If we have the following situation with nested svm:
1. Host KVM intercepts cr0 writes
2. Guest hypervisor intercepts only selective cr0 writes
Then we get an cr0 write intercept which is handled on the
host. But that intercepts may actually be a selective cr0
intercept for the guest. This patch checks for this
condition and injects a selective cr0 intercept if needed.
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
The vcpu->arch.cr0 variable is already set in the
architecture specific set_cr0 callbacks. There is no need to
set it in the common code.
This allows the architecture code to keep the old arch.cr0
value if it wants. This is required for nested svm to decide
if a selective_cr0 exit needs to be injected.
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
Hyper-V as a guest wants to write this bit. This patch
ignores it.
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
This patch implements the emulation of the vm_cr msr for
nested svm.
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
This patch adds a tracepoint to get information about the
most important intercept bitmasks from the nested vmcb.
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
A recent change broke tracing of the nested vmcb address. It
was reported as 0 all the time. This patch fixes it.
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
This patch implements the NMI intercept checking for nested
svm.
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
Without resetting the MMU the gva_to_pga function will not
work reliably when the vcpu is running in nested context.
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
This patch removes whitespace errors, fixes comment formats
and most of checkpatch warnings. Now vim does not show
c-space-errors anymore.
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
Call directly into the vendor services for getting/setting rflags in
emulate_instruction to ensure injected TF survives the emulation.
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
RF is not required for injecting TF as the latter will trigger only
after an instruction execution anyway. So do not touch RF when arming or
disarming guest single-step mode.
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
When in guest debugging mode, we have to reinject those #BP software
exceptions that are caused by guest-injected INT3. As older AMD
processors do not support the required nRIP VMCB field, try to emulate
it by moving RIP past the instruction on exception injection. Fix it up
again in case the injection failed and we were able to catch this. This
does not work for unintercepted faults, but it is better than doing
nothing.
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
Based on Gleb's suggestion: Add a helper kvm_is_linear_rip that matches
a given linear RIP against the current one. Use this for guest
single-stepping, more users will follow.
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
Move svm_queue_exception past skip_emulated_instruction to allow calling
it later on.
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
This restores the deferred VCPU kicking before 956f97cf. We need this
over -rt as wake_up* requires non-atomic context in this configuration.
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
When we destory a vcpu, we should also make sure to kill all pending
timers that could still be up. When not doing this, hrtimers might
dereference null pointers trying to call our code.
This patch fixes spontanious kernel panics seen after closing VMs.
Signed-off-by: Alexander Graf <alex@csgraf.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
While converting the kzalloc we used to allocate our vcpu struct to
vmalloc, I forgot to memset the contents to zeros. That broke quite
a lot.
This patch memsets it to zero again.
Signed-off-by: Alexander Graf <alex@csgraf.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
So far user space was not able to save and restore debug registers for
migration or after reset. Plug this hole.
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
The interrupt shadow created by STI or MOV-SS-like operations is part of
the VCPU state and must be preserved across migration. Transfer it in
the spare padding field of kvm_vcpu_events.interrupt.
As a side effect we now have to make vmx_set_interrupt_shadow robust
against both shadow types being set. Give MOV SS a higher priority and
skip STI in that case to avoid that VMX throws a fault on next entry.
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
To avoid that user space migrates a pending software exception or
interrupt, mask them out on KVM_GET_VCPU_EVENTS. Without this, user
space would try to reinject them, and we would have to reconstruct the
proper instruction length for VMX event injection. Now the pending event
will be reinjected via executing the triggering instruction again.
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
The nested_svm_intr() function does not execute the vmexit
anymore. Therefore we may still be in the nested state after
that function ran. This patch changes the nested_svm_intr()
function to return wether the irq window could be enabled.
Cc: stable@kernel.org
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
vcpu->run is initialized on vcpu creation and can never be NULL
here.
Signed-off-by: Gleb Natapov <gleb@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
We used to use get_free_pages to allocate our vcpu struct. Unfortunately
that call failed on me several times after my machine had a big enough
uptime, as memory became too fragmented by then.
Fortunately, we don't need it to be page aligned any more! We can just
vmalloc it and everything's great.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
We don't need as complex code. I had some thinkos while writing it, figuring
I needed to support PPC32 paths on PPC64 which would have required DR=0, but
everything just runs fine with DR=1.
So let's make the functions simple C call wrappers that reserve some space on
the stack for the respective functions to clobber.
Fixes out-of-RMA-access (and thus guest FPU loading) on the PS3.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
We had code to make use of the secondary htab buckets, but kept that
disabled because it was unstable when I put it in.
I checked again if that's still the case and apparently it was only
exposing some instability that was there anyways before. I haven't
seen any badness related to usage of secondary htab entries so far.
This should speed up guest memory allocations by quite a bit, because
we now have more space to put PTEs in.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
We need to tell userspace that we can emulate paired single instructions.
So let's add a capability export.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
The one big thing about the Gekko is paired singles.
Paired singles are an extension to the instruction set, that adds 32 single
precision floating point registers (qprs), some SPRs to modify the behavior
of paired singled operations and instructions to deal with qprs to the
instruction set.
Unfortunately, it also changes semantics of existing operations that affect
single values in FPRs. In most cases they get mirrored to the coresponding
QPR.
Thanks to that we need to emulate all FPU operations and all the new paired
single operations too.
In order to achieve that, we use the just introduced FPU call helpers to
call the real FPU whenever the guest wants to modify an FPR. Additionally
we also fix up the QPR values along the way.
That way we can execute paired single FPU operations without implementing a
soft fpu.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
When we get a program interrupt we usually don't expect it to perform an
MMIO operation. But why not? When we emulate paired singles, we can end
up loading or storing to an MMIO address - and the handling of those
happens in the program interrupt handler.
So let's teach the program interrupt handler how to deal with EMULATE_MMIO.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
The PowerPC specification always lists bits from MSB to LSB. That is
really confusing when you're trying to write C code, because it fits
in pretty badly with the normal (1 << xx) schemes.
So I came up with some nice wrappers that allow to get and set fields
in a u64 with bit numbers exactly as given in the spec. That makes the
code in KVM and the spec easier comparable.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
BATs didn't work. Well, they did, but only up to BAT3. As soon as we
came to BAT4 the offset calculation was screwed up and we ended up
overwriting BAT0-3.
Fortunately, Linux hasn't been using BAT4+. It's still a good
idea to write correct code though.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
To emulate paired single instructions, we need to be able to call FPU
operations from within the kernel. Since we don't want gcc to spill
arbitrary FPU code everywhere, we tell it to use a soft fpu.
Since we know we can really call the FPU in safe areas, let's also add
some calls that we can later use to actually execute real world FPU
operations on the host's FPU.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
We need to call the ext giveup handlers from code outside of book3s.c.
So let's make it non-static.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
The Book3S KVM implementation contains some helper functions to load and store
data from and to virtual addresses.
Unfortunately, this helper used to keep the physical address it so nicely
found out for us to itself. So let's change that and make it return the
physical address it resolved.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
The Book3S_32 specifications allows for two instructions to modify segment
registers: mtsrin and mtsr.
Most normal operating systems use mtsrin, because it allows to define which
segment it wants to change using a register. But since I was trying to run
an embedded guest, it turned out to be using mtsr with hardcoded values.
So let's also emulate mtsr. It's a valid instruction after all.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
There's a typo in the debug ifdef of the book3s_32 mmu emulation. While trying
to debug something I stumbled across that and wanted to save anyone after me
(or myself later) from having to debug that again.
So let's fix the ifdef.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
There are some situations when we're pretty sure the guest will use the
FPU soon. So we can save the churn of going into the guest, finding out
it does want to use the FPU and going out again.
This patch adds preloading of the FPU when it's reasonable.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
When we for example get an Altivec interrupt, but our guest doesn't support
altivec, we need to inject a program interrupt, not an altivec interrupt.
The same goes for paired singles. When an altivec interrupt arrives, we're
pretty sure we need to emulate the instruction because it's a paired single
operation.
So let's make all the ext handlers aware that they need to jump to the
program interrupt handler when an extension interrupt arrives that
was not supposed to arrive for the guest CPU.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
The Gekko has some SPR values that differ from other PPC core values and
also some additional ones.
Let's add support for them in our mfspr/mtspr emulator.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
The Gekko implements an extension called paired singles. When the guest wants
to use that extension, we need to make sure we're not running the host FPU,
because all FPU instructions need to get emulated to accomodate for additional
operations that occur.
This patch adds an hflag to track if we're in paired single mode or not.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
Emulation of an instruction can have different outcomes. It can succeed,
fail, require MMIO, do funky BookE stuff - or it can just realize something's
odd and will be fixed the next time around.
Exactly that is what EMULATE_AGAIN means. Using that flag we can now tell
the caller that nothing happened, but we still want to go back to the
guest and see what happens next time we come around.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
The guest I was trying to get to run uses the LHA and LHAU instructions.
Those instructions basically do a load, but also sign extend the result.
Since we need to fill our registers by hand when doing MMIO, we also need
to sign extend manually.
This patch implements sign extended MMIO and the LHA(U) instructions.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
Right now MMIO access can only happen for GPRs and is at most 32 bit wide.
That's actually enough for almost all types of hardware out there.
Unfortunately, the guest I was using used FPU writes to MMIO regions, so
it ended up writing 64 bit MMIOs using FPRs and QPRs.
So let's add code to handle those odd cases too.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
Modern PowerPCs have a 64 bit wide FPSCR register. Let's accomodate for that
and make it 64 bits in our vcpu struct too.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
The Gekko has GPRs, SPRs and FPRs like normal PowerPC codes, but
it also has QPRs which are basically single precision only FPU registers
that get used when in paired single mode.
The following patches depend on them being around, so let's add the
definitions early.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
The tracing infrastructure adds its own newlines. Remove
them from the trace point printk format strings.
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
The new lazy fpu switching code may disable cr0 intercepts
when running nested. This is a bug because the nested
hypervisor may still want to intercept cr0 which will break
in this situation. This patch fixes this issue and makes
lazy fpu switching working with nested svm.
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
Certain functions called during the emulated world switch
behave differently when the vcpu is running nested. This is
not the expected behavior during a world switch emulation.
This patch ensures that the nested state is activated only
if the vcpu is completly in nested state.
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
This patch makes syncing of the guest tpr to the lapic
conditional on !nested. Otherwise a nested guest using the
TPR could freeze the guest.
Another important change this patch introduces is that the
cr8 intercept bits are no longer ORed at vmrun emulation if
the guest sets VINTR_MASKING in its VMCB. The reason is that
nested cr8 accesses need alway be handled by the nested
hypervisor because they change the shadow version of the
tpr.
Cc: stable@kernel.org
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
The nested_svm_exit_handled_msr() function maps only one
page of the guests msr permission bitmap. This patch changes
the code to use kvm_read_guest to fix the bug.
Cc: stable@kernel.org
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
The nested_svm_map() function can sleep and must not be
called from atomic context. So annotate that function.
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
Signed-off-by: Avi Kivity <avi@redhat.com>