(drvdata->dev, "FUNNEL inport %d enabled\n", inport);
return rc;
}
static void funnel_disable_hw(struct funnel_drvdata *drvdata, int inport)
static void dynamic_funnel_disable_hw(struct funnel_drvdata *drvdata,
int inport)
{
u32 functl;
@ -103,7 +107,8 @@ static void funnel_disable(struct coresight_device *csdev, int inport,
{
struct funnel_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
funnel_disable_hw(drvdata, inport);
if (drvdata->base)
dynamic_funnel_disable_hw(drvdata, inport);
dev_dbg(drvdata->dev, "FUNNEL inport %d disabled\n", inport);
}
@ -177,54 +182,70 @@ static struct attribute *coresight_funnel_attrs[] = {
};
ATTRIBUTE_GROUPS(coresight_funnel);
static int funnel_probe(struct amba_device *adev, const struct amba_id *id)
static int funnel_probe(struct device *dev, struct resource *res)
{
int ret;
void __iomem *base;
struct device *dev = &adev->dev;
struct coresight_platform_data *pdata = NULL;
struct funnel_drvdata *drvdata;
struct resource *res = &adev->res;
struct coresight_desc desc = { 0 };
struct device_node *np = adev->dev.of_node;
struct device_node *np = dev->of_node;
if (np) {
pdata = of_get_coresight_platform_data(dev, np);
if (IS_ERR(pdata))
return PTR_ERR(pdata);
adev->dev.platform_data = pdata;
dev->platform_data = pdata;
}
if (of_device_is_compatible(np, "arm,coresight-funnel"))
pr_warn_once("Uses OBSOLETE CoreSight funnel binding\n");
drvdata = devm_kzalloc(dev, sizeof(*drvdata), GFP_KERNEL);
if (!drvdata)
return -ENOMEM;
drvdata->dev = &adev->dev;
drvdata->atclk = devm_clk_get(&adev->dev, "atclk"); /* optional */
drvdata->dev = dev;
drvdata->atclk = devm_clk_get(dev, "atclk"); /* optional */
if (!IS_ERR(drvdata->atclk)) {
ret = clk_prepare_enable(drvdata->atclk);
if (ret)
return ret;
}
/*
* Map the device base for dynamic-funnel, which has been
* validated by AMBA core.
*/
if (res) {
base = devm_ioremap_resource(dev, res);
if (IS_ERR(base)) {
ret = PTR_ERR(base);
goto out_disable_clk;
}
drvdata->base = base;
desc.groups = coresight_funnel_groups;
}
dev_set_drvdata(dev, drvdata);
/* Validity for the resource is already checked by the AMBA core */
base = devm_ioremap_resource(dev, res);
if (IS_ERR(base))
return PTR_ERR(base);
drvdata->base = base;
pm_runtime_put(&adev->dev);
desc.type = CORESIGHT_DEV_TYPE_LINK;
desc.subtype.link_subtype = CORESIGHT_DEV_SUBTYPE_LINK_MERG;
desc.ops = &funnel_cs_ops;
desc.pdata = pdata;
desc.dev = dev;
desc.groups = coresight_funnel_groups;
drvdata->csdev = coresight_register(&desc);
if (IS_ERR(drvdata->csdev)) {
ret = PTR_ERR(drvdata->csdev);
goto out_disable_clk;
}
return PTR_ERR_OR_ZERO(drvdata->csdev);
pm_runtime_put(dev);
out_disable_clk:
if (ret && !IS_ERR_OR_NULL(drvdata->atclk))
clk_disable_unprepare(drvdata->atclk);
return ret;
}
#ifdef CONFIG_PM
@ -253,7 +274,48 @@ static const struct dev_pm_ops funnel_dev_pm_ops = {
SET_RUNTIME_PM_OPS(funnel_runtime_suspend, funnel_runtime_resume, NULL)
};
static const struct amba_id funnel_ids[] = {
static int static_funnel_probe(struct platform_device *pdev)
{
int ret;
pm_runtime_get_noresume(&pdev->dev);
pm_runtime_set_active(&pdev->dev);
pm_runtime_enable(&pdev->dev);
/* Static funnel do not have programming base */
ret = funnel_probe(&pdev->dev, NULL);
if (ret) {
pm_runtime_put_noidle(&pdev->dev);
pm_runtime_disable(&pdev->dev);
}
return ret;
}
static const struct of_device_id static_funnel_match[] = {
{.compatible = "arm,coresight-static-funnel"},
{}
};
static struct platform_driver static_funnel_driver = {
.probe = static_funnel_probe,
.driver = {
.name = "coresight-static-funnel",
.of_match_table = static_funnel_match,
.pm = &funnel_dev_pm_ops,
.suppress_bind_attrs = true,
},
};
builtin_platform_driver(static_funnel_driver);
static int dynamic_funnel_probe(struct amba_device *adev,
const struct amba_id *id)
{
return funnel_probe(&adev->dev, &adev->res);
}
static const struct amba_id dynamic_funnel_ids[] = {
{
.id = 0x000bb908,
.mask = 0x000fffff,
@ -266,14 +328,14 @@ static const struct amba_id funnel_ids[] = {
{ 0, 0},
};
static struct amba_driver funnel_driver = {
static struct amba_driver dynamic_funnel_driver = {
.drv = {
.name = "coresight-funnel",
.name = "coresight-dynamic-funnel",
.owner = THIS_MODULE,
.pm = &funnel_dev_pm_ops,
.suppress_bind_attrs = true,
},
.probe = funnel_probe,
.id_table = funnel_ids,
.probe = dynamic_funnel_probe,
.id_table = dynamic_funnel_ids,
};
builtin_amba_driver(funnel_driver);
builtin_amba_driver(dynamic_funnel_driver);

View File

@ -1,10 +1,11 @@
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2011-2012, The Linux Foundation. All rights reserved.
* Copyright (c) 2011-2015, The Linux Foundation. All rights reserved.
*
* Description: CoreSight Replicator driver
*/
#include <linux/amba/bus.h>
#include <linux/kernel.h>
#include <linux/device.h>
#include <linux/platform_device.h>
@ -18,25 +19,117 @@
#include "coresight-priv.h"
#define REPLICATOR_IDFILTER0 0x000
#define REPLICATOR_IDFILTER1 0x004
/**
* struct replicator_drvdata - specifics associated to a replicator component
* @base: memory mapped base address for this component. Also indicates
* whether this one is programmable or not.
* @dev: the device entity associated with this component
* @atclk: optional clock for the core parts of the replicator.
* @csdev: component vitals needed by the framework
*/
struct replicator_drvdata {
void __iomem *base;
struct device *dev;
struct clk *atclk;
struct coresight_device *csdev;
};
static void dynamic_replicator_reset(struct replicator_drvdata *drvdata)
{
CS_UNLOCK(drvdata->base);
if (!coresight_claim_device_unlocked(drvdata->base)) {
writel_relaxed(0xff, drvdata->base + REPLICATOR_IDFILTER0);
writel_relaxed(0xff, drvdata->base + REPLICATOR_IDFILTER1);
coresight_disclaim_device_unlocked(drvdata->base);
}
CS_LOCK(drvdata->base);
}
/*
* replicator_reset : Reset the replicator configuration to sane values.
*/
static inline void replicator_reset(struct replicator_drvdata *drvdata)
{
if (drvdata->base)
dynamic_replicator_reset(drvdata);
}
static int dynamic_replicator_enable(struct replicator_drvdata *drvdata,
int inport, int outport)
{
int rc = 0;
u32 reg;
switch (outport) {
case 0:
reg = REPLICATOR_IDFILTER0;
break;
case 1:
reg = REPLICATOR_IDFILTER1;
break;
default:
WARN_ON(1);
return -EINVAL;
}
CS_UNLOCK(drvdata->base);
if ((readl_relaxed(drvdata->base + REPLICATOR_IDFILTER0) == 0xff) &&
(readl_relaxed(drvdata->base + REPLICATOR_IDFILTER1) == 0xff))
rc = coresight_claim_device_unlocked(drvdata->base);
/* Ensure that the outport is enabled. */
if (!rc)
writel_relaxed(0x00, drvdata->base + reg);
CS_LOCK(drvdata->base);
return rc;
}
static int replicator_enable(struct coresight_device *csdev, int inport,
int outport)
{
int rc = 0;
struct replicator_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
dev_dbg(drvdata->dev, "REPLICATOR enabled\n");
return 0;
if (drvdata->base)
rc = dynamic_replicator_enable(drvdata, inport, outport);
if (!rc)
dev_dbg(drvdata->dev, "REPLICATOR enabled\n");
return rc;
}
static void dynamic_replicator_disable(struct replicator_drvdata *drvdata,
int inport, int outport)
{
u32 reg;
switch (outport) {
case 0:
reg = REPLICATOR_IDFILTER0;
break;
case 1:
reg = REPLICATOR_IDFILTER1;
break;
default:
WARN_ON(1);
return;
}
CS_UNLOCK(drvdata->base);
/* disable the flow of ATB data through port */
writel_relaxed(0xff, drvdata->base + reg);
if ((readl_relaxed(drvdata->base + REPLICATOR_IDFILTER0) == 0xff) &&
(readl_relaxed(drvdata->base + REPLICATOR_IDFILTER1) == 0xff))
coresight_disclaim_device_unlocked(drvdata->base);
CS_LOCK(drvdata->base);
}
static void replicator_disable(struct coresight_device *csdev, int inport,
@ -44,6 +137,8 @@ static void replicator_disable(struct coresight_device *csdev, int inport,
{
struct replicator_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
if (drvdata->base)
dynamic_replicator_disable(drvdata, inport, outport);
dev_dbg(drvdata->dev, "REPLICATOR disabled\n");
}
@ -56,58 +151,110 @@ static const struct coresight_ops replicator_cs_ops = {
.link_ops = &replicator_link_ops,
};
static int replicator_probe(struct platform_device *pdev)
#define coresight_replicator_reg(name, offset) \
coresight_simple_reg32(struct replicator_drvdata, name, offset)
coresight_replicator_reg(idfilter0, REPLICATOR_IDFILTER0);
coresight_replicator_reg(idfilter1, REPLICATOR_IDFILTER1);
static struct attribute *replicator_mgmt_attrs[] = {
&dev_attr_idfilter0.attr,
&dev_attr_idfilter1.attr,
NULL,
};
static const struct attribute_group replicator_mgmt_group = {
.attrs = replicator_mgmt_attrs,
.name = "mgmt",
};
static const struct attribute_group *replicator_groups[] = {
&replicator_mgmt_group,
NULL,
};
static int replicator_probe(struct device *dev, struct resource *res)
{
int ret;
struct device *dev = &pdev->dev;
int ret = 0;
struct coresight_platform_data *pdata = NULL;
struct replicator_drvdata *drvdata;
struct coresight_desc desc = { 0 };
struct device_node *np = pdev->dev.of_node;
struct device_node *np = dev->of_node;
void __iomem *base;
if (np) {
pdata = of_get_coresight_platform_data(dev, np);
if (IS_ERR(pdata))
return PTR_ERR(pdata);
pdev->dev.platform_data = pdata;
dev->platform_data = pdata;
}
if (of_device_is_compatible(np, "arm,coresight-replicator"))
pr_warn_once("Uses OBSOLETE CoreSight replicator binding\n");
drvdata = devm_kzalloc(dev, sizeof(*drvdata), GFP_KERNEL);
if (!drvdata)
return -ENOMEM;
drvdata->dev = &pdev->dev;
drvdata->atclk = devm_clk_get(&pdev->dev, "atclk"); /* optional */
drvdata->dev = dev;
drvdata->atclk = devm_clk_get(dev, "atclk"); /* optional */
if (!IS_ERR(drvdata->atclk)) {
ret = clk_prepare_enable(drvdata->atclk);
if (ret)
return ret;
}
pm_runtime_get_noresume(&pdev->dev);
pm_runtime_set_active(&pdev->dev);
pm_runtime_enable(&pdev->dev);
platform_set_drvdata(pdev, drvdata);
/*
* Map the device base for dynamic-replicator, which has been
* validated by AMBA core
*/
if (res) {
base = devm_ioremap_resource(dev, res);
if (IS_ERR(base)) {
ret = PTR_ERR(base);
goto out_disable_clk;
}
drvdata->base = base;
desc.groups = replicator_groups;
}
dev_set_drvdata(dev, drvdata);
desc.type = CORESIGHT_DEV_TYPE_LINK;
desc.subtype.link_subtype = CORESIGHT_DEV_SUBTYPE_LINK_SPLIT;
desc.ops = &replicator_cs_ops;
desc.pdata = pdev->dev.platform_data;
desc.dev = &pdev->dev;
desc.pdata = dev->platform_data;
desc.dev = dev;
drvdata->csdev = coresight_register(&desc);
if (IS_ERR(drvdata->csdev)) {
ret = PTR_ERR(drvdata->csdev);
goto out_disable_pm;
goto out_disable_clk;
}
pm_runtime_put(&pdev->dev);
replicator_reset(drvdata);
pm_runtime_put(dev);
return 0;
out_disable_pm:
if (!IS_ERR(drvdata->atclk))
out_disable_clk:
if (ret && !IS_ERR_OR_NULL(drvdata->atclk))
clk_disable_unprepare(drvdata->atclk);
pm_runtime_put_noidle(&pdev->dev);
pm_runtime_disable(&pdev->dev);
return ret;
}
static int static_replicator_probe(struct platform_device *pdev)
{
int ret;
pm_runtime_get_noresume(&pdev->dev);
pm_runtime_set_active(&pdev->dev);
pm_runtime_enable(&pdev->dev);
/* Static replicators do not have programming base */
ret = replicator_probe(&pdev->dev, NULL);
if (ret) {
pm_runtime_put_noidle(&pdev->dev);
pm_runtime_disable(&pdev->dev);
}
return ret;
}
@ -139,18 +286,49 @@ static const struct dev_pm_ops replicator_dev_pm_ops = {
replicator_runtime_resume, NULL)
};
static const struct of_device_id replicator_match[] = {
static const struct of_device_id static_replicator_match[] = {
{.compatible = "arm,coresight-replicator"},
{.compatible = "arm,coresight-static-replicator"},
{}
};
static struct platform_driver replicator_driver = {
.probe = replicator_probe,
static struct platform_driver static_replicator_driver = {
.probe = static_replicator_probe,
.driver = {
.name = "coresight-replicator",
.of_match_table = replicator_match,
.name = "coresight-static-replicator",
.of_match_table = static_replicator_match,
.pm = &replicator_dev_pm_ops,
.suppress_bind_attrs = true,
},
};
builtin_platform_driver(replicator_driver);
builtin_platform_driver(static_replicator_driver);
static int dynamic_replicator_probe(struct amba_device *adev,
const struct amba_id *id)
{
return replicator_probe(&adev->dev, &adev->res);
}
static const struct amba_id dynamic_replicator_ids[] = {
{
.id = 0x000bb909,
.mask = 0x000fffff,
},
{
/* Coresight SoC-600 */
.id = 0x000bb9ec,
.mask = 0x000fffff,
},
{ 0, 0 },
};
static struct amba_driver dynamic_replicator_driver = {
.drv = {
.name = "coresight-dynamic-replicator",
.pm = &replicator_dev_pm_ops,
.suppress_bind_attrs = true,
},
.probe = dynamic_replicator_probe,
.id_table = dynamic_replicator_ids,
};
builtin_amba_driver(dynamic_replicator_driver);

View File

@ -4,6 +4,7 @@
* Author: Mathieu Poirier <mathieu.poirier@linaro.org>
*/
#include <linux/atomic.h>
#include <linux/circ_buf.h>
#include <linux/coresight.h>
#include <linux/perf_event.h>
@ -180,8 +181,10 @@ static int tmc_enable_etf_sink_sysfs(struct coresight_device *csdev)
* sink is already enabled no memory is needed and the HW need not be
* touched.
*/
if (drvdata->mode == CS_MODE_SYSFS)
if (drvdata->mode == CS_MODE_SYSFS) {
atomic_inc(csdev->refcnt);
goto out;
}
/*
* If drvdata::buf isn't NULL, memory was allocated for a previous
@ -200,11 +203,13 @@ static int tmc_enable_etf_sink_sysfs(struct coresight_device *csdev)
}
ret = tmc_etb_enable_hw(drvdata);
if (!ret)
if (!ret) {
drvdata->mode = CS_MODE_SYSFS;
else
atomic_inc(csdev->refcnt);
} else {
/* Free up the buffer if we failed to enable */
used = false;
}
out:
spin_unlock_irqrestore(&drvdata->spinlock, flags);
@ -218,6 +223,7 @@ static int tmc_enable_etf_sink_sysfs(struct coresight_device *csdev)
static int tmc_enable_etf_sink_perf(struct coresight_device *csdev, void *data)
{
int ret = 0;
pid_t pid;
unsigned long flags;
struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
struct perf_output_handle *handle = data;
@ -228,19 +234,42 @@ static int tmc_enable_etf_sink_perf(struct coresight_device *csdev, void *data)
if (drvdata->reading)
break;
/*
* In Perf mode there can be only one writer per sink. There
* is also no need to continue if the ETB/ETF is already
* operated from sysFS.
* No need to continue if the ETB/ETF is already operated
* from sysFS.
*/
if (drvdata->mode != CS_MODE_DISABLED)
if (drvdata->mode == CS_MODE_SYSFS) {
ret = -EBUSY;
break;
}
/* Get a handle on the pid of the process to monitor */
pid = task_pid_nr(handle->event->owner);
if (drvdata->pid != -1 && drvdata->pid != pid) {
ret = -EBUSY;
break;
}
ret = tmc_set_etf_buffer(csdev, handle);
if (ret)
break;
/*
* No HW configuration is needed if the sink is already in
* use for this session.
*/
if (drvdata->pid == pid) {
atomic_inc(csdev->refcnt);
break;
}
ret = tmc_etb_enable_hw(drvdata);
if (!ret)
if (!ret) {
/* Associate with monitored process. */
drvdata->pid = pid;
drvdata->mode = CS_MODE_PERF;
atomic_inc(csdev->refcnt);
}
} while (0);
spin_unlock_irqrestore(&drvdata->spinlock, flags);
@ -273,26 +302,34 @@ static int tmc_enable_etf_sink(struct coresight_device *csdev,
return 0;
}
static void tmc_disable_etf_sink(struct coresight_device *csdev)
static int tmc_disable_etf_sink(struct coresight_device *csdev)
{
unsigned long flags;
struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
spin_lock_irqsave(&drvdata->spinlock, flags);
if (drvdata->reading) {
spin_unlock_irqrestore(&drvdata->spinlock, flags);
return;
return -EBUSY;
}
/* Disable the TMC only if it needs to */
if (drvdata->mode != CS_MODE_DISABLED) {
tmc_etb_disable_hw(drvdata);
drvdata->mode = CS_MODE_DISABLED;
if (atomic_dec_return(csdev->refcnt)) {
spin_unlock_irqrestore(&drvdata->spinlock, flags);
return -EBUSY;
}
/* Complain if we (somehow) got out of sync */
WARN_ON_ONCE(drvdata->mode == CS_MODE_DISABLED);
tmc_etb_disable_hw(drvdata);
/* Dissociate from monitored process. */
drvdata->pid = -1;
drvdata->mode = CS_MODE_DISABLED;
spin_unlock_irqrestore(&drvdata->spinlock, flags);
dev_dbg(drvdata->dev, "TMC-ETB/ETF disabled\n");
return 0;
}
static int tmc_enable_etf_link(struct coresight_device *csdev,
@ -337,10 +374,11 @@ static void tmc_disable_etf_link(struct coresight_device *csdev,
dev_dbg(drvdata->dev, "TMC-ETF disabled\n");
}
static void *tmc_alloc_etf_buffer(struct coresight_device *csdev, int cpu,
void **pages, int nr_pages, bool overwrite)
static void *tmc_alloc_etf_buffer(struct coresight_device *csdev,
struct perf_event *event, void **pages,
int nr_pages, bool overwrite)
{
int node;
int node, cpu = event->cpu;
struct cs_buffers *buf;
if (cpu == -1)
@ -400,7 +438,7 @@ static unsigned long tmc_update_etf_buffer(struct coresight_device *csdev,
u32 *buf_ptr;
u64 read_ptr, write_ptr;
u32 status;
unsigned long offset, to_read;
unsigned long offset, to_read = 0, flags;
struct cs_buffers *buf = sink_config;
struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
@ -411,6 +449,12 @@ static unsigned long tmc_update_etf_buffer(struct coresight_device *csdev,
if (WARN_ON_ONCE(drvdata->mode != CS_MODE_PERF))
return 0;
spin_lock_irqsave(&drvdata->spinlock, flags);
/* Don't do anything if another tracer is using this sink */
if (atomic_read(csdev->refcnt) != 1)
goto out;
CS_UNLOCK(drvdata->base);
tmc_flush_and_stop(drvdata);
@ -504,6 +548,8 @@ static unsigned long tmc_update_etf_buffer(struct coresight_device *csdev,
to_read = buf->nr_pages << PAGE_SHIFT;
}
CS_LOCK(drvdata->base);
out:
spin_unlock_irqrestore(&drvdata->spinlock, flags);
return to_read;
}

View File

@ -4,10 +4,15 @@
* Author: Mathieu Poirier <mathieu.poirier@linaro.org>
*/
#include <linux/atomic.h>
#include <linux/coresight.h>
#include <linux/dma-mapping.h>
#include <linux/iommu.h>
#include <linux/idr.h>
#include <linux/mutex.h>
#include <linux/refcount.h>
#include <linux/slab.h>
#include <linux/types.h>
#include <linux/vmalloc.h>
#include "coresight-catu.h"
#include "coresight-etm-perf.h"
@ -23,14 +28,18 @@ struct etr_flat_buf {
/*
* etr_perf_buffer - Perf buffer used for ETR
* @drvdata - The ETR drvdaga this buffer has been allocated for.
* @etr_buf - Actual buffer used by the ETR
* @pid - The PID this etr_perf_buffer belongs to.
* @snaphost - Perf session mode
* @head - handle->head at the beginning of the session.
* @nr_pages - Number of pages in the ring buffer.
* @pages - Array of Pages in the ring buffer.
*/
struct etr_perf_buffer {
struct tmc_drvdata *drvdata;
struct etr_buf *etr_buf;
pid_t pid;
bool snapshot;
unsigned long head;
int nr_pages;
@ -772,7 +781,8 @@ static inline void tmc_etr_disable_catu(struct tmc_drvdata *drvdata)
static const struct etr_buf_operations *etr_buf_ops[] = {
[ETR_MODE_FLAT] = &etr_flat_buf_ops,
[ETR_MODE_ETR_SG] = &etr_sg_buf_ops,
[ETR_MODE_CATU] = &etr_catu_buf_ops,
[ETR_MODE_CATU] = IS_ENABLED(CONFIG_CORESIGHT_CATU)
? &etr_catu_buf_ops : NULL,
};
static inline int tmc_etr_mode_alloc_buf(int mode,
@ -786,7 +796,7 @@ static inline int tmc_etr_mode_alloc_buf(int mode,
case ETR_MODE_FLAT:
case ETR_MODE_ETR_SG:
case ETR_MODE_CATU:
if (etr_buf_ops[mode]->alloc)
if (etr_buf_ops[mode] && etr_buf_ops[mode]->alloc)
rc = etr_buf_ops[mode]->alloc(drvdata, etr_buf,
node, pages);
if (!rc)
@ -1124,8 +1134,10 @@ static int tmc_enable_etr_sink_sysfs(struct coresight_device *csdev)
* sink is already enabled no memory is needed and the HW need not be
* touched, even if the buffer size has changed.
*/
if (drvdata->mode == CS_MODE_SYSFS)
if (drvdata->mode == CS_MODE_SYSFS) {
atomic_inc(csdev->refcnt);
goto out;
}
/*
* If we don't have a buffer or it doesn't match the requested size,
@ -1138,8 +1150,10 @@ static int tmc_enable_etr_sink_sysfs(struct coresight_device *csdev)
}
ret = tmc_etr_enable_hw(drvdata, drvdata->sysfs_buf);
if (!ret)
if (!ret) {
drvdata->mode = CS_MODE_SYSFS;
atomic_inc(csdev->refcnt);
}
out:
spin_unlock_irqrestore(&drvdata->spinlock, flags);
@ -1154,23 +1168,23 @@ static int tmc_enable_etr_sink_sysfs(struct coresight_device *csdev)
}
/*
* tmc_etr_setup_perf_buf: Allocate ETR buffer for use by perf.
* alloc_etr_buf: Allocate ETR buffer for use by perf.
* The size of the hardware buffer is dependent on the size configured
* via sysfs and the perf ring buffer size. We prefer to allocate the
* largest possible size, scaling down the size by half until it
* reaches a minimum limit (1M), beyond which we give up.
*/
static struct etr_perf_buffer *
tmc_etr_setup_perf_buf(struct tmc_drvdata *drvdata, int node, int nr_pages,
void **pages, bool snapshot)
static struct etr_buf *
alloc_etr_buf(struct tmc_drvdata *drvdata, struct perf_event *event,
int nr_pages, void **pages, bool snapshot)
{
int node, cpu = event->cpu;
struct etr_buf *etr_buf;
struct etr_perf_buffer *etr_perf;
unsigned long size;
etr_perf = kzalloc_node(sizeof(*etr_perf), GFP_KERNEL, node);
if (!etr_perf)
return ERR_PTR(-ENOMEM);
if (cpu == -1)
cpu = smp_processor_id();
node = cpu_to_node(cpu);
/*
* Try to match the perf ring buffer size if it is larger
@ -1195,32 +1209,160 @@ tmc_etr_setup_perf_buf(struct tmc_drvdata *drvdata, int node, int nr_pages,
size /= 2;
} while (size >= TMC_ETR_PERF_MIN_BUF_SIZE);
return ERR_PTR(-ENOMEM);
done:
return etr_buf;
}
static struct etr_buf *
get_perf_etr_buf_cpu_wide(struct tmc_drvdata *drvdata,
struct perf_event *event, int nr_pages,
void **pages, bool snapshot)
{
int ret;
pid_t pid = task_pid_nr(event->owner);
struct etr_buf *etr_buf;
retry:
/*
* An etr_perf_buffer is associated with an event and holds a reference
* to the AUX ring buffer that was created for that event. In CPU-wide
* N:1 mode multiple events (one per CPU), each with its own AUX ring
* buffer, share a sink. As such an etr_perf_buffer is created for each
* event but a single etr_buf associated with the ETR is shared between
* them. The last event in a trace session will copy the content of the
* etr_buf to its AUX ring buffer. Ring buffer associated to other
* events are simply not used an freed as events are destoyed. We still
* need to allocate a ring buffer for each event since we don't know
* which event will be last.
*/
/*
* The first thing to do here is check if an etr_buf has already been
* allocated for this session. If so it is shared with this event,
* otherwise it is created.
*/
mutex_lock(&drvdata->idr_mutex);
etr_buf = idr_find(&drvdata->idr, pid);
if (etr_buf) {
refcount_inc(&etr_buf->refcount);
mutex_unlock(&drvdata->idr_mutex);
return etr_buf;
}
/* If we made it here no buffer has been allocated, do so now. */
mutex_unlock(&drvdata->idr_mutex);
etr_buf = alloc_etr_buf(drvdata, event, nr_pages, pages, snapshot);
if (IS_ERR(etr_buf))
return etr_buf;
refcount_set(&etr_buf->refcount, 1);
/* Now that we have a buffer, add it to the IDR. */
mutex_lock(&drvdata->idr_mutex);
ret = idr_alloc(&drvdata->idr, etr_buf, pid, pid + 1, GFP_KERNEL);
mutex_unlock(&drvdata->idr_mutex);
/* Another event with this session ID has allocated this buffer. */
if (ret == -ENOSPC) {
tmc_free_etr_buf(etr_buf);
goto retry;
}
/* The IDR can't allocate room for a new session, abandon ship. */
if (ret == -ENOMEM) {
tmc_free_etr_buf(etr_buf);
return ERR_PTR(ret);
}
return etr_buf;
}
static struct etr_buf *
get_perf_etr_buf_per_thread(struct tmc_drvdata *drvdata,
struct perf_event *event, int nr_pages,
void **pages, bool snapshot)
{
struct etr_buf *etr_buf;
/*
* In per-thread mode the etr_buf isn't shared, so just go ahead
* with memory allocation.
*/
etr_buf = alloc_etr_buf(drvdata, event, nr_pages, pages, snapshot);
if (IS_ERR(etr_buf))
goto out;
refcount_set(&etr_buf->refcount, 1);
out:
return etr_buf;
}
static struct etr_buf *
get_perf_etr_buf(struct tmc_drvdata *drvdata, struct perf_event *event,
int nr_pages, void **pages, bool snapshot)
{
if (event->cpu == -1)
return get_perf_etr_buf_per_thread(drvdata, event, nr_pages,
pages, snapshot);
return get_perf_etr_buf_cpu_wide(drvdata, event, nr_pages,
pages, snapshot);
}
static struct etr_perf_buffer *
tmc_etr_setup_perf_buf(struct tmc_drvdata *drvdata, struct perf_event *event,
int nr_pages, void **pages, bool snapshot)
{
int node, cpu = event->cpu;
struct etr_buf *etr_buf;
struct etr_perf_buffer *etr_perf;
if (cpu == -1)
cpu = smp_processor_id();
node = cpu_to_node(cpu);
etr_perf = kzalloc_node(sizeof(*etr_perf), GFP_KERNEL, node);
if (!etr_perf)
return ERR_PTR(-ENOMEM);
etr_buf = get_perf_etr_buf(drvdata, event, nr_pages, pages, snapshot);
if (!IS_ERR(etr_buf))
goto done;
kfree(etr_perf);
return ERR_PTR(-ENOMEM);
done:
/*
* Keep a reference to the ETR this buffer has been allocated for
* in order to have access to the IDR in tmc_free_etr_buffer().
*/
etr_perf->drvdata = drvdata;
etr_perf->etr_buf = etr_buf;
return etr_perf;
}
static void *tmc_alloc_etr_buffer(struct coresight_device *csdev,
int cpu, void **pages, int nr_pages,
bool snapshot)
struct perf_event *event, void **pages,
int nr_pages, bool snapshot)
{
struct etr_perf_buffer *etr_perf;
struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
if (cpu == -1)
cpu = smp_processor_id();
etr_perf = tmc_etr_setup_perf_buf(drvdata, cpu_to_node(cpu),
etr_perf = tmc_etr_setup_perf_buf(drvdata, event,
nr_pages, pages, snapshot);
if (IS_ERR(etr_perf)) {
dev_dbg(drvdata->dev, "Unable to allocate ETR buffer\n");
return NULL;
}
etr_perf->pid = task_pid_nr(event->owner);
etr_perf->snapshot = snapshot;
etr_perf->nr_pages = nr_pages;
etr_perf->pages = pages;
@ -1231,9 +1373,33 @@ static void *tmc_alloc_etr_buffer(struct coresight_device *csdev,
static void tmc_free_etr_buffer(void *config)
{
struct etr_perf_buffer *etr_perf = config;
struct tmc_drvdata *drvdata = etr_perf->drvdata;
struct etr_buf *buf, *etr_buf = etr_perf->etr_buf;
if (etr_perf->etr_buf)
tmc_free_etr_buf(etr_perf->etr_buf);
if (!etr_buf)
goto free_etr_perf_buffer;
mutex_lock(&drvdata->idr_mutex);
/* If we are not the last one to use the buffer, don't touch it. */
if (!refcount_dec_and_test(&etr_buf->refcount)) {
mutex_unlock(&drvdata->idr_mutex);
goto free_etr_perf_buffer;
}
/* We are the last one, remove from the IDR and free the buffer. */
buf = idr_remove(&drvdata->idr, etr_perf->pid);
mutex_unlock(&drvdata->idr_mutex);
/*
* Something went very wrong if the buffer associated with this ID
* is not the same in the IDR. Leak to avoid use after free.
*/
if (buf && WARN_ON(buf != etr_buf))
goto free_etr_perf_buffer;
tmc_free_etr_buf(etr_perf->etr_buf);
free_etr_perf_buffer:
kfree(etr_perf);
}
@ -1308,6 +1474,13 @@ tmc_update_etr_buffer(struct coresight_device *csdev,
struct etr_buf *etr_buf = etr_perf->etr_buf;
spin_lock_irqsave(&drvdata->spinlock, flags);
/* Don't do anything if another tracer is using this sink */
if (atomic_read(csdev->refcnt) != 1) {
spin_unlock_irqrestore(&drvdata->spinlock, flags);
goto out;
}
if (WARN_ON(drvdata->perf_data != etr_perf)) {
lost = true;
spin_unlock_irqrestore(&drvdata->spinlock, flags);
@ -1347,17 +1520,15 @@ tmc_update_etr_buffer(struct coresight_device *csdev,
static int tmc_enable_etr_sink_perf(struct coresight_device *csdev, void *data)
{
int rc = 0;
pid_t pid;
unsigned long flags;
struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
struct perf_output_handle *handle = data;
struct etr_perf_buffer *etr_perf = etm_perf_sink_config(handle);
spin_lock_irqsave(&drvdata->spinlock, flags);
/*
* There can be only one writer per sink in perf mode. If the sink
* is already open in SYSFS mode, we can't use it.
*/
if (drvdata->mode != CS_MODE_DISABLED || WARN_ON(drvdata->perf_data)) {
/* Don't use this sink if it is already claimed by sysFS */
if (drvdata->mode == CS_MODE_SYSFS) {
rc = -EBUSY;
goto unlock_out;
}
@ -1367,11 +1538,34 @@ static int tmc_enable_etr_sink_perf(struct coresight_device *csdev, void *data)
goto unlock_out;
}
/* Get a handle on the pid of the process to monitor */
pid = etr_perf->pid;
/* Do not proceed if this device is associated with another session */
if (drvdata->pid != -1 && drvdata->pid != pid) {
rc = -EBUSY;
goto unlock_out;
}
etr_perf->head = PERF_IDX2OFF(handle->head, etr_perf);
drvdata->perf_data = etr_perf;
/*
* No HW configuration is needed if the sink is already in
* use for this session.
*/
if (drvdata->pid == pid) {
atomic_inc(csdev->refcnt);
goto unlock_out;
}
rc = tmc_etr_enable_hw(drvdata, etr_perf->etr_buf);
if (!rc)
if (!rc) {
/* Associate with monitored process. */
drvdata->pid = pid;
drvdata->mode = CS_MODE_PERF;
atomic_inc(csdev->refcnt);
}
unlock_out:
spin_unlock_irqrestore(&drvdata->spinlock, flags);
@ -1392,26 +1586,34 @@ static int tmc_enable_etr_sink(struct coresight_device *csdev,
return -EINVAL;
}
static void tmc_disable_etr_sink(struct coresight_device *csdev)
static int tmc_disable_etr_sink(struct coresight_device *csdev)
{
unsigned long flags;
struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
spin_lock_irqsave(&drvdata->spinlock, flags);
if (drvdata->reading) {
spin_unlock_irqrestore(&drvdata->spinlock, flags);
return;
return -EBUSY;
}
/* Disable the TMC only if it needs to */
if (drvdata->mode != CS_MODE_DISABLED) {
tmc_etr_disable_hw(drvdata);
drvdata->mode = CS_MODE_DISABLED;
if (atomic_dec_return(csdev->refcnt)) {
spin_unlock_irqrestore(&drvdata->spinlock, flags);
return -EBUSY;
}
/* Complain if we (somehow) got out of sync */
WARN_ON_ONCE(drvdata->mode == CS_MODE_DISABLED);
tmc_etr_disable_hw(drvdata);
/* Dissociate from monitored process. */
drvdata->pid = -1;
drvdata->mode = CS_MODE_DISABLED;
spin_unlock_irqrestore(&drvdata->spinlock, flags);
dev_dbg(drvdata->dev, "TMC-ETR disabled\n");
return 0;
}
static const struct coresight_ops_sink tmc_etr_sink_ops = {

View File

@ -8,10 +8,12 @@
#include <linux/init.h>
#include <linux/types.h>
#include <linux/device.h>
#include <linux/idr.h>
#include <linux/io.h>
#include <linux/err.h>
#include <linux/fs.h>
#include <linux/miscdevice.h>
#include <linux/mutex.h>
#include <linux/property.h>
#include <linux/uaccess.h>
#include <linux/slab.h>
@ -340,6 +342,8 @@ static inline bool tmc_etr_can_use_sg(struct tmc_drvdata *drvdata)
static int tmc_etr_setup_caps(struct tmc_drvdata *drvdata,
u32 devid, void *dev_caps)
{
int rc;
u32 dma_mask = 0;
/* Set the unadvertised capabilities */
@ -369,7 +373,10 @@ static int tmc_etr_setup_caps(struct tmc_drvdata *drvdata,
dma_mask = 40;
}
return dma_set_mask_and_coherent(drvdata->dev, DMA_BIT_MASK(dma_mask));
rc = dma_set_mask_and_coherent(drvdata->dev, DMA_BIT_MASK(dma_mask));
if (rc)
dev_err(drvdata->dev, "Failed to setup DMA mask: %d\n", rc);
return rc;
}
static int tmc_probe(struct amba_device *adev, const struct amba_id *id)
@ -415,6 +422,8 @@ static int tmc_probe(struct amba_device *adev, const struct amba_id *id)
devid = readl_relaxed(drvdata->base + CORESIGHT_DEVID);
drvdata->config_type = BMVAL(devid, 6, 7);
drvdata->memwidth = tmc_get_memwidth(devid);
/* This device is not associated with a session */
drvdata->pid = -1;
if (drvdata->config_type == TMC_CONFIG_TYPE_ETR) {
if (np)
@ -427,8 +436,6 @@ static int tmc_probe(struct amba_device *adev, const struct amba_id *id)
drvdata->size = readl_relaxed(drvdata->base + TMC_RSZ) * 4;
}
pm_runtime_put(&adev->dev);
desc.pdata = pdata;
desc.dev = dev;
desc.groups = coresight_tmc_groups;
@ -447,6 +454,8 @@ static int tmc_probe(struct amba_device *adev, const struct amba_id *id)
coresight_get_uci_data(id));
if (ret)
goto out;
idr_init(&drvdata->idr);
mutex_init(&drvdata->idr_mutex);
break;
case TMC_CONFIG_TYPE_ETF:
desc.type = CORESIGHT_DEV_TYPE_LINKSINK;
@ -471,6 +480,8 @@ static int tmc_probe(struct amba_device *adev, const struct amba_id *id)
ret = misc_register(&drvdata->miscdev);
if (ret)
coresight_unregister(drvdata->csdev);
else
pm_runtime_put(&adev->dev);
out:
return ret;
}

View File

@ -8,7 +8,10 @@
#define _CORESIGHT_TMC_H
#include <linux/dma-mapping.h>
#include <linux/idr.h>
#include <linux/miscdevice.h>
#include <linux/mutex.h>
#include <linux/refcount.h>
#define TMC_RSZ 0x004
#define TMC_STS 0x00c
@ -133,6 +136,7 @@ struct etr_buf_operations;
/**
* struct etr_buf - Details of the buffer used by ETR
* refcount ; Number of sources currently using this etr_buf.
* @mode : Mode of the ETR buffer, contiguous, Scatter Gather etc.
* @full : Trace data overflow
* @size : Size of the buffer.
@ -143,6 +147,7 @@ struct etr_buf_operations;
* @private : Backend specific information for the buf
*/
struct etr_buf {
refcount_t refcount;
enum etr_mode mode;
bool full;
ssize_t size;
@ -160,6 +165,8 @@ struct etr_buf {
* @csdev: component vitals needed by the framework.
* @miscdev: specifics to handle "/dev/xyz.tmc" entry.
* @spinlock: only one at a time pls.
* @pid: Process ID of the process being monitored by the session
* that is using this component.
* @buf: Snapshot of the trace data for ETF/ETB.
* @etr_buf: details of buffer used in TMC-ETR
* @len: size of the available trace for ETF/ETB.
@ -170,6 +177,8 @@ struct etr_buf {
* @trigger_cntr: amount of words to store after a trigger.
* @etr_caps: Bitmask of capabilities of the TMC ETR, inferred from the
* device configuration register (DEVID)
* @idr: Holds etr_bufs allocated for this ETR.
* @idr_mutex: Access serialisation for idr.
* @perf_data: PERF buffer for ETR.
* @sysfs_data: SYSFS buffer for ETR.
*/
@ -179,6 +188,7 @@ struct tmc_drvdata {
struct coresight_device *csdev;
struct miscdevice miscdev;
spinlock_t spinlock;
pid_t pid;
bool reading;
union {
char *buf; /* TMC ETB */
@ -191,6 +201,8 @@ struct tmc_drvdata {
enum tmc_mem_intf_width memwidth;
u32 trigger_cntr;
u32 etr_caps;
struct idr idr;
struct mutex idr_mutex;
struct etr_buf *sysfs_buf;
void *perf_data;
};

View File

@ -5,6 +5,7 @@
* Description: CoreSight Trace Port Interface Unit driver
*/
#include <linux/atomic.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/device.h>
@ -73,7 +74,7 @@ static int tpiu_enable(struct coresight_device *csdev, u32 mode, void *__unused)
struct tpiu_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
tpiu_enable_hw(drvdata);
atomic_inc(csdev->refcnt);
dev_dbg(drvdata->dev, "TPIU enabled\n");
return 0;
}
@ -94,13 +95,17 @@ static void tpiu_disable_hw(struct tpiu_drvdata *drvdata)
CS_LOCK(drvdata->base);
}
static void tpiu_disable(struct coresight_device *csdev)
static int tpiu_disable(struct coresight_device *csdev)
{
struct tpiu_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
if (atomic_dec_return(csdev->refcnt))
return -EBUSY;
tpiu_disable_hw(drvdata);
dev_dbg(drvdata->dev, "TPIU disabled\n");
return 0;
}
static const struct coresight_ops_sink tpiu_sink_ops = {
@ -153,8 +158,6 @@ static int tpiu_probe(struct amba_device *adev, const struct amba_id *id)
/* Disable tpiu to support older devices */
tpiu_disable_hw(drvdata);
pm_runtime_put(&adev->dev);
desc.type = CORESIGHT_DEV_TYPE_SINK;
desc.subtype.sink_subtype = CORESIGHT_DEV_SUBTYPE_SINK_PORT;
desc.ops = &tpiu_cs_ops;
@ -162,7 +165,12 @@ static int tpiu_probe(struct amba_device *adev, const struct amba_id *id)
desc.dev = dev;
drvdata->csdev = coresight_register(&desc);
return PTR_ERR_OR_ZERO(drvdata->csdev);
if (!IS_ERR(drvdata->csdev)) {
pm_runtime_put(&adev->dev);
return 0;
}
return PTR_ERR(drvdata->csdev);
}
#ifdef CONFIG_PM

View File

@ -225,26 +225,28 @@ static int coresight_enable_sink(struct coresight_device *csdev,
* We need to make sure the "new" session is compatible with the
* existing "mode" of operation.
*/
if (sink_ops(csdev)->enable) {
ret = sink_ops(csdev)->enable(csdev, mode, data);
if (ret)
return ret;
csdev->enable = true;
}
if (!sink_ops(csdev)->enable)
return -EINVAL;
atomic_inc(csdev->refcnt);
ret = sink_ops(csdev)->enable(csdev, mode, data);
if (ret)
return ret;
csdev->enable = true;
return 0;
}
static void coresight_disable_sink(struct coresight_device *csdev)
{
if (atomic_dec_return(csdev->refcnt) == 0) {
if (sink_ops(csdev)->disable) {
sink_ops(csdev)->disable(csdev);
csdev->enable = false;
}
}
int ret;
if (!sink_ops(csdev)->disable)
return;
ret = sink_ops(csdev)->disable(csdev);
if (ret)
return;
csdev->enable = false;
}
static int coresight_enable_link(struct coresight_device *csdev,
@ -973,7 +975,6 @@ static void coresight_device_release(struct device *dev)
{
struct coresight_device *csdev = to_coresight_device(dev);
kfree(csdev->conns);
kfree(csdev->refcnt);
kfree(csdev);
}

View File

@ -37,15 +37,21 @@ MODULE_DEVICE_TABLE(acpi, intel_th_acpi_ids);
static int intel_th_acpi_probe(struct platform_device *pdev)
{
struct acpi_device *adev = ACPI_COMPANION(&pdev->dev);
struct resource resource[TH_MMIO_END];
const struct acpi_device_id *id;
struct intel_th *th;
int i, r;
id = acpi_match_device(intel_th_acpi_ids, &pdev->dev);
if (!id)
return -ENODEV;
th = intel_th_alloc(&pdev->dev, (void *)id->driver_data,
pdev->resource, pdev->num_resources, -1);
for (i = 0, r = 0; i < pdev->num_resources && r < TH_MMIO_END; i++)
if (pdev->resource[i].flags &
(IORESOURCE_IRQ | IORESOURCE_MEM))
resource[r++] = pdev->resource[i];
th = intel_th_alloc(&pdev->dev, (void *)id->driver_data, resource, r);
if (IS_ERR(th))
return PTR_ERR(th);

View File

@ -430,9 +430,9 @@ static const struct intel_th_subdevice {
.nres = 1,
.res = {
{
/* Handle TSCU from GTH driver */
/* Handle TSCU and CTS from GTH driver */
.start = REG_GTH_OFFSET,
.end = REG_TSCU_OFFSET + REG_TSCU_LENGTH - 1,
.end = REG_CTS_OFFSET + REG_CTS_LENGTH - 1,
.flags = IORESOURCE_MEM,
},
},
@ -491,7 +491,7 @@ static const struct intel_th_subdevice {
.flags = IORESOURCE_MEM,
},
{
.start = 1, /* use resource[1] */
.start = TH_MMIO_SW,
.end = 0,
.flags = IORESOURCE_MEM,
},
@ -500,6 +500,24 @@ static const struct intel_th_subdevice {
.name = "sth",
.type = INTEL_TH_SOURCE,
},
{
.nres = 2,
.res = {
{
.start = REG_STH_OFFSET,
.end = REG_STH_OFFSET + REG_STH_LENGTH - 1,
.flags = IORESOURCE_MEM,
},
{
.start = TH_MMIO_RTIT,
.end = 0,
.flags = IORESOURCE_MEM,
},
},
.id = -1,
.name = "rtit",
.type = INTEL_TH_SOURCE,
},
{
.nres = 1,
.res = {
@ -584,7 +602,6 @@ intel_th_subdevice_alloc(struct intel_th *th,
struct intel_th_device *thdev;
struct resource res[3];
unsigned int req = 0;
bool is64bit = false;
int r, err;
thdev = intel_th_device_alloc(th, subdev->type, subdev->name,
@ -594,18 +611,12 @@ intel_th_subdevice_alloc(struct intel_th *th,
thdev->drvdata = th->drvdata;
for (r = 0; r < th->num_resources; r++)
if (th->resource[r].flags & IORESOURCE_MEM_64) {
is64bit = true;
break;
}
memcpy(res, subdev->res,
sizeof(struct resource) * subdev->nres);
for (r = 0; r < subdev->nres; r++) {
struct resource *devres = th->resource;
int bar = 0; /* cut subdevices' MMIO from resource[0] */
int bar = TH_MMIO_CONFIG;
/*
* Take .end == 0 to mean 'take the whole bar',
@ -614,8 +625,9 @@ intel_th_subdevice_alloc(struct intel_th *th,
*/
if (!res[r].end && res[r].flags == IORESOURCE_MEM) {
bar = res[r].start;
if (is64bit)
bar *= 2;
err = -ENODEV;
if (bar >= th->num_resources)
goto fail_put_device;
res[r].start = 0;
res[r].end = resource_size(&devres[bar]) - 1;
}
@ -627,7 +639,12 @@ intel_th_subdevice_alloc(struct intel_th *th,
dev_dbg(th->dev, "%s:%d @ %pR\n",
subdev->name, r, &res[r]);
} else if (res[r].flags & IORESOURCE_IRQ) {
res[r].start = th->irq;
/*
* Only pass on the IRQ if we have useful interrupts:
* the ones that can be configured via MINTCTL.
*/
if (INTEL_TH_CAP(th, has_mintctl) && th->irq != -1)
res[r].start = th->irq;
}
}
@ -758,8 +775,13 @@ static int intel_th_populate(struct intel_th *th)
thdev = intel_th_subdevice_alloc(th, subdev);
/* note: caller should free subdevices from th::thdev[] */
if (IS_ERR(thdev))
if (IS_ERR(thdev)) {
/* ENODEV for individual subdevices is allowed */
if (PTR_ERR(thdev) == -ENODEV)
continue;
return PTR_ERR(thdev);
}
th->thdev[th->num_thdevs++] = thdev;
}
@ -809,26 +831,40 @@ static const struct file_operations intel_th_output_fops = {
.llseek = noop_llseek,
};
static irqreturn_t intel_th_irq(int irq, void *data)
{
struct intel_th *th = data;
irqreturn_t ret = IRQ_NONE;
struct intel_th_driver *d;
int i;
for (i = 0; i < th->num_thdevs; i++) {
if (th->thdev[i]->type != INTEL_TH_OUTPUT)
continue;
d = to_intel_th_driver(th->thdev[i]->dev.driver);
if (d && d->irq)
ret |= d->irq(th->thdev[i]);
}
if (ret == IRQ_NONE)
pr_warn_ratelimited("nobody cared for irq\n");
return ret;
}
/**
* intel_th_alloc() - allocate a new Intel TH device and its subdevices
* @dev: parent device
* @devres: parent's resources
* @ndevres: number of resources
* @devres: resources indexed by th_mmio_idx
* @irq: irq number
*/
struct intel_th *
intel_th_alloc(struct device *dev, struct intel_th_drvdata *drvdata,
struct resource *devres, unsigned int ndevres, int irq)
struct resource *devres, unsigned int ndevres)
{
int err, r, nr_mmios = 0;
struct intel_th *th;
int err, r;
if (irq == -1)
for (r = 0; r < ndevres; r++)
if (devres[r].flags & IORESOURCE_IRQ) {
irq = devres[r].start;
break;
}
th = kzalloc(sizeof(*th), GFP_KERNEL);
if (!th)
@ -846,12 +882,32 @@ intel_th_alloc(struct device *dev, struct intel_th_drvdata *drvdata,
err = th->major;
goto err_ida;
}
th->irq = -1;
th->dev = dev;
th->drvdata = drvdata;
th->resource = devres;
th->num_resources = ndevres;
th->irq = irq;
for (r = 0; r < ndevres; r++)
switch (devres[r].flags & IORESOURCE_TYPE_BITS) {
case IORESOURCE_MEM:
th->resource[nr_mmios++] = devres[r];
break;
case IORESOURCE_IRQ:
err = devm_request_irq(dev, devres[r].start,
intel_th_irq, IRQF_SHARED,
dev_name(dev), th);
if (err)
goto err_chrdev;
if (th->irq == -1)
th->irq = devres[r].start;
break;
default:
dev_warn(dev, "Unknown resource type %lx\n",
devres[r].flags);
break;
}
th->num_resources = nr_mmios;
dev_set_drvdata(dev, th);
@ -868,6 +924,10 @@ intel_th_alloc(struct device *dev, struct intel_th_drvdata *drvdata,
return th;
err_chrdev:
__unregister_chrdev(th->major, 0, TH_POSSIBLE_OUTPUTS,
"intel_th/output");
err_ida:
ida_simple_remove(&intel_th_ida, th->id);
@ -927,6 +987,27 @@ int intel_th_trace_enable(struct intel_th_device *thdev)
}
EXPORT_SYMBOL_GPL(intel_th_trace_enable);
/**
* intel_th_trace_switch() - execute a switch sequence
* @thdev: output device that requests tracing switch
*/
int intel_th_trace_switch(struct intel_th_device *thdev)
{
struct intel_th_device *hub = to_intel_th_device(thdev->dev.parent);
struct intel_th_driver *hubdrv = to_intel_th_driver(hub->dev.driver);
if (WARN_ON_ONCE(hub->type != INTEL_TH_SWITCH))
return -EINVAL;
if (WARN_ON_ONCE(thdev->type != INTEL_TH_OUTPUT))
return -EINVAL;
hubdrv->trig_switch(hub, &thdev->output);
return 0;
}
EXPORT_SYMBOL_GPL(intel_th_trace_switch);
/**
* intel_th_trace_disable() - disable tracing for an output device
* @thdev: output device that requests tracing be disabled

View File

@ -308,6 +308,11 @@ static int intel_th_gth_reset(struct gth_device *gth)
iowrite32(0, gth->base + REG_GTH_SCR);
iowrite32(0xfc, gth->base + REG_GTH_SCR2);
/* setup CTS for single trigger */
iowrite32(CTS_EVENT_ENABLE_IF_ANYTHING, gth->base + REG_CTS_C0S0_EN);
iowrite32(CTS_ACTION_CONTROL_SET_STATE(CTS_STATE_IDLE) |
CTS_ACTION_CONTROL_TRIGGER, gth->base + REG_CTS_C0S0_ACT);
return 0;
}
@ -456,6 +461,68 @@ static int intel_th_output_attributes(struct gth_device *gth)
return sysfs_create_group(&gth->dev->kobj, &gth->output_group);
}
/**
* intel_th_gth_stop() - stop tracing to an output device
* @gth: GTH device
* @output: output device's descriptor
* @capture_done: set when no more traces will be captured
*
* This will stop tracing using force storeEn off signal and wait for the
* pipelines to be empty for the corresponding output port.
*/
static void intel_th_gth_stop(struct gth_device *gth,
struct intel_th_output *output,
bool capture_done)
{
struct intel_th_device *outdev =
container_of(output, struct intel_th_device, output);
struct intel_th_driver *outdrv =
to_intel_th_driver(outdev->dev.driver);
unsigned long count;
u32 reg;
u32 scr2 = 0xfc | (capture_done ? 1 : 0);
iowrite32(0, gth->base + REG_GTH_SCR);
iowrite32(scr2, gth->base + REG_GTH_SCR2);
/* wait on pipeline empty for the given port */
for (reg = 0, count = GTH_PLE_WAITLOOP_DEPTH;
count && !(reg & BIT(output->port)); count--) {
reg = ioread32(gth->base + REG_GTH_STAT);
cpu_relax();
}
if (!count)
dev_dbg(gth->dev, "timeout waiting for GTH[%d] PLE\n",
output->port);
/* wait on output piepline empty */
if (outdrv->wait_empty)
outdrv->wait_empty(outdev);
/* clear force capture done for next captures */
iowrite32(0xfc, gth->base + REG_GTH_SCR2);
}
/**
* intel_th_gth_start() - start tracing to an output device
* @gth: GTH device
* @output: output device's descriptor
*
* This will start tracing using force storeEn signal.
*/
static void intel_th_gth_start(struct gth_device *gth,
struct intel_th_output *output)
{
u32 scr = 0xfc0000;
if (output->multiblock)
scr |= 0xff;
iowrite32(scr, gth->base + REG_GTH_SCR);
iowrite32(0, gth->base + REG_GTH_SCR2);
}
/**
* intel_th_gth_disable() - disable tracing to an output device
* @thdev: GTH device
@ -469,7 +536,6 @@ static void intel_th_gth_disable(struct intel_th_device *thdev,
struct intel_th_output *output)
{
struct gth_device *gth = dev_get_drvdata(&thdev->dev);
unsigned long count;
int master;
u32 reg;
@ -482,22 +548,7 @@ static void intel_th_gth_disable(struct intel_th_device *thdev,
}
spin_unlock(&gth->gth_lock);
iowrite32(0, gth->base + REG_GTH_SCR);
iowrite32(0xfd, gth->base + REG_GTH_SCR2);
/* wait on pipeline empty for the given port */
for (reg = 0, count = GTH_PLE_WAITLOOP_DEPTH;
count && !(reg & BIT(output->port)); count--) {
reg = ioread32(gth->base + REG_GTH_STAT);
cpu_relax();
}
/* clear force capture done for next captures */
iowrite32(0xfc, gth->base + REG_GTH_SCR2);
if (!count)
dev_dbg(&thdev->dev, "timeout waiting for GTH[%d] PLE\n",
output->port);
intel_th_gth_stop(gth, output, true);
reg = ioread32(gth->base + REG_GTH_SCRPD0);
reg &= ~output->scratchpad;
@ -526,8 +577,8 @@ static void intel_th_gth_enable(struct intel_th_device *thdev,
{
struct gth_device *gth = dev_get_drvdata(&thdev->dev);
struct intel_th *th = to_intel_th(thdev);
u32 scr = 0xfc0000, scrpd;
int master;
u32 scrpd;
spin_lock(&gth->gth_lock);
for_each_set_bit(master, gth->output[output->port].master,
@ -535,9 +586,6 @@ static void intel_th_gth_enable(struct intel_th_device *thdev,
gth_master_set(gth, master, output->port);
}
if (output->multiblock)
scr |= 0xff;
output->active = true;
spin_unlock(&gth->gth_lock);
@ -548,8 +596,38 @@ static void intel_th_gth_enable(struct intel_th_device *thdev,
scrpd |= output->scratchpad;
iowrite32(scrpd, gth->base + REG_GTH_SCRPD0);
iowrite32(scr, gth->base + REG_GTH_SCR);
iowrite32(0, gth->base + REG_GTH_SCR2);
intel_th_gth_start(gth, output);
}
/**
* intel_th_gth_switch() - execute a switch sequence
* @thdev: GTH device
* @output: output device's descriptor
*
* This will execute a switch sequence that will trigger a switch window
* when tracing to MSC in multi-block mode.
*/
static void intel_th_gth_switch(struct intel_th_device *thdev,
struct intel_th_output *output)
{
struct gth_device *gth = dev_get_drvdata(&thdev->dev);
unsigned long count;
u32 reg;
/* trigger */
iowrite32(0, gth->base + REG_CTS_CTL);
iowrite32(CTS_CTL_SEQUENCER_ENABLE, gth->base + REG_CTS_CTL);
/* wait on trigger status */
for (reg = 0, count = CTS_TRIG_WAITLOOP_DEPTH;
count && !(reg & BIT(4)); count--) {
reg = ioread32(gth->base + REG_CTS_STAT);
cpu_relax();
}
if (!count)
dev_dbg(&thdev->dev, "timeout waiting for CTS Trigger\n");
intel_th_gth_stop(gth, output, false);
intel_th_gth_start(gth, output);
}
/**
@ -735,6 +813,7 @@ static struct intel_th_driver intel_th_gth_driver = {
.unassign = intel_th_gth_unassign,
.set_output = intel_th_gth_set_output,
.enable = intel_th_gth_enable,
.trig_switch = intel_th_gth_switch,
.disable = intel_th_gth_disable,
.driver = {
.name = "gth",

View File

@ -49,6 +49,12 @@ enum {
REG_GTH_SCRPD3 = 0xec, /* ScratchPad[3] */
REG_TSCU_TSUCTRL = 0x2000, /* TSCU control register */
REG_TSCU_TSCUSTAT = 0x2004, /* TSCU status register */
/* Common Capture Sequencer (CTS) registers */
REG_CTS_C0S0_EN = 0x30c0, /* clause_event_enable_c0s0 */
REG_CTS_C0S0_ACT = 0x3180, /* clause_action_control_c0s0 */
REG_CTS_STAT = 0x32a0, /* cts_status */
REG_CTS_CTL = 0x32a4, /* cts_control */
};
/* waiting for Pipeline Empty bit(s) to assert for GTH */
@ -57,4 +63,17 @@ enum {
#define TSUCTRL_CTCRESYNC BIT(0)
#define TSCUSTAT_CTCSYNCING BIT(1)
/* waiting for Trigger status to assert for CTS */
#define CTS_TRIG_WAITLOOP_DEPTH 10000
#define CTS_EVENT_ENABLE_IF_ANYTHING BIT(31)
#define CTS_ACTION_CONTROL_STATE_OFF 27
#define CTS_ACTION_CONTROL_SET_STATE(x) \
(((x) & 0x1f) << CTS_ACTION_CONTROL_STATE_OFF)
#define CTS_ACTION_CONTROL_TRIGGER BIT(4)
#define CTS_STATE_IDLE 0x10u
#define CTS_CTL_SEQUENCER_ENABLE BIT(0)
#endif /* __INTEL_TH_GTH_H__ */

View File

@ -8,6 +8,8 @@
#ifndef __INTEL_TH_H__
#define __INTEL_TH_H__
#include <linux/irqreturn.h>
/* intel_th_device device types */
enum {
/* Devices that generate trace data */
@ -18,6 +20,8 @@ enum {
INTEL_TH_SWITCH,
};
struct intel_th_device;
/**
* struct intel_th_output - descriptor INTEL_TH_OUTPUT type devices
* @port: output port number, assigned by the switch
@ -25,6 +29,7 @@ enum {
* @scratchpad: scratchpad bits to flag when this output is enabled
* @multiblock: true for multiblock output configuration
* @active: true when this output is enabled
* @wait_empty: wait for device pipeline to be empty
*
* Output port descriptor, used by switch driver to tell which output
* port this output device corresponds to. Filled in at output device's
@ -42,10 +47,12 @@ struct intel_th_output {
/**
* struct intel_th_drvdata - describes hardware capabilities and quirks
* @tscu_enable: device needs SW to enable time stamping unit
* @has_mintctl: device has interrupt control (MINTCTL) register
* @host_mode_only: device can only operate in 'host debugger' mode
*/
struct intel_th_drvdata {
unsigned int tscu_enable : 1,
has_mintctl : 1,
host_mode_only : 1;
};
@ -157,10 +164,13 @@ struct intel_th_driver {
struct intel_th_device *othdev);
void (*enable)(struct intel_th_device *thdev,
struct intel_th_output *output);
void (*trig_switch)(struct intel_th_device *thdev,
struct intel_th_output *output);
void (*disable)(struct intel_th_device *thdev,
struct intel_th_output *output);
/* output ops */
void (*irq)(struct intel_th_device *thdev);
irqreturn_t (*irq)(struct intel_th_device *thdev);
void (*wait_empty)(struct intel_th_device *thdev);
int (*activate)(struct intel_th_device *thdev);
void (*deactivate)(struct intel_th_device *thdev);
/* file_operations for those who want a device node */
@ -213,21 +223,23 @@ static inline struct intel_th *to_intel_th(struct intel_th_device *thdev)
struct intel_th *
intel_th_alloc(struct device *dev, struct intel_th_drvdata *drvdata,
struct resource *devres, unsigned int ndevres, int irq);
struct resource *devres, unsigned int ndevres);
void intel_th_free(struct intel_th *th);
int intel_th_driver_register(struct intel_th_driver *thdrv);
void intel_th_driver_unregister(struct intel_th_driver *thdrv);
int intel_th_trace_enable(struct intel_th_device *thdev);
int intel_th_trace_switch(struct intel_th_device *thdev);
int intel_th_trace_disable(struct intel_th_device *thdev);
int intel_th_set_output(struct intel_th_device *thdev,
unsigned int master);
int intel_th_output_enable(struct intel_th *th, unsigned int otype);
enum {
enum th_mmio_idx {
TH_MMIO_CONFIG = 0,
TH_MMIO_SW = 2,
TH_MMIO_SW = 1,
TH_MMIO_RTIT = 2,
TH_MMIO_END,
};
@ -237,6 +249,9 @@ enum {
#define TH_CONFIGURABLE_MASTERS 256
#define TH_MSC_MAX 2
/* Maximum IRQ vectors */
#define TH_NVEC_MAX 8
/**
* struct intel_th - Intel TH controller
* @dev: driver core's device
@ -244,7 +259,7 @@ enum {
* @hub: "switch" subdevice (GTH)
* @resource: resources of the entire controller
* @num_thdevs: number of devices in the @thdev array
* @num_resources: number or resources in the @resource array
* @num_resources: number of resources in the @resource array
* @irq: irq number
* @id: this Intel TH controller's device ID in the system
* @major: device node major for output devices
@ -256,7 +271,7 @@ struct intel_th {
struct intel_th_device *hub;
struct intel_th_drvdata *drvdata;
struct resource *resource;
struct resource resource[TH_MMIO_END];
int (*activate)(struct intel_th *);
void (*deactivate)(struct intel_th *);
unsigned int num_thdevs;
@ -296,6 +311,9 @@ enum {
REG_TSCU_OFFSET = 0x2000,
REG_TSCU_LENGTH = 0x1000,
REG_CTS_OFFSET = 0x3000,
REG_CTS_LENGTH = 0x1000,
/* Software Trace Hub (STH) [0x4000..0x4fff] */
REG_STH_OFFSET = 0x4000,
REG_STH_LENGTH = 0x2000,

View File

@ -28,29 +28,19 @@
#define msc_dev(x) (&(x)->thdev->dev)
/**
* struct msc_block - multiblock mode block descriptor
* @bdesc: pointer to hardware descriptor (beginning of the block)
* @addr: physical address of the block
*/
struct msc_block {
struct msc_block_desc *bdesc;
dma_addr_t addr;
};
/**
* struct msc_window - multiblock mode window descriptor
* @entry: window list linkage (msc::win_list)
* @pgoff: page offset into the buffer that this window starts at
* @nr_blocks: number of blocks (pages) in this window
* @block: array of block descriptors
* @sgt: array of block descriptors
*/
struct msc_window {
struct list_head entry;
unsigned long pgoff;
unsigned int nr_blocks;
struct msc *msc;
struct msc_block block[0];
struct sg_table sgt;
};
/**
@ -84,6 +74,8 @@ struct msc_iter {
* @reg_base: register window base address
* @thdev: intel_th_device pointer
* @win_list: list of windows in multiblock mode
* @single_sgt: single mode buffer
* @cur_win: current window
* @nr_pages: total number of pages allocated for this buffer
* @single_sz: amount of data in single mode
* @single_wrap: single mode wrap occurred
@ -101,9 +93,12 @@ struct msc_iter {
*/
struct msc {
void __iomem *reg_base;
void __iomem *msu_base;
struct intel_th_device *thdev;
struct list_head win_list;
struct sg_table single_sgt;
struct msc_window *cur_win;
unsigned long nr_pages;
unsigned long single_sz;
unsigned int single_wrap : 1;
@ -120,7 +115,8 @@ struct msc {
/* config */
unsigned int enabled : 1,
wrap : 1;
wrap : 1,
do_irq : 1;
unsigned int mode;
unsigned int burst_len;
unsigned int index;
@ -139,72 +135,22 @@ static inline bool msc_block_is_empty(struct msc_block_desc *bdesc)
return false;
}
/**
* msc_oldest_window() - locate the window with oldest data
* @msc: MSC device
*
* This should only be used in multiblock mode. Caller should hold the
* msc::user_count reference.
*
* Return: the oldest window with valid data
*/
static struct msc_window *msc_oldest_window(struct msc *msc)
static inline struct msc_block_desc *
msc_win_block(struct msc_window *win, unsigned int block)
{
struct msc_window *win;
u32 reg = ioread32(msc->reg_base + REG_MSU_MSC0NWSA);
unsigned long win_addr = (unsigned long)reg << PAGE_SHIFT;
unsigned int found = 0;
if (list_empty(&msc->win_list))
return NULL;
/*
* we might need a radix tree for this, depending on how
* many windows a typical user would allocate; ideally it's
* something like 2, in which case we're good
*/
list_for_each_entry(win, &msc->win_list, entry) {
if (win->block[0].addr == win_addr)
found++;
/* skip the empty ones */
if (msc_block_is_empty(win->block[0].bdesc))
continue;
if (found)
return win;
}
return list_entry(msc->win_list.next, struct msc_window, entry);
return sg_virt(&win->sgt.sgl[block]);
}
/**
* msc_win_oldest_block() - locate the oldest block in a given window
* @win: window to look at
*
* Return: index of the block with the oldest data
*/
static unsigned int msc_win_oldest_block(struct msc_window *win)
static inline dma_addr_t
msc_win_baddr(struct msc_window *win, unsigned int block)
{
unsigned int blk;
struct msc_block_desc *bdesc = win->block[0].bdesc;
return sg_dma_address(&win->sgt.sgl[block]);
}
/* without wrapping, first block is the oldest */
if (!msc_block_wrapped(bdesc))
return 0;
/*
* with wrapping, last written block contains both the newest and the
* oldest data for this window.
*/
for (blk = 0; blk < win->nr_blocks; blk++) {
bdesc = win->block[blk].bdesc;
if (msc_block_last_written(bdesc))
return blk;
}
return 0;
static inline unsigned long
msc_win_bpfn(struct msc_window *win, unsigned int block)
{
return msc_win_baddr(win, block) >> PAGE_SHIFT;
}
/**
@ -226,15 +172,81 @@ static inline bool msc_is_last_win(struct msc_window *win)
static struct msc_window *msc_next_window(struct msc_window *win)
{
if (msc_is_last_win(win))
return list_entry(win->msc->win_list.next, struct msc_window,
entry);
return list_first_entry(&win->msc->win_list, struct msc_window,
entry);
return list_entry(win->entry.next, struct msc_window, entry);
return list_next_entry(win, entry);
}
/**
* msc_oldest_window() - locate the window with oldest data
* @msc: MSC device
*
* This should only be used in multiblock mode. Caller should hold the
* msc::user_count reference.
*
* Return: the oldest window with valid data
*/
static struct msc_window *msc_oldest_window(struct msc *msc)
{
struct msc_window *win, *next = msc_next_window(msc->cur_win);
unsigned int found = 0;
if (list_empty(&msc->win_list))
return NULL;
/*
* we might need a radix tree for this, depending on how
* many windows a typical user would allocate; ideally it's
* something like 2, in which case we're good
*/
list_for_each_entry(win, &msc->win_list, entry) {
if (win == next)
found++;
/* skip the empty ones */
if (msc_block_is_empty(msc_win_block(win, 0)))
continue;
if (found)
return win;
}
return list_first_entry(&msc->win_list, struct msc_window, entry);
}
/**
* msc_win_oldest_block() - locate the oldest block in a given window
* @win: window to look at
*
* Return: index of the block with the oldest data
*/
static unsigned int msc_win_oldest_block(struct msc_window *win)
{
unsigned int blk;
struct msc_block_desc *bdesc = msc_win_block(win, 0);
/* without wrapping, first block is the oldest */
if (!msc_block_wrapped(bdesc))
return 0;
/*
* with wrapping, last written block contains both the newest and the
* oldest data for this window.
*/
for (blk = 0; blk < win->nr_blocks; blk++) {
bdesc = msc_win_block(win, blk);
if (msc_block_last_written(bdesc))
return blk;
}
return 0;
}
static struct msc_block_desc *msc_iter_bdesc(struct msc_iter *iter)
{
return iter->win->block[iter->block].bdesc;
return msc_win_block(iter->win, iter->block);
}
static void msc_iter_init(struct msc_iter *iter)
@ -467,13 +479,47 @@ static void msc_buffer_clear_hw_header(struct msc *msc)
offsetof(struct msc_block_desc, hw_tag);
for (blk = 0; blk < win->nr_blocks; blk++) {
struct msc_block_desc *bdesc = win->block[blk].bdesc;
struct msc_block_desc *bdesc = msc_win_block(win, blk);
memset(&bdesc->hw_tag, 0, hw_sz);
}
}
}
static int intel_th_msu_init(struct msc *msc)
{
u32 mintctl, msusts;
if (!msc->do_irq)
return 0;
mintctl = ioread32(msc->msu_base + REG_MSU_MINTCTL);
mintctl |= msc->index ? M1BLIE : M0BLIE;
iowrite32(mintctl, msc->msu_base + REG_MSU_MINTCTL);
if (mintctl != ioread32(msc->msu_base + REG_MSU_MINTCTL)) {
dev_info(msc_dev(msc), "MINTCTL ignores writes: no usable interrupts\n");
msc->do_irq = 0;
return 0;
}
msusts = ioread32(msc->msu_base + REG_MSU_MSUSTS);
iowrite32(msusts, msc->msu_base + REG_MSU_MSUSTS);
return 0;
}
static void intel_th_msu_deinit(struct msc *msc)
{
u32 mintctl;
if (!msc->do_irq)
return;
mintctl = ioread32(msc->msu_base + REG_MSU_MINTCTL);
mintctl &= msc->index ? ~M1BLIE : ~M0BLIE;
iowrite32(mintctl, msc->msu_base + REG_MSU_MINTCTL);
}
/**
* msc_configure() - set up MSC hardware
* @msc: the MSC device to configure
@ -531,23 +577,14 @@ static int msc_configure(struct msc *msc)
*/
static void msc_disable(struct msc *msc)
{
unsigned long count;
u32 reg;
lockdep_assert_held(&msc->buf_mutex);
intel_th_trace_disable(msc->thdev);
for (reg = 0, count = MSC_PLE_WAITLOOP_DEPTH;
count && !(reg & MSCSTS_PLE); count--) {
reg = ioread32(msc->reg_base + REG_MSU_MSC0STS);
cpu_relax();
}
if (!count)
dev_dbg(msc_dev(msc), "timeout waiting for MSC0 PLE\n");
if (msc->mode == MSC_MODE_SINGLE) {
reg = ioread32(msc->reg_base + REG_MSU_MSC0STS);
msc->single_wrap = !!(reg & MSCSTS_WRAPSTAT);
reg = ioread32(msc->reg_base + REG_MSU_MSC0MWP);
@ -617,22 +654,45 @@ static void intel_th_msc_deactivate(struct intel_th_device *thdev)
*/
static int msc_buffer_contig_alloc(struct msc *msc, unsigned long size)
{
unsigned long nr_pages = size >> PAGE_SHIFT;
unsigned int order = get_order(size);
struct page *page;
int ret;
if (!size)
return 0;
ret = sg_alloc_table(&msc->single_sgt, 1, GFP_KERNEL);
if (ret)
goto err_out;
ret = -ENOMEM;
page = alloc_pages(GFP_KERNEL | __GFP_ZERO, order);
if (!page)
return -ENOMEM;
goto err_free_sgt;
split_page(page, order);
msc->nr_pages = size >> PAGE_SHIFT;
sg_set_buf(msc->single_sgt.sgl, page_address(page), size);
ret = dma_map_sg(msc_dev(msc)->parent->parent, msc->single_sgt.sgl, 1,
DMA_FROM_DEVICE);
if (ret < 0)
goto err_free_pages;
msc->nr_pages = nr_pages;
msc->base = page_address(page);
msc->base_addr = page_to_phys(page);
msc->base_addr = sg_dma_address(msc->single_sgt.sgl);
return 0;
err_free_pages:
__free_pages(page, order);
err_free_sgt:
sg_free_table(&msc->single_sgt);
err_out:
return ret;
}
/**
@ -643,6 +703,10 @@ static void msc_buffer_contig_free(struct msc *msc)
{
unsigned long off;
dma_unmap_sg(msc_dev(msc)->parent->parent, msc->single_sgt.sgl,
1, DMA_FROM_DEVICE);
sg_free_table(&msc->single_sgt);
for (off = 0; off < msc->nr_pages << PAGE_SHIFT; off += PAGE_SIZE) {
struct page *page = virt_to_page(msc->base + off);
@ -669,6 +733,40 @@ static struct page *msc_buffer_contig_get_page(struct msc *msc,
return virt_to_page(msc->base + (pgoff << PAGE_SHIFT));
}
static int __msc_buffer_win_alloc(struct msc_window *win,
unsigned int nr_blocks)
{
struct scatterlist *sg_ptr;
void *block;
int i, ret;
ret = sg_alloc_table(&win->sgt, nr_blocks, GFP_KERNEL);
if (ret)
return -ENOMEM;
for_each_sg(win->sgt.sgl, sg_ptr, nr_blocks, i) {
block = dma_alloc_coherent(msc_dev(win->msc)->parent->parent,
PAGE_SIZE, &sg_dma_address(sg_ptr),
GFP_KERNEL);
if (!block)
goto err_nomem;
sg_set_buf(sg_ptr, block, PAGE_SIZE);
}
return nr_blocks;
err_nomem:
for (i--; i >= 0; i--)
dma_free_coherent(msc_dev(win->msc)->parent->parent, PAGE_SIZE,
msc_win_block(win, i),
msc_win_baddr(win, i));
sg_free_table(&win->sgt);
return -ENOMEM;
}
/**
* msc_buffer_win_alloc() - alloc a window for a multiblock mode
* @msc: MSC device
@ -682,44 +780,49 @@ static struct page *msc_buffer_contig_get_page(struct msc *msc,
static int msc_buffer_win_alloc(struct msc *msc, unsigned int nr_blocks)
{
struct msc_window *win;
unsigned long size = PAGE_SIZE;
int i, ret = -ENOMEM;
int ret = -ENOMEM, i;
if (!nr_blocks)
return 0;
win = kzalloc(offsetof(struct msc_window, block[nr_blocks]),
GFP_KERNEL);
/*
* This limitation hold as long as we need random access to the
* block. When that changes, this can go away.
*/
if (nr_blocks > SG_MAX_SINGLE_ALLOC)
return -EINVAL;
win = kzalloc(sizeof(*win), GFP_KERNEL);
if (!win)
return -ENOMEM;
if (!list_empty(&msc->win_list)) {
struct msc_window *prev = list_entry(msc->win_list.prev,
struct msc_window, entry);
win->msc = msc;
if (!list_empty(&msc->win_list)) {
struct msc_window *prev = list_last_entry(&msc->win_list,
struct msc_window,
entry);
/* This works as long as blocks are page-sized */
win->pgoff = prev->pgoff + prev->nr_blocks;
}
for (i = 0; i < nr_blocks; i++) {
win->block[i].bdesc =
dma_alloc_coherent(msc_dev(msc)->parent->parent, size,
&win->block[i].addr, GFP_KERNEL);
if (!win->block[i].bdesc)
goto err_nomem;
ret = __msc_buffer_win_alloc(win, nr_blocks);
if (ret < 0)
goto err_nomem;
#ifdef CONFIG_X86
for (i = 0; i < ret; i++)
/* Set the page as uncached */
set_memory_uc((unsigned long)win->block[i].bdesc, 1);
set_memory_uc((unsigned long)msc_win_block(win, i), 1);
#endif
}
win->msc = msc;
win->nr_blocks = nr_blocks;
win->nr_blocks = ret;
if (list_empty(&msc->win_list)) {
msc->base = win->block[0].bdesc;
msc->base_addr = win->block[0].addr;
msc->base = msc_win_block(win, 0);
msc->base_addr = msc_win_baddr(win, 0);
msc->cur_win = win;
}
list_add_tail(&win->entry, &msc->win_list);
@ -728,19 +831,25 @@ static int msc_buffer_win_alloc(struct msc *msc, unsigned int nr_blocks)
return 0;
err_nomem:
for (i--; i >= 0; i--) {
#ifdef CONFIG_X86
/* Reset the page to write-back before releasing */
set_memory_wb((unsigned long)win->block[i].bdesc, 1);
#endif
dma_free_coherent(msc_dev(msc)->parent->parent, size,
win->block[i].bdesc, win->block[i].addr);
}
kfree(win);
return ret;
}
static void __msc_buffer_win_free(struct msc *msc, struct msc_window *win)
{
int i;
for (i = 0; i < win->nr_blocks; i++) {
struct page *page = sg_page(&win->sgt.sgl[i]);
page->mapping = NULL;
dma_free_coherent(msc_dev(win->msc)->parent->parent, PAGE_SIZE,
msc_win_block(win, i), msc_win_baddr(win, i));
}
sg_free_table(&win->sgt);
}
/**
* msc_buffer_win_free() - free a window from MSC's window list
* @msc: MSC device
@ -761,17 +870,13 @@ static void msc_buffer_win_free(struct msc *msc, struct msc_window *win)
msc->base_addr = 0;
}
for (i = 0; i < win->nr_blocks; i++) {
struct page *page = virt_to_page(win->block[i].bdesc);
page->mapping = NULL;
#ifdef CONFIG_X86
/* Reset the page to write-back before releasing */
set_memory_wb((unsigned long)win->block[i].bdesc, 1);
for (i = 0; i < win->nr_blocks; i++)
/* Reset the page to write-back */
set_memory_wb((unsigned long)msc_win_block(win, i), 1);
#endif
dma_free_coherent(msc_dev(win->msc)->parent->parent, PAGE_SIZE,
win->block[i].bdesc, win->block[i].addr);
}
__msc_buffer_win_free(msc, win);
kfree(win);
}
@ -798,19 +903,18 @@ static void msc_buffer_relink(struct msc *msc)
*/
if (msc_is_last_win(win)) {
sw_tag |= MSC_SW_TAG_LASTWIN;
next_win = list_entry(msc->win_list.next,
struct msc_window, entry);
next_win = list_first_entry(&msc->win_list,
struct msc_window, entry);
} else {
next_win = list_entry(win->entry.next,
struct msc_window, entry);
next_win = list_next_entry(win, entry);
}
for (blk = 0; blk < win->nr_blocks; blk++) {
struct msc_block_desc *bdesc = win->block[blk].bdesc;
struct msc_block_desc *bdesc = msc_win_block(win, blk);
memset(bdesc, 0, sizeof(*bdesc));
bdesc->next_win = next_win->block[0].addr >> PAGE_SHIFT;
bdesc->next_win = msc_win_bpfn(next_win, 0);
/*
* Similarly to last window, last block should point
@ -818,11 +922,9 @@ static void msc_buffer_relink(struct msc *msc)
*/
if (blk == win->nr_blocks - 1) {
sw_tag |= MSC_SW_TAG_LASTBLK;
bdesc->next_blk =
win->block[0].addr >> PAGE_SHIFT;
bdesc->next_blk = msc_win_bpfn(win, 0);
} else {
bdesc->next_blk =
win->block[blk + 1].addr >> PAGE_SHIFT;
bdesc->next_blk = msc_win_bpfn(win, blk + 1);
}
bdesc->sw_tag = sw_tag;
@ -997,7 +1099,7 @@ static struct page *msc_buffer_get_page(struct msc *msc, unsigned long pgoff)
found:
pgoff -= win->pgoff;
return virt_to_page(win->block[pgoff].bdesc);
return sg_page(&win->sgt.sgl[pgoff]);
}
/**
@ -1250,6 +1352,22 @@ static const struct file_operations intel_th_msc_fops = {
.owner = THIS_MODULE,
};
static void intel_th_msc_wait_empty(struct intel_th_device *thdev)
{
struct msc *msc = dev_get_drvdata(&thdev->dev);
unsigned long count;
u32 reg;
for (reg = 0, count = MSC_PLE_WAITLOOP_DEPTH;
count && !(reg & MSCSTS_PLE); count--) {
reg = __raw_readl(msc->reg_base + REG_MSU_MSC0STS);
cpu_relax();
}
if (!count)
dev_dbg(msc_dev(msc), "timeout waiting for MSC0 PLE\n");
}
static int intel_th_msc_init(struct msc *msc)
{
atomic_set(&msc->user_count, -1);
@ -1266,6 +1384,39 @@ static int intel_th_msc_init(struct msc *msc)
return 0;
}
static void msc_win_switch(struct msc *msc)
{
struct msc_window *last, *first;
first = list_first_entry(&msc->win_list, struct msc_window, entry);
last = list_last_entry(&msc->win_list, struct msc_window, entry);
if (msc_is_last_win(msc->cur_win))
msc->cur_win = first;
else
msc->cur_win = list_next_entry(msc->cur_win, entry);
msc->base = msc_win_block(msc->cur_win, 0);
msc->base_addr = msc_win_baddr(msc->cur_win, 0);
intel_th_trace_switch(msc->thdev);
}
static irqreturn_t intel_th_msc_interrupt(struct intel_th_device *thdev)
{
struct msc *msc = dev_get_drvdata(&thdev->dev);
u32 msusts = ioread32(msc->msu_base + REG_MSU_MSUSTS);
u32 mask = msc->index ? MSUSTS_MSC1BLAST : MSUSTS_MSC0BLAST;
if (!(msusts & mask)) {
if (msc->enabled)
return IRQ_HANDLED;
return IRQ_NONE;
}
return IRQ_HANDLED;
}
static const char * const msc_mode[] = {
[MSC_MODE_SINGLE] = "single",
[MSC_MODE_MULTI] = "multi",
@ -1440,10 +1591,38 @@ nr_pages_store(struct device *dev, struct device_attribute *attr,
static DEVICE_ATTR_RW(nr_pages);
static ssize_t
win_switch_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t size)
{
struct msc *msc = dev_get_drvdata(dev);
unsigned long val;
int ret;
ret = kstrtoul(buf, 10, &val);
if (ret)
return ret;
if (val != 1)
return -EINVAL;
mutex_lock(&msc->buf_mutex);
if (msc->mode != MSC_MODE_MULTI)
ret = -ENOTSUPP;
else
msc_win_switch(msc);
mutex_unlock(&msc->buf_mutex);
return ret ? ret : size;
}
static DEVICE_ATTR_WO(win_switch);
static struct attribute *msc_output_attrs[] = {
&dev_attr_wrap.attr,
&dev_attr_mode.attr,
&dev_attr_nr_pages.attr,
&dev_attr_win_switch.attr,
NULL,
};
@ -1471,10 +1650,19 @@ static int intel_th_msc_probe(struct intel_th_device *thdev)
if (!msc)
return -ENOMEM;
res = intel_th_device_get_resource(thdev, IORESOURCE_IRQ, 1);
if (!res)
msc->do_irq = 1;
msc->index = thdev->id;
msc->thdev = thdev;
msc->reg_base = base + msc->index * 0x100;
msc->msu_base = base;
err = intel_th_msu_init(msc);
if (err)
return err;
err = intel_th_msc_init(msc);
if (err)
@ -1491,6 +1679,7 @@ static void intel_th_msc_remove(struct intel_th_device *thdev)
int ret;
intel_th_msc_deactivate(thdev);
intel_th_msu_deinit(msc);
/*
* Buffers should not be used at this point except if the
@ -1504,6 +1693,8 @@ static void intel_th_msc_remove(struct intel_th_device *thdev)
static struct intel_th_driver intel_th_msc_driver = {
.probe = intel_th_msc_probe,
.remove = intel_th_msc_remove,
.irq = intel_th_msc_interrupt,
.wait_empty = intel_th_msc_wait_empty,
.activate = intel_th_msc_activate,
.deactivate = intel_th_msc_deactivate,
.fops = &intel_th_msc_fops,

View File

@ -11,6 +11,7 @@
enum {
REG_MSU_MSUPARAMS = 0x0000,
REG_MSU_MSUSTS = 0x0008,
REG_MSU_MINTCTL = 0x0004, /* MSU-global interrupt control */
REG_MSU_MSC0CTL = 0x0100, /* MSC0 control */
REG_MSU_MSC0STS = 0x0104, /* MSC0 status */
REG_MSU_MSC0BAR = 0x0108, /* MSC0 output base address */
@ -28,6 +29,8 @@ enum {
/* MSUSTS bits */
#define MSUSTS_MSU_INT BIT(0)
#define MSUSTS_MSC0BLAST BIT(16)
#define MSUSTS_MSC1BLAST BIT(24)
/* MSCnCTL bits */
#define MSC_EN BIT(0)
@ -36,6 +39,11 @@ enum {
#define MSC_MODE (BIT(4) | BIT(5))
#define MSC_LEN (BIT(8) | BIT(9) | BIT(10))
/* MINTCTL bits */
#define MICDE BIT(0)
#define M0BLIE BIT(16)
#define M1BLIE BIT(24)
/* MSC operating modes (MSC_MODE) */
enum {
MSC_MODE_SINGLE = 0,
@ -87,7 +95,7 @@ static inline unsigned long msc_data_sz(struct msc_block_desc *bdesc)
static inline bool msc_block_wrapped(struct msc_block_desc *bdesc)
{
if (bdesc->hw_tag & MSC_HW_TAG_BLOCKWRAP)
if (bdesc->hw_tag & (MSC_HW_TAG_BLOCKWRAP | MSC_HW_TAG_WINWRAP))
return true;
return false;

View File

@ -17,7 +17,13 @@
#define DRIVER_NAME "intel_th_pci"
#define BAR_MASK (BIT(TH_MMIO_CONFIG) | BIT(TH_MMIO_SW))
enum {
TH_PCI_CONFIG_BAR = 0,
TH_PCI_STH_SW_BAR = 2,
TH_PCI_RTIT_BAR = 4,
};
#define BAR_MASK (BIT(TH_PCI_CONFIG_BAR) | BIT(TH_PCI_STH_SW_BAR))
#define PCI_REG_NPKDSC 0x80
#define NPKDSC_TSACT BIT(5)
@ -66,8 +72,12 @@ static int intel_th_pci_probe(struct pci_dev *pdev,
const struct pci_device_id *id)
{
struct intel_th_drvdata *drvdata = (void *)id->driver_data;
struct resource resource[TH_MMIO_END + TH_NVEC_MAX] = {
[TH_MMIO_CONFIG] = pdev->resource[TH_PCI_CONFIG_BAR],
[TH_MMIO_SW] = pdev->resource[TH_PCI_STH_SW_BAR],
};
int err, r = TH_MMIO_SW + 1, i;
struct intel_th *th;
int err;
err = pcim_enable_device(pdev);
if (err)
@ -77,8 +87,19 @@ static int intel_th_pci_probe(struct pci_dev *pdev,
if (err)
return err;
th = intel_th_alloc(&pdev->dev, drvdata, pdev->resource,
DEVICE_COUNT_RESOURCE, pdev->irq);
if (pdev->resource[TH_PCI_RTIT_BAR].start) {
resource[TH_MMIO_RTIT] = pdev->resource[TH_PCI_RTIT_BAR];
r++;
}
err = pci_alloc_irq_vectors(pdev, 1, 8, PCI_IRQ_ALL_TYPES);
if (err > 0)
for (i = 0; i < err; i++, r++) {
resource[r].flags = IORESOURCE_IRQ;
resource[r].start = pci_irq_vector(pdev, i);
}
th = intel_th_alloc(&pdev->dev, drvdata, resource, r);
if (IS_ERR(th))
return PTR_ERR(th);
@ -95,10 +116,13 @@ static void intel_th_pci_remove(struct pci_dev *pdev)
struct intel_th *th = pci_get_drvdata(pdev);
intel_th_free(th);
pci_free_irq_vectors(pdev);
}
static const struct intel_th_drvdata intel_th_2x = {
.tscu_enable = 1,
.has_mintctl = 1,
};
static const struct pci_device_id intel_th_pci_id_table[] = {

View File

@ -90,18 +90,7 @@ static int icc_summary_show(struct seq_file *s, void *data)
return 0;
}
static int icc_summary_open(struct inode *inode, struct file *file)
{
return single_open(file, icc_summary_show, inode->i_private);
}
static const struct file_operations icc_summary_fops = {
.open = icc_summary_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
DEFINE_SHOW_ATTRIBUTE(icc_summary);
static struct icc_node *node_find(const int id)
{

View File

@ -496,6 +496,14 @@ config VEXPRESS_SYSCFG
bus. System Configuration interface is one of the possible means
of generating transactions on this bus.
config ASPEED_P2A_CTRL
depends on (ARCH_ASPEED || COMPILE_TEST) && REGMAP && MFD_SYSCON
tristate "Aspeed ast2400/2500 HOST P2A VGA MMIO to BMC bridge control"
help
Control Aspeed ast2400/2500 HOST P2A VGA MMIO to BMC mappings through
ioctl()s, the driver also provides an interface for userspace mappings to
a pre-defined region.
config ASPEED_LPC_CTRL
depends on (ARCH_ASPEED || COMPILE_TEST) && REGMAP && MFD_SYSCON
tristate "Aspeed ast2400/2500 HOST LPC to BMC bridge control"

View File

@ -56,6 +56,7 @@ obj-$(CONFIG_VEXPRESS_SYSCFG) += vexpress-syscfg.o
obj-$(CONFIG_CXL_BASE) += cxl/
obj-$(CONFIG_ASPEED_LPC_CTRL) += aspeed-lpc-ctrl.o
obj-$(CONFIG_ASPEED_LPC_SNOOP) += aspeed-lpc-snoop.o
obj-$(CONFIG_ASPEED_P2A_CTRL) += aspeed-p2a-ctrl.o
obj-$(CONFIG_PCI_ENDPOINT_TEST) += pci_endpoint_test.o
obj-$(CONFIG_OCXL) += ocxl/
obj-y += cardreader/

View File

@ -0,0 +1,444 @@
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright 2019 Google Inc
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
* Provides a simple driver to control the ASPEED P2A interface which allows
* the host to read and write to various regions of the BMC's memory.
*/
#include <linux/fs.h>
#include <linux/io.h>
#include <linux/mfd/syscon.h>
#include <linux/miscdevice.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/of_address.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <linux/slab.h>
#include <linux/uaccess.h>
#include <linux/aspeed-p2a-ctrl.h>
#define DEVICE_NAME "aspeed-p2a-ctrl"
/* SCU2C is a Misc. Control Register. */
#define SCU2C 0x2c
/* SCU180 is the PCIe Configuration Setting Control Register. */
#define SCU180 0x180
/* Bit 1 controls the P2A bridge, while bit 0 controls the entire VGA device
* on the PCI bus.
*/
#define SCU180_ENP2A BIT(1)
/* The ast2400/2500 both have six ranges. */
#define P2A_REGION_COUNT 6
struct region {
u64 min;
u64 max;
u32 bit;
};
struct aspeed_p2a_model_data {
/* min, max, bit */
struct region regions[P2A_REGION_COUNT];
};
struct aspeed_p2a_ctrl {
struct miscdevice miscdev;
struct regmap *regmap;
const struct aspeed_p2a_model_data *config;
/* Access to these needs to be locked, held via probe, mapping ioctl,
* and release, remove.
*/
struct mutex tracking;
u32 readers;
u32 readerwriters[P2A_REGION_COUNT];
phys_addr_t mem_base;
resource_size_t mem_size;
};
struct aspeed_p2a_user {
struct file *file;
struct aspeed_p2a_ctrl *parent;
/* The entire memory space is opened for reading once the bridge is
* enabled, therefore this needs only to be tracked once per user.
* If any user has it open for read, the bridge must stay enabled.
*/
u32 read;
/* Each entry of the array corresponds to a P2A Region. If the user
* opens for read or readwrite, the reference goes up here. On
* release, this array is walked and references adjusted accordingly.
*/
u32 readwrite[P2A_REGION_COUNT];
};
static void aspeed_p2a_enable_bridge(struct aspeed_p2a_ctrl *p2a_ctrl)
{
regmap_update_bits(p2a_ctrl->regmap,
SCU180, SCU180_ENP2A, SCU180_ENP2A);
}
static void aspeed_p2a_disable_bridge(struct aspeed_p2a_ctrl *p2a_ctrl)
{
regmap_update_bits(p2a_ctrl->regmap, SCU180, SCU180_ENP2A, 0);
}
static int aspeed_p2a_mmap(struct file *file, struct vm_area_struct *vma)
{
unsigned long vsize;
pgprot_t prot;
struct aspeed_p2a_user *priv = file->private_data;
struct aspeed_p2a_ctrl *ctrl = priv->parent;
if (ctrl->mem_base == 0 && ctrl->mem_size == 0)
return -EINVAL;
vsize = vma->vm_end - vma->vm_start;
prot = vma->vm_page_prot;
if (vma->vm_pgoff + vsize > ctrl->mem_base + ctrl->mem_size)
return -EINVAL;
/* ast2400/2500 AHB accesses are not cache coherent */
prot = pgprot_noncached(prot);
if (remap_pfn_range(vma, vma->vm_start,
(ctrl->mem_base >> PAGE_SHIFT) + vma->vm_pgoff,
vsize, prot))
return -EAGAIN;
return 0;
}
static bool aspeed_p2a_region_acquire(struct aspeed_p2a_user *priv,
struct aspeed_p2a_ctrl *ctrl,
struct aspeed_p2a_ctrl_mapping *map)
{
int i;
u64 base, end;
bool matched = false;
base = map->addr;
end = map->addr + (map->length - 1);
/* If the value is a legal u32, it will find a match. */
for (i = 0; i < P2A_REGION_COUNT; i++) {
const struct region *curr = &ctrl->config->regions[i];
/* If the top of this region is lower than your base, skip it.
*/
if (curr->max < base)
continue;
/* If the bottom of this region is higher than your end, bail.
*/
if (curr->min > end)
break;
/* Lock this and update it, therefore it someone else is
* closing their file out, this'll preserve the increment.
*/
mutex_lock(&ctrl->tracking);
ctrl->readerwriters[i] += 1;
mutex_unlock(&ctrl->tracking);
/* Track with the user, so when they close their file, we can
* decrement properly.
*/
priv->readwrite[i] += 1;
/* Enable the region as read-write. */
regmap_update_bits(ctrl->regmap, SCU2C, curr->bit, 0);
matched = true;
}
return matched;
}
static long aspeed_p2a_ioctl(struct file *file, unsigned int cmd,
unsigned long data)
{
struct aspeed_p2a_user *priv = file->private_data;
struct aspeed_p2a_ctrl *ctrl = priv->parent;
void __user *arg = (void __user *)data;
struct aspeed_p2a_ctrl_mapping map;
if (copy_from_user(&map, arg, sizeof(map)))
return -EFAULT;
switch (cmd) {
case ASPEED_P2A_CTRL_IOCTL_SET_WINDOW:
/* If they want a region to be read-only, since the entire
* region is read-only once enabled, we just need to track this
* user wants to read from the bridge, and if it's not enabled.
* Enable it.
*/
if (map.flags == ASPEED_P2A_CTRL_READ_ONLY) {
mutex_lock(&ctrl->tracking);
ctrl->readers += 1;
mutex_unlock(&ctrl->tracking);
/* Track with the user, so when they close their file,
* we can decrement properly.
*/
priv->read += 1;
} else if (map.flags == ASPEED_P2A_CTRL_READWRITE) {
/* If we don't acquire any region return error. */
if (!aspeed_p2a_region_acquire(priv, ctrl, &map)) {
return -EINVAL;
}
} else {
/* Invalid map flags. */
return -EINVAL;
}
aspeed_p2a_enable_bridge(ctrl);
return 0;
case ASPEED_P2A_CTRL_IOCTL_GET_MEMORY_CONFIG:
/* This is a request for the memory-region and corresponding
* length that is used by the driver for mmap.
*/
map.flags = 0;
map.addr = ctrl->mem_base;
map.length = ctrl->mem_size;
return copy_to_user(arg, &map, sizeof(map)) ? -EFAULT : 0;
}
return -EINVAL;
}
/*
* When a user opens this file, we create a structure to track their mappings.
*
* A user can map a region as read-only (bridge enabled), or read-write (bit
* flipped, and bridge enabled). Either way, this tracking is used, s.t. when
* they release the device references are handled.
*
* The bridge is not enabled until a user calls an ioctl to map a region,
* simply opening the device does not enable it.
*/
static int aspeed_p2a_open(struct inode *inode, struct file *file)
{
struct aspeed_p2a_user *priv;
priv = kmalloc(sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->file = file;
priv->read = 0;
memset(priv->readwrite, 0, sizeof(priv->readwrite));
/* The file's private_data is initialized to the p2a_ctrl. */
priv->parent = file->private_data;
/* Set the file's private_data to the user's data. */
file->private_data = priv;
return 0;
}
/*
* This will close the users mappings. It will go through what they had opened
* for readwrite, and decrement those counts. If at the end, this is the last
* user, it'll close the bridge.
*/
static int aspeed_p2a_release(struct inode *inode, struct file *file)
{
int i;
u32 bits = 0;
bool open_regions = false;
struct aspeed_p2a_user *priv = file->private_data;
/* Lock others from changing these values until everything is updated
* in one pass.
*/
mutex_lock(&priv->parent->tracking);
priv->parent->readers -= priv->read;
for (i = 0; i < P2A_REGION_COUNT; i++) {
priv->parent->readerwriters[i] -= priv->readwrite[i];
if (priv->parent->readerwriters[i] > 0)
open_regions = true;
else
bits |= priv->parent->config->regions[i].bit;
}
/* Setting a bit to 1 disables the region, so let's just OR with the
* above to disable any.
*/
/* Note, if another user is trying to ioctl, they can't grab tracking,
* and therefore can't grab either register mutex.
* If another user is trying to close, they can't grab tracking either.
*/
regmap_update_bits(priv->parent->regmap, SCU2C, bits, bits);
/* If parent->readers is zero and open windows is 0, disable the
* bridge.
*/
if (!open_regions && priv->parent->readers == 0)
aspeed_p2a_disable_bridge(priv->parent);
mutex_unlock(&priv->parent->tracking);
kfree(priv);
return 0;
}
static const struct file_operations aspeed_p2a_ctrl_fops = {
.owner = THIS_MODULE,
.mmap = aspeed_p2a_mmap,
.unlocked_ioctl = aspeed_p2a_ioctl,
.open = aspeed_p2a_open,
.release = aspeed_p2a_release,
};
/* The regions are controlled by SCU2C */
static void aspeed_p2a_disable_all(struct aspeed_p2a_ctrl *p2a_ctrl)
{
int i;
u32 value = 0;
for (i = 0; i < P2A_REGION_COUNT; i++)
value |= p2a_ctrl->config->regions[i].bit;
regmap_update_bits(p2a_ctrl->regmap, SCU2C, value, value);
/* Disable the bridge. */
aspeed_p2a_disable_bridge(p2a_ctrl);
}
static int aspeed_p2a_ctrl_probe(struct platform_device *pdev)
{
struct aspeed_p2a_ctrl *misc_ctrl;
struct device *dev;
struct resource resm;
struct device_node *node;
int rc = 0;
dev = &pdev->dev;
misc_ctrl = devm_kzalloc(dev, sizeof(*misc_ctrl), GFP_KERNEL);
if (!misc_ctrl)
return -ENOMEM;
mutex_init(&misc_ctrl->tracking);
/* optional. */
node = of_parse_phandle(dev->of_node, "memory-region", 0);
if (node) {
rc = of_address_to_resource(node, 0, &resm);
of_node_put(node);
if (rc) {
dev_err(dev, "Couldn't address to resource for reserved memory\n");
return -ENODEV;
}
misc_ctrl->mem_size = resource_size(&resm);
misc_ctrl->mem_base = resm.start;
}
misc_ctrl->regmap = syscon_node_to_regmap(pdev->dev.parent->of_node);
if (IS_ERR(misc_ctrl->regmap)) {
dev_err(dev, "Couldn't get regmap\n");
return -ENODEV;
}
misc_ctrl->config = of_device_get_match_data(dev);
dev_set_drvdata(&pdev->dev, misc_ctrl);
aspeed_p2a_disable_all(misc_ctrl);
misc_ctrl->miscdev.minor = MISC_DYNAMIC_MINOR;
misc_ctrl->miscdev.name = DEVICE_NAME;
misc_ctrl->miscdev.fops = &aspeed_p2a_ctrl_fops;
misc_ctrl->miscdev.parent = dev;
rc = misc_register(&misc_ctrl->miscdev);
if (rc)
dev_err(dev, "Unable to register device\n");
return rc;
}
static int aspeed_p2a_ctrl_remove(struct platform_device *pdev)
{
struct aspeed_p2a_ctrl *p2a_ctrl = dev_get_drvdata(&pdev->dev);
misc_deregister(&p2a_ctrl->miscdev);
return 0;
}
#define SCU2C_DRAM BIT(25)
#define SCU2C_SPI BIT(24)
#define SCU2C_SOC BIT(23)
#define SCU2C_FLASH BIT(22)
static const struct aspeed_p2a_model_data ast2400_model_data = {
.regions = {
{0x00000000, 0x17FFFFFF, SCU2C_FLASH},
{0x18000000, 0x1FFFFFFF, SCU2C_SOC},
{0x20000000, 0x2FFFFFFF, SCU2C_FLASH},
{0x30000000, 0x3FFFFFFF, SCU2C_SPI},
{0x40000000, 0x5FFFFFFF, SCU2C_DRAM},
{0x60000000, 0xFFFFFFFF, SCU2C_SOC},
}
};
static const struct aspeed_p2a_model_data ast2500_model_data = {
.regions = {
{0x00000000, 0x0FFFFFFF, SCU2C_FLASH},
{0x10000000, 0x1FFFFFFF, SCU2C_SOC},
{0x20000000, 0x3FFFFFFF, SCU2C_FLASH},
{0x40000000, 0x5FFFFFFF, SCU2C_SOC},
{0x60000000, 0x7FFFFFFF, SCU2C_SPI},
{0x80000000, 0xFFFFFFFF, SCU2C_DRAM},
}
};
static const struct of_device_id aspeed_p2a_ctrl_match[] = {
{ .compatible = "aspeed,ast2400-p2a-ctrl",
.data = &ast2400_model_data },
{ .compatible = "aspeed,ast2500-p2a-ctrl",
.data = &ast2500_model_data },
{ },
};
static struct platform_driver aspeed_p2a_ctrl_driver = {
.driver = {
.name = DEVICE_NAME,
.of_match_table = aspeed_p2a_ctrl_match,
},
.probe = aspeed_p2a_ctrl_probe,
.remove = aspeed_p2a_ctrl_remove,
};
module_platform_driver(aspeed_p2a_ctrl_driver);
MODULE_DEVICE_TABLE(of, aspeed_p2a_ctrl_match);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Patrick Venture <venture@google.com>");
MODULE_DESCRIPTION("Control for aspeed 2400/2500 P2A VGA HOST to BMC mappings");

View File

@ -456,13 +456,13 @@ static void rts5260_pwr_saving_setting(struct rtsx_pcr *pcr)
pcr_dbg(pcr, "Set parameters for L1.2.");
rtsx_pci_write_register(pcr, PWR_GLOBAL_CTRL,
0xFF, PCIE_L1_2_EN);
rtsx_pci_write_register(pcr, RTS5260_DVCC_CTRL,
rtsx_pci_write_register(pcr, RTS5260_DVCC_CTRL,
RTS5260_DVCC_OCP_EN |
RTS5260_DVCC_OCP_CL_EN,
RTS5260_DVCC_OCP_EN |
RTS5260_DVCC_OCP_CL_EN);
rtsx_pci_write_register(pcr, PWR_FE_CTL,
rtsx_pci_write_register(pcr, PWR_FE_CTL,
0xFF, PCIE_L1_2_PD_FE_EN);
} else if (lss_l1_1) {
pcr_dbg(pcr, "Set parameters for L1.1.");

View File

@ -12,6 +12,7 @@
#include <linux/module.h>
#include <linux/of_address.h>
#include <linux/of.h>
#include <linux/sort.h>
#include <linux/of_platform.h>
#include <linux/rpmsg.h>
#include <linux/scatterlist.h>
@ -31,7 +32,7 @@
#define FASTRPC_CTX_MAX (256)
#define FASTRPC_INIT_HANDLE 1
#define FASTRPC_CTXID_MASK (0xFF0)
#define INIT_FILELEN_MAX (2 * 1024 * 1024)
#define INIT_FILELEN_MAX (64 * 1024 * 1024)
#define INIT_MEMLEN_MAX (8 * 1024 * 1024)
#define FASTRPC_DEVICE_NAME "fastrpc"
@ -104,6 +105,15 @@ struct fastrpc_invoke_rsp {
int retval; /* invoke return value */
};
struct fastrpc_buf_overlap {
u64 start;
u64 end;
int raix;
u64 mstart;
u64 mend;
u64 offset;
};
struct fastrpc_buf {
struct fastrpc_user *fl;
struct dma_buf *dmabuf;
@ -149,12 +159,14 @@ struct fastrpc_invoke_ctx {
struct kref refcount;
struct list_head node; /* list of ctxs */
struct completion work;
struct work_struct put_work;
struct fastrpc_msg msg;
struct fastrpc_user *fl;
struct fastrpc_remote_arg *rpra;
struct fastrpc_map **maps;
struct fastrpc_buf *buf;
struct fastrpc_invoke_args *args;
struct fastrpc_buf_overlap *olaps;
struct fastrpc_channel_ctx *cctx;
};
@ -282,6 +294,7 @@ static void fastrpc_context_free(struct kref *ref)
{
struct fastrpc_invoke_ctx *ctx;
struct fastrpc_channel_ctx *cctx;
unsigned long flags;
int i;
ctx = container_of(ref, struct fastrpc_invoke_ctx, refcount);
@ -293,11 +306,12 @@ static void fastrpc_context_free(struct kref *ref)
if (ctx->buf)
fastrpc_buf_free(ctx->buf);
spin_lock(&cctx->lock);
spin_lock_irqsave(&cctx->lock, flags);
idr_remove(&cctx->ctx_idr, ctx->ctxid >> 4);
spin_unlock(&cctx->lock);
spin_unlock_irqrestore(&cctx->lock, flags);
kfree(ctx->maps);
kfree(ctx->olaps);
kfree(ctx);
}
@ -311,12 +325,70 @@ static void fastrpc_context_put(struct fastrpc_invoke_ctx *ctx)
kref_put(&ctx->refcount, fastrpc_context_free);
}
static void fastrpc_context_put_wq(struct work_struct *work)
{
struct fastrpc_invoke_ctx *ctx =
container_of(work, struct fastrpc_invoke_ctx, put_work);
fastrpc_context_put(ctx);
}
#define CMP(aa, bb) ((aa) == (bb) ? 0 : (aa) < (bb) ? -1 : 1)
static int olaps_cmp(const void *a, const void *b)
{
struct fastrpc_buf_overlap *pa = (struct fastrpc_buf_overlap *)a;
struct fastrpc_buf_overlap *pb = (struct fastrpc_buf_overlap *)b;
/* sort with lowest starting buffer first */
int st = CMP(pa->start, pb->start);
/* sort with highest ending buffer first */
int ed = CMP(pb->end, pa->end);
return st == 0 ? ed : st;
}
static void fastrpc_get_buff_overlaps(struct fastrpc_invoke_ctx *ctx)
{
u64 max_end = 0;
int i;
for (i = 0; i < ctx->nbufs; ++i) {
ctx->olaps[i].start = ctx->args[i].ptr;
ctx->olaps[i].end = ctx->olaps[i].start + ctx->args[i].length;
ctx->olaps[i].raix = i;
}
sort(ctx->olaps, ctx->nbufs, sizeof(*ctx->olaps), olaps_cmp, NULL);
for (i = 0; i < ctx->nbufs; ++i) {
/* Falling inside previous range */
if (ctx->olaps[i].start < max_end) {
ctx->olaps[i].mstart = max_end;
ctx->olaps[i].mend = ctx->olaps[i].end;
ctx->olaps[i].offset = max_end - ctx->olaps[i].start;
if (ctx->olaps[i].end > max_end) {
max_end = ctx->olaps[i].end;
} else {
ctx->olaps[i].mend = 0;
ctx->olaps[i].mstart = 0;
}
} else {
ctx->olaps[i].mend = ctx->olaps[i].end;
ctx->olaps[i].mstart = ctx->olaps[i].start;
ctx->olaps[i].offset = 0;
max_end = ctx->olaps[i].end;
}
}
}
static struct fastrpc_invoke_ctx *fastrpc_context_alloc(
struct fastrpc_user *user, u32 kernel, u32 sc,
struct fastrpc_invoke_args *args)
{
struct fastrpc_channel_ctx *cctx = user->cctx;
struct fastrpc_invoke_ctx *ctx = NULL;
unsigned long flags;
int ret;
ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
@ -336,7 +408,15 @@ static struct fastrpc_invoke_ctx *fastrpc_context_alloc(
kfree(ctx);
return ERR_PTR(-ENOMEM);
}
ctx->olaps = kcalloc(ctx->nscalars,
sizeof(*ctx->olaps), GFP_KERNEL);
if (!ctx->olaps) {
kfree(ctx->maps);
kfree(ctx);
return ERR_PTR(-ENOMEM);
}
ctx->args = args;
fastrpc_get_buff_overlaps(ctx);
}
ctx->sc = sc;
@ -345,20 +425,21 @@ static struct fastrpc_invoke_ctx *fastrpc_context_alloc(
ctx->tgid = user->tgid;
ctx->cctx = cctx;
init_completion(&ctx->work);
INIT_WORK(&ctx->put_work, fastrpc_context_put_wq);
spin_lock(&user->lock);
list_add_tail(&ctx->node, &user->pending);
spin_unlock(&user->lock);
spin_lock(&cctx->lock);
spin_lock_irqsave(&cctx->lock, flags);
ret = idr_alloc_cyclic(&cctx->ctx_idr, ctx, 1,
FASTRPC_CTX_MAX, GFP_ATOMIC);
if (ret < 0) {
spin_unlock(&cctx->lock);
spin_unlock_irqrestore(&cctx->lock, flags);
goto err_idr;
}
ctx->ctxid = ret << 4;
spin_unlock(&cctx->lock);
spin_unlock_irqrestore(&cctx->lock, flags);
kref_init(&ctx->refcount);
@ -368,6 +449,7 @@ static struct fastrpc_invoke_ctx *fastrpc_context_alloc(
list_del(&ctx->node);
spin_unlock(&user->lock);
kfree(ctx->maps);
kfree(ctx->olaps);
kfree(ctx);
return ERR_PTR(ret);
@ -586,8 +668,11 @@ static u64 fastrpc_get_payload_size(struct fastrpc_invoke_ctx *ctx, int metalen)
size = ALIGN(metalen, FASTRPC_ALIGN);
for (i = 0; i < ctx->nscalars; i++) {
if (ctx->args[i].fd == 0 || ctx->args[i].fd == -1) {
size = ALIGN(size, FASTRPC_ALIGN);
size += ctx->args[i].length;
if (ctx->olaps[i].offset == 0)
size = ALIGN(size, FASTRPC_ALIGN);
size += (ctx->olaps[i].mend - ctx->olaps[i].mstart);
}
}
@ -625,12 +710,12 @@ static int fastrpc_get_args(u32 kernel, struct fastrpc_invoke_ctx *ctx)
struct fastrpc_remote_arg *rpra;
struct fastrpc_invoke_buf *list;
struct fastrpc_phy_page *pages;
int inbufs, i, err = 0;
u64 rlen, pkt_size;
int inbufs, i, oix, err = 0;
u64 len, rlen, pkt_size;
u64 pg_start, pg_end;
uintptr_t args;
int metalen;
inbufs = REMOTE_SCALARS_INBUFS(ctx->sc);
metalen = fastrpc_get_meta_size(ctx);
pkt_size = fastrpc_get_payload_size(ctx, metalen);
@ -653,8 +738,11 @@ static int fastrpc_get_args(u32 kernel, struct fastrpc_invoke_ctx *ctx)
rlen = pkt_size - metalen;
ctx->rpra = rpra;
for (i = 0; i < ctx->nbufs; ++i) {
u64 len = ctx->args[i].length;
for (oix = 0; oix < ctx->nbufs; ++oix) {
int mlen;
i = ctx->olaps[oix].raix;
len = ctx->args[i].length;
rpra[i].pv = 0;
rpra[i].len = len;
@ -664,22 +752,45 @@ static int fastrpc_get_args(u32 kernel, struct fastrpc_invoke_ctx *ctx)
if (!len)
continue;
pages[i].size = roundup(len, PAGE_SIZE);
if (ctx->maps[i]) {
struct vm_area_struct *vma = NULL;
rpra[i].pv = (u64) ctx->args[i].ptr;
pages[i].addr = ctx->maps[i]->phys;
vma = find_vma(current->mm, ctx->args[i].ptr);
if (vma)
pages[i].addr += ctx->args[i].ptr -
vma->vm_start;
pg_start = (ctx->args[i].ptr & PAGE_MASK) >> PAGE_SHIFT;
pg_end = ((ctx->args[i].ptr + len - 1) & PAGE_MASK) >>
PAGE_SHIFT;
pages[i].size = (pg_end - pg_start + 1) * PAGE_SIZE;
} else {
rlen -= ALIGN(args, FASTRPC_ALIGN) - args;
args = ALIGN(args, FASTRPC_ALIGN);
if (rlen < len)
if (ctx->olaps[oix].offset == 0) {
rlen -= ALIGN(args, FASTRPC_ALIGN) - args;
args = ALIGN(args, FASTRPC_ALIGN);
}
mlen = ctx->olaps[oix].mend - ctx->olaps[oix].mstart;
if (rlen < mlen)
goto bail;
rpra[i].pv = args;
pages[i].addr = ctx->buf->phys + (pkt_size - rlen);
rpra[i].pv = args - ctx->olaps[oix].offset;
pages[i].addr = ctx->buf->phys -
ctx->olaps[oix].offset +
(pkt_size - rlen);
pages[i].addr = pages[i].addr & PAGE_MASK;
args = args + len;
rlen -= len;
pg_start = (args & PAGE_MASK) >> PAGE_SHIFT;
pg_end = ((args + len - 1) & PAGE_MASK) >> PAGE_SHIFT;
pages[i].size = (pg_end - pg_start + 1) * PAGE_SIZE;
args = args + mlen;
rlen -= mlen;
}
if (i < inbufs && !ctx->maps[i]) {
@ -782,6 +893,9 @@ static int fastrpc_internal_invoke(struct fastrpc_user *fl, u32 kernel,
if (err)
goto bail;
}
/* make sure that all CPU memory writes are seen by DSP */
dma_wmb();
/* Send invoke buffer to remote dsp */
err = fastrpc_invoke_send(fl->sctx, ctx, kernel, handle);
if (err)
@ -798,6 +912,8 @@ static int fastrpc_internal_invoke(struct fastrpc_user *fl, u32 kernel,
goto bail;
if (ctx->nscalars) {
/* make sure that all memory writes by DSP are seen by CPU */
dma_rmb();
/* populate all the output buffers with results */
err = fastrpc_put_args(ctx, kernel);
if (err)
@ -843,12 +959,12 @@ static int fastrpc_init_create_process(struct fastrpc_user *fl,
if (copy_from_user(&init, argp, sizeof(init))) {
err = -EFAULT;
goto bail;
goto err;
}
if (init.filelen > INIT_FILELEN_MAX) {
err = -EINVAL;
goto bail;
goto err;
}
inbuf.pgid = fl->tgid;
@ -862,17 +978,15 @@ static int fastrpc_init_create_process(struct fastrpc_user *fl,
if (init.filelen && init.filefd) {
err = fastrpc_map_create(fl, init.filefd, init.filelen, &map);
if (err)
goto bail;
goto err;
}
memlen = ALIGN(max(INIT_FILELEN_MAX, (int)init.filelen * 4),
1024 * 1024);
err = fastrpc_buf_alloc(fl, fl->sctx->dev, memlen,
&imem);
if (err) {
fastrpc_map_put(map);
goto bail;
}
if (err)
goto err_alloc;
fl->init_mem = imem;
args[0].ptr = (u64)(uintptr_t)&inbuf;
@ -908,13 +1022,24 @@ static int fastrpc_init_create_process(struct fastrpc_user *fl,
err = fastrpc_internal_invoke(fl, true, FASTRPC_INIT_HANDLE,
sc, args);
if (err)
goto err_invoke;
if (err) {
kfree(args);
return 0;
err_invoke:
fl->init_mem = NULL;
fastrpc_buf_free(imem);
err_alloc:
if (map) {
spin_lock(&fl->lock);
list_del(&map->node);
spin_unlock(&fl->lock);
fastrpc_map_put(map);
fastrpc_buf_free(imem);
}
bail:
err:
kfree(args);
return err;
@ -924,9 +1049,10 @@ static struct fastrpc_session_ctx *fastrpc_session_alloc(
struct fastrpc_channel_ctx *cctx)
{
struct fastrpc_session_ctx *session = NULL;
unsigned long flags;
int i;
spin_lock(&cctx->lock);
spin_lock_irqsave(&cctx->lock, flags);
for (i = 0; i < cctx->sesscount; i++) {
if (!cctx->session[i].used && cctx->session[i].valid) {
cctx->session[i].used = true;
@ -934,7 +1060,7 @@ static struct fastrpc_session_ctx *fastrpc_session_alloc(
break;
}
}
spin_unlock(&cctx->lock);
spin_unlock_irqrestore(&cctx->lock, flags);
return session;
}
@ -942,9 +1068,11 @@ static struct fastrpc_session_ctx *fastrpc_session_alloc(
static void fastrpc_session_free(struct fastrpc_channel_ctx *cctx,
struct fastrpc_session_ctx *session)
{
spin_lock(&cctx->lock);
unsigned long flags;
spin_lock_irqsave(&cctx->lock, flags);
session->used = false;
spin_unlock(&cctx->lock);
spin_unlock_irqrestore(&cctx->lock, flags);
}
static int fastrpc_release_current_dsp_process(struct fastrpc_user *fl)
@ -970,12 +1098,13 @@ static int fastrpc_device_release(struct inode *inode, struct file *file)
struct fastrpc_channel_ctx *cctx = fl->cctx;
struct fastrpc_invoke_ctx *ctx, *n;
struct fastrpc_map *map, *m;
unsigned long flags;
fastrpc_release_current_dsp_process(fl);
spin_lock(&cctx->lock);
spin_lock_irqsave(&cctx->lock, flags);
list_del(&fl->user);
spin_unlock(&cctx->lock);
spin_unlock_irqrestore(&cctx->lock, flags);
if (fl->init_mem)
fastrpc_buf_free(fl->init_mem);
@ -1003,6 +1132,7 @@ static int fastrpc_device_open(struct inode *inode, struct file *filp)
{
struct fastrpc_channel_ctx *cctx = miscdev_to_cctx(filp->private_data);
struct fastrpc_user *fl = NULL;
unsigned long flags;
fl = kzalloc(sizeof(*fl), GFP_KERNEL);
if (!fl)
@ -1026,9 +1156,9 @@ static int fastrpc_device_open(struct inode *inode, struct file *filp)
return -EBUSY;
}
spin_lock(&cctx->lock);
spin_lock_irqsave(&cctx->lock, flags);
list_add_tail(&fl->user, &cctx->users);
spin_unlock(&cctx->lock);
spin_unlock_irqrestore(&cctx->lock, flags);
return 0;
}
@ -1184,6 +1314,7 @@ static int fastrpc_cb_probe(struct platform_device *pdev)
struct fastrpc_session_ctx *sess;
struct device *dev = &pdev->dev;
int i, sessions = 0;
unsigned long flags;
int rc;
cctx = dev_get_drvdata(dev->parent);
@ -1192,7 +1323,7 @@ static int fastrpc_cb_probe(struct platform_device *pdev)
of_property_read_u32(dev->of_node, "qcom,nsessions", &sessions);
spin_lock(&cctx->lock);
spin_lock_irqsave(&cctx->lock, flags);
sess = &cctx->session[cctx->sesscount];
sess->used = false;
sess->valid = true;
@ -1213,7 +1344,7 @@ static int fastrpc_cb_probe(struct platform_device *pdev)
}
}
cctx->sesscount++;
spin_unlock(&cctx->lock);
spin_unlock_irqrestore(&cctx->lock, flags);
rc = dma_set_mask(dev, DMA_BIT_MASK(32));
if (rc) {
dev_err(dev, "32-bit DMA enable failed\n");
@ -1227,16 +1358,17 @@ static int fastrpc_cb_remove(struct platform_device *pdev)
{
struct fastrpc_channel_ctx *cctx = dev_get_drvdata(pdev->dev.parent);
struct fastrpc_session_ctx *sess = dev_get_drvdata(&pdev->dev);
unsigned long flags;
int i;
spin_lock(&cctx->lock);
spin_lock_irqsave(&cctx->lock, flags);
for (i = 1; i < FASTRPC_MAX_SESSIONS; i++) {
if (cctx->session[i].sid == sess->sid) {
cctx->session[i].valid = false;
cctx->sesscount--;
}
}
spin_unlock(&cctx->lock);
spin_unlock_irqrestore(&cctx->lock, flags);
return 0;
}
@ -1318,11 +1450,12 @@ static void fastrpc_rpmsg_remove(struct rpmsg_device *rpdev)
{
struct fastrpc_channel_ctx *cctx = dev_get_drvdata(&rpdev->dev);
struct fastrpc_user *user;
unsigned long flags;
spin_lock(&cctx->lock);
spin_lock_irqsave(&cctx->lock, flags);
list_for_each_entry(user, &cctx->users, user)
fastrpc_notify_users(user);
spin_unlock(&cctx->lock);
spin_unlock_irqrestore(&cctx->lock, flags);
misc_deregister(&cctx->miscdev);
of_platform_depopulate(&rpdev->dev);
@ -1354,7 +1487,13 @@ static int fastrpc_rpmsg_callback(struct rpmsg_device *rpdev, void *data,
ctx->retval = rsp->retval;
complete(&ctx->work);
fastrpc_context_put(ctx);
/*
* The DMA buffer associated with the context cannot be freed in
* interrupt context so schedule it through a worker thread to
* avoid a kernel BUG.
*/
schedule_work(&ctx->put_work);
return 0;
}

View File

@ -227,7 +227,7 @@ static int ddcb_info_show(struct seq_file *s, void *unused)
seq_puts(s, "DDCB QUEUE:\n");
seq_printf(s, " ddcb_max: %d\n"
" ddcb_daddr: %016llx - %016llx\n"
" ddcb_vaddr: %016llx\n"
" ddcb_vaddr: %p\n"
" ddcbs_in_flight: %u\n"
" ddcbs_max_in_flight: %u\n"
" ddcbs_completed: %u\n"
@ -237,7 +237,7 @@ static int ddcb_info_show(struct seq_file *s, void *unused)
queue->ddcb_max, (long long)queue->ddcb_daddr,
(long long)queue->ddcb_daddr +
(queue->ddcb_max * DDCB_LENGTH),
(long long)queue->ddcb_vaddr, queue->ddcbs_in_flight,
queue->ddcb_vaddr, queue->ddcbs_in_flight,
queue->ddcbs_max_in_flight, queue->ddcbs_completed,
queue->return_on_busy, queue->wait_on_busy,
cd->irqs_processed);

View File

@ -6,7 +6,7 @@ obj-m := habanalabs.o
habanalabs-y := habanalabs_drv.o device.o context.o asid.o habanalabs_ioctl.o \
command_buffer.o hw_queue.o irq.o sysfs.o hwmon.o memory.o \
command_submission.o mmu.o
command_submission.o mmu.o firmware_if.o pci.o
habanalabs-$(CONFIG_DEBUG_FS) += debugfs.o

View File

@ -13,7 +13,7 @@
static void cb_fini(struct hl_device *hdev, struct hl_cb *cb)
{
hdev->asic_funcs->dma_free_coherent(hdev, cb->size,
hdev->asic_funcs->asic_dma_free_coherent(hdev, cb->size,
(void *) (uintptr_t) cb->kernel_address,
cb->bus_address);
kfree(cb);
@ -66,10 +66,10 @@ static struct hl_cb *hl_cb_alloc(struct hl_device *hdev, u32 cb_size,
return NULL;
if (ctx_id == HL_KERNEL_ASID_ID)
p = hdev->asic_funcs->dma_alloc_coherent(hdev, cb_size,
p = hdev->asic_funcs->asic_dma_alloc_coherent(hdev, cb_size,
&cb->bus_address, GFP_ATOMIC);
else
p = hdev->asic_funcs->dma_alloc_coherent(hdev, cb_size,
p = hdev->asic_funcs->asic_dma_alloc_coherent(hdev, cb_size,
&cb->bus_address,
GFP_USER | __GFP_ZERO);
if (!p) {
@ -214,6 +214,13 @@ int hl_cb_ioctl(struct hl_fpriv *hpriv, void *data)
u64 handle;
int rc;
if (hl_device_disabled_or_in_reset(hdev)) {
dev_warn_ratelimited(hdev->dev,
"Device is %s. Can't execute CB IOCTL\n",
atomic_read(&hdev->in_reset) ? "in_reset" : "disabled");
return -EBUSY;
}
switch (args->in.op) {
case HL_CB_OP_CREATE:
rc = hl_cb_create(hdev, &hpriv->cb_mgr, args->in.cb_size,

View File

@ -93,7 +93,6 @@ static int cs_parser(struct hl_fpriv *hpriv, struct hl_cs_job *job)
parser.user_cb_size = job->user_cb_size;
parser.ext_queue = job->ext_queue;
job->patched_cb = NULL;
parser.use_virt_addr = hdev->mmu_enable;
rc = hdev->asic_funcs->cs_parser(hdev, &parser);
if (job->ext_queue) {
@ -261,7 +260,8 @@ static void cs_timedout(struct work_struct *work)
ctx_asid = cs->ctx->asid;
/* TODO: add information about last signaled seq and last emitted seq */
dev_err(hdev->dev, "CS %d.%llu got stuck!\n", ctx_asid, cs->sequence);
dev_err(hdev->dev, "User %d command submission %llu got stuck!\n",
ctx_asid, cs->sequence);
cs_put(cs);
@ -600,20 +600,20 @@ int hl_cs_ioctl(struct hl_fpriv *hpriv, void *data)
void __user *chunks;
u32 num_chunks;
u64 cs_seq = ULONG_MAX;
int rc, do_restore;
int rc, do_ctx_switch;
bool need_soft_reset = false;
if (hl_device_disabled_or_in_reset(hdev)) {
dev_warn(hdev->dev,
dev_warn_ratelimited(hdev->dev,
"Device is %s. Can't submit new CS\n",
atomic_read(&hdev->in_reset) ? "in_reset" : "disabled");
rc = -EBUSY;
goto out;
}
do_restore = atomic_cmpxchg(&ctx->thread_restore_token, 1, 0);
do_ctx_switch = atomic_cmpxchg(&ctx->thread_ctx_switch_token, 1, 0);
if (do_restore || (args->in.cs_flags & HL_CS_FLAGS_FORCE_RESTORE)) {
if (do_ctx_switch || (args->in.cs_flags & HL_CS_FLAGS_FORCE_RESTORE)) {
long ret;
chunks = (void __user *)(uintptr_t)args->in.chunks_restore;
@ -621,7 +621,7 @@ int hl_cs_ioctl(struct hl_fpriv *hpriv, void *data)
mutex_lock(&hpriv->restore_phase_mutex);
if (do_restore) {
if (do_ctx_switch) {
rc = hdev->asic_funcs->context_switch(hdev, ctx->asid);
if (rc) {
dev_err_ratelimited(hdev->dev,
@ -677,18 +677,18 @@ int hl_cs_ioctl(struct hl_fpriv *hpriv, void *data)
}
}
ctx->thread_restore_wait_token = 1;
} else if (!ctx->thread_restore_wait_token) {
ctx->thread_ctx_switch_wait_token = 1;
} else if (!ctx->thread_ctx_switch_wait_token) {
u32 tmp;
rc = hl_poll_timeout_memory(hdev,
(u64) (uintptr_t) &ctx->thread_restore_wait_token,
(u64) (uintptr_t) &ctx->thread_ctx_switch_wait_token,
jiffies_to_usecs(hdev->timeout_jiffies),
&tmp);
if (rc || !tmp) {
dev_err(hdev->dev,
"restore phase hasn't finished in time\n");
"context switch phase didn't finish in time\n");
rc = -ETIMEDOUT;
goto out;
}

View File

@ -106,8 +106,8 @@ int hl_ctx_init(struct hl_device *hdev, struct hl_ctx *ctx, bool is_kernel_ctx)
ctx->cs_sequence = 1;
spin_lock_init(&ctx->cs_lock);
atomic_set(&ctx->thread_restore_token, 1);
ctx->thread_restore_wait_token = 0;
atomic_set(&ctx->thread_ctx_switch_token, 1);
ctx->thread_ctx_switch_wait_token = 0;
if (is_kernel_ctx) {
ctx->asid = HL_KERNEL_ASID_ID; /* KMD gets ASID 0 */

View File

@ -505,22 +505,97 @@ static ssize_t mmu_write(struct file *file, const char __user *buf,
return -EINVAL;
}
static int device_va_to_pa(struct hl_device *hdev, u64 virt_addr,
u64 *phys_addr)
{
struct hl_ctx *ctx = hdev->user_ctx;
u64 hop_addr, hop_pte_addr, hop_pte;
int rc = 0;
if (!ctx) {
dev_err(hdev->dev, "no ctx available\n");
return -EINVAL;
}
mutex_lock(&ctx->mmu_lock);
/* hop 0 */
hop_addr = get_hop0_addr(ctx);
hop_pte_addr = get_hop0_pte_addr(ctx, hop_addr, virt_addr);
hop_pte = hdev->asic_funcs->read_pte(hdev, hop_pte_addr);
/* hop 1 */
hop_addr = get_next_hop_addr(hop_pte);
if (hop_addr == ULLONG_MAX)
goto not_mapped;
hop_pte_addr = get_hop1_pte_addr(ctx, hop_addr, virt_addr);
hop_pte = hdev->asic_funcs->read_pte(hdev, hop_pte_addr);
/* hop 2 */
hop_addr = get_next_hop_addr(hop_pte);
if (hop_addr == ULLONG_MAX)
goto not_mapped;
hop_pte_addr = get_hop2_pte_addr(ctx, hop_addr, virt_addr);
hop_pte = hdev->asic_funcs->read_pte(hdev, hop_pte_addr);
/* hop 3 */
hop_addr = get_next_hop_addr(hop_pte);
if (hop_addr == ULLONG_MAX)
goto not_mapped;
hop_pte_addr = get_hop3_pte_addr(ctx, hop_addr, virt_addr);
hop_pte = hdev->asic_funcs->read_pte(hdev, hop_pte_addr);
if (!(hop_pte & LAST_MASK)) {
/* hop 4 */
hop_addr = get_next_hop_addr(hop_pte);
if (hop_addr == ULLONG_MAX)
goto not_mapped;
hop_pte_addr = get_hop4_pte_addr(ctx, hop_addr, virt_addr);
hop_pte = hdev->asic_funcs->read_pte(hdev, hop_pte_addr);
}
if (!(hop_pte & PAGE_PRESENT_MASK))
goto not_mapped;
*phys_addr = (hop_pte & PTE_PHYS_ADDR_MASK) | (virt_addr & OFFSET_MASK);
goto out;
not_mapped:
dev_err(hdev->dev, "virt addr 0x%llx is not mapped to phys addr\n",
virt_addr);
rc = -EINVAL;
out:
mutex_unlock(&ctx->mmu_lock);
return rc;
}
static ssize_t hl_data_read32(struct file *f, char __user *buf,
size_t count, loff_t *ppos)
{
struct hl_dbg_device_entry *entry = file_inode(f)->i_private;
struct hl_device *hdev = entry->hdev;
struct asic_fixed_properties *prop = &hdev->asic_prop;
char tmp_buf[32];
u64 addr = entry->addr;
u32 val;
ssize_t rc;
if (*ppos)
return 0;
rc = hdev->asic_funcs->debugfs_read32(hdev, entry->addr, &val);
if (addr >= prop->va_space_dram_start_address &&
addr < prop->va_space_dram_end_address &&
hdev->mmu_enable &&
hdev->dram_supports_virtual_memory) {
rc = device_va_to_pa(hdev, entry->addr, &addr);
if (rc)
return rc;
}
rc = hdev->asic_funcs->debugfs_read32(hdev, addr, &val);
if (rc) {
dev_err(hdev->dev, "Failed to read from 0x%010llx\n",
entry->addr);
dev_err(hdev->dev, "Failed to read from 0x%010llx\n", addr);
return rc;
}
@ -536,6 +611,8 @@ static ssize_t hl_data_write32(struct file *f, const char __user *buf,
{
struct hl_dbg_device_entry *entry = file_inode(f)->i_private;
struct hl_device *hdev = entry->hdev;
struct asic_fixed_properties *prop = &hdev->asic_prop;
u64 addr = entry->addr;
u32 value;
ssize_t rc;
@ -543,10 +620,19 @@ static ssize_t hl_data_write32(struct file *f, const char __user *buf,
if (rc)
return rc;
rc = hdev->asic_funcs->debugfs_write32(hdev, entry->addr, value);
if (addr >= prop->va_space_dram_start_address &&
addr < prop->va_space_dram_end_address &&
hdev->mmu_enable &&
hdev->dram_supports_virtual_memory) {
rc = device_va_to_pa(hdev, entry->addr, &addr);
if (rc)
return rc;
}
rc = hdev->asic_funcs->debugfs_write32(hdev, addr, value);
if (rc) {
dev_err(hdev->dev, "Failed to write 0x%08x to 0x%010llx\n",
value, entry->addr);
value, addr);
return rc;
}

View File

@ -5,11 +5,14 @@
* All Rights Reserved.
*/
#define pr_fmt(fmt) "habanalabs: " fmt
#include "habanalabs.h"
#include <linux/pci.h>
#include <linux/sched/signal.h>
#include <linux/hwmon.h>
#include <uapi/misc/habanalabs.h>
#define HL_PLDM_PENDING_RESET_PER_SEC (HL_PENDING_RESET_PER_SEC * 10)
@ -21,6 +24,20 @@ bool hl_device_disabled_or_in_reset(struct hl_device *hdev)
return false;
}
enum hl_device_status hl_device_status(struct hl_device *hdev)
{
enum hl_device_status status;
if (hdev->disabled)
status = HL_DEVICE_STATUS_MALFUNCTION;
else if (atomic_read(&hdev->in_reset))
status = HL_DEVICE_STATUS_IN_RESET;
else
status = HL_DEVICE_STATUS_OPERATIONAL;
return status;
};
static void hpriv_release(struct kref *ref)
{
struct hl_fpriv *hpriv;
@ -498,11 +515,8 @@ int hl_device_resume(struct hl_device *hdev)
return rc;
}
static void hl_device_hard_reset_pending(struct work_struct *work)
static void device_kill_open_processes(struct hl_device *hdev)
{
struct hl_device_reset_work *device_reset_work =
container_of(work, struct hl_device_reset_work, reset_work);
struct hl_device *hdev = device_reset_work->hdev;
u16 pending_total, pending_cnt;
struct task_struct *task = NULL;
@ -537,6 +551,12 @@ static void hl_device_hard_reset_pending(struct work_struct *work)
}
}
/* We killed the open users, but because the driver cleans up after the
* user contexts are closed (e.g. mmu mappings), we need to wait again
* to make sure the cleaning phase is finished before continuing with
* the reset
*/
pending_cnt = pending_total;
while ((atomic_read(&hdev->fd_open_cnt)) && (pending_cnt)) {
@ -552,6 +572,16 @@ static void hl_device_hard_reset_pending(struct work_struct *work)
mutex_unlock(&hdev->fd_open_cnt_lock);
}
static void device_hard_reset_pending(struct work_struct *work)
{
struct hl_device_reset_work *device_reset_work =
container_of(work, struct hl_device_reset_work, reset_work);
struct hl_device *hdev = device_reset_work->hdev;
device_kill_open_processes(hdev);
hl_device_reset(hdev, true, true);
kfree(device_reset_work);
@ -613,6 +643,8 @@ int hl_device_reset(struct hl_device *hdev, bool hard_reset,
if ((hard_reset) && (!from_hard_reset_thread)) {
struct hl_device_reset_work *device_reset_work;
hdev->hard_reset_pending = true;
if (!hdev->pdev) {
dev_err(hdev->dev,
"Reset action is NOT supported in simulator\n");
@ -620,8 +652,6 @@ int hl_device_reset(struct hl_device *hdev, bool hard_reset,
goto out_err;
}
hdev->hard_reset_pending = true;
device_reset_work = kzalloc(sizeof(*device_reset_work),
GFP_ATOMIC);
if (!device_reset_work) {
@ -635,7 +665,7 @@ int hl_device_reset(struct hl_device *hdev, bool hard_reset,
* from a dedicated work
*/
INIT_WORK(&device_reset_work->reset_work,
hl_device_hard_reset_pending);
device_hard_reset_pending);
device_reset_work->hdev = hdev;
schedule_work(&device_reset_work->reset_work);
@ -663,17 +693,9 @@ int hl_device_reset(struct hl_device *hdev, bool hard_reset,
/* Go over all the queues, release all CS and their jobs */
hl_cs_rollback_all(hdev);
if (hard_reset) {
/* Release kernel context */
if (hl_ctx_put(hdev->kernel_ctx) != 1) {
dev_err(hdev->dev,
"kernel ctx is alive during hard reset\n");
rc = -EBUSY;
goto out_err;
}
/* Release kernel context */
if ((hard_reset) && (hl_ctx_put(hdev->kernel_ctx) == 1))
hdev->kernel_ctx = NULL;
}
/* Reset the H/W. It will be in idle state after this returns */
hdev->asic_funcs->hw_fini(hdev, hard_reset);
@ -688,16 +710,24 @@ int hl_device_reset(struct hl_device *hdev, bool hard_reset,
for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++)
hl_cq_reset(hdev, &hdev->completion_queue[i]);
/* Make sure the setup phase for the user context will run again */
/* Make sure the context switch phase will run again */
if (hdev->user_ctx) {
atomic_set(&hdev->user_ctx->thread_restore_token, 1);
hdev->user_ctx->thread_restore_wait_token = 0;
atomic_set(&hdev->user_ctx->thread_ctx_switch_token, 1);
hdev->user_ctx->thread_ctx_switch_wait_token = 0;
}
/* Finished tear-down, starting to re-initialize */
if (hard_reset) {
hdev->device_cpu_disabled = false;
hdev->hard_reset_pending = false;
if (hdev->kernel_ctx) {
dev_crit(hdev->dev,
"kernel ctx was alive during hard reset, something is terribly wrong\n");
rc = -EBUSY;
goto out_err;
}
/* Allocate the kernel context */
hdev->kernel_ctx = kzalloc(sizeof(*hdev->kernel_ctx),
@ -752,8 +782,6 @@ int hl_device_reset(struct hl_device *hdev, bool hard_reset,
}
hl_set_max_power(hdev, hdev->max_power);
hdev->hard_reset_pending = false;
} else {
rc = hdev->asic_funcs->soft_reset_late_init(hdev);
if (rc) {
@ -1030,11 +1058,22 @@ void hl_device_fini(struct hl_device *hdev)
WARN(1, "Failed to remove device because reset function did not finish\n");
return;
}
};
}
/* Mark device as disabled */
hdev->disabled = true;
/*
* Flush anyone that is inside the critical section of enqueue
* jobs to the H/W
*/
hdev->asic_funcs->hw_queues_lock(hdev);
hdev->asic_funcs->hw_queues_unlock(hdev);
hdev->hard_reset_pending = true;
device_kill_open_processes(hdev);
hl_hwmon_fini(hdev);
device_late_fini(hdev);
@ -1108,7 +1147,13 @@ int hl_poll_timeout_memory(struct hl_device *hdev, u64 addr,
* either by the direct access of the device or by another core
*/
u32 *paddr = (u32 *) (uintptr_t) addr;
ktime_t timeout = ktime_add_us(ktime_get(), timeout_us);
ktime_t timeout;
/* timeout should be longer when working with simulator */
if (!hdev->pdev)
timeout_us *= 10;
timeout = ktime_add_us(ktime_get(), timeout_us);
might_sleep();

View File

@ -0,0 +1,322 @@
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright 2016-2019 HabanaLabs, Ltd.
* All Rights Reserved.
*/
#include "habanalabs.h"
#include <linux/firmware.h>
#include <linux/genalloc.h>
#include <linux/io-64-nonatomic-lo-hi.h>
/**
* hl_fw_push_fw_to_device() - Push FW code to device.
* @hdev: pointer to hl_device structure.
*
* Copy fw code from firmware file to device memory.
*
* Return: 0 on success, non-zero for failure.
*/
int hl_fw_push_fw_to_device(struct hl_device *hdev, const char *fw_name,
void __iomem *dst)
{
const struct firmware *fw;
const u64 *fw_data;
size_t fw_size, i;
int rc;
rc = request_firmware(&fw, fw_name, hdev->dev);
if (rc) {
dev_err(hdev->dev, "Failed to request %s\n", fw_name);
goto out;
}
fw_size = fw->size;
if ((fw_size % 4) != 0) {
dev_err(hdev->dev, "illegal %s firmware size %zu\n",
fw_name, fw_size);
rc = -EINVAL;
goto out;
}
dev_dbg(hdev->dev, "%s firmware size == %zu\n", fw_name, fw_size);
fw_data = (const u64 *) fw->data;
if ((fw->size % 8) != 0)
fw_size -= 8;
for (i = 0 ; i < fw_size ; i += 8, fw_data++, dst += 8) {
if (!(i & (0x80000 - 1))) {
dev_dbg(hdev->dev,
"copied so far %zu out of %zu for %s firmware",
i, fw_size, fw_name);
usleep_range(20, 100);
}
writeq(*fw_data, dst);
}
if ((fw->size % 8) != 0)
writel(*(const u32 *) fw_data, dst);
out:
release_firmware(fw);
return rc;
}
int hl_fw_send_pci_access_msg(struct hl_device *hdev, u32 opcode)
{
struct armcp_packet pkt = {};
pkt.ctl = cpu_to_le32(opcode << ARMCP_PKT_CTL_OPCODE_SHIFT);
return hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt,
sizeof(pkt), HL_DEVICE_TIMEOUT_USEC, NULL);
}
int hl_fw_send_cpu_message(struct hl_device *hdev, u32 hw_queue_id, u32 *msg,
u16 len, u32 timeout, long *result)
{
struct armcp_packet *pkt;
dma_addr_t pkt_dma_addr;
u32 tmp;
int rc = 0;
if (len > HL_CPU_CB_SIZE) {
dev_err(hdev->dev, "Invalid CPU message size of %d bytes\n",
len);
return -ENOMEM;
}
pkt = hdev->asic_funcs->cpu_accessible_dma_pool_alloc(hdev, len,
&pkt_dma_addr);
if (!pkt) {
dev_err(hdev->dev,
"Failed to allocate DMA memory for packet to CPU\n");
return -ENOMEM;
}
memcpy(pkt, msg, len);
mutex_lock(&hdev->send_cpu_message_lock);
if (hdev->disabled)
goto out;
if (hdev->device_cpu_disabled) {
rc = -EIO;
goto out;
}
rc = hl_hw_queue_send_cb_no_cmpl(hdev, hw_queue_id, len, pkt_dma_addr);
if (rc) {
dev_err(hdev->dev, "Failed to send CB on CPU PQ (%d)\n", rc);
goto out;
}
rc = hl_poll_timeout_memory(hdev, (u64) (uintptr_t) &pkt->fence,
timeout, &tmp);
hl_hw_queue_inc_ci_kernel(hdev, hw_queue_id);
if (rc == -ETIMEDOUT) {
dev_err(hdev->dev, "Timeout while waiting for device CPU\n");
hdev->device_cpu_disabled = true;
goto out;
}
if (tmp == ARMCP_PACKET_FENCE_VAL) {
u32 ctl = le32_to_cpu(pkt->ctl);
rc = (ctl & ARMCP_PKT_CTL_RC_MASK) >> ARMCP_PKT_CTL_RC_SHIFT;
if (rc) {
dev_err(hdev->dev,
"F/W ERROR %d for CPU packet %d\n",
rc, (ctl & ARMCP_PKT_CTL_OPCODE_MASK)
>> ARMCP_PKT_CTL_OPCODE_SHIFT);
rc = -EINVAL;
} else if (result) {
*result = (long) le64_to_cpu(pkt->result);
}
} else {
dev_err(hdev->dev, "CPU packet wrong fence value\n");
rc = -EINVAL;
}
out:
mutex_unlock(&hdev->send_cpu_message_lock);
hdev->asic_funcs->cpu_accessible_dma_pool_free(hdev, len, pkt);
return rc;
}
int hl_fw_test_cpu_queue(struct hl_device *hdev)
{
struct armcp_packet test_pkt = {};
long result;
int rc;
test_pkt.ctl = cpu_to_le32(ARMCP_PACKET_TEST <<
ARMCP_PKT_CTL_OPCODE_SHIFT);
test_pkt.value = cpu_to_le64(ARMCP_PACKET_FENCE_VAL);
rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &test_pkt,
sizeof(test_pkt), HL_DEVICE_TIMEOUT_USEC, &result);
if (!rc) {
if (result == ARMCP_PACKET_FENCE_VAL)
dev_info(hdev->dev,
"queue test on CPU queue succeeded\n");
else
dev_err(hdev->dev,
"CPU queue test failed (0x%08lX)\n", result);
} else {
dev_err(hdev->dev, "CPU queue test failed, error %d\n", rc);
}
return rc;
}
void *hl_fw_cpu_accessible_dma_pool_alloc(struct hl_device *hdev, size_t size,
dma_addr_t *dma_handle)
{
u64 kernel_addr;
/* roundup to HL_CPU_PKT_SIZE */
size = (size + (HL_CPU_PKT_SIZE - 1)) & HL_CPU_PKT_MASK;
kernel_addr = gen_pool_alloc(hdev->cpu_accessible_dma_pool, size);
*dma_handle = hdev->cpu_accessible_dma_address +
(kernel_addr - (u64) (uintptr_t) hdev->cpu_accessible_dma_mem);
return (void *) (uintptr_t) kernel_addr;
}
void hl_fw_cpu_accessible_dma_pool_free(struct hl_device *hdev, size_t size,
void *vaddr)
{
/* roundup to HL_CPU_PKT_SIZE */
size = (size + (HL_CPU_PKT_SIZE - 1)) & HL_CPU_PKT_MASK;
gen_pool_free(hdev->cpu_accessible_dma_pool, (u64) (uintptr_t) vaddr,
size);
}
int hl_fw_send_heartbeat(struct hl_device *hdev)
{
struct armcp_packet hb_pkt = {};
long result;
int rc;
hb_pkt.ctl = cpu_to_le32(ARMCP_PACKET_TEST <<
ARMCP_PKT_CTL_OPCODE_SHIFT);
hb_pkt.value = cpu_to_le64(ARMCP_PACKET_FENCE_VAL);
rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &hb_pkt,
sizeof(hb_pkt), HL_DEVICE_TIMEOUT_USEC, &result);
if ((rc) || (result != ARMCP_PACKET_FENCE_VAL))
rc = -EIO;
return rc;
}
int hl_fw_armcp_info_get(struct hl_device *hdev)
{
struct asic_fixed_properties *prop = &hdev->asic_prop;
struct armcp_packet pkt = {};
void *armcp_info_cpu_addr;
dma_addr_t armcp_info_dma_addr;
long result;
int rc;
armcp_info_cpu_addr =
hdev->asic_funcs->cpu_accessible_dma_pool_alloc(hdev,
sizeof(struct armcp_info),
&armcp_info_dma_addr);
if (!armcp_info_cpu_addr) {
dev_err(hdev->dev,
"Failed to allocate DMA memory for ArmCP info packet\n");
return -ENOMEM;
}
memset(armcp_info_cpu_addr, 0, sizeof(struct armcp_info));
pkt.ctl = cpu_to_le32(ARMCP_PACKET_INFO_GET <<
ARMCP_PKT_CTL_OPCODE_SHIFT);
pkt.addr = cpu_to_le64(armcp_info_dma_addr);
pkt.data_max_size = cpu_to_le32(sizeof(struct armcp_info));
rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
HL_ARMCP_INFO_TIMEOUT_USEC, &result);
if (rc) {
dev_err(hdev->dev,
"Failed to send armcp info pkt, error %d\n", rc);
goto out;
}
memcpy(&prop->armcp_info, armcp_info_cpu_addr,
sizeof(prop->armcp_info));
rc = hl_build_hwmon_channel_info(hdev, prop->armcp_info.sensors);
if (rc) {
dev_err(hdev->dev,
"Failed to build hwmon channel info, error %d\n", rc);
rc = -EFAULT;
goto out;
}
out:
hdev->asic_funcs->cpu_accessible_dma_pool_free(hdev,
sizeof(struct armcp_info), armcp_info_cpu_addr);
return rc;
}
int hl_fw_get_eeprom_data(struct hl_device *hdev, void *data, size_t max_size)
{
struct armcp_packet pkt = {};
void *eeprom_info_cpu_addr;
dma_addr_t eeprom_info_dma_addr;
long result;
int rc;
eeprom_info_cpu_addr =
hdev->asic_funcs->cpu_accessible_dma_pool_alloc(hdev,
max_size, &eeprom_info_dma_addr);
if (!eeprom_info_cpu_addr) {
dev_err(hdev->dev,
"Failed to allocate DMA memory for EEPROM info packet\n");
return -ENOMEM;
}
memset(eeprom_info_cpu_addr, 0, max_size);
pkt.ctl = cpu_to_le32(ARMCP_PACKET_EEPROM_DATA_GET <<
ARMCP_PKT_CTL_OPCODE_SHIFT);
pkt.addr = cpu_to_le64(eeprom_info_dma_addr);
pkt.data_max_size = cpu_to_le32(max_size);
rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
HL_ARMCP_EEPROM_TIMEOUT_USEC, &result);
if (rc) {
dev_err(hdev->dev,
"Failed to send armcp EEPROM pkt, error %d\n", rc);
goto out;
}
/* result contains the actual size */
memcpy(data, eeprom_info_cpu_addr, min((size_t)result, max_size));
out:
hdev->asic_funcs->cpu_accessible_dma_pool_free(hdev, max_size,
eeprom_info_cpu_addr);
return rc;
}

View File

@ -1,3 +1,4 @@
subdir-ccflags-y += -I$(src)
HL_GOYA_FILES := goya/goya.o goya/goya_security.o goya/goya_hwmgr.o
HL_GOYA_FILES := goya/goya.o goya/goya_security.o goya/goya_hwmgr.o \
goya/goya_coresight.o

File diff suppressed because it is too large Load Diff

View File

@ -39,9 +39,13 @@
#error "Number of MSIX interrupts must be smaller or equal to GOYA_MSIX_ENTRIES"
#endif
#define QMAN_FENCE_TIMEOUT_USEC 10000 /* 10 ms */
#define QMAN_FENCE_TIMEOUT_USEC 10000 /* 10 ms */
#define QMAN_STOP_TIMEOUT_USEC 100000 /* 100 ms */
#define QMAN_STOP_TIMEOUT_USEC 100000 /* 100 ms */
#define CORESIGHT_TIMEOUT_USEC 100000 /* 100 ms */
#define GOYA_CPU_TIMEOUT_USEC 10000000 /* 10s */
#define TPC_ENABLED_MASK 0xFF
@ -49,19 +53,14 @@
#define MAX_POWER_DEFAULT 200000 /* 200W */
#define GOYA_ARMCP_INFO_TIMEOUT 10000000 /* 10s */
#define GOYA_ARMCP_EEPROM_TIMEOUT 10000000 /* 10s */
#define DRAM_PHYS_DEFAULT_SIZE 0x100000000ull /* 4GB */
/* DRAM Memory Map */
#define CPU_FW_IMAGE_SIZE 0x10000000 /* 256MB */
#define MMU_PAGE_TABLES_SIZE 0x0DE00000 /* 222MB */
#define MMU_PAGE_TABLES_SIZE 0x0FC00000 /* 252MB */
#define MMU_DRAM_DEFAULT_PAGE_SIZE 0x00200000 /* 2MB */
#define MMU_CACHE_MNG_SIZE 0x00001000 /* 4KB */
#define CPU_PQ_PKT_SIZE 0x00001000 /* 4KB */
#define CPU_PQ_DATA_SIZE 0x01FFE000 /* 32MB - 8KB */
#define CPU_FW_IMAGE_ADDR DRAM_PHYS_BASE
#define MMU_PAGE_TABLES_ADDR (CPU_FW_IMAGE_ADDR + CPU_FW_IMAGE_SIZE)
@ -69,13 +68,13 @@
MMU_PAGE_TABLES_SIZE)
#define MMU_CACHE_MNG_ADDR (MMU_DRAM_DEFAULT_PAGE_ADDR + \
MMU_DRAM_DEFAULT_PAGE_SIZE)
#define CPU_PQ_PKT_ADDR (MMU_CACHE_MNG_ADDR + \
#define DRAM_KMD_END_ADDR (MMU_CACHE_MNG_ADDR + \
MMU_CACHE_MNG_SIZE)
#define CPU_PQ_DATA_ADDR (CPU_PQ_PKT_ADDR + CPU_PQ_PKT_SIZE)
#define DRAM_BASE_ADDR_USER (CPU_PQ_DATA_ADDR + CPU_PQ_DATA_SIZE)
#if (DRAM_BASE_ADDR_USER != 0x20000000)
#error "KMD must reserve 512MB"
#define DRAM_BASE_ADDR_USER 0x20000000
#if (DRAM_KMD_END_ADDR > DRAM_BASE_ADDR_USER)
#error "KMD must reserve no more than 512MB"
#endif
/*
@ -142,22 +141,12 @@
#define HW_CAP_GOLDEN 0x00000400
#define HW_CAP_TPC 0x00000800
#define CPU_PKT_SHIFT 5
#define CPU_PKT_SIZE (1 << CPU_PKT_SHIFT)
#define CPU_PKT_MASK (~((1 << CPU_PKT_SHIFT) - 1))
#define CPU_MAX_PKTS_IN_CB 32
#define CPU_CB_SIZE (CPU_PKT_SIZE * CPU_MAX_PKTS_IN_CB)
#define CPU_ACCESSIBLE_MEM_SIZE (HL_QUEUE_LENGTH * CPU_CB_SIZE)
enum goya_fw_component {
FW_COMP_UBOOT,
FW_COMP_PREBOOT
};
struct goya_device {
int (*test_cpu_queue)(struct hl_device *hdev);
int (*armcp_info_get)(struct hl_device *hdev);
/* TODO: remove hw_queues_lock after moving to scheduler code */
spinlock_t hw_queues_lock;
@ -170,13 +159,34 @@ struct goya_device {
u32 hw_cap_initialized;
};
void goya_get_fixed_properties(struct hl_device *hdev);
int goya_mmu_init(struct hl_device *hdev);
void goya_init_dma_qmans(struct hl_device *hdev);
void goya_init_mme_qmans(struct hl_device *hdev);
void goya_init_tpc_qmans(struct hl_device *hdev);
int goya_init_cpu_queues(struct hl_device *hdev);
void goya_init_security(struct hl_device *hdev);
int goya_late_init(struct hl_device *hdev);
void goya_late_fini(struct hl_device *hdev);
void goya_ring_doorbell(struct hl_device *hdev, u32 hw_queue_id, u32 pi);
void goya_flush_pq_write(struct hl_device *hdev, u64 *pq, u64 exp_val);
void goya_update_eq_ci(struct hl_device *hdev, u32 val);
void goya_restore_phase_topology(struct hl_device *hdev);
int goya_context_switch(struct hl_device *hdev, u32 asid);
int goya_debugfs_i2c_read(struct hl_device *hdev, u8 i2c_bus,
u8 i2c_addr, u8 i2c_reg, u32 *val);
int goya_debugfs_i2c_write(struct hl_device *hdev, u8 i2c_bus,
u8 i2c_addr, u8 i2c_reg, u32 val);
void goya_debugfs_led_set(struct hl_device *hdev, u8 led, u8 state);
int goya_test_queue(struct hl_device *hdev, u32 hw_queue_id);
int goya_test_queues(struct hl_device *hdev);
int goya_test_cpu_queue(struct hl_device *hdev);
int goya_send_cpu_message(struct hl_device *hdev, u32 *msg, u16 len,
u32 timeout, long *result);
long goya_get_temperature(struct hl_device *hdev, int sensor_index, u32 attr);
long goya_get_voltage(struct hl_device *hdev, int sensor_index, u32 attr);
long goya_get_current(struct hl_device *hdev, int sensor_index, u32 attr);
@ -184,28 +194,35 @@ long goya_get_fan_speed(struct hl_device *hdev, int sensor_index, u32 attr);
long goya_get_pwm_info(struct hl_device *hdev, int sensor_index, u32 attr);
void goya_set_pwm_info(struct hl_device *hdev, int sensor_index, u32 attr,
long value);
void goya_debugfs_led_set(struct hl_device *hdev, u8 led, u8 state);
void goya_set_pll_profile(struct hl_device *hdev, enum hl_pll_frequency freq);
void goya_add_device_attr(struct hl_device *hdev,
struct attribute_group *dev_attr_grp);
void goya_init_security(struct hl_device *hdev);
u64 goya_get_max_power(struct hl_device *hdev);
void goya_set_max_power(struct hl_device *hdev, u64 value);
int goya_send_pci_access_msg(struct hl_device *hdev, u32 opcode);
void goya_late_fini(struct hl_device *hdev);
void goya_set_pll_profile(struct hl_device *hdev, enum hl_pll_frequency freq);
void goya_add_device_attr(struct hl_device *hdev,
struct attribute_group *dev_attr_grp);
int goya_armcp_info_get(struct hl_device *hdev);
int goya_debug_coresight(struct hl_device *hdev, void *data);
void goya_mmu_prepare(struct hl_device *hdev, u32 asid);
int goya_mmu_clear_pgt_range(struct hl_device *hdev);
int goya_mmu_set_dram_default_page(struct hl_device *hdev);
int goya_suspend(struct hl_device *hdev);
int goya_resume(struct hl_device *hdev);
void goya_flush_pq_write(struct hl_device *hdev, u64 *pq, u64 exp_val);
void goya_handle_eqe(struct hl_device *hdev, struct hl_eq_entry *eq_entry);
void *goya_get_events_stat(struct hl_device *hdev, u32 *size);
void goya_add_end_of_cb_packets(u64 kernel_address, u32 len, u64 cq_addr,
u32 cq_val, u32 msix_vec);
int goya_cs_parser(struct hl_device *hdev, struct hl_cs_parser *parser);
void *goya_get_int_queue_base(struct hl_device *hdev, u32 queue_id,
dma_addr_t *dma_handle, u16 *queue_len);
dma_addr_t *dma_handle, u16 *queue_len);
u32 goya_get_dma_desc_list_size(struct hl_device *hdev, struct sg_table *sgt);
int goya_test_queue(struct hl_device *hdev, u32 hw_queue_id);
int goya_send_heartbeat(struct hl_device *hdev);
void *goya_cpu_accessible_dma_pool_alloc(struct hl_device *hdev, size_t size,
dma_addr_t *dma_handle);
void goya_cpu_accessible_dma_pool_free(struct hl_device *hdev, size_t size,
void *vaddr);
#endif /* GOYAP_H_ */

View File

@ -0,0 +1,628 @@
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright 2016-2019 HabanaLabs, Ltd.
* All Rights Reserved.
*/
#include "goyaP.h"
#include "include/goya/goya_coresight.h"
#include "include/goya/asic_reg/goya_regs.h"
#include <uapi/misc/habanalabs.h>
#include <linux/coresight.h>
#define GOYA_PLDM_CORESIGHT_TIMEOUT_USEC (CORESIGHT_TIMEOUT_USEC * 100)
static u64 debug_stm_regs[GOYA_STM_LAST + 1] = {
[GOYA_STM_CPU] = mmCPU_STM_BASE,
[GOYA_STM_DMA_CH_0_CS] = mmDMA_CH_0_CS_STM_BASE,
[GOYA_STM_DMA_CH_1_CS] = mmDMA_CH_1_CS_STM_BASE,
[GOYA_STM_DMA_CH_2_CS] = mmDMA_CH_2_CS_STM_BASE,
[GOYA_STM_DMA_CH_3_CS] = mmDMA_CH_3_CS_STM_BASE,
[GOYA_STM_DMA_CH_4_CS] = mmDMA_CH_4_CS_STM_BASE,
[GOYA_STM_DMA_MACRO_CS] = mmDMA_MACRO_CS_STM_BASE,
[GOYA_STM_MME1_SBA] = mmMME1_SBA_STM_BASE,
[GOYA_STM_MME3_SBB] = mmMME3_SBB_STM_BASE,
[GOYA_STM_MME4_WACS2] = mmMME4_WACS2_STM_BASE,
[GOYA_STM_MME4_WACS] = mmMME4_WACS_STM_BASE,
[GOYA_STM_MMU_CS] = mmMMU_CS_STM_BASE,
[GOYA_STM_PCIE] = mmPCIE_STM_BASE,
[GOYA_STM_PSOC] = mmPSOC_STM_BASE,
[GOYA_STM_TPC0_EML] = mmTPC0_EML_STM_BASE,
[GOYA_STM_TPC1_EML] = mmTPC1_EML_STM_BASE,
[GOYA_STM_TPC2_EML] = mmTPC2_EML_STM_BASE,
[GOYA_STM_TPC3_EML] = mmTPC3_EML_STM_BASE,
[GOYA_STM_TPC4_EML] = mmTPC4_EML_STM_BASE,
[GOYA_STM_TPC5_EML] = mmTPC5_EML_STM_BASE,
[GOYA_STM_TPC6_EML] = mmTPC6_EML_STM_BASE,
[GOYA_STM_TPC7_EML] = mmTPC7_EML_STM_BASE
};
static u64 debug_etf_regs[GOYA_ETF_LAST + 1] = {
[GOYA_ETF_CPU_0] = mmCPU_ETF_0_BASE,
[GOYA_ETF_CPU_1] = mmCPU_ETF_1_BASE,
[GOYA_ETF_CPU_TRACE] = mmCPU_ETF_TRACE_BASE,
[GOYA_ETF_DMA_CH_0_CS] = mmDMA_CH_0_CS_ETF_BASE,
[GOYA_ETF_DMA_CH_1_CS] = mmDMA_CH_1_CS_ETF_BASE,
[GOYA_ETF_DMA_CH_2_CS] = mmDMA_CH_2_CS_ETF_BASE,
[GOYA_ETF_DMA_CH_3_CS] = mmDMA_CH_3_CS_ETF_BASE,
[GOYA_ETF_DMA_CH_4_CS] = mmDMA_CH_4_CS_ETF_BASE,
[GOYA_ETF_DMA_MACRO_CS] = mmDMA_MACRO_CS_ETF_BASE,
[GOYA_ETF_MME1_SBA] = mmMME1_SBA_ETF_BASE,
[GOYA_ETF_MME3_SBB] = mmMME3_SBB_ETF_BASE,
[GOYA_ETF_MME4_WACS2] = mmMME4_WACS2_ETF_BASE,
[GOYA_ETF_MME4_WACS] = mmMME4_WACS_ETF_BASE,
[GOYA_ETF_MMU_CS] = mmMMU_CS_ETF_BASE,
[GOYA_ETF_PCIE] = mmPCIE_ETF_BASE,
[GOYA_ETF_PSOC] = mmPSOC_ETF_BASE,
[GOYA_ETF_TPC0_EML] = mmTPC0_EML_ETF_BASE,
[GOYA_ETF_TPC1_EML] = mmTPC1_EML_ETF_BASE,
[GOYA_ETF_TPC2_EML] = mmTPC2_EML_ETF_BASE,
[GOYA_ETF_TPC3_EML] = mmTPC3_EML_ETF_BASE,
[GOYA_ETF_TPC4_EML] = mmTPC4_EML_ETF_BASE,
[GOYA_ETF_TPC5_EML] = mmTPC5_EML_ETF_BASE,
[GOYA_ETF_TPC6_EML] = mmTPC6_EML_ETF_BASE,
[GOYA_ETF_TPC7_EML] = mmTPC7_EML_ETF_BASE
};
static u64 debug_funnel_regs[GOYA_FUNNEL_LAST + 1] = {
[GOYA_FUNNEL_CPU] = mmCPU_FUNNEL_BASE,
[GOYA_FUNNEL_DMA_CH_6_1] = mmDMA_CH_FUNNEL_6_1_BASE,
[GOYA_FUNNEL_DMA_MACRO_3_1] = mmDMA_MACRO_FUNNEL_3_1_BASE,
[GOYA_FUNNEL_MME0_RTR] = mmMME0_RTR_FUNNEL_BASE,
[GOYA_FUNNEL_MME1_RTR] = mmMME1_RTR_FUNNEL_BASE,
[GOYA_FUNNEL_MME2_RTR] = mmMME2_RTR_FUNNEL_BASE,
[GOYA_FUNNEL_MME3_RTR] = mmMME3_RTR_FUNNEL_BASE,
[GOYA_FUNNEL_MME4_RTR] = mmMME4_RTR_FUNNEL_BASE,
[GOYA_FUNNEL_MME5_RTR] = mmMME5_RTR_FUNNEL_BASE,
[GOYA_FUNNEL_PCIE] = mmPCIE_FUNNEL_BASE,
[GOYA_FUNNEL_PSOC] = mmPSOC_FUNNEL_BASE,
[GOYA_FUNNEL_TPC0_EML] = mmTPC0_EML_FUNNEL_BASE,
[GOYA_FUNNEL_TPC1_EML] = mmTPC1_EML_FUNNEL_BASE,
[GOYA_FUNNEL_TPC1_RTR] = mmTPC1_RTR_FUNNEL_BASE,
[GOYA_FUNNEL_TPC2_EML] = mmTPC2_EML_FUNNEL_BASE,
[GOYA_FUNNEL_TPC2_RTR] = mmTPC2_RTR_FUNNEL_BASE,
[GOYA_FUNNEL_TPC3_EML] = mmTPC3_EML_FUNNEL_BASE,
[GOYA_FUNNEL_TPC3_RTR] = mmTPC3_RTR_FUNNEL_BASE,
[GOYA_FUNNEL_TPC4_EML] = mmTPC4_EML_FUNNEL_BASE,
[GOYA_FUNNEL_TPC4_RTR] = mmTPC4_RTR_FUNNEL_BASE,
[GOYA_FUNNEL_TPC5_EML] = mmTPC5_EML_FUNNEL_BASE,
[GOYA_FUNNEL_TPC5_RTR] = mmTPC5_RTR_FUNNEL_BASE,
[GOYA_FUNNEL_TPC6_EML] = mmTPC6_EML_FUNNEL_BASE,
[GOYA_FUNNEL_TPC6_RTR] = mmTPC6_RTR_FUNNEL_BASE,
[GOYA_FUNNEL_TPC7_EML] = mmTPC7_EML_FUNNEL_BASE
};
static u64 debug_bmon_regs[GOYA_BMON_LAST + 1] = {
[GOYA_BMON_CPU_RD] = mmCPU_RD_BMON_BASE,
[GOYA_BMON_CPU_WR] = mmCPU_WR_BMON_BASE,
[GOYA_BMON_DMA_CH_0_0] = mmDMA_CH_0_BMON_0_BASE,
[GOYA_BMON_DMA_CH_0_1] = mmDMA_CH_0_BMON_1_BASE,
[GOYA_BMON_DMA_CH_1_0] = mmDMA_CH_1_BMON_0_BASE,
[GOYA_BMON_DMA_CH_1_1] = mmDMA_CH_1_BMON_1_BASE,
[GOYA_BMON_DMA_CH_2_0] = mmDMA_CH_2_BMON_0_BASE,
[GOYA_BMON_DMA_CH_2_1] = mmDMA_CH_2_BMON_1_BASE,
[GOYA_BMON_DMA_CH_3_0] = mmDMA_CH_3_BMON_0_BASE,
[GOYA_BMON_DMA_CH_3_1] = mmDMA_CH_3_BMON_1_BASE,
[GOYA_BMON_DMA_CH_4_0] = mmDMA_CH_4_BMON_0_BASE,
[GOYA_BMON_DMA_CH_4_1] = mmDMA_CH_4_BMON_1_BASE,
[GOYA_BMON_DMA_MACRO_0] = mmDMA_MACRO_BMON_0_BASE,
[GOYA_BMON_DMA_MACRO_1] = mmDMA_MACRO_BMON_1_BASE,
[GOYA_BMON_DMA_MACRO_2] = mmDMA_MACRO_BMON_2_BASE,
[GOYA_BMON_DMA_MACRO_3] = mmDMA_MACRO_BMON_3_BASE,
[GOYA_BMON_DMA_MACRO_4] = mmDMA_MACRO_BMON_4_BASE,
[GOYA_BMON_DMA_MACRO_5] = mmDMA_MACRO_BMON_5_BASE,
[GOYA_BMON_DMA_MACRO_6] = mmDMA_MACRO_BMON_6_BASE,
[GOYA_BMON_DMA_MACRO_7] = mmDMA_MACRO_BMON_7_BASE,
[GOYA_BMON_MME1_SBA_0] = mmMME1_SBA_BMON0_BASE,
[GOYA_BMON_MME1_SBA_1] = mmMME1_SBA_BMON1_BASE,
[GOYA_BMON_MME3_SBB_0] = mmMME3_SBB_BMON0_BASE,
[GOYA_BMON_MME3_SBB_1] = mmMME3_SBB_BMON1_BASE,
[GOYA_BMON_MME4_WACS2_0] = mmMME4_WACS2_BMON0_BASE,
[GOYA_BMON_MME4_WACS2_1] = mmMME4_WACS2_BMON1_BASE,
[GOYA_BMON_MME4_WACS2_2] = mmMME4_WACS2_BMON2_BASE,
[GOYA_BMON_MME4_WACS_0] = mmMME4_WACS_BMON0_BASE,
[GOYA_BMON_MME4_WACS_1] = mmMME4_WACS_BMON1_BASE,
[GOYA_BMON_MME4_WACS_2] = mmMME4_WACS_BMON2_BASE,
[GOYA_BMON_MME4_WACS_3] = mmMME4_WACS_BMON3_BASE,
[GOYA_BMON_MME4_WACS_4] = mmMME4_WACS_BMON4_BASE,
[GOYA_BMON_MME4_WACS_5] = mmMME4_WACS_BMON5_BASE,
[GOYA_BMON_MME4_WACS_6] = mmMME4_WACS_BMON6_BASE,
[GOYA_BMON_MMU_0] = mmMMU_BMON_0_BASE,
[GOYA_BMON_MMU_1] = mmMMU_BMON_1_BASE,
[GOYA_BMON_PCIE_MSTR_RD] = mmPCIE_BMON_MSTR_RD_BASE,
[GOYA_BMON_PCIE_MSTR_WR] = mmPCIE_BMON_MSTR_WR_BASE,
[GOYA_BMON_PCIE_SLV_RD] = mmPCIE_BMON_SLV_RD_BASE,
[GOYA_BMON_PCIE_SLV_WR] = mmPCIE_BMON_SLV_WR_BASE,
[GOYA_BMON_TPC0_EML_0] = mmTPC0_EML_BUSMON_0_BASE,
[GOYA_BMON_TPC0_EML_1] = mmTPC0_EML_BUSMON_1_BASE,
[GOYA_BMON_TPC0_EML_2] = mmTPC0_EML_BUSMON_2_BASE,
[GOYA_BMON_TPC0_EML_3] = mmTPC0_EML_BUSMON_3_BASE,
[GOYA_BMON_TPC1_EML_0] = mmTPC1_EML_BUSMON_0_BASE,
[GOYA_BMON_TPC1_EML_1] = mmTPC1_EML_BUSMON_1_BASE,
[GOYA_BMON_TPC1_EML_2] = mmTPC1_EML_BUSMON_2_BASE,
[GOYA_BMON_TPC1_EML_3] = mmTPC1_EML_BUSMON_3_BASE,
[GOYA_BMON_TPC2_EML_0] = mmTPC2_EML_BUSMON_0_BASE,
[GOYA_BMON_TPC2_EML_1] = mmTPC2_EML_BUSMON_1_BASE,
[GOYA_BMON_TPC2_EML_2] = mmTPC2_EML_BUSMON_2_BASE,
[GOYA_BMON_TPC2_EML_3] = mmTPC2_EML_BUSMON_3_BASE,
[GOYA_BMON_TPC3_EML_0] = mmTPC3_EML_BUSMON_0_BASE,
[GOYA_BMON_TPC3_EML_1] = mmTPC3_EML_BUSMON_1_BASE,
[GOYA_BMON_TPC3_EML_2] = mmTPC3_EML_BUSMON_2_BASE,
[GOYA_BMON_TPC3_EML_3] = mmTPC3_EML_BUSMON_3_BASE,
[GOYA_BMON_TPC4_EML_0] = mmTPC4_EML_BUSMON_0_BASE,
[GOYA_BMON_TPC4_EML_1] = mmTPC4_EML_BUSMON_1_BASE,
[GOYA_BMON_TPC4_EML_2] = mmTPC4_EML_BUSMON_2_BASE,
[GOYA_BMON_TPC4_EML_3] = mmTPC4_EML_BUSMON_3_BASE,
[GOYA_BMON_TPC5_EML_0] = mmTPC5_EML_BUSMON_0_BASE,
[GOYA_BMON_TPC5_EML_1] = mmTPC5_EML_BUSMON_1_BASE,
[GOYA_BMON_TPC5_EML_2] = mmTPC5_EML_BUSMON_2_BASE,
[GOYA_BMON_TPC5_EML_3] = mmTPC5_EML_BUSMON_3_BASE,
[GOYA_BMON_TPC6_EML_0] = mmTPC6_EML_BUSMON_0_BASE,
[GOYA_BMON_TPC6_EML_1] = mmTPC6_EML_BUSMON_1_BASE,
[GOYA_BMON_TPC6_EML_2] = mmTPC6_EML_BUSMON_2_BASE,
[GOYA_BMON_TPC6_EML_3] = mmTPC6_EML_BUSMON_3_BASE,
[GOYA_BMON_TPC7_EML_0] = mmTPC7_EML_BUSMON_0_BASE,
[GOYA_BMON_TPC7_EML_1] = mmTPC7_EML_BUSMON_1_BASE,
[GOYA_BMON_TPC7_EML_2] = mmTPC7_EML_BUSMON_2_BASE,
[GOYA_BMON_TPC7_EML_3] = mmTPC7_EML_BUSMON_3_BASE
};
static u64 debug_spmu_regs[GOYA_SPMU_LAST + 1] = {
[GOYA_SPMU_DMA_CH_0_CS] = mmDMA_CH_0_CS_SPMU_BASE,
[GOYA_SPMU_DMA_CH_1_CS] = mmDMA_CH_1_CS_SPMU_BASE,
[GOYA_SPMU_DMA_CH_2_CS] = mmDMA_CH_2_CS_SPMU_BASE,
[GOYA_SPMU_DMA_CH_3_CS] = mmDMA_CH_3_CS_SPMU_BASE,
[GOYA_SPMU_DMA_CH_4_CS] = mmDMA_CH_4_CS_SPMU_BASE,
[GOYA_SPMU_DMA_MACRO_CS] = mmDMA_MACRO_CS_SPMU_BASE,
[GOYA_SPMU_MME1_SBA] = mmMME1_SBA_SPMU_BASE,
[GOYA_SPMU_MME3_SBB] = mmMME3_SBB_SPMU_BASE,
[GOYA_SPMU_MME4_WACS2] = mmMME4_WACS2_SPMU_BASE,
[GOYA_SPMU_MME4_WACS] = mmMME4_WACS_SPMU_BASE,
[GOYA_SPMU_MMU_CS] = mmMMU_CS_SPMU_BASE,
[GOYA_SPMU_PCIE] = mmPCIE_SPMU_BASE,
[GOYA_SPMU_TPC0_EML] = mmTPC0_EML_SPMU_BASE,
[GOYA_SPMU_TPC1_EML] = mmTPC1_EML_SPMU_BASE,
[GOYA_SPMU_TPC2_EML] = mmTPC2_EML_SPMU_BASE,
[GOYA_SPMU_TPC3_EML] = mmTPC3_EML_SPMU_BASE,
[GOYA_SPMU_TPC4_EML] = mmTPC4_EML_SPMU_BASE,
[GOYA_SPMU_TPC5_EML] = mmTPC5_EML_SPMU_BASE,
[GOYA_SPMU_TPC6_EML] = mmTPC6_EML_SPMU_BASE,
[GOYA_SPMU_TPC7_EML] = mmTPC7_EML_SPMU_BASE
};
static int goya_coresight_timeout(struct hl_device *hdev, u64 addr,
int position, bool up)
{
int rc;
u32 val, timeout_usec;
if (hdev->pldm)
timeout_usec = GOYA_PLDM_CORESIGHT_TIMEOUT_USEC;
else
timeout_usec = CORESIGHT_TIMEOUT_USEC;
rc = hl_poll_timeout(
hdev,
addr,
val,
up ? val & BIT(position) : !(val & BIT(position)),
1000,
timeout_usec);
if (rc) {
dev_err(hdev->dev,
"Timeout while waiting for coresight, addr: 0x%llx, position: %d, up: %d\n",
addr, position, up);
return -EFAULT;
}
return 0;
}
static int goya_config_stm(struct hl_device *hdev,
struct hl_debug_params *params)
{
struct hl_debug_params_stm *input;
u64 base_reg = debug_stm_regs[params->reg_idx] - CFG_BASE;
int rc;
WREG32(base_reg + 0xFB0, CORESIGHT_UNLOCK);
if (params->enable) {
input = params->input;
if (!input)
return -EINVAL;
WREG32(base_reg + 0xE80, 0x80004);
WREG32(base_reg + 0xD64, 7);
WREG32(base_reg + 0xD60, 0);
WREG32(base_reg + 0xD00, lower_32_bits(input->he_mask));
WREG32(base_reg + 0xD20, lower_32_bits(input->sp_mask));
WREG32(base_reg + 0xD60, 1);
WREG32(base_reg + 0xD00, upper_32_bits(input->he_mask));
WREG32(base_reg + 0xD20, upper_32_bits(input->sp_mask));
WREG32(base_reg + 0xE70, 0x10);
WREG32(base_reg + 0xE60, 0);
WREG32(base_reg + 0xE64, 0x420000);
WREG32(base_reg + 0xE00, 0xFFFFFFFF);
WREG32(base_reg + 0xE20, 0xFFFFFFFF);
WREG32(base_reg + 0xEF4, input->id);
WREG32(base_reg + 0xDF4, 0x80);
WREG32(base_reg + 0xE8C, input->frequency);
WREG32(base_reg + 0xE90, 0x7FF);
WREG32(base_reg + 0xE80, 0x7 | (input->id << 16));
} else {
WREG32(base_reg + 0xE80, 4);
WREG32(base_reg + 0xD64, 0);
WREG32(base_reg + 0xD60, 1);
WREG32(base_reg + 0xD00, 0);
WREG32(base_reg + 0xD20, 0);
WREG32(base_reg + 0xD60, 0);
WREG32(base_reg + 0xE20, 0);
WREG32(base_reg + 0xE00, 0);
WREG32(base_reg + 0xDF4, 0x80);
WREG32(base_reg + 0xE70, 0);
WREG32(base_reg + 0xE60, 0);
WREG32(base_reg + 0xE64, 0);
WREG32(base_reg + 0xE8C, 0);
rc = goya_coresight_timeout(hdev, base_reg + 0xE80, 23, false);
if (rc) {
dev_err(hdev->dev,
"Failed to disable STM on timeout, error %d\n",
rc);
return rc;
}
WREG32(base_reg + 0xE80, 4);
}
return 0;
}
static int goya_config_etf(struct hl_device *hdev,
struct hl_debug_params *params)
{
struct hl_debug_params_etf *input;
u64 base_reg = debug_etf_regs[params->reg_idx] - CFG_BASE;
u32 val;
int rc;
WREG32(base_reg + 0xFB0, CORESIGHT_UNLOCK);
val = RREG32(base_reg + 0x304);
val |= 0x1000;
WREG32(base_reg + 0x304, val);
val |= 0x40;
WREG32(base_reg + 0x304, val);
rc = goya_coresight_timeout(hdev, base_reg + 0x304, 6, false);
if (rc) {
dev_err(hdev->dev,
"Failed to %s ETF on timeout, error %d\n",
params->enable ? "enable" : "disable", rc);
return rc;
}
rc = goya_coresight_timeout(hdev, base_reg + 0xC, 2, true);
if (rc) {
dev_err(hdev->dev,
"Failed to %s ETF on timeout, error %d\n",
params->enable ? "enable" : "disable", rc);
return rc;
}
WREG32(base_reg + 0x20, 0);
if (params->enable) {
input = params->input;
if (!input)
return -EINVAL;
WREG32(base_reg + 0x34, 0x3FFC);
WREG32(base_reg + 0x28, input->sink_mode);
WREG32(base_reg + 0x304, 0x4001);
WREG32(base_reg + 0x308, 0xA);
WREG32(base_reg + 0x20, 1);
} else {
WREG32(base_reg + 0x34, 0);
WREG32(base_reg + 0x28, 0);
WREG32(base_reg + 0x304, 0);
}
return 0;
}
static int goya_etr_validate_address(struct hl_device *hdev, u64 addr,
u32 size)
{
struct asic_fixed_properties *prop = &hdev->asic_prop;
u64 range_start, range_end;
if (hdev->mmu_enable) {
range_start = prop->va_space_dram_start_address;
range_end = prop->va_space_dram_end_address;
} else {
range_start = prop->dram_user_base_address;
range_end = prop->dram_end_address;
}
return hl_mem_area_inside_range(addr, size, range_start, range_end);
}
static int goya_config_etr(struct hl_device *hdev,
struct hl_debug_params *params)
{
struct hl_debug_params_etr *input;
u64 base_reg = mmPSOC_ETR_BASE - CFG_BASE;
u32 val;
int rc;
WREG32(base_reg + 0xFB0, CORESIGHT_UNLOCK);
val = RREG32(base_reg + 0x304);
val |= 0x1000;
WREG32(base_reg + 0x304, val);
val |= 0x40;
WREG32(base_reg + 0x304, val);
rc = goya_coresight_timeout(hdev, base_reg + 0x304, 6, false);
if (rc) {
dev_err(hdev->dev, "Failed to %s ETR on timeout, error %d\n",
params->enable ? "enable" : "disable", rc);
return rc;
}
rc = goya_coresight_timeout(hdev, base_reg + 0xC, 2, true);
if (rc) {
dev_err(hdev->dev, "Failed to %s ETR on timeout, error %d\n",
params->enable ? "enable" : "disable", rc);
return rc;
}
WREG32(base_reg + 0x20, 0);
if (params->enable) {
input = params->input;
if (!input)
return -EINVAL;
if (input->buffer_size == 0) {
dev_err(hdev->dev,
"ETR buffer size should be bigger than 0\n");
return -EINVAL;
}
if (!goya_etr_validate_address(hdev,
input->buffer_address, input->buffer_size)) {
dev_err(hdev->dev, "buffer address is not valid\n");
return -EINVAL;
}
WREG32(base_reg + 0x34, 0x3FFC);
WREG32(base_reg + 0x4, input->buffer_size);
WREG32(base_reg + 0x28, input->sink_mode);
WREG32(base_reg + 0x110, 0x700);
WREG32(base_reg + 0x118,
lower_32_bits(input->buffer_address));
WREG32(base_reg + 0x11C,
upper_32_bits(input->buffer_address));
WREG32(base_reg + 0x304, 3);
WREG32(base_reg + 0x308, 0xA);
WREG32(base_reg + 0x20, 1);
} else {
WREG32(base_reg + 0x34, 0);
WREG32(base_reg + 0x4, 0x400);
WREG32(base_reg + 0x118, 0);
WREG32(base_reg + 0x11C, 0);
WREG32(base_reg + 0x308, 0);
WREG32(base_reg + 0x28, 0);
WREG32(base_reg + 0x304, 0);
if (params->output_size >= sizeof(u32))
*(u32 *) params->output = RREG32(base_reg + 0x18);
}
return 0;
}
static int goya_config_funnel(struct hl_device *hdev,
struct hl_debug_params *params)
{
WREG32(debug_funnel_regs[params->reg_idx] - CFG_BASE + 0xFB0,
CORESIGHT_UNLOCK);
WREG32(debug_funnel_regs[params->reg_idx] - CFG_BASE,
params->enable ? 0x33F : 0);
return 0;
}
static int goya_config_bmon(struct hl_device *hdev,
struct hl_debug_params *params)
{
struct hl_debug_params_bmon *input;
u64 base_reg = debug_bmon_regs[params->reg_idx] - CFG_BASE;
u32 pcie_base = 0;
WREG32(base_reg + 0x104, 1);
if (params->enable) {
input = params->input;
if (!input)
return -EINVAL;
WREG32(base_reg + 0x200, lower_32_bits(input->start_addr0));
WREG32(base_reg + 0x204, upper_32_bits(input->start_addr0));
WREG32(base_reg + 0x208, lower_32_bits(input->addr_mask0));
WREG32(base_reg + 0x20C, upper_32_bits(input->addr_mask0));
WREG32(base_reg + 0x240, lower_32_bits(input->start_addr1));
WREG32(base_reg + 0x244, upper_32_bits(input->start_addr1));
WREG32(base_reg + 0x248, lower_32_bits(input->addr_mask1));
WREG32(base_reg + 0x24C, upper_32_bits(input->addr_mask1));
WREG32(base_reg + 0x224, 0);
WREG32(base_reg + 0x234, 0);
WREG32(base_reg + 0x30C, input->bw_win);
WREG32(base_reg + 0x308, input->win_capture);
/* PCIE IF BMON bug WA */
if (params->reg_idx != GOYA_BMON_PCIE_MSTR_RD &&
params->reg_idx != GOYA_BMON_PCIE_MSTR_WR &&
params->reg_idx != GOYA_BMON_PCIE_SLV_RD &&
params->reg_idx != GOYA_BMON_PCIE_SLV_WR)
pcie_base = 0xA000000;
WREG32(base_reg + 0x700, pcie_base | 0xB00 | (input->id << 12));
WREG32(base_reg + 0x708, pcie_base | 0xA00 | (input->id << 12));
WREG32(base_reg + 0x70C, pcie_base | 0xC00 | (input->id << 12));
WREG32(base_reg + 0x100, 0x11);
WREG32(base_reg + 0x304, 0x1);
} else {
WREG32(base_reg + 0x200, 0);
WREG32(base_reg + 0x204, 0);
WREG32(base_reg + 0x208, 0xFFFFFFFF);
WREG32(base_reg + 0x20C, 0xFFFFFFFF);
WREG32(base_reg + 0x240, 0);
WREG32(base_reg + 0x244, 0);
WREG32(base_reg + 0x248, 0xFFFFFFFF);
WREG32(base_reg + 0x24C, 0xFFFFFFFF);
WREG32(base_reg + 0x224, 0xFFFFFFFF);
WREG32(base_reg + 0x234, 0x1070F);
WREG32(base_reg + 0x30C, 0);
WREG32(base_reg + 0x308, 0xFFFF);
WREG32(base_reg + 0x700, 0xA000B00);
WREG32(base_reg + 0x708, 0xA000A00);
WREG32(base_reg + 0x70C, 0xA000C00);
WREG32(base_reg + 0x100, 1);
WREG32(base_reg + 0x304, 0);
WREG32(base_reg + 0x104, 0);
}
return 0;
}
static int goya_config_spmu(struct hl_device *hdev,
struct hl_debug_params *params)
{
u64 base_reg = debug_spmu_regs[params->reg_idx] - CFG_BASE;
struct hl_debug_params_spmu *input = params->input;
u64 *output;
u32 output_arr_len;
u32 events_num;
u32 overflow_idx;
u32 cycle_cnt_idx;
int i;
if (params->enable) {
input = params->input;
if (!input)
return -EINVAL;
if (input->event_types_num < 3) {
dev_err(hdev->dev,
"not enough values for SPMU enable\n");
return -EINVAL;
}
WREG32(base_reg + 0xE04, 0x41013046);
WREG32(base_reg + 0xE04, 0x41013040);
for (i = 0 ; i < input->event_types_num ; i++)
WREG32(base_reg + 0x400 + i * 4, input->event_types[i]);
WREG32(base_reg + 0xE04, 0x41013041);
WREG32(base_reg + 0xC00, 0x8000003F);
} else {
output = params->output;
output_arr_len = params->output_size / 8;
events_num = output_arr_len - 2;
overflow_idx = output_arr_len - 2;
cycle_cnt_idx = output_arr_len - 1;
if (!output)
return -EINVAL;
if (output_arr_len < 3) {
dev_err(hdev->dev,
"not enough values for SPMU disable\n");
return -EINVAL;
}
WREG32(base_reg + 0xE04, 0x41013040);
for (i = 0 ; i < events_num ; i++)
output[i] = RREG32(base_reg + i * 8);
output[overflow_idx] = RREG32(base_reg + 0xCC0);
output[cycle_cnt_idx] = RREG32(base_reg + 0xFC);
output[cycle_cnt_idx] <<= 32;
output[cycle_cnt_idx] |= RREG32(base_reg + 0xF8);
WREG32(base_reg + 0xCC0, 0);
}
return 0;
}
static int goya_config_timestamp(struct hl_device *hdev,
struct hl_debug_params *params)
{
WREG32(mmPSOC_TIMESTAMP_BASE - CFG_BASE, 0);
if (params->enable) {
WREG32(mmPSOC_TIMESTAMP_BASE - CFG_BASE + 0xC, 0);
WREG32(mmPSOC_TIMESTAMP_BASE - CFG_BASE + 0x8, 0);
WREG32(mmPSOC_TIMESTAMP_BASE - CFG_BASE, 1);
}
return 0;
}
int goya_debug_coresight(struct hl_device *hdev, void *data)
{
struct hl_debug_params *params = data;
u32 val;
int rc;
switch (params->op) {
case HL_DEBUG_OP_STM:
rc = goya_config_stm(hdev, params);
break;
case HL_DEBUG_OP_ETF:
rc = goya_config_etf(hdev, params);
break;
case HL_DEBUG_OP_ETR:
rc = goya_config_etr(hdev, params);
break;
case HL_DEBUG_OP_FUNNEL:
rc = goya_config_funnel(hdev, params);
break;
case HL_DEBUG_OP_BMON:
rc = goya_config_bmon(hdev, params);
break;
case HL_DEBUG_OP_SPMU:
rc = goya_config_spmu(hdev, params);
break;
case HL_DEBUG_OP_TIMESTAMP:
rc = goya_config_timestamp(hdev, params);
break;
default:
dev_err(hdev->dev, "Unknown coresight id %d\n", params->op);
return -EINVAL;
}
/* Perform read from the device to flush all configuration */
val = RREG32(mmPCIE_DBI_DEVICE_ID_VENDOR_ID_REG);
return rc;
}

View File

@ -6,6 +6,7 @@
*/
#include "goyaP.h"
#include "include/goya/asic_reg/goya_regs.h"
/*
* goya_set_block_as_protected - set the given block as protected
@ -2159,6 +2160,8 @@ static void goya_init_protection_bits(struct hl_device *hdev)
* Bits 7-11 represents the word offset inside the 128 bytes.
* Bits 2-6 represents the bit location inside the word.
*/
u32 pb_addr, mask;
u8 word_offset;
goya_pb_set_block(hdev, mmPCI_NRTR_BASE);
goya_pb_set_block(hdev, mmPCI_RD_REGULATOR_BASE);
@ -2237,6 +2240,14 @@ static void goya_init_protection_bits(struct hl_device *hdev)
goya_pb_set_block(hdev, mmPCIE_AUX_BASE);
goya_pb_set_block(hdev, mmPCIE_DB_RSV_BASE);
goya_pb_set_block(hdev, mmPCIE_PHY_BASE);
goya_pb_set_block(hdev, mmTPC0_NRTR_BASE);
goya_pb_set_block(hdev, mmTPC_PLL_BASE);
pb_addr = (mmTPC_PLL_CLK_RLX_0 & ~0xFFF) + PROT_BITS_OFFS;
word_offset = ((mmTPC_PLL_CLK_RLX_0 & PROT_BITS_OFFS) >> 7) << 2;
mask = 1 << ((mmTPC_PLL_CLK_RLX_0 & 0x7C) >> 2);
WREG32(pb_addr + word_offset, mask);
goya_init_mme_protection_bits(hdev);
@ -2294,8 +2305,8 @@ void goya_init_security(struct hl_device *hdev)
u32 lbw_rng10_base = 0xFCC60000 & DMA_MACRO_LBW_RANGE_BASE_R_MASK;
u32 lbw_rng10_mask = 0xFFFE0000 & DMA_MACRO_LBW_RANGE_BASE_R_MASK;
u32 lbw_rng11_base = 0xFCE00000 & DMA_MACRO_LBW_RANGE_BASE_R_MASK;
u32 lbw_rng11_mask = 0xFFFFC000 & DMA_MACRO_LBW_RANGE_BASE_R_MASK;
u32 lbw_rng11_base = 0xFCE02000 & DMA_MACRO_LBW_RANGE_BASE_R_MASK;
u32 lbw_rng11_mask = 0xFFFFE000 & DMA_MACRO_LBW_RANGE_BASE_R_MASK;
u32 lbw_rng12_base = 0xFE484000 & DMA_MACRO_LBW_RANGE_BASE_R_MASK;
u32 lbw_rng12_mask = 0xFFFFF000 & DMA_MACRO_LBW_RANGE_BASE_R_MASK;

View File

@ -11,8 +11,6 @@
#include "include/armcp_if.h"
#include "include/qman_if.h"
#define pr_fmt(fmt) "habanalabs: " fmt
#include <linux/cdev.h>
#include <linux/iopoll.h>
#include <linux/irqreturn.h>
@ -33,6 +31,9 @@
#define HL_PLL_LOW_JOB_FREQ_USEC 5000000 /* 5 s */
#define HL_ARMCP_INFO_TIMEOUT_USEC 10000000 /* 10s */
#define HL_ARMCP_EEPROM_TIMEOUT_USEC 10000000 /* 10s */
#define HL_MAX_QUEUES 128
#define HL_MAX_JOBS_PER_CS 64
@ -48,8 +49,9 @@
/**
* struct pgt_info - MMU hop page info.
* @node: hash linked-list node for the pgts hash of pgts.
* @addr: physical address of the pgt.
* @node: hash linked-list node for the pgts shadow hash of pgts.
* @phys_addr: physical address of the pgt.
* @shadow_addr: shadow hop in the host.
* @ctx: pointer to the owner ctx.
* @num_of_ptes: indicates how many ptes are used in the pgt.
*
@ -59,10 +61,11 @@
* page, it is freed with its pgt_info structure.
*/
struct pgt_info {
struct hlist_node node;
u64 addr;
struct hl_ctx *ctx;
int num_of_ptes;
struct hlist_node node;
u64 phys_addr;
u64 shadow_addr;
struct hl_ctx *ctx;
int num_of_ptes;
};
struct hl_device;
@ -132,8 +135,6 @@ enum hl_device_hw_state {
* @dram_user_base_address: DRAM physical start address for user access.
* @dram_size: DRAM total size.
* @dram_pci_bar_size: size of PCI bar towards DRAM.
* @host_phys_base_address: base physical address of host memory for
* transactions that the device generates.
* @max_power_default: max power of the device after reset
* @va_space_host_start_address: base address of virtual memory range for
* mapping host memory.
@ -145,6 +146,8 @@ enum hl_device_hw_state {
* mapping DRAM memory.
* @dram_size_for_default_page_mapping: DRAM size needed to map to avoid page
* fault.
* @pcie_dbi_base_address: Base address of the PCIE_DBI block.
* @pcie_aux_dbi_reg_addr: Address of the PCIE_AUX DBI register.
* @mmu_pgt_addr: base physical address in DRAM of MMU page tables.
* @mmu_dram_default_page_addr: DRAM default page physical address.
* @mmu_pgt_size: MMU page tables total size.
@ -179,13 +182,14 @@ struct asic_fixed_properties {
u64 dram_user_base_address;
u64 dram_size;
u64 dram_pci_bar_size;
u64 host_phys_base_address;
u64 max_power_default;
u64 va_space_host_start_address;
u64 va_space_host_end_address;
u64 va_space_dram_start_address;
u64 va_space_dram_end_address;
u64 dram_size_for_default_page_mapping;
u64 pcie_dbi_base_address;
u64 pcie_aux_dbi_reg_addr;
u64 mmu_pgt_addr;
u64 mmu_dram_default_page_addr;
u32 mmu_pgt_size;
@ -314,6 +318,18 @@ struct hl_cs_job;
#define HL_EQ_LENGTH 64
#define HL_EQ_SIZE_IN_BYTES (HL_EQ_LENGTH * HL_EQ_ENTRY_SIZE)
#define HL_CPU_PKT_SHIFT 5
#define HL_CPU_PKT_SIZE (1 << HL_CPU_PKT_SHIFT)
#define HL_CPU_PKT_MASK (~((1 << HL_CPU_PKT_SHIFT) - 1))
#define HL_CPU_MAX_PKTS_IN_CB 32
#define HL_CPU_CB_SIZE (HL_CPU_PKT_SIZE * \
HL_CPU_MAX_PKTS_IN_CB)
#define HL_CPU_CB_QUEUE_SIZE (HL_QUEUE_LENGTH * HL_CPU_CB_SIZE)
/* KMD <-> ArmCP shared memory size (EQ + PQ + CPU CB queue) */
#define HL_CPU_ACCESSIBLE_MEM_SIZE (HL_EQ_SIZE_IN_BYTES + \
HL_QUEUE_SIZE_IN_BYTES + \
HL_CPU_CB_QUEUE_SIZE)
/**
* struct hl_hw_queue - describes a H/W transport queue.
@ -381,14 +397,12 @@ struct hl_eq {
/**
* enum hl_asic_type - supported ASIC types.
* @ASIC_AUTO_DETECT: ASIC type will be automatically set.
* @ASIC_GOYA: Goya device.
* @ASIC_INVALID: Invalid ASIC type.
* @ASIC_GOYA: Goya device.
*/
enum hl_asic_type {
ASIC_AUTO_DETECT,
ASIC_GOYA,
ASIC_INVALID
ASIC_INVALID,
ASIC_GOYA
};
struct hl_cs_parser;
@ -436,19 +450,19 @@ enum hl_pll_frequency {
* @cb_mmap: maps a CB.
* @ring_doorbell: increment PI on a given QMAN.
* @flush_pq_write: flush PQ entry write if necessary, WARN if flushing failed.
* @dma_alloc_coherent: Allocate coherent DMA memory by calling
* dma_alloc_coherent(). This is ASIC function because its
* implementation is not trivial when the driver is loaded
* in simulation mode (not upstreamed).
* @dma_free_coherent: Free coherent DMA memory by calling dma_free_coherent().
* This is ASIC function because its implementation is not
* trivial when the driver is loaded in simulation mode
* (not upstreamed).
* @asic_dma_alloc_coherent: Allocate coherent DMA memory by calling
* dma_alloc_coherent(). This is ASIC function because
* its implementation is not trivial when the driver
* is loaded in simulation mode (not upstreamed).
* @asic_dma_free_coherent: Free coherent DMA memory by calling
* dma_free_coherent(). This is ASIC function because
* its implementation is not trivial when the driver
* is loaded in simulation mode (not upstreamed).
* @get_int_queue_base: get the internal queue base address.
* @test_queues: run simple test on all queues for sanity check.
* @dma_pool_zalloc: small DMA allocation of coherent memory from DMA pool.
* size of allocation is HL_DMA_POOL_BLK_SIZE.
* @dma_pool_free: free small DMA allocation from pool.
* @asic_dma_pool_zalloc: small DMA allocation of coherent memory from DMA pool.
* size of allocation is HL_DMA_POOL_BLK_SIZE.
* @asic_dma_pool_free: free small DMA allocation from pool.
* @cpu_accessible_dma_pool_alloc: allocate CPU PQ packet from DMA pool.
* @cpu_accessible_dma_pool_free: free CPU PQ packet from DMA pool.
* @hl_dma_unmap_sg: DMA unmap scatter-gather list.
@ -472,8 +486,7 @@ enum hl_pll_frequency {
* @mmu_invalidate_cache_range: flush specific MMU STLB cache lines with
* ASID-VA-size mask.
* @send_heartbeat: send is-alive packet to ArmCP and verify response.
* @enable_clock_gating: enable clock gating for reducing power consumption.
* @disable_clock_gating: disable clock for accessing registers on HBW.
* @debug_coresight: perform certain actions on Coresight for debugging.
* @is_device_idle: return true if device is idle, false otherwise.
* @soft_reset_late_init: perform certain actions needed after soft reset.
* @hw_queues_lock: acquire H/W queues lock.
@ -482,6 +495,12 @@ enum hl_pll_frequency {
* @get_eeprom_data: retrieve EEPROM data from F/W.
* @send_cpu_message: send buffer to ArmCP.
* @get_hw_state: retrieve the H/W state
* @pci_bars_map: Map PCI BARs.
* @set_dram_bar_base: Set DRAM BAR to map specific device address. Returns
* old address the bar pointed to or U64_MAX for failure
* @init_iatu: Initialize the iATU unit inside the PCI controller.
* @rreg: Read a register. Needed for simulator support.
* @wreg: Write a register. Needed for simulator support.
*/
struct hl_asic_funcs {
int (*early_init)(struct hl_device *hdev);
@ -499,27 +518,27 @@ struct hl_asic_funcs {
u64 kaddress, phys_addr_t paddress, u32 size);
void (*ring_doorbell)(struct hl_device *hdev, u32 hw_queue_id, u32 pi);
void (*flush_pq_write)(struct hl_device *hdev, u64 *pq, u64 exp_val);
void* (*dma_alloc_coherent)(struct hl_device *hdev, size_t size,
void* (*asic_dma_alloc_coherent)(struct hl_device *hdev, size_t size,
dma_addr_t *dma_handle, gfp_t flag);
void (*dma_free_coherent)(struct hl_device *hdev, size_t size,
void (*asic_dma_free_coherent)(struct hl_device *hdev, size_t size,
void *cpu_addr, dma_addr_t dma_handle);
void* (*get_int_queue_base)(struct hl_device *hdev, u32 queue_id,
dma_addr_t *dma_handle, u16 *queue_len);
int (*test_queues)(struct hl_device *hdev);
void* (*dma_pool_zalloc)(struct hl_device *hdev, size_t size,
void* (*asic_dma_pool_zalloc)(struct hl_device *hdev, size_t size,
gfp_t mem_flags, dma_addr_t *dma_handle);
void (*dma_pool_free)(struct hl_device *hdev, void *vaddr,
void (*asic_dma_pool_free)(struct hl_device *hdev, void *vaddr,
dma_addr_t dma_addr);
void* (*cpu_accessible_dma_pool_alloc)(struct hl_device *hdev,
size_t size, dma_addr_t *dma_handle);
void (*cpu_accessible_dma_pool_free)(struct hl_device *hdev,
size_t size, void *vaddr);
void (*hl_dma_unmap_sg)(struct hl_device *hdev,
struct scatterlist *sg, int nents,
struct scatterlist *sgl, int nents,
enum dma_data_direction dir);
int (*cs_parser)(struct hl_device *hdev, struct hl_cs_parser *parser);
int (*asic_dma_map_sg)(struct hl_device *hdev,
struct scatterlist *sg, int nents,
struct scatterlist *sgl, int nents,
enum dma_data_direction dir);
u32 (*get_dma_desc_list_size)(struct hl_device *hdev,
struct sg_table *sgt);
@ -543,9 +562,8 @@ struct hl_asic_funcs {
void (*mmu_invalidate_cache_range)(struct hl_device *hdev, bool is_hard,
u32 asid, u64 va, u64 size);
int (*send_heartbeat)(struct hl_device *hdev);
void (*enable_clock_gating)(struct hl_device *hdev);
void (*disable_clock_gating)(struct hl_device *hdev);
bool (*is_device_idle)(struct hl_device *hdev);
int (*debug_coresight)(struct hl_device *hdev, void *data);
bool (*is_device_idle)(struct hl_device *hdev, char *buf, size_t size);
int (*soft_reset_late_init)(struct hl_device *hdev);
void (*hw_queues_lock)(struct hl_device *hdev);
void (*hw_queues_unlock)(struct hl_device *hdev);
@ -555,6 +573,11 @@ struct hl_asic_funcs {
int (*send_cpu_message)(struct hl_device *hdev, u32 *msg,
u16 len, u32 timeout, long *result);
enum hl_device_hw_state (*get_hw_state)(struct hl_device *hdev);
int (*pci_bars_map)(struct hl_device *hdev);
u64 (*set_dram_bar_base)(struct hl_device *hdev, u64 addr);
int (*init_iatu)(struct hl_device *hdev);
u32 (*rreg)(struct hl_device *hdev, u32 reg);
void (*wreg)(struct hl_device *hdev, u32 reg, u32 val);
};
@ -582,7 +605,8 @@ struct hl_va_range {
* struct hl_ctx - user/kernel context.
* @mem_hash: holds mapping from virtual address to virtual memory area
* descriptor (hl_vm_phys_pg_list or hl_userptr).
* @mmu_hash: holds a mapping from virtual address to pgt_info structure.
* @mmu_phys_hash: holds a mapping from physical address to pgt_info structure.
* @mmu_shadow_hash: holds a mapping from shadow address to pgt_info structure.
* @hpriv: pointer to the private (KMD) data of the process (fd).
* @hdev: pointer to the device structure.
* @refcount: reference counter for the context. Context is released only when
@ -601,17 +625,19 @@ struct hl_va_range {
* DRAM mapping.
* @cs_lock: spinlock to protect cs_sequence.
* @dram_phys_mem: amount of used physical DRAM memory by this context.
* @thread_restore_token: token to prevent multiple threads of the same context
* from running the restore phase. Only one thread
* should run it.
* @thread_restore_wait_token: token to prevent the threads that didn't run
* the restore phase from moving to their execution
* phase before the restore phase has finished.
* @thread_ctx_switch_token: token to prevent multiple threads of the same
* context from running the context switch phase.
* Only a single thread should run it.
* @thread_ctx_switch_wait_token: token to prevent the threads that didn't run
* the context switch phase from moving to their
* execution phase before the context switch phase
* has finished.
* @asid: context's unique address space ID in the device's MMU.
*/
struct hl_ctx {
DECLARE_HASHTABLE(mem_hash, MEM_HASH_TABLE_BITS);
DECLARE_HASHTABLE(mmu_hash, MMU_HASH_TABLE_BITS);
DECLARE_HASHTABLE(mmu_phys_hash, MMU_HASH_TABLE_BITS);
DECLARE_HASHTABLE(mmu_shadow_hash, MMU_HASH_TABLE_BITS);
struct hl_fpriv *hpriv;
struct hl_device *hdev;
struct kref refcount;
@ -625,8 +651,8 @@ struct hl_ctx {
u64 *dram_default_hops;
spinlock_t cs_lock;
atomic64_t dram_phys_mem;
atomic_t thread_restore_token;
u32 thread_restore_wait_token;
atomic_t thread_ctx_switch_token;
u32 thread_ctx_switch_wait_token;
u32 asid;
};
@ -753,8 +779,6 @@ struct hl_cs_job {
* @patched_cb_size: the size of the CB after parsing.
* @ext_queue: whether the job is for external queue or internal queue.
* @job_id: the id of the related job inside the related CS.
* @use_virt_addr: whether to treat the addresses in the CB as virtual during
* parsing.
*/
struct hl_cs_parser {
struct hl_cb *user_cb;
@ -767,7 +791,6 @@ struct hl_cs_parser {
u32 patched_cb_size;
u8 ext_queue;
u8 job_id;
u8 use_virt_addr;
};
@ -850,6 +873,29 @@ struct hl_vm {
u8 init_done;
};
/*
* DEBUG, PROFILING STRUCTURE
*/
/**
* struct hl_debug_params - Coresight debug parameters.
* @input: pointer to component specific input parameters.
* @output: pointer to component specific output parameters.
* @output_size: size of output buffer.
* @reg_idx: relevant register ID.
* @op: component operation to execute.
* @enable: true if to enable component debugging, false otherwise.
*/
struct hl_debug_params {
void *input;
void *output;
u32 output_size;
u32 reg_idx;
u32 op;
bool enable;
};
/*
* FILE PRIVATE STRUCTURE
*/
@ -973,13 +1019,10 @@ struct hl_dbg_device_entry {
u32 hl_rreg(struct hl_device *hdev, u32 reg);
void hl_wreg(struct hl_device *hdev, u32 reg, u32 val);
#define hl_poll_timeout(hdev, addr, val, cond, sleep_us, timeout_us) \
readl_poll_timeout(hdev->rmmio + addr, val, cond, sleep_us, timeout_us)
#define RREG32(reg) hl_rreg(hdev, (reg))
#define WREG32(reg, v) hl_wreg(hdev, (reg), (v))
#define RREG32(reg) hdev->asic_funcs->rreg(hdev, (reg))
#define WREG32(reg, v) hdev->asic_funcs->wreg(hdev, (reg), (v))
#define DREG32(reg) pr_info("REGISTER: " #reg " : 0x%08X\n", \
hl_rreg(hdev, (reg)))
hdev->asic_funcs->rreg(hdev, (reg)))
#define WREG32_P(reg, val, mask) \
do { \
@ -997,6 +1040,36 @@ void hl_wreg(struct hl_device *hdev, u32 reg, u32 val);
WREG32(mm##reg, (RREG32(mm##reg) & ~REG_FIELD_MASK(reg, field)) | \
(val) << REG_FIELD_SHIFT(reg, field))
#define hl_poll_timeout(hdev, addr, val, cond, sleep_us, timeout_us) \
({ \
ktime_t __timeout; \
/* timeout should be longer when working with simulator */ \
if (hdev->pdev) \
__timeout = ktime_add_us(ktime_get(), timeout_us); \
else \
__timeout = ktime_add_us(ktime_get(), (timeout_us * 10)); \
might_sleep_if(sleep_us); \
for (;;) { \
(val) = RREG32(addr); \
if (cond) \
break; \
if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \
(val) = RREG32(addr); \
break; \
} \
if (sleep_us) \
usleep_range((sleep_us >> 2) + 1, sleep_us); \
} \
(cond) ? 0 : -ETIMEDOUT; \
})
#define HL_ENG_BUSY(buf, size, fmt, ...) ({ \
if (buf) \
snprintf(buf, size, fmt, ##__VA_ARGS__); \
false; \
})
struct hwmon_chip_info;
/**
@ -1047,7 +1120,8 @@ struct hl_device_reset_work {
* @asic_specific: ASIC specific information to use only from ASIC files.
* @mmu_pgt_pool: pool of available MMU hops.
* @vm: virtual memory manager for MMU.
* @mmu_cache_lock: protects MMU cache invalidation as it can serve one context
* @mmu_cache_lock: protects MMU cache invalidation as it can serve one context.
* @mmu_shadow_hop0: shadow mapping of the MMU hop 0 zone.
* @hwmon_dev: H/W monitor device.
* @pm_mng_profile: current power management profile.
* @hl_chip_info: ASIC's sensors information.
@ -1082,6 +1156,7 @@ struct hl_device_reset_work {
* @init_done: is the initialization of the device done.
* @mmu_enable: is MMU enabled.
* @device_cpu_disabled: is the device CPU disabled (due to timeouts)
* @dma_mask: the dma mask that was set for this device
*/
struct hl_device {
struct pci_dev *pdev;
@ -1117,6 +1192,7 @@ struct hl_device {
struct gen_pool *mmu_pgt_pool;
struct hl_vm vm;
struct mutex mmu_cache_lock;
void *mmu_shadow_hop0;
struct device *hwmon_dev;
enum hl_pm_mng_profile pm_mng_profile;
struct hwmon_chip_info *hl_chip_info;
@ -1151,6 +1227,7 @@ struct hl_device {
u8 dram_default_page_mapping;
u8 init_done;
u8 device_cpu_disabled;
u8 dma_mask;
/* Parameters for bring-up */
u8 mmu_enable;
@ -1245,6 +1322,7 @@ static inline bool hl_mem_area_crosses_range(u64 address, u32 size,
int hl_device_open(struct inode *inode, struct file *filp);
bool hl_device_disabled_or_in_reset(struct hl_device *hdev);
enum hl_device_status hl_device_status(struct hl_device *hdev);
int create_hdev(struct hl_device **dev, struct pci_dev *pdev,
enum hl_asic_type asic_type, int minor);
void destroy_hdev(struct hl_device *hdev);
@ -1351,6 +1429,32 @@ int hl_mmu_unmap(struct hl_ctx *ctx, u64 virt_addr, u32 page_size);
void hl_mmu_swap_out(struct hl_ctx *ctx);
void hl_mmu_swap_in(struct hl_ctx *ctx);
int hl_fw_push_fw_to_device(struct hl_device *hdev, const char *fw_name,
void __iomem *dst);
int hl_fw_send_pci_access_msg(struct hl_device *hdev, u32 opcode);
int hl_fw_send_cpu_message(struct hl_device *hdev, u32 hw_queue_id, u32 *msg,
u16 len, u32 timeout, long *result);
int hl_fw_test_cpu_queue(struct hl_device *hdev);
void *hl_fw_cpu_accessible_dma_pool_alloc(struct hl_device *hdev, size_t size,
dma_addr_t *dma_handle);
void hl_fw_cpu_accessible_dma_pool_free(struct hl_device *hdev, size_t size,
void *vaddr);
int hl_fw_send_heartbeat(struct hl_device *hdev);
int hl_fw_armcp_info_get(struct hl_device *hdev);
int hl_fw_get_eeprom_data(struct hl_device *hdev, void *data, size_t max_size);
int hl_pci_bars_map(struct hl_device *hdev, const char * const name[3],
bool is_wc[3]);
int hl_pci_iatu_write(struct hl_device *hdev, u32 addr, u32 data);
int hl_pci_set_dram_bar_base(struct hl_device *hdev, u8 inbound_region, u8 bar,
u64 addr);
int hl_pci_init_iatu(struct hl_device *hdev, u64 sram_base_address,
u64 dram_base_address, u64 host_phys_base_address,
u64 host_phys_size);
int hl_pci_init(struct hl_device *hdev, u8 dma_mask);
void hl_pci_fini(struct hl_device *hdev);
int hl_pci_set_dma_mask(struct hl_device *hdev, u8 dma_mask);
long hl_get_frequency(struct hl_device *hdev, u32 pll_index, bool curr);
void hl_set_frequency(struct hl_device *hdev, u32 pll_index, u64 freq);
long hl_get_temperature(struct hl_device *hdev, int sensor_index, u32 attr);

View File

@ -6,6 +6,8 @@
*
*/
#define pr_fmt(fmt) "habanalabs: " fmt
#include "habanalabs.h"
#include <linux/pci.h>
@ -218,7 +220,7 @@ int create_hdev(struct hl_device **dev, struct pci_dev *pdev,
hdev->disabled = true;
hdev->pdev = pdev; /* can be NULL in case of simulator device */
if (asic_type == ASIC_AUTO_DETECT) {
if (pdev) {
hdev->asic_type = get_asic_type(pdev->device);
if (hdev->asic_type == ASIC_INVALID) {
dev_err(&pdev->dev, "Unsupported ASIC\n");
@ -229,6 +231,9 @@ int create_hdev(struct hl_device **dev, struct pci_dev *pdev,
hdev->asic_type = asic_type;
}
/* Set default DMA mask to 32 bits */
hdev->dma_mask = 32;
mutex_lock(&hl_devs_idr_lock);
if (minor == -1) {
@ -334,7 +339,7 @@ static int hl_pci_probe(struct pci_dev *pdev,
" device found [%04x:%04x] (rev %x)\n",
(int)pdev->vendor, (int)pdev->device, (int)pdev->revision);
rc = create_hdev(&hdev, pdev, ASIC_AUTO_DETECT, -1);
rc = create_hdev(&hdev, pdev, ASIC_INVALID, -1);
if (rc)
return rc;

View File

@ -12,6 +12,32 @@
#include <linux/uaccess.h>
#include <linux/slab.h>
static u32 hl_debug_struct_size[HL_DEBUG_OP_TIMESTAMP + 1] = {
[HL_DEBUG_OP_ETR] = sizeof(struct hl_debug_params_etr),
[HL_DEBUG_OP_ETF] = sizeof(struct hl_debug_params_etf),
[HL_DEBUG_OP_STM] = sizeof(struct hl_debug_params_stm),
[HL_DEBUG_OP_FUNNEL] = 0,
[HL_DEBUG_OP_BMON] = sizeof(struct hl_debug_params_bmon),
[HL_DEBUG_OP_SPMU] = sizeof(struct hl_debug_params_spmu),
[HL_DEBUG_OP_TIMESTAMP] = 0
};
static int device_status_info(struct hl_device *hdev, struct hl_info_args *args)
{
struct hl_info_device_status dev_stat = {0};
u32 size = args->return_size;
void __user *out = (void __user *) (uintptr_t) args->return_pointer;
if ((!size) || (!out))
return -EINVAL;
dev_stat.status = hl_device_status(hdev);
return copy_to_user(out, &dev_stat,
min((size_t)size, sizeof(dev_stat))) ? -EFAULT : 0;
}
static int hw_ip_info(struct hl_device *hdev, struct hl_info_args *args)
{
struct hl_info_hw_ip_info hw_ip = {0};
@ -93,21 +119,91 @@ static int hw_idle(struct hl_device *hdev, struct hl_info_args *args)
if ((!max_size) || (!out))
return -EINVAL;
hw_idle.is_idle = hdev->asic_funcs->is_device_idle(hdev);
hw_idle.is_idle = hdev->asic_funcs->is_device_idle(hdev, NULL, 0);
return copy_to_user(out, &hw_idle,
min((size_t) max_size, sizeof(hw_idle))) ? -EFAULT : 0;
}
static int debug_coresight(struct hl_device *hdev, struct hl_debug_args *args)
{
struct hl_debug_params *params;
void *input = NULL, *output = NULL;
int rc;
params = kzalloc(sizeof(*params), GFP_KERNEL);
if (!params)
return -ENOMEM;
params->reg_idx = args->reg_idx;
params->enable = args->enable;
params->op = args->op;
if (args->input_ptr && args->input_size) {
input = memdup_user((const void __user *) args->input_ptr,
args->input_size);
if (IS_ERR(input)) {
rc = PTR_ERR(input);
input = NULL;
dev_err(hdev->dev,
"error %d when copying input debug data\n", rc);
goto out;
}
params->input = input;
}
if (args->output_ptr && args->output_size) {
output = kzalloc(args->output_size, GFP_KERNEL);
if (!output) {
rc = -ENOMEM;
goto out;
}
params->output = output;
params->output_size = args->output_size;
}
rc = hdev->asic_funcs->debug_coresight(hdev, params);
if (rc) {
dev_err(hdev->dev,
"debug coresight operation failed %d\n", rc);
goto out;
}
if (output) {
if (copy_to_user((void __user *) (uintptr_t) args->output_ptr,
output,
args->output_size)) {
dev_err(hdev->dev,
"copy to user failed in debug ioctl\n");
rc = -EFAULT;
goto out;
}
}
out:
kfree(params);
kfree(output);
kfree(input);
return rc;
}
static int hl_info_ioctl(struct hl_fpriv *hpriv, void *data)
{
struct hl_info_args *args = data;
struct hl_device *hdev = hpriv->hdev;
int rc;
/* We want to return device status even if it disabled or in reset */
if (args->op == HL_INFO_DEVICE_STATUS)
return device_status_info(hdev, args);
if (hl_device_disabled_or_in_reset(hdev)) {
dev_err(hdev->dev,
"Device is disabled or in reset. Can't execute INFO IOCTL\n");
dev_warn_ratelimited(hdev->dev,
"Device is %s. Can't execute INFO IOCTL\n",
atomic_read(&hdev->in_reset) ? "in_reset" : "disabled");
return -EBUSY;
}
@ -137,6 +233,40 @@ static int hl_info_ioctl(struct hl_fpriv *hpriv, void *data)
return rc;
}
static int hl_debug_ioctl(struct hl_fpriv *hpriv, void *data)
{
struct hl_debug_args *args = data;
struct hl_device *hdev = hpriv->hdev;
int rc = 0;
if (hl_device_disabled_or_in_reset(hdev)) {
dev_warn_ratelimited(hdev->dev,
"Device is %s. Can't execute DEBUG IOCTL\n",
atomic_read(&hdev->in_reset) ? "in_reset" : "disabled");
return -EBUSY;
}
switch (args->op) {
case HL_DEBUG_OP_ETR:
case HL_DEBUG_OP_ETF:
case HL_DEBUG_OP_STM:
case HL_DEBUG_OP_FUNNEL:
case HL_DEBUG_OP_BMON:
case HL_DEBUG_OP_SPMU:
case HL_DEBUG_OP_TIMESTAMP:
args->input_size =
min(args->input_size, hl_debug_struct_size[args->op]);
rc = debug_coresight(hdev, args);
break;
default:
dev_err(hdev->dev, "Invalid request %d\n", args->op);
rc = -ENOTTY;
break;
}
return rc;
}
#define HL_IOCTL_DEF(ioctl, _func) \
[_IOC_NR(ioctl)] = {.cmd = ioctl, .func = _func}
@ -145,7 +275,8 @@ static const struct hl_ioctl_desc hl_ioctls[] = {
HL_IOCTL_DEF(HL_IOCTL_CB, hl_cb_ioctl),
HL_IOCTL_DEF(HL_IOCTL_CS, hl_cs_ioctl),
HL_IOCTL_DEF(HL_IOCTL_WAIT_CS, hl_cs_wait_ioctl),
HL_IOCTL_DEF(HL_IOCTL_MEMORY, hl_mem_ioctl)
HL_IOCTL_DEF(HL_IOCTL_MEMORY, hl_mem_ioctl),
HL_IOCTL_DEF(HL_IOCTL_DEBUG, hl_debug_ioctl)
};
#define HL_CORE_IOCTL_COUNT ARRAY_SIZE(hl_ioctls)

View File

@ -82,7 +82,7 @@ static void ext_queue_submit_bd(struct hl_device *hdev, struct hl_hw_queue *q,
bd += hl_pi_2_offset(q->pi);
bd->ctl = __cpu_to_le32(ctl);
bd->len = __cpu_to_le32(len);
bd->ptr = __cpu_to_le64(ptr + hdev->asic_prop.host_phys_base_address);
bd->ptr = __cpu_to_le64(ptr);
q->pi = hl_queue_inc_ptr(q->pi);
hdev->asic_funcs->ring_doorbell(hdev, q->hw_queue_id, q->pi);
@ -263,9 +263,7 @@ static void ext_hw_queue_schedule_job(struct hl_cs_job *job)
* checked in hl_queue_sanity_checks
*/
cq = &hdev->completion_queue[q->hw_queue_id];
cq_addr = cq->bus_address +
hdev->asic_prop.host_phys_base_address;
cq_addr += cq->pi * sizeof(struct hl_cq_entry);
cq_addr = cq->bus_address + cq->pi * sizeof(struct hl_cq_entry);
hdev->asic_funcs->add_end_of_cb_packets(cb->kernel_address, len,
cq_addr,
@ -415,14 +413,20 @@ void hl_hw_queue_inc_ci_kernel(struct hl_device *hdev, u32 hw_queue_id)
}
static int ext_and_cpu_hw_queue_init(struct hl_device *hdev,
struct hl_hw_queue *q)
struct hl_hw_queue *q, bool is_cpu_queue)
{
void *p;
int rc;
p = hdev->asic_funcs->dma_alloc_coherent(hdev,
HL_QUEUE_SIZE_IN_BYTES,
&q->bus_address, GFP_KERNEL | __GFP_ZERO);
if (is_cpu_queue)
p = hdev->asic_funcs->cpu_accessible_dma_pool_alloc(hdev,
HL_QUEUE_SIZE_IN_BYTES,
&q->bus_address);
else
p = hdev->asic_funcs->asic_dma_alloc_coherent(hdev,
HL_QUEUE_SIZE_IN_BYTES,
&q->bus_address,
GFP_KERNEL | __GFP_ZERO);
if (!p)
return -ENOMEM;
@ -446,8 +450,15 @@ static int ext_and_cpu_hw_queue_init(struct hl_device *hdev,
return 0;
free_queue:
hdev->asic_funcs->dma_free_coherent(hdev, HL_QUEUE_SIZE_IN_BYTES,
(void *) (uintptr_t) q->kernel_address, q->bus_address);
if (is_cpu_queue)
hdev->asic_funcs->cpu_accessible_dma_pool_free(hdev,
HL_QUEUE_SIZE_IN_BYTES,
(void *) (uintptr_t) q->kernel_address);
else
hdev->asic_funcs->asic_dma_free_coherent(hdev,
HL_QUEUE_SIZE_IN_BYTES,
(void *) (uintptr_t) q->kernel_address,
q->bus_address);
return rc;
}
@ -474,12 +485,12 @@ static int int_hw_queue_init(struct hl_device *hdev, struct hl_hw_queue *q)
static int cpu_hw_queue_init(struct hl_device *hdev, struct hl_hw_queue *q)
{
return ext_and_cpu_hw_queue_init(hdev, q);
return ext_and_cpu_hw_queue_init(hdev, q, true);
}
static int ext_hw_queue_init(struct hl_device *hdev, struct hl_hw_queue *q)
{
return ext_and_cpu_hw_queue_init(hdev, q);
return ext_and_cpu_hw_queue_init(hdev, q, false);
}
/*
@ -569,8 +580,15 @@ static void hw_queue_fini(struct hl_device *hdev, struct hl_hw_queue *q)
kfree(q->shadow_queue);
hdev->asic_funcs->dma_free_coherent(hdev, HL_QUEUE_SIZE_IN_BYTES,
(void *) (uintptr_t) q->kernel_address, q->bus_address);
if (q->queue_type == QUEUE_TYPE_CPU)
hdev->asic_funcs->cpu_accessible_dma_pool_free(hdev,
HL_QUEUE_SIZE_IN_BYTES,
(void *) (uintptr_t) q->kernel_address);
else
hdev->asic_funcs->asic_dma_free_coherent(hdev,
HL_QUEUE_SIZE_IN_BYTES,
(void *) (uintptr_t) q->kernel_address,
q->bus_address);
}
int hl_hw_queues_create(struct hl_device *hdev)

View File

@ -32,8 +32,6 @@ struct hl_eq_entry {
#define EQ_CTL_EVENT_TYPE_SHIFT 16
#define EQ_CTL_EVENT_TYPE_MASK 0x03FF0000
#define EVENT_QUEUE_MSIX_IDX 5
enum pq_init_status {
PQ_INIT_STATUS_NA = 0,
PQ_INIT_STATUS_READY_FOR_CP,

View File

@ -188,4 +188,3 @@
#define CPU_CA53_CFG_ARM_PMU_EVENT_MASK 0x3FFFFFFF
#endif /* ASIC_REG_CPU_CA53_CFG_MASKS_H_ */

View File

@ -58,4 +58,3 @@
#define mmCPU_CA53_CFG_ARM_PMU_1 0x441214
#endif /* ASIC_REG_CPU_CA53_CFG_REGS_H_ */

View File

@ -46,4 +46,3 @@
#define mmCPU_IF_AXI_SPLIT_INTR 0x442130
#endif /* ASIC_REG_CPU_IF_REGS_H_ */

View File

@ -102,4 +102,3 @@
#define mmCPU_PLL_FREQ_CALC_EN 0x4A2440
#endif /* ASIC_REG_CPU_PLL_REGS_H_ */

View File

@ -206,4 +206,3 @@
#define mmDMA_CH_0_MEM_INIT_BUSY 0x4011FC
#endif /* ASIC_REG_DMA_CH_0_REGS_H_ */

View File

@ -206,4 +206,3 @@
#define mmDMA_CH_1_MEM_INIT_BUSY 0x4091FC
#endif /* ASIC_REG_DMA_CH_1_REGS_H_ */

View File

@ -206,4 +206,3 @@
#define mmDMA_CH_2_MEM_INIT_BUSY 0x4111FC
#endif /* ASIC_REG_DMA_CH_2_REGS_H_ */

View File

@ -206,4 +206,3 @@
#define mmDMA_CH_3_MEM_INIT_BUSY 0x4191FC
#endif /* ASIC_REG_DMA_CH_3_REGS_H_ */

View File

@ -206,4 +206,3 @@
#define mmDMA_CH_4_MEM_INIT_BUSY 0x4211FC
#endif /* ASIC_REG_DMA_CH_4_REGS_H_ */

View File

@ -102,4 +102,3 @@
#define DMA_MACRO_RAZWI_HBW_RD_ID_R_MASK 0x1FFFFFFF
#endif /* ASIC_REG_DMA_MACRO_MASKS_H_ */

View File

@ -178,4 +178,3 @@
#define mmDMA_MACRO_RAZWI_HBW_RD_ID 0x4B0158
#endif /* ASIC_REG_DMA_MACRO_REGS_H_ */

View File

@ -206,4 +206,3 @@
#define DMA_NRTR_NON_LIN_SCRAMB_EN_MASK 0x1
#endif /* ASIC_REG_DMA_NRTR_MASKS_H_ */

View File

@ -224,4 +224,3 @@
#define mmDMA_NRTR_NON_LIN_SCRAMB 0x1C0604
#endif /* ASIC_REG_DMA_NRTR_REGS_H_ */

View File

@ -462,4 +462,3 @@
#define DMA_QM_0_CQ_BUF_RDATA_VAL_MASK 0xFFFFFFFF
#endif /* ASIC_REG_DMA_QM_0_MASKS_H_ */

View File

@ -176,4 +176,3 @@
#define mmDMA_QM_0_CQ_BUF_RDATA 0x40030C
#endif /* ASIC_REG_DMA_QM_0_REGS_H_ */

View File

@ -176,4 +176,3 @@
#define mmDMA_QM_1_CQ_BUF_RDATA 0x40830C
#endif /* ASIC_REG_DMA_QM_1_REGS_H_ */

View File

@ -176,4 +176,3 @@
#define mmDMA_QM_2_CQ_BUF_RDATA 0x41030C
#endif /* ASIC_REG_DMA_QM_2_REGS_H_ */

View File

@ -176,4 +176,3 @@
#define mmDMA_QM_3_CQ_BUF_RDATA 0x41830C
#endif /* ASIC_REG_DMA_QM_3_REGS_H_ */

View File

@ -176,4 +176,3 @@
#define mmDMA_QM_4_CQ_BUF_RDATA 0x42030C
#endif /* ASIC_REG_DMA_QM_4_REGS_H_ */

View File

@ -189,18 +189,6 @@
1 << CPU_CA53_CFG_ARM_RST_CONTROL_NL2RESET_SHIFT |\
1 << CPU_CA53_CFG_ARM_RST_CONTROL_NMBISTRESET_SHIFT)
/* PCI CONFIGURATION SPACE */
#define mmPCI_CONFIG_ELBI_ADDR 0xFF0
#define mmPCI_CONFIG_ELBI_DATA 0xFF4
#define mmPCI_CONFIG_ELBI_CTRL 0xFF8
#define PCI_CONFIG_ELBI_CTRL_WRITE (1 << 31)
#define mmPCI_CONFIG_ELBI_STS 0xFFC
#define PCI_CONFIG_ELBI_STS_ERR (1 << 30)
#define PCI_CONFIG_ELBI_STS_DONE (1 << 31)
#define PCI_CONFIG_ELBI_STS_MASK (PCI_CONFIG_ELBI_STS_ERR | \
PCI_CONFIG_ELBI_STS_DONE)
#define GOYA_IRQ_HBW_ID_MASK 0x1FFF
#define GOYA_IRQ_HBW_ID_SHIFT 0
#define GOYA_IRQ_HBW_INTERNAL_ID_MASK 0xE000

View File

@ -1,6 +1,6 @@
/* SPDX-License-Identifier: GPL-2.0
*
* Copyright 2016-2018 HabanaLabs, Ltd.
* Copyright 2016-2019 HabanaLabs, Ltd.
* All Rights Reserved.
*
*/
@ -12,6 +12,7 @@
#include "stlb_regs.h"
#include "mmu_regs.h"
#include "pcie_aux_regs.h"
#include "pcie_wrap_regs.h"
#include "psoc_global_conf_regs.h"
#include "psoc_spi_regs.h"
#include "psoc_mme_pll_regs.h"

View File

@ -102,4 +102,3 @@
#define mmIC_PLL_FREQ_CALC_EN 0x4A3440
#endif /* ASIC_REG_IC_PLL_REGS_H_ */

View File

@ -102,4 +102,3 @@
#define mmMC_PLL_FREQ_CALC_EN 0x4A1440
#endif /* ASIC_REG_MC_PLL_REGS_H_ */

View File

@ -650,4 +650,3 @@
#define MME1_RTR_NON_LIN_SCRAMB_EN_MASK 0x1
#endif /* ASIC_REG_MME1_RTR_MASKS_H_ */

View File

@ -328,4 +328,3 @@
#define mmMME1_RTR_NON_LIN_SCRAMB 0x40604
#endif /* ASIC_REG_MME1_RTR_REGS_H_ */

View File

@ -328,4 +328,3 @@
#define mmMME2_RTR_NON_LIN_SCRAMB 0x80604
#endif /* ASIC_REG_MME2_RTR_REGS_H_ */

View File

@ -328,4 +328,3 @@
#define mmMME3_RTR_NON_LIN_SCRAMB 0xC0604
#endif /* ASIC_REG_MME3_RTR_REGS_H_ */

View File

@ -328,4 +328,3 @@
#define mmMME4_RTR_NON_LIN_SCRAMB 0x100604
#endif /* ASIC_REG_MME4_RTR_REGS_H_ */

View File

@ -328,4 +328,3 @@
#define mmMME5_RTR_NON_LIN_SCRAMB 0x140604
#endif /* ASIC_REG_MME5_RTR_REGS_H_ */

View File

@ -328,4 +328,3 @@
#define mmMME6_RTR_NON_LIN_SCRAMB 0x180604
#endif /* ASIC_REG_MME6_RTR_REGS_H_ */

Some files were not shown because too many files have changed in this diff Show More