Implement the data plane of on-demand read mode.
The early implementation [1] place the entry to
cachefiles_ondemand_read() in fscache_read(). However, fscache_read()
can only detect if the requested file range is fully cache miss, whilst
we need to notify the user daemon as long as there's a hole inside the
requested file range.
Thus the entry is now placed in cachefiles_prepare_read(). When working
in on-demand read mode, once a hole detected, the read routine will send
a READ request to the user daemon. The user daemon needs to fetch the
data and write it to the cache file. After sending the READ request, the
read routine will hang there, until the READ request is handled by the
user daemon. Then it will retry to read from the same file range. If no
progress encountered, the read routine will fail then.
A new NETFS_SREQ_ONDEMAND flag is introduced to indicate that on-demand
read should be done when a cache miss encountered.
[1] https://lore.kernel.org/all/20220406075612.60298-6-jefflexu@linux.alibaba.com/ #v8
Signed-off-by: Jeffle Xu <jefflexu@linux.alibaba.com>
Acked-by: David Howells <dhowells@redhat.com>
Link: https://lore.kernel.org/r/20220425122143.56815-6-jefflexu@linux.alibaba.com
Signed-off-by: Gao Xiang <hsiangkao@linux.alibaba.com>
Notify the user daemon that cookie is going to be withdrawn, providing a
hint that the associated anonymous fd can be closed.
Be noted that this is only a hint. The user daemon may close the
associated anonymous fd when receiving the CLOSE request, then it will
receive another anonymous fd when the cookie gets looked up. Or it may
ignore the CLOSE request, and keep writing data through the anonymous
fd. However the next time the cookie gets looked up, the user daemon
will still receive another new anonymous fd.
Signed-off-by: Jeffle Xu <jefflexu@linux.alibaba.com>
Acked-by: David Howells <dhowells@redhat.com>
Link: https://lore.kernel.org/r/20220425122143.56815-5-jefflexu@linux.alibaba.com
Signed-off-by: Gao Xiang <hsiangkao@linux.alibaba.com>
Add a refcount to avoid the deadlock in on-demand read mode. The
on-demand read mode will pin the corresponding cachefiles object for
each anonymous fd. The cachefiles object is unpinned when the anonymous
fd gets closed. When the user daemon exits and the fd of
"/dev/cachefiles" device node gets closed, it will wait for all
cahcefiles objects getting withdrawn. Then if there's any anonymous fd
getting closed after the fd of the device node, the user daemon will
hang forever, waiting for all objects getting withdrawn.
To fix this, add a refcount indicating if there's any object pinned by
anonymous fds. The cachefiles cache gets unbound and withdrawn when the
refcount is decreased to 0. It won't change the behaviour of the
original mode, in which case the cachefiles cache gets unbound and
withdrawn as long as the fd of the device node gets closed.
Signed-off-by: Jeffle Xu <jefflexu@linux.alibaba.com>
Link: https://lore.kernel.org/r/20220509074028.74954-4-jefflexu@linux.alibaba.com
Acked-by: David Howells <dhowells@redhat.com>
Signed-off-by: Gao Xiang <hsiangkao@linux.alibaba.com>
Fscache/CacheFiles used to serve as a local cache for a remote
networking fs. A new on-demand read mode will be introduced for
CacheFiles, which can boost the scenario where on-demand read semantics
are needed, e.g. container image distribution.
The essential difference between these two modes is seen when a cache
miss occurs: In the original mode, the netfs will fetch the data from
the remote server and then write it to the cache file; in on-demand
read mode, fetching the data and writing it into the cache is delegated
to a user daemon.
As the first step, notify the user daemon when looking up cookie. In
this case, an anonymous fd is sent to the user daemon, through which the
user daemon can write the fetched data to the cache file. Since the user
daemon may move the anonymous fd around, e.g. through dup(), an object
ID uniquely identifying the cache file is also attached.
Also add one advisory flag (FSCACHE_ADV_WANT_CACHE_SIZE) suggesting that
the cache file size shall be retrieved at runtime. This helps the
scenario where one cache file contains multiple netfs files, e.g. for
the purpose of deduplication. In this case, netfs itself has no idea the
size of the cache file, whilst the user daemon should give the hint on
it.
Signed-off-by: Jeffle Xu <jefflexu@linux.alibaba.com>
Link: https://lore.kernel.org/r/20220509074028.74954-3-jefflexu@linux.alibaba.com
Acked-by: David Howells <dhowells@redhat.com>
Signed-off-by: Gao Xiang <hsiangkao@linux.alibaba.com>
Extract the generic routine of writing data to cache files, and make it
generally available.
This will be used by the following patch implementing on-demand read
mode. Since it's called inside CacheFiles module, make the interface
generic and unrelated to netfs_cache_resources.
It is worth noting that, ki->inval_counter is not initialized after
this cleanup. It shall not make any visible difference, since
inval_counter is no longer used in the write completion routine, i.e.
cachefiles_write_complete().
Signed-off-by: Jeffle Xu <jefflexu@linux.alibaba.com>
Acked-by: David Howells <dhowells@redhat.com>
Link: https://lore.kernel.org/r/20220425122143.56815-2-jefflexu@linux.alibaba.com
Signed-off-by: Gao Xiang <hsiangkao@linux.alibaba.com>
Cachefiles keeps track of how much space is available on the backing
filesystem and refuses new writes permission to start if there isn't enough
(we especially don't want ENOSPC happening). It also tracks the amount of
data pending in DIO writes (cache->b_writing) and reduces the amount of
free space available by this amount before deciding if it can set up a new
write.
However, the old fscache I/O API was very much page-granularity dependent
and, as such, cachefiles's cache->bshift was meant to be a multiplier to
get from PAGE_SIZE to block size (ie. a blocksize of 512 would give a shift
of 3 for a 4KiB page) - and this was incorrectly being used to turn the
number of bytes in a DIO write into a number of blocks, leading to a
massive over estimation of the amount of data in flight.
Fix this by changing cache->bshift to be a multiplier from bytes to
blocksize and deal with quantities of blocks, not quantities of pages.
Fix also the rounding in the calculation in cachefiles_write() which needs
a "- 1" inserting.
Fixes: 047487c947 ("cachefiles: Implement the I/O routines")
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Jeff Layton <jlayton@kernel.org>
cc: linux-cachefs@redhat.com
Link: https://lore.kernel.org/r/164251398954.3435901.7138806620218474123.stgit@warthog.procyon.org.uk/ # v1
Based on 1 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public licence as published by
the free software foundation either version 2 of the licence or at
your option any later version
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-or-later
has been chosen to replace the boilerplate/reference in 114 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190520170857.552531963@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Add some tracepoints to fscache:
(*) fscache_cookie - Tracks a cookie's usage count.
(*) fscache_netfs - Logs registration of a network filesystem, including
the pointer to the cookie allocated.
(*) fscache_acquire - Logs cookie acquisition.
(*) fscache_relinquish - Logs cookie relinquishment.
(*) fscache_enable - Logs enablement of a cookie.
(*) fscache_disable - Logs disablement of a cookie.
(*) fscache_osm - Tracks execution of states in the object state machine.
and cachefiles:
(*) cachefiles_ref - Tracks a cachefiles object's usage count.
(*) cachefiles_lookup - Logs result of lookup_one_len().
(*) cachefiles_mkdir - Logs result of vfs_mkdir().
(*) cachefiles_create - Logs result of vfs_create().
(*) cachefiles_unlink - Logs calls to vfs_unlink().
(*) cachefiles_rename - Logs calls to vfs_rename().
(*) cachefiles_mark_active - Logs an object becoming active.
(*) cachefiles_wait_active - Logs a wait for an old object to be
destroyed.
(*) cachefiles_mark_inactive - Logs an object becoming inactive.
(*) cachefiles_mark_buried - Logs the burial of an object.
Signed-off-by: David Howells <dhowells@redhat.com>
The wait_bit*() types and APIs are mixed into wait.h, but they
are a pretty orthogonal extension of wait-queues.
Furthermore, only about 50 kernel files use these APIs, while
over 1000 use the regular wait-queue functionality.
So clean up the main wait.h by moving the wait-bit functionality
out of it, into a separate .h and .c file:
include/linux/wait_bit.h for types and APIs
kernel/sched/wait_bit.c for the implementation
Update all header dependencies.
This reduces the size of wait.h rather significantly, by about 30%.
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Rename:
wait_queue_t => wait_queue_entry_t
'wait_queue_t' was always a slight misnomer: its name implies that it's a "queue",
but in reality it's a queue *entry*. The 'real' queue is the wait queue head,
which had to carry the name.
Start sorting this out by renaming it to 'wait_queue_entry_t'.
This also allows the real structure name 'struct __wait_queue' to
lose its double underscore and become 'struct wait_queue_entry',
which is the more canonical nomenclature for such data types.
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Add #include <linux/cred.h> dependencies to all .c files rely on sched.h
doing that for them.
Note that even if the count where we need to add extra headers seems high,
it's still a net win, because <linux/sched.h> is included in over
2,200 files ...
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
An NULL-pointer dereference happens in cachefiles_mark_object_inactive()
when it tries to read i_blocks so that it can tell the cachefilesd daemon
how much space it's making available.
The problem is that cachefiles_drop_object() calls
cachefiles_mark_object_inactive() after calling cachefiles_delete_object()
because the object being marked active staves off attempts to (re-)use the
file at that filename until after it has been deleted. This means that
d_inode is NULL by the time we come to try to access it.
To fix the problem, have the caller of cachefiles_mark_object_inactive()
supply the number of blocks freed up.
Without this, the following oops may occur:
BUG: unable to handle kernel NULL pointer dereference at 0000000000000098
IP: [<ffffffffa06c5cc1>] cachefiles_mark_object_inactive+0x61/0xb0 [cachefiles]
...
CPU: 11 PID: 527 Comm: kworker/u64:4 Tainted: G I ------------ 3.10.0-470.el7.x86_64 #1
Hardware name: Hewlett-Packard HP Z600 Workstation/0B54h, BIOS 786G4 v03.19 03/11/2011
Workqueue: fscache_object fscache_object_work_func [fscache]
task: ffff880035edaf10 ti: ffff8800b77c0000 task.ti: ffff8800b77c0000
RIP: 0010:[<ffffffffa06c5cc1>] cachefiles_mark_object_inactive+0x61/0xb0 [cachefiles]
RSP: 0018:ffff8800b77c3d70 EFLAGS: 00010246
RAX: 0000000000000000 RBX: ffff8800bf6cc400 RCX: 0000000000000034
RDX: 0000000000000000 RSI: ffff880090ffc710 RDI: ffff8800bf761ef8
RBP: ffff8800b77c3d88 R08: 2000000000000000 R09: 0090ffc710000000
R10: ff51005d2ff1c400 R11: 0000000000000000 R12: ffff880090ffc600
R13: ffff8800bf6cc520 R14: ffff8800bf6cc400 R15: ffff8800bf6cc498
FS: 0000000000000000(0000) GS:ffff8800bb8c0000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b
CR2: 0000000000000098 CR3: 00000000019ba000 CR4: 00000000000007e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400
Stack:
ffff880090ffc600 ffff8800bf6cc400 ffff8800867df140 ffff8800b77c3db0
ffffffffa06c48cb ffff880090ffc600 ffff880090ffc180 ffff880090ffc658
ffff8800b77c3df0 ffffffffa085d846 ffff8800a96b8150 ffff880090ffc600
Call Trace:
[<ffffffffa06c48cb>] cachefiles_drop_object+0x6b/0xf0 [cachefiles]
[<ffffffffa085d846>] fscache_drop_object+0xd6/0x1e0 [fscache]
[<ffffffffa085d615>] fscache_object_work_func+0xa5/0x200 [fscache]
[<ffffffff810a605b>] process_one_work+0x17b/0x470
[<ffffffff810a6e96>] worker_thread+0x126/0x410
[<ffffffff810a6d70>] ? rescuer_thread+0x460/0x460
[<ffffffff810ae64f>] kthread+0xcf/0xe0
[<ffffffff810ae580>] ? kthread_create_on_node+0x140/0x140
[<ffffffff81695418>] ret_from_fork+0x58/0x90
[<ffffffff810ae580>] ? kthread_create_on_node+0x140/0x140
The oopsing code shows:
callq 0xffffffff810af6a0 <wake_up_bit>
mov 0xf8(%r12),%rax
mov 0x30(%rax),%rax
mov 0x98(%rax),%rax <---- oops here
lock add %rax,0x130(%rbx)
where this is:
d_backing_inode(object->dentry)->i_blocks
Fixes: a5b3a80b89 (CacheFiles: Provide read-and-reset release counters for cachefilesd)
Reported-by: Jianhong Yin <jiyin@redhat.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Jeff Layton <jlayton@redhat.com>
Reviewed-by: Steve Dickson <steved@redhat.com>
cc: stable@vger.kernel.org
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Provide read-and-reset objects- and blocks-released counters for cachefilesd
to use to work out whether there's anything new that can be culled.
One of the problems cachefilesd has is that if all the objects in the cache
are pinned by inodes lying dormant in the kernel inode cache, there isn't
anything for it to cull. In such a case, it just spins around walking the
filesystem tree and scanning for something to cull. This eats up a lot of
CPU time.
By telling cachefilesd if there have been any releases, the daemon can
sleep until there is the possibility of something to do.
cachefilesd finds this information by the following means:
(1) When the control fd is read, the kernel presents a list of values of
interest. "freleased=N" and "breleased=N" are added to this list to
indicate the number of files released and number of blocks released
since the last read call. At this point the counters are reset.
(2) POLLIN is signalled if the number of files released becomes greater
than 0.
Note that by 'released' it just means that the kernel has released its
interest in those files for the moment, not necessarily that the files
should be deleted from the cache.
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Steve Dickson <steved@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
__GFP_WAIT was used to signal that the caller was in atomic context and
could not sleep. Now it is possible to distinguish between true atomic
context and callers that are not willing to sleep. The latter should
clear __GFP_DIRECT_RECLAIM so kswapd will still wake. As clearing
__GFP_WAIT behaves differently, there is a risk that people will clear the
wrong flags. This patch renames __GFP_WAIT to __GFP_RECLAIM to clearly
indicate what it does -- setting it allows all reclaim activity, clearing
them prevents it.
[akpm@linux-foundation.org: fix build]
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Lameter <cl@linux.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Vitaly Wool <vitalywool@gmail.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Count the number of objects that get culled by the cache backend and the
number of objects that the cache backend declines to instantiate due to lack
of space in the cache.
These numbers are made available through /proc/fs/fscache/stats
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Steve Dickson <steved@redhat.com>
Acked-by: Jeff Layton <jeff.layton@primarydata.com>
Commit 0227d6abb3 ("fs/cachefiles: replace kerror by pr_err") didn't
include newline featuring in original kerror definition
Signed-off-by: Fabian Frederick <fabf@skynet.be>
Reported-by: David Howells <dhowells@redhat.com>
Acked-by: David Howells <dhowells@redhat.com>
Cc: <stable@vger.kernel.org> [3.16.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Also add pr_fmt in internal.h
Signed-off-by: Fabian Frederick <fabf@skynet.be>
Cc: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Implement the FS-Cache interface to check the consistency of a cache object in
CacheFiles.
Original-author: Hongyi Jia <jiayisuse@gmail.com>
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Hongyi Jia <jiayisuse@gmail.com>
cc: Milosz Tanski <milosz@adfin.com>
Downgrade the requirements passed to the allocator in the gfp flags parameter.
FS-Cache/CacheFiles can handle OOM conditions simply by aborting the attempt to
store an object or a page in the cache.
Signed-off-by: David Howells <dhowells@redhat.com>
Add a dummy printk function for the maintenance of unused printks through gcc
format checking, and also so that side-effect checking is maintained too.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix an occasional EIO returned by a call to vfs_unlink():
[ 4868.465413] CacheFiles: I/O Error: Unlink failed
[ 4868.465444] FS-Cache: Cache cachefiles stopped due to I/O error
[ 4947.320011] CacheFiles: File cache on md3 unregistering
[ 4947.320041] FS-Cache: Withdrawing cache "mycache"
[ 5127.348683] FS-Cache: Cache "mycache" added (type cachefiles)
[ 5127.348716] CacheFiles: File cache on md3 registered
[ 7076.871081] CacheFiles: I/O Error: Unlink failed
[ 7076.871130] FS-Cache: Cache cachefiles stopped due to I/O error
[ 7116.780891] CacheFiles: File cache on md3 unregistering
[ 7116.780937] FS-Cache: Withdrawing cache "mycache"
[ 7296.813394] FS-Cache: Cache "mycache" added (type cachefiles)
[ 7296.813432] CacheFiles: File cache on md3 registered
What happens is this:
(1) A cached NFS file is seen to have become out of date, so NFS retires the
object and immediately acquires a new object with the same key.
(2) Retirement of the old object is done asynchronously - so the lookup/create
to generate the new object may be done first.
This can be a problem as the old object and the new object must exist at
the same point in the backing filesystem (i.e. they must have the same
pathname).
(3) The lookup for the new object sees that a backing file already exists,
checks to see whether it is valid and sees that it isn't. It then deletes
that file and creates a new one on disk.
(4) The retirement phase for the old file is then performed. It tries to
delete the dentry it has, but ext4_unlink() returns -EIO because the inode
attached to that dentry no longer matches the inode number associated with
the filename in the parent directory.
The trace below shows this quite well.
[md5sum] ==> __fscache_relinquish_cookie(ffff88002d12fb58{NFS.fh,ffff88002ce62100},1)
[md5sum] ==> __fscache_acquire_cookie({NFS.server},{NFS.fh},ffff88002ce62100)
NFS has retired the old cookie and asked for a new one.
[kslowd] ==> fscache_object_state_machine({OBJ52,OBJECT_ACTIVE,24})
[kslowd] <== fscache_object_state_machine() [->OBJECT_DYING]
[kslowd] ==> fscache_object_state_machine({OBJ53,OBJECT_INIT,0})
[kslowd] <== fscache_object_state_machine() [->OBJECT_LOOKING_UP]
[kslowd] ==> fscache_object_state_machine({OBJ52,OBJECT_DYING,24})
[kslowd] <== fscache_object_state_machine() [->OBJECT_RECYCLING]
The old object (OBJ52) is going through the terminal states to get rid of it,
whilst the new object - (OBJ53) - is coming into being.
[kslowd] ==> fscache_object_state_machine({OBJ53,OBJECT_LOOKING_UP,0})
[kslowd] ==> cachefiles_walk_to_object({ffff88003029d8b8},OBJ53,@68,)
[kslowd] lookup '@68'
[kslowd] next -> ffff88002ce41bd0 positive
[kslowd] advance
[kslowd] lookup 'Es0g00og0_Nd_XCYe3BOzvXrsBLMlN6aw16M1htaA'
[kslowd] next -> ffff8800369faac8 positive
The new object has looked up the subdir in which the file would be in (getting
dentry ffff88002ce41bd0) and then looked up the file itself (getting dentry
ffff8800369faac8).
[kslowd] validate 'Es0g00og0_Nd_XCYe3BOzvXrsBLMlN6aw16M1htaA'
[kslowd] ==> cachefiles_bury_object(,'@68','Es0g00og0_Nd_XCYe3BOzvXrsBLMlN6aw16M1htaA')
[kslowd] remove ffff8800369faac8 from ffff88002ce41bd0
[kslowd] unlink stale object
[kslowd] <== cachefiles_bury_object() = 0
It then checks the file's xattrs to see if it's valid. NFS says that the
auxiliary data indicate the file is out of date (obvious to us - that's why NFS
ditched the old version and got a new one). CacheFiles then deletes the old
file (dentry ffff8800369faac8).
[kslowd] redo lookup
[kslowd] lookup 'Es0g00og0_Nd_XCYe3BOzvXrsBLMlN6aw16M1htaA'
[kslowd] next -> ffff88002cd94288 negative
[kslowd] create -> ffff88002cd94288{ffff88002cdaf238{ino=148247}}
CacheFiles then redoes the lookup and gets a negative result in a new dentry
(ffff88002cd94288) which it then creates a file for.
[kslowd] ==> cachefiles_mark_object_active(,OBJ53)
[kslowd] <== cachefiles_mark_object_active() = 0
[kslowd] === OBTAINED_OBJECT ===
[kslowd] <== cachefiles_walk_to_object() = 0 [148247]
[kslowd] <== fscache_object_state_machine() [->OBJECT_AVAILABLE]
The new object is then marked active and the state machine moves to the
available state - at which point NFS can start filling the object.
[kslowd] ==> fscache_object_state_machine({OBJ52,OBJECT_RECYCLING,20})
[kslowd] ==> fscache_release_object()
[kslowd] ==> cachefiles_drop_object({OBJ52,2})
[kslowd] ==> cachefiles_delete_object(,OBJ52{ffff8800369faac8})
The old object, meanwhile, goes on with being retired. If allocation occurs
first, cachefiles_delete_object() has to wait for dir->d_inode->i_mutex to
become available before it can continue.
[kslowd] ==> cachefiles_bury_object(,'@68','Es0g00og0_Nd_XCYe3BOzvXrsBLMlN6aw16M1htaA')
[kslowd] remove ffff8800369faac8 from ffff88002ce41bd0
[kslowd] unlink stale object
EXT4-fs warning (device sda6): ext4_unlink: Inode number mismatch in unlink (148247!=148193)
CacheFiles: I/O Error: Unlink failed
FS-Cache: Cache cachefiles stopped due to I/O error
CacheFiles then tries to delete the file for the old object, but the dentry it
has (ffff8800369faac8) no longer points to a valid inode for that directory
entry, and so ext4_unlink() returns -EIO when de->inode does not match i_ino.
[kslowd] <== cachefiles_bury_object() = -5
[kslowd] <== cachefiles_delete_object() = -5
[kslowd] <== fscache_object_state_machine() [->OBJECT_DEAD]
[kslowd] ==> fscache_object_state_machine({OBJ53,OBJECT_AVAILABLE,0})
[kslowd] <== fscache_object_state_machine() [->OBJECT_ACTIVE]
(Note that the above trace includes extra information beyond that produced by
the upstream code).
The fix is to note when an object that is being retired has had its object
deleted preemptively by a replacement object that is being created, and to
skip the second removal attempt in such a case.
Reported-by: Greg M <gregm@servu.net.au>
Reported-by: Mark Moseley <moseleymark@gmail.com>
Reported-by: Romain DEGEZ <romain.degez@smartjog.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix up renamed filenames in comments in fs/cachefiles/internal.h.
Originally, the files were all called cf-xxx.c, but they got renamed to
just xxx.c.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add an FS-Cache cache-backend that permits a mounted filesystem to be used as a
backing store for the cache.
CacheFiles uses a userspace daemon to do some of the cache management - such as
reaping stale nodes and culling. This is called cachefilesd and lives in
/sbin. The source for the daemon can be downloaded from:
http://people.redhat.com/~dhowells/cachefs/cachefilesd.c
And an example configuration from:
http://people.redhat.com/~dhowells/cachefs/cachefilesd.conf
The filesystem and data integrity of the cache are only as good as those of the
filesystem providing the backing services. Note that CacheFiles does not
attempt to journal anything since the journalling interfaces of the various
filesystems are very specific in nature.
CacheFiles creates a misc character device - "/dev/cachefiles" - that is used
to communication with the daemon. Only one thing may have this open at once,
and whilst it is open, a cache is at least partially in existence. The daemon
opens this and sends commands down it to control the cache.
CacheFiles is currently limited to a single cache.
CacheFiles attempts to maintain at least a certain percentage of free space on
the filesystem, shrinking the cache by culling the objects it contains to make
space if necessary - see the "Cache Culling" section. This means it can be
placed on the same medium as a live set of data, and will expand to make use of
spare space and automatically contract when the set of data requires more
space.
============
REQUIREMENTS
============
The use of CacheFiles and its daemon requires the following features to be
available in the system and in the cache filesystem:
- dnotify.
- extended attributes (xattrs).
- openat() and friends.
- bmap() support on files in the filesystem (FIBMAP ioctl).
- The use of bmap() to detect a partial page at the end of the file.
It is strongly recommended that the "dir_index" option is enabled on Ext3
filesystems being used as a cache.
=============
CONFIGURATION
=============
The cache is configured by a script in /etc/cachefilesd.conf. These commands
set up cache ready for use. The following script commands are available:
(*) brun <N>%
(*) bcull <N>%
(*) bstop <N>%
(*) frun <N>%
(*) fcull <N>%
(*) fstop <N>%
Configure the culling limits. Optional. See the section on culling
The defaults are 7% (run), 5% (cull) and 1% (stop) respectively.
The commands beginning with a 'b' are file space (block) limits, those
beginning with an 'f' are file count limits.
(*) dir <path>
Specify the directory containing the root of the cache. Mandatory.
(*) tag <name>
Specify a tag to FS-Cache to use in distinguishing multiple caches.
Optional. The default is "CacheFiles".
(*) debug <mask>
Specify a numeric bitmask to control debugging in the kernel module.
Optional. The default is zero (all off). The following values can be
OR'd into the mask to collect various information:
1 Turn on trace of function entry (_enter() macros)
2 Turn on trace of function exit (_leave() macros)
4 Turn on trace of internal debug points (_debug())
This mask can also be set through sysfs, eg:
echo 5 >/sys/modules/cachefiles/parameters/debug
==================
STARTING THE CACHE
==================
The cache is started by running the daemon. The daemon opens the cache device,
configures the cache and tells it to begin caching. At that point the cache
binds to fscache and the cache becomes live.
The daemon is run as follows:
/sbin/cachefilesd [-d]* [-s] [-n] [-f <configfile>]
The flags are:
(*) -d
Increase the debugging level. This can be specified multiple times and
is cumulative with itself.
(*) -s
Send messages to stderr instead of syslog.
(*) -n
Don't daemonise and go into background.
(*) -f <configfile>
Use an alternative configuration file rather than the default one.
===============
THINGS TO AVOID
===============
Do not mount other things within the cache as this will cause problems. The
kernel module contains its own very cut-down path walking facility that ignores
mountpoints, but the daemon can't avoid them.
Do not create, rename or unlink files and directories in the cache whilst the
cache is active, as this may cause the state to become uncertain.
Renaming files in the cache might make objects appear to be other objects (the
filename is part of the lookup key).
Do not change or remove the extended attributes attached to cache files by the
cache as this will cause the cache state management to get confused.
Do not create files or directories in the cache, lest the cache get confused or
serve incorrect data.
Do not chmod files in the cache. The module creates things with minimal
permissions to prevent random users being able to access them directly.
=============
CACHE CULLING
=============
The cache may need culling occasionally to make space. This involves
discarding objects from the cache that have been used less recently than
anything else. Culling is based on the access time of data objects. Empty
directories are culled if not in use.
Cache culling is done on the basis of the percentage of blocks and the
percentage of files available in the underlying filesystem. There are six
"limits":
(*) brun
(*) frun
If the amount of free space and the number of available files in the cache
rises above both these limits, then culling is turned off.
(*) bcull
(*) fcull
If the amount of available space or the number of available files in the
cache falls below either of these limits, then culling is started.
(*) bstop
(*) fstop
If the amount of available space or the number of available files in the
cache falls below either of these limits, then no further allocation of
disk space or files is permitted until culling has raised things above
these limits again.
These must be configured thusly:
0 <= bstop < bcull < brun < 100
0 <= fstop < fcull < frun < 100
Note that these are percentages of available space and available files, and do
_not_ appear as 100 minus the percentage displayed by the "df" program.
The userspace daemon scans the cache to build up a table of cullable objects.
These are then culled in least recently used order. A new scan of the cache is
started as soon as space is made in the table. Objects will be skipped if
their atimes have changed or if the kernel module says it is still using them.
===============
CACHE STRUCTURE
===============
The CacheFiles module will create two directories in the directory it was
given:
(*) cache/
(*) graveyard/
The active cache objects all reside in the first directory. The CacheFiles
kernel module moves any retired or culled objects that it can't simply unlink
to the graveyard from which the daemon will actually delete them.
The daemon uses dnotify to monitor the graveyard directory, and will delete
anything that appears therein.
The module represents index objects as directories with the filename "I..." or
"J...". Note that the "cache/" directory is itself a special index.
Data objects are represented as files if they have no children, or directories
if they do. Their filenames all begin "D..." or "E...". If represented as a
directory, data objects will have a file in the directory called "data" that
actually holds the data.
Special objects are similar to data objects, except their filenames begin
"S..." or "T...".
If an object has children, then it will be represented as a directory.
Immediately in the representative directory are a collection of directories
named for hash values of the child object keys with an '@' prepended. Into
this directory, if possible, will be placed the representations of the child
objects:
INDEX INDEX INDEX DATA FILES
========= ========== ================================= ================
cache/@4a/I03nfs/@30/Ji000000000000000--fHg8hi8400
cache/@4a/I03nfs/@30/Ji000000000000000--fHg8hi8400/@75/Es0g000w...DB1ry
cache/@4a/I03nfs/@30/Ji000000000000000--fHg8hi8400/@75/Es0g000w...N22ry
cache/@4a/I03nfs/@30/Ji000000000000000--fHg8hi8400/@75/Es0g000w...FP1ry
If the key is so long that it exceeds NAME_MAX with the decorations added on to
it, then it will be cut into pieces, the first few of which will be used to
make a nest of directories, and the last one of which will be the objects
inside the last directory. The names of the intermediate directories will have
'+' prepended:
J1223/@23/+xy...z/+kl...m/Epqr
Note that keys are raw data, and not only may they exceed NAME_MAX in size,
they may also contain things like '/' and NUL characters, and so they may not
be suitable for turning directly into a filename.
To handle this, CacheFiles will use a suitably printable filename directly and
"base-64" encode ones that aren't directly suitable. The two versions of
object filenames indicate the encoding:
OBJECT TYPE PRINTABLE ENCODED
=============== =============== ===============
Index "I..." "J..."
Data "D..." "E..."
Special "S..." "T..."
Intermediate directories are always "@" or "+" as appropriate.
Each object in the cache has an extended attribute label that holds the object
type ID (required to distinguish special objects) and the auxiliary data from
the netfs. The latter is used to detect stale objects in the cache and update
or retire them.
Note that CacheFiles will erase from the cache any file it doesn't recognise or
any file of an incorrect type (such as a FIFO file or a device file).
==========================
SECURITY MODEL AND SELINUX
==========================
CacheFiles is implemented to deal properly with the LSM security features of
the Linux kernel and the SELinux facility.
One of the problems that CacheFiles faces is that it is generally acting on
behalf of a process, and running in that process's context, and that includes a
security context that is not appropriate for accessing the cache - either
because the files in the cache are inaccessible to that process, or because if
the process creates a file in the cache, that file may be inaccessible to other
processes.
The way CacheFiles works is to temporarily change the security context (fsuid,
fsgid and actor security label) that the process acts as - without changing the
security context of the process when it the target of an operation performed by
some other process (so signalling and suchlike still work correctly).
When the CacheFiles module is asked to bind to its cache, it:
(1) Finds the security label attached to the root cache directory and uses
that as the security label with which it will create files. By default,
this is:
cachefiles_var_t
(2) Finds the security label of the process which issued the bind request
(presumed to be the cachefilesd daemon), which by default will be:
cachefilesd_t
and asks LSM to supply a security ID as which it should act given the
daemon's label. By default, this will be:
cachefiles_kernel_t
SELinux transitions the daemon's security ID to the module's security ID
based on a rule of this form in the policy.
type_transition <daemon's-ID> kernel_t : process <module's-ID>;
For instance:
type_transition cachefilesd_t kernel_t : process cachefiles_kernel_t;
The module's security ID gives it permission to create, move and remove files
and directories in the cache, to find and access directories and files in the
cache, to set and access extended attributes on cache objects, and to read and
write files in the cache.
The daemon's security ID gives it only a very restricted set of permissions: it
may scan directories, stat files and erase files and directories. It may
not read or write files in the cache, and so it is precluded from accessing the
data cached therein; nor is it permitted to create new files in the cache.
There are policy source files available in:
http://people.redhat.com/~dhowells/fscache/cachefilesd-0.8.tar.bz2
and later versions. In that tarball, see the files:
cachefilesd.te
cachefilesd.fc
cachefilesd.if
They are built and installed directly by the RPM.
If a non-RPM based system is being used, then copy the above files to their own
directory and run:
make -f /usr/share/selinux/devel/Makefile
semodule -i cachefilesd.pp
You will need checkpolicy and selinux-policy-devel installed prior to the
build.
By default, the cache is located in /var/fscache, but if it is desirable that
it should be elsewhere, than either the above policy files must be altered, or
an auxiliary policy must be installed to label the alternate location of the
cache.
For instructions on how to add an auxiliary policy to enable the cache to be
located elsewhere when SELinux is in enforcing mode, please see:
/usr/share/doc/cachefilesd-*/move-cache.txt
When the cachefilesd rpm is installed; alternatively, the document can be found
in the sources.
==================
A NOTE ON SECURITY
==================
CacheFiles makes use of the split security in the task_struct. It allocates
its own task_security structure, and redirects current->act_as to point to it
when it acts on behalf of another process, in that process's context.
The reason it does this is that it calls vfs_mkdir() and suchlike rather than
bypassing security and calling inode ops directly. Therefore the VFS and LSM
may deny the CacheFiles access to the cache data because under some
circumstances the caching code is running in the security context of whatever
process issued the original syscall on the netfs.
Furthermore, should CacheFiles create a file or directory, the security
parameters with that object is created (UID, GID, security label) would be
derived from that process that issued the system call, thus potentially
preventing other processes from accessing the cache - including CacheFiles's
cache management daemon (cachefilesd).
What is required is to temporarily override the security of the process that
issued the system call. We can't, however, just do an in-place change of the
security data as that affects the process as an object, not just as a subject.
This means it may lose signals or ptrace events for example, and affects what
the process looks like in /proc.
So CacheFiles makes use of a logical split in the security between the
objective security (task->sec) and the subjective security (task->act_as). The
objective security holds the intrinsic security properties of a process and is
never overridden. This is what appears in /proc, and is what is used when a
process is the target of an operation by some other process (SIGKILL for
example).
The subjective security holds the active security properties of a process, and
may be overridden. This is not seen externally, and is used whan a process
acts upon another object, for example SIGKILLing another process or opening a
file.
LSM hooks exist that allow SELinux (or Smack or whatever) to reject a request
for CacheFiles to run in a context of a specific security label, or to create
files and directories with another security label.
This documentation is added by the patch to:
Documentation/filesystems/caching/cachefiles.txt
Signed-Off-By: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>