NOTE: Once again there is a lot of patch stealing and the end result
is sufficiently different that I had to drop the signed-offs.
Will re-add if the original authors are ok with that.
This patch adds another mbind() flag to request "lazy migration". The
flag, MPOL_MF_LAZY, modifies MPOL_MF_MOVE* such that the selected
pages are marked PROT_NONE. The pages will be migrated in the fault
path on "first touch", if the policy dictates at that time.
"Lazy Migration" will allow testing of migrate-on-fault via mbind().
Also allows applications to specify that only subsequently touched
pages be migrated to obey new policy, instead of all pages in range.
This can be useful for multi-threaded applications working on a
large shared data area that is initialized by an initial thread
resulting in all pages on one [or a few, if overflowed] nodes.
After PROT_NONE, the pages in regions assigned to the worker threads
will be automatically migrated local to the threads on 1st touch.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Introduce FOLL_NUMA to tell follow_page to check
pte/pmd_numa. get_user_pages must use FOLL_NUMA, and it's safe to do
so because it always invokes handle_mm_fault and retries the
follow_page later.
KVM secondary MMU page faults will trigger the NUMA hinting page
faults through gup_fast -> get_user_pages -> follow_page ->
handle_mm_fault.
Other follow_page callers like KSM should not use FOLL_NUMA, or they
would fail to get the pages if they use follow_page instead of
get_user_pages.
[ This patch was picked up from the AutoNUMA tree. ]
Originally-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
[ ported to this tree. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Rik van Riel <riel@redhat.com>
This will be used for three kinds of purposes:
- to optimize mprotect()
- to speed up working set scanning for working set areas that
have not been touched
- to more accurately scan per real working set
No change in functionality from this patch.
Suggested-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Revert commit 7f1290f2f2 ("mm: fix-up zone present pages")
That patch tried to fix a issue when calculating zone->present_pages,
but it caused a regression on 32bit systems with HIGHMEM. With that
change, reset_zone_present_pages() resets all zone->present_pages to
zero, and fixup_zone_present_pages() is called to recalculate
zone->present_pages when the boot allocator frees core memory pages into
buddy allocator. Because highmem pages are not freed by bootmem
allocator, all highmem zones' present_pages becomes zero.
Various options for improving the situation are being discussed but for
now, let's return to the 3.6 code.
Cc: Jianguo Wu <wujianguo@huawei.com>
Cc: Jiang Liu <jiang.liu@huawei.com>
Cc: Petr Tesarik <ptesarik@suse.cz>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: David Rientjes <rientjes@google.com>
Tested-by: Chris Clayton <chris2553@googlemail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
I think zone->present_pages indicates pages that buddy system can management,
it should be:
zone->present_pages = spanned pages - absent pages - bootmem pages,
but is now:
zone->present_pages = spanned pages - absent pages - memmap pages.
spanned pages: total size, including holes.
absent pages: holes.
bootmem pages: pages used in system boot, managed by bootmem allocator.
memmap pages: pages used by page structs.
This may cause zone->present_pages less than it should be. For example,
numa node 1 has ZONE_NORMAL and ZONE_MOVABLE, it's memmap and other
bootmem will be allocated from ZONE_MOVABLE, so ZONE_NORMAL's
present_pages should be spanned pages - absent pages, but now it also
minus memmap pages(free_area_init_core), which are actually allocated from
ZONE_MOVABLE. When offlining all memory of a zone, this will cause
zone->present_pages less than 0, because present_pages is unsigned long
type, it is actually a very large integer, it indirectly caused
zone->watermark[WMARK_MIN] becomes a large
integer(setup_per_zone_wmarks()), than cause totalreserve_pages become a
large integer(calculate_totalreserve_pages()), and finally cause memory
allocating failure when fork process(__vm_enough_memory()).
[root@localhost ~]# dmesg
-bash: fork: Cannot allocate memory
I think the bug described in
http://marc.info/?l=linux-mm&m=134502182714186&w=2
is also caused by wrong zone present pages.
This patch intends to fix-up zone->present_pages when memory are freed to
buddy system on x86_64 and IA64 platforms.
Signed-off-by: Jianguo Wu <wujianguo@huawei.com>
Signed-off-by: Jiang Liu <jiang.liu@huawei.com>
Reported-by: Petr Tesarik <ptesarik@suse.cz>
Tested-by: Petr Tesarik <ptesarik@suse.cz>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
.fault now can retry. The retry can break state machine of .fault. In
filemap_fault, if page is miss, ra->mmap_miss is increased. In the second
try, since the page is in page cache now, ra->mmap_miss is decreased. And
these are done in one fault, so we can't detect random mmap file access.
Add a new flag to indicate .fault is tried once. In the second try, skip
ra->mmap_miss decreasing. The filemap_fault state machine is ok with it.
I only tested x86, didn't test other archs, but looks the change for other
archs is obvious, but who knows :)
Signed-off-by: Shaohua Li <shaohua.li@fusionio.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The page allocator caches the pageblock information in page->private while
it is in the PCP freelists but this is overwritten with the order of the
page when freed to the buddy allocator. This patch stores the migratetype
of the page in the page->index field so that it is available at all times
when the page remain in free_list.
This patch adds a new call site in __free_pages_ok so it might be overhead
a bit but it's for high order allocation. So I believe damage isn't hurt.
Signed-off-by: Minchan Kim <minchan@kernel.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Wen Congyang <wency@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The page allocator uses set_page_private and page_private for handling
migratetype when it frees page. Let's replace them with [set|get]
_freepage_migratetype to make it more clear.
Signed-off-by: Minchan Kim <minchan@kernel.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Wen Congyang <wency@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
During mremap(), the destination VMA is generally placed after the
original vma in rmap traversal order: in move_vma(), we always have
new_pgoff >= vma->vm_pgoff, and as a result new_vma->vm_pgoff >=
vma->vm_pgoff unless vma_merge() merged the new vma with an adjacent one.
When the destination VMA is placed after the original in rmap traversal
order, we can avoid taking the rmap locks in move_ptes().
Essentially, this reintroduces the optimization that had been disabled in
"mm anon rmap: remove anon_vma_moveto_tail". The difference is that we
don't try to impose the rmap traversal order; instead we just rely on
things being in the desired order in the common case and fall back to
taking locks in the uncommon case. Also we skip the i_mmap_mutex in
addition to the anon_vma lock: in both cases, the vmas are traversed in
increasing vm_pgoff order with ties resolved in tree insertion order.
Signed-off-by: Michel Lespinasse <walken@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Daniel Santos <daniel.santos@pobox.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add a CONFIG_DEBUG_VM_RB build option for the previously existing
DEBUG_MM_RB code. Now that Andi Kleen modified it to avoid using
recursive algorithms, we can expose it a bit more.
Also extend this code to validate_mm() after stack expansion, and to check
that the vma's start and last pgoffs have not changed since the nodes were
inserted on the anon vma interval tree (as it is important that the nodes
be reindexed after each such update).
Signed-off-by: Michel Lespinasse <walken@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Daniel Santos <daniel.santos@pobox.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When a large VMA (anon or private file mapping) is first touched, which
will populate its anon_vma field, and then split into many regions through
the use of mprotect(), the original anon_vma ends up linking all of the
vmas on a linked list. This can cause rmap to become inefficient, as we
have to walk potentially thousands of irrelevent vmas before finding the
one a given anon page might fall into.
By replacing the same_anon_vma linked list with an interval tree (where
each avc's interval is determined by its vma's start and last pgoffs), we
can make rmap efficient for this use case again.
While the change is large, all of its pieces are fairly simple.
Most places that were walking the same_anon_vma list were looking for a
known pgoff, so they can just use the anon_vma_interval_tree_foreach()
interval tree iterator instead. The exception here is ksm, where the
page's index is not known. It would probably be possible to rework ksm so
that the index would be known, but for now I have decided to keep things
simple and just walk the entirety of the interval tree there.
When updating vma's that already have an anon_vma assigned, we must take
care to re-index the corresponding avc's on their interval tree. This is
done through the use of anon_vma_interval_tree_pre_update_vma() and
anon_vma_interval_tree_post_update_vma(), which remove the avc's from
their interval tree before the update and re-insert them after the update.
The anon_vma stays locked during the update, so there is no chance that
rmap would miss the vmas that are being updated.
Signed-off-by: Michel Lespinasse <walken@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Daniel Santos <daniel.santos@pobox.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Update the generic interval tree code that was introduced in "mm: replace
vma prio_tree with an interval tree".
Changes:
- fixed 'endpoing' typo noticed by Andrew Morton
- replaced include/linux/interval_tree_tmpl.h, which was used as a
template (including it automatically defined the interval tree
functions) with include/linux/interval_tree_generic.h, which only
defines a preprocessor macro INTERVAL_TREE_DEFINE(), which itself
defines the interval tree functions when invoked. Now that is a very
long macro which is unfortunate, but it does make the usage sites
(lib/interval_tree.c and mm/interval_tree.c) a bit nicer than previously.
- make use of RB_DECLARE_CALLBACKS() in the INTERVAL_TREE_DEFINE() macro,
instead of duplicating that code in the interval tree template.
- replaced vma_interval_tree_add(), which was actually handling the
nonlinear and interval tree cases, with vma_interval_tree_insert_after()
which handles only the interval tree case and has an API that is more
consistent with the other interval tree handling functions.
The nonlinear case is now handled explicitly in kernel/fork.c dup_mmap().
Signed-off-by: Michel Lespinasse <walken@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Daniel Santos <daniel.santos@pobox.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Implement an interval tree as a replacement for the VMA prio_tree. The
algorithms are similar to lib/interval_tree.c; however that code can't be
directly reused as the interval endpoints are not explicitly stored in the
VMA. So instead, the common algorithm is moved into a template and the
details (node type, how to get interval endpoints from the node, etc) are
filled in using the C preprocessor.
Once the interval tree functions are available, using them as a
replacement to the VMA prio tree is a relatively simple, mechanical job.
Signed-off-by: Michel Lespinasse <walken@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
While compaction is migrating pages to free up large contiguous blocks
for allocation it races with other allocation requests that may steal
these blocks or break them up. This patch alters direct compaction to
capture a suitable free page as soon as it becomes available to reduce
this race. It uses similar logic to split_free_page() to ensure that
watermarks are still obeyed.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A long time ago, in v2.4, VM_RESERVED kept swapout process off VMA,
currently it lost original meaning but still has some effects:
| effect | alternative flags
-+------------------------+---------------------------------------------
1| account as reserved_vm | VM_IO
2| skip in core dump | VM_IO, VM_DONTDUMP
3| do not merge or expand | VM_IO, VM_DONTEXPAND, VM_HUGETLB, VM_PFNMAP
4| do not mlock | VM_IO, VM_DONTEXPAND, VM_HUGETLB, VM_PFNMAP
This patch removes reserved_vm counter from mm_struct. Seems like nobody
cares about it, it does not exported into userspace directly, it only
reduces total_vm showed in proc.
Thus VM_RESERVED can be replaced with VM_IO or pair VM_DONTEXPAND | VM_DONTDUMP.
remap_pfn_range() and io_remap_pfn_range() set VM_IO|VM_DONTEXPAND|VM_DONTDUMP.
remap_vmalloc_range() set VM_DONTEXPAND | VM_DONTDUMP.
[akpm@linux-foundation.org: drivers/vfio/pci/vfio_pci.c fixup]
Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Carsten Otte <cotte@de.ibm.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Eric Paris <eparis@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: James Morris <james.l.morris@oracle.com>
Cc: Jason Baron <jbaron@redhat.com>
Cc: Kentaro Takeda <takedakn@nttdata.co.jp>
Cc: Matt Helsley <matthltc@us.ibm.com>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Robert Richter <robert.richter@amd.com>
Cc: Suresh Siddha <suresh.b.siddha@intel.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Venkatesh Pallipadi <venki@google.com>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Rename VM_NODUMP into VM_DONTDUMP: this name matches other negative flags:
VM_DONTEXPAND, VM_DONTCOPY. Currently this flag used only for
sys_madvise. The next patch will use it for replacing the outdated flag
VM_RESERVED.
Also forbid madvise(MADV_DODUMP) for special kernel mappings VM_SPECIAL
(VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP)
Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Carsten Otte <cotte@de.ibm.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Eric Paris <eparis@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: James Morris <james.l.morris@oracle.com>
Cc: Jason Baron <jbaron@redhat.com>
Cc: Kentaro Takeda <takedakn@nttdata.co.jp>
Cc: Matt Helsley <matthltc@us.ibm.com>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Robert Richter <robert.richter@amd.com>
Cc: Suresh Siddha <suresh.b.siddha@intel.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Venkatesh Pallipadi <venki@google.com>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently the kernel sets mm->exe_file during sys_execve() and then tracks
number of vmas with VM_EXECUTABLE flag in mm->num_exe_file_vmas, as soon
as this counter drops to zero kernel resets mm->exe_file to NULL. Plus it
resets mm->exe_file at last mmput() when mm->mm_users drops to zero.
VMA with VM_EXECUTABLE flag appears after mapping file with flag
MAP_EXECUTABLE, such vmas can appears only at sys_execve() or after vma
splitting, because sys_mmap ignores this flag. Usually binfmt module sets
mm->exe_file and mmaps executable vmas with this file, they hold
mm->exe_file while task is running.
comment from v2.6.25-6245-g925d1c4 ("procfs task exe symlink"),
where all this stuff was introduced:
> The kernel implements readlink of /proc/pid/exe by getting the file from
> the first executable VMA. Then the path to the file is reconstructed and
> reported as the result.
>
> Because of the VMA walk the code is slightly different on nommu systems.
> This patch avoids separate /proc/pid/exe code on nommu systems. Instead of
> walking the VMAs to find the first executable file-backed VMA we store a
> reference to the exec'd file in the mm_struct.
>
> That reference would prevent the filesystem holding the executable file
> from being unmounted even after unmapping the VMAs. So we track the number
> of VM_EXECUTABLE VMAs and drop the new reference when the last one is
> unmapped. This avoids pinning the mounted filesystem.
exe_file's vma accounting is hooked into every file mmap/unmmap and vma
split/merge just to fix some hypothetical pinning fs from umounting by mm,
which already unmapped all its executable files, but still alive.
Seems like currently nobody depends on this behaviour. We can try to
remove this logic and keep mm->exe_file until final mmput().
mm->exe_file is still protected with mm->mmap_sem, because we want to
change it via new sys_prctl(PR_SET_MM_EXE_FILE). Also via this syscall
task can change its mm->exe_file and unpin mountpoint explicitly.
Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Carsten Otte <cotte@de.ibm.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Eric Paris <eparis@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: James Morris <james.l.morris@oracle.com>
Cc: Jason Baron <jbaron@redhat.com>
Cc: Kentaro Takeda <takedakn@nttdata.co.jp>
Cc: Matt Helsley <matthltc@us.ibm.com>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Robert Richter <robert.richter@amd.com>
Cc: Suresh Siddha <suresh.b.siddha@intel.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Venkatesh Pallipadi <venki@google.com>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Move actual pte filling for non-linear file mappings into the new special
vma operation: ->remap_pages().
Filesystems must implement this method to get non-linear mapping support,
if it uses filemap_fault() then generic_file_remap_pages() can be used.
Now device drivers can implement this method and obtain nonlinear vma support.
Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Carsten Otte <cotte@de.ibm.com>
Cc: Chris Metcalf <cmetcalf@tilera.com> #arch/tile
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Eric Paris <eparis@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: James Morris <james.l.morris@oracle.com>
Cc: Jason Baron <jbaron@redhat.com>
Cc: Kentaro Takeda <takedakn@nttdata.co.jp>
Cc: Matt Helsley <matthltc@us.ibm.com>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Robert Richter <robert.richter@amd.com>
Cc: Suresh Siddha <suresh.b.siddha@intel.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Venkatesh Pallipadi <venki@google.com>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Merge VM_INSERTPAGE into VM_MIXEDMAP. VM_MIXEDMAP VMA can mix pure-pfn
ptes, special ptes and normal ptes.
Now copy_page_range() always copies VM_MIXEDMAP VMA on fork like
VM_PFNMAP. If driver populates whole VMA at mmap() it probably not
expects page-faults.
This patch removes special check from vma_wants_writenotify() which
disables pages write tracking for VMA populated via vm_instert_page().
BDI below mapped file should not use dirty-accounting, moreover
do_wp_page() can handle this.
vm_insert_page() still marks vma after first usage. Usually it is called
from f_op->mmap() handler under mm->mmap_sem write-lock, so it able to
change vma->vm_flags. Caller must set VM_MIXEDMAP at mmap time if it
wants to call this function from other places, for example from page-fault
handler.
Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Carsten Otte <cotte@de.ibm.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Eric Paris <eparis@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: James Morris <james.l.morris@oracle.com>
Cc: Jason Baron <jbaron@redhat.com>
Cc: Kentaro Takeda <takedakn@nttdata.co.jp>
Cc: Matt Helsley <matthltc@us.ibm.com>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Robert Richter <robert.richter@amd.com>
Cc: Suresh Siddha <suresh.b.siddha@intel.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Venkatesh Pallipadi <venki@google.com>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Replace the generic vma-flag VM_PFN_AT_MMAP with x86-only VM_PAT.
We can toss mapping address from remap_pfn_range() into
track_pfn_vma_new(), and collect all PAT-related logic together in
arch/x86/.
This patch also restores orignal frustration-free is_cow_mapping() check
in remap_pfn_range(), as it was before commit v2.6.28-rc8-88-g3c8bb73
("x86: PAT: store vm_pgoff for all linear_over_vma_region mappings - v3")
is_linear_pfn_mapping() checks can be removed from mm/huge_memory.c,
because it already handled by VM_PFNMAP in VM_NO_THP bit-mask.
[suresh.b.siddha@intel.com: Reset the VM_PAT flag as part of untrack_pfn_vma()]
Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org>
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Cc: Venkatesh Pallipadi <venki@google.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Carsten Otte <cotte@de.ibm.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Eric Paris <eparis@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: James Morris <james.l.morris@oracle.com>
Cc: Jason Baron <jbaron@redhat.com>
Cc: Kentaro Takeda <takedakn@nttdata.co.jp>
Cc: Matt Helsley <matthltc@us.ibm.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Robert Richter <robert.richter@amd.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Venkatesh Pallipadi <venki@google.com>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull second vfs pile from Al Viro:
"The stuff in there: fsfreeze deadlock fixes by Jan (essentially, the
deadlock reproduced by xfstests 068), symlink and hardlink restriction
patches, plus assorted cleanups and fixes.
Note that another fsfreeze deadlock (emergency thaw one) is *not*
dealt with - the series by Fernando conflicts a lot with Jan's, breaks
userland ABI (FIFREEZE semantics gets changed) and trades the deadlock
for massive vfsmount leak; this is going to be handled next cycle.
There probably will be another pull request, but that stuff won't be
in it."
Fix up trivial conflicts due to unrelated changes next to each other in
drivers/{staging/gdm72xx/usb_boot.c, usb/gadget/storage_common.c}
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (54 commits)
delousing target_core_file a bit
Documentation: Correct s_umount state for freeze_fs/unfreeze_fs
fs: Remove old freezing mechanism
ext2: Implement freezing
btrfs: Convert to new freezing mechanism
nilfs2: Convert to new freezing mechanism
ntfs: Convert to new freezing mechanism
fuse: Convert to new freezing mechanism
gfs2: Convert to new freezing mechanism
ocfs2: Convert to new freezing mechanism
xfs: Convert to new freezing code
ext4: Convert to new freezing mechanism
fs: Protect write paths by sb_start_write - sb_end_write
fs: Skip atime update on frozen filesystem
fs: Add freezing handling to mnt_want_write() / mnt_drop_write()
fs: Improve filesystem freezing handling
switch the protection of percpu_counter list to spinlock
nfsd: Push mnt_want_write() outside of i_mutex
btrfs: Push mnt_want_write() outside of i_mutex
fat: Push mnt_want_write() outside of i_mutex
...
This patch adds two new APIs get_kernel_pages() and get_kernel_page() that
may be used to pin a vector of kernel addresses for IO. The initial user
is expected to be NFS for allowing pages to be written to swap using
aops->direct_IO(). Strictly speaking, swap-over-NFS only needs to pin one
page for IO but it makes sense to express the API in terms of a vector and
add a helper for pinning single pages.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: David S. Miller <davem@davemloft.net>
Cc: Eric B Munson <emunson@mgebm.net>
Cc: Eric Paris <eparis@redhat.com>
Cc: James Morris <jmorris@namei.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Christie <michaelc@cs.wisc.edu>
Cc: Neil Brown <neilb@suse.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Sebastian Andrzej Siewior <sebastian@breakpoint.cc>
Cc: Trond Myklebust <Trond.Myklebust@netapp.com>
Cc: Xiaotian Feng <dfeng@redhat.com>
Cc: Mark Salter <msalter@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In order to teach filesystems to handle swap cache pages, three new page
functions are introduced:
pgoff_t page_file_index(struct page *);
loff_t page_file_offset(struct page *);
struct address_space *page_file_mapping(struct page *);
page_file_index() - gives the offset of this page in the file in
PAGE_CACHE_SIZE blocks. Like page->index is for mapped pages, this
function also gives the correct index for PG_swapcache pages.
page_file_offset() - uses page_file_index(), so that it will give the
expected result, even for PG_swapcache pages.
page_file_mapping() - gives the mapping backing the actual page; that is
for swap cache pages it will give swap_file->f_mapping.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: David S. Miller <davem@davemloft.net>
Cc: Eric B Munson <emunson@mgebm.net>
Cc: Eric Paris <eparis@redhat.com>
Cc: James Morris <jmorris@namei.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Christie <michaelc@cs.wisc.edu>
Cc: Neil Brown <neilb@suse.de>
Cc: Sebastian Andrzej Siewior <sebastian@breakpoint.cc>
Cc: Trond Myklebust <Trond.Myklebust@netapp.com>
Cc: Xiaotian Feng <dfeng@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When a zone becomes empty after memory offlining, free zone->pageset.
Otherwise it will cause memory leak when adding memory to the empty zone
again because build_all_zonelists() will allocate zone->pageset for an
empty zone.
Signed-off-by: Jiang Liu <liuj97@gmail.com>
Signed-off-by: Wei Wang <Bessel.Wang@huawei.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Tony Luck <tony.luck@intel.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Keping Chen <chenkeping@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
vm_stat_account() accounts the shared_vm, stack_vm and reserved_vm now.
But we can also account for total_vm in the vm_stat_account() which makes
the code tidy.
Even for mprotect_fixup(), we can get the right result in the end.
Signed-off-by: Huang Shijie <shijie8@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Make default vm_ops provide ->page_mkwrite handler. Currently it only updates
file's modification times and gets locked page but later it will also handle
filesystem freezing.
BugLink: https://bugs.launchpad.net/bugs/897421
Tested-by: Kamal Mostafa <kamal@canonical.com>
Tested-by: Peter M. Petrakis <peter.petrakis@canonical.com>
Tested-by: Dann Frazier <dann.frazier@canonical.com>
Tested-by: Massimo Morana <massimo.morana@canonical.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
In commit dad1743e59 ("x86/mce: Only restart instruction after machine
check recovery if it is safe") we fixed mce_notify_process() to force a
signal to the current process if it was not restartable (RIPV bit not
set in MCG_STATUS). But doing it here means that the process doesn't
get told the virtual address of the fault via siginfo_t->si_addr. This
would prevent application level recovery from the fault.
Make a new MF_MUST_KILL flag bit for memory_failure() et al. to use so
that we will provide the right information with the signal.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Acked-by: Borislav Petkov <borislav.petkov@amd.com>
Cc: stable@kernel.org # 3.4+
Pull vfs changes from Al Viro.
"A lot of misc stuff. The obvious groups:
* Miklos' atomic_open series; kills the damn abuse of
->d_revalidate() by NFS, which was the major stumbling block for
all work in that area.
* ripping security_file_mmap() and dealing with deadlocks in the
area; sanitizing the neighborhood of vm_mmap()/vm_munmap() in
general.
* ->encode_fh() switched to saner API; insane fake dentry in
mm/cleancache.c gone.
* assorted annotations in fs (endianness, __user)
* parts of Artem's ->s_dirty work (jff2 and reiserfs parts)
* ->update_time() work from Josef.
* other bits and pieces all over the place.
Normally it would've been in two or three pull requests, but
signal.git stuff had eaten a lot of time during this cycle ;-/"
Fix up trivial conflicts in Documentation/filesystems/vfs.txt (the
'truncate_range' inode method was removed by the VM changes, the VFS
update adds an 'update_time()' method), and in fs/btrfs/ulist.[ch] (due
to sparse fix added twice, with other changes nearby).
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (95 commits)
nfs: don't open in ->d_revalidate
vfs: retry last component if opening stale dentry
vfs: nameidata_to_filp(): don't throw away file on error
vfs: nameidata_to_filp(): inline __dentry_open()
vfs: do_dentry_open(): don't put filp
vfs: split __dentry_open()
vfs: do_last() common post lookup
vfs: do_last(): add audit_inode before open
vfs: do_last(): only return EISDIR for O_CREAT
vfs: do_last(): check LOOKUP_DIRECTORY
vfs: do_last(): make ENOENT exit RCU safe
vfs: make follow_link check RCU safe
vfs: do_last(): use inode variable
vfs: do_last(): inline walk_component()
vfs: do_last(): make exit RCU safe
vfs: split do_lookup()
Btrfs: move over to use ->update_time
fs: introduce inode operation ->update_time
reiserfs: get rid of resierfs_sync_super
reiserfs: mark the superblock as dirty a bit later
...
Transparent huge pages can change page->flags (PG_compound_lock) without
taking Slab lock. Since THP can not break slab pages we can safely access
compound page without taking compound lock.
Specifically this patch fixes a race between compound_unlock() and slab
functions which perform page-flags updates. This can occur when
get_page()/put_page() is called on a page from slab.
[akpm@linux-foundation.org: tweak comment text, fix comment layout, fix label indenting]
Reported-by: Amey Bhide <abhide@nicira.com>
Signed-off-by: Pravin B Shelar <pshelar@nicira.com>
Reviewed-by: Christoph Lameter <cl@linux.com>
Acked-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Remove vmtruncate_range(), and remove the truncate_range method from
struct inode_operations: only tmpfs ever supported it, and tmpfs has now
converted over to using the fallocate method of file_operations.
Update Documentation accordingly, adding (setlease and) fallocate lines.
And while we're in mm.h, remove duplicate declarations of shmem_lock() and
shmem_file_setup(): everyone is now using the ones in shmem_fs.h.
Based-on-patch-by: Cong Wang <amwang@redhat.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Cong Wang <amwang@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The VM accounting makes no sense at this level, and half of the callers
didn't ever actually use the end result. The only time we want to
unaccount the memory is when we actually remove the vma, so do the
accounting at that point instead.
This simplifies the interfaces (no need to pass down that silly page
counter to functions that really don't care), and also makes it much
more obvious what is actually going on: we do vm_[un]acct_memory() when
adding or removing the vma, not on random page walking.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
None of the callers want to pass in 'zap_details', and it doesn't even
make sense for the case of actually unmapping vma's. So remove the
argument, and clean up the interface.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This continues the theme started with vm_brk() and vm_munmap():
vm_mmap() does the same thing as do_mmap(), but additionally does the
required VM locking.
This uninlines (and rewrites it to be clearer) do_mmap(), which sadly
duplicates it in mm/mmap.c and mm/nommu.c. But that way we don't have
to export our internal do_mmap_pgoff() function.
Some day we hopefully don't have to export do_mmap() either, if all
modular users can become the simpler vm_mmap() instead. We're actually
very close to that already, with the notable exception of the (broken)
use in i810, and a couple of stragglers in binfmt_elf.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Like the vm_brk() function, this is the same as "do_munmap()", except it
does the VM locking for the caller.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It does the same thing as "do_brk()", except it handles the VM locking
too.
It turns out that all external callers want that anyway, so we can make
do_brk() static to just mm/mmap.c while at it.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Merge third batch of patches from Andrew Morton:
- Some MM stragglers
- core SMP library cleanups (on_each_cpu_mask)
- Some IPI optimisations
- kexec
- kdump
- IPMI
- the radix-tree iterator work
- various other misc bits.
"That'll do for -rc1. I still have ~10 patches for 3.4, will send
those along when they've baked a little more."
* emailed from Andrew Morton <akpm@linux-foundation.org>: (35 commits)
backlight: fix typo in tosa_lcd.c
crc32: add help text for the algorithm select option
mm: move hugepage test examples to tools/testing/selftests/vm
mm: move slabinfo.c to tools/vm
mm: move page-types.c from Documentation to tools/vm
selftests/Makefile: make `run_tests' depend on `all'
selftests: launch individual selftests from the main Makefile
radix-tree: use iterators in find_get_pages* functions
radix-tree: rewrite gang lookup using iterator
radix-tree: introduce bit-optimized iterator
fs/proc/namespaces.c: prevent crash when ns_entries[] is empty
nbd: rename the nbd_device variable from lo to nbd
pidns: add reboot_pid_ns() to handle the reboot syscall
sysctl: use bitmap library functions
ipmi: use locks on watchdog timeout set on reboot
ipmi: simplify locking
ipmi: fix message handling during panics
ipmi: use a tasklet for handling received messages
ipmi: increase KCS timeouts
ipmi: decrease the IPMI message transaction time in interrupt mode
...
Holepunching filesystems ext4 and xfs are using truncate_inode_pages_range
but forgetting to unmap pages first (ocfs2 remembers). This is not really
a bug, since races already require truncate_inode_page() to handle that
case once the page is locked; but it can be very inefficient if the file
being punched happens to be mapped into many vmas.
Provide a drop-in replacement truncate_pagecache_range() which does the
unmapping pass first, handling the awkward mismatch between arguments to
truncate_inode_pages_range() and arguments to unmap_mapping_range().
Note that holepunching does not unmap privately COWed pages in the range:
POSIX requires that we do so when truncating, but it's hard to justify,
difficult to implement without an i_size cutoff, and no filesystem is
attempting to implement it.
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Andreas Dilger <adilger.kernel@dilger.ca>
Cc: Mark Fasheh <mfasheh@suse.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Ben Myers <bpm@sgi.com>
Cc: Alex Elder <elder@kernel.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.12 (GNU/Linux)
iQIVAwUAT3NKzROxKuMESys7AQKElw/+JyDxJSlj+g+nymkx8IVVuU8CsEwNLgRk
8KEnRfLhGtkXFLSJYWO6jzGo16F8Uqli1PdMFte/wagSv0285/HZaKlkkBVHdJ/m
u40oSjgT013bBh6MQ0Oaf8pFezFUiQB5zPOA9QGaLVGDLXCmgqUgd7exaD5wRIwB
ZmyItjZeAVnDfk1R+ZiNYytHAi8A5wSB+eFDCIQYgyulA1Igd1UnRtx+dRKbvc/m
rWQ6KWbZHIdvP1ksd8wHHkrlUD2pEeJ8glJLsZUhMm/5oMf/8RmOCvmo8rvE/qwl
eDQ1h4cGYlfjobxXZMHqAN9m7Jg2bI946HZjdb7/7oCeO6VW3FwPZ/Ic75p+wp45
HXJTItufERYk6QxShiOKvA+QexnYwY0IT5oRP4DrhdVB/X9cl2MoaZHC+RbYLQy+
/5VNZKi38iK4F9AbFamS7kd0i5QszA/ZzEzKZ6VMuOp3W/fagpn4ZJT1LIA3m4A9
Q0cj24mqeyCfjysu0TMbPtaN+Yjeu1o1OFRvM8XffbZsp5bNzuTDEvviJ2NXw4vK
4qUHulhYSEWcu9YgAZXvEWDEM78FXCkg2v/CrZXH5tyc95kUkMPcgG+QZBB5wElR
FaOKpiC/BuNIGEf02IZQ4nfDxE90QwnDeoYeV+FvNj9UEOopJ5z5bMPoTHxm4cCD
NypQthI85pc=
=G9mT
-----END PGP SIGNATURE-----
Merge tag 'split-asm_system_h-for-linus-20120328' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-asm_system
Pull "Disintegrate and delete asm/system.h" from David Howells:
"Here are a bunch of patches to disintegrate asm/system.h into a set of
separate bits to relieve the problem of circular inclusion
dependencies.
I've built all the working defconfigs from all the arches that I can
and made sure that they don't break.
The reason for these patches is that I recently encountered a circular
dependency problem that came about when I produced some patches to
optimise get_order() by rewriting it to use ilog2().
This uses bitops - and on the SH arch asm/bitops.h drags in
asm-generic/get_order.h by a circuituous route involving asm/system.h.
The main difficulty seems to be asm/system.h. It holds a number of
low level bits with no/few dependencies that are commonly used (eg.
memory barriers) and a number of bits with more dependencies that
aren't used in many places (eg. switch_to()).
These patches break asm/system.h up into the following core pieces:
(1) asm/barrier.h
Move memory barriers here. This already done for MIPS and Alpha.
(2) asm/switch_to.h
Move switch_to() and related stuff here.
(3) asm/exec.h
Move arch_align_stack() here. Other process execution related bits
could perhaps go here from asm/processor.h.
(4) asm/cmpxchg.h
Move xchg() and cmpxchg() here as they're full word atomic ops and
frequently used by atomic_xchg() and atomic_cmpxchg().
(5) asm/bug.h
Move die() and related bits.
(6) asm/auxvec.h
Move AT_VECTOR_SIZE_ARCH here.
Other arch headers are created as needed on a per-arch basis."
Fixed up some conflicts from other header file cleanups and moving code
around that has happened in the meantime, so David's testing is somewhat
weakened by that. We'll find out anything that got broken and fix it..
* tag 'split-asm_system_h-for-linus-20120328' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-asm_system: (38 commits)
Delete all instances of asm/system.h
Remove all #inclusions of asm/system.h
Add #includes needed to permit the removal of asm/system.h
Move all declarations of free_initmem() to linux/mm.h
Disintegrate asm/system.h for OpenRISC
Split arch_align_stack() out from asm-generic/system.h
Split the switch_to() wrapper out of asm-generic/system.h
Move the asm-generic/system.h xchg() implementation to asm-generic/cmpxchg.h
Create asm-generic/barrier.h
Make asm-generic/cmpxchg.h #include asm-generic/cmpxchg-local.h
Disintegrate asm/system.h for Xtensa
Disintegrate asm/system.h for Unicore32 [based on ver #3, changed by gxt]
Disintegrate asm/system.h for Tile
Disintegrate asm/system.h for Sparc
Disintegrate asm/system.h for SH
Disintegrate asm/system.h for Score
Disintegrate asm/system.h for S390
Disintegrate asm/system.h for PowerPC
Disintegrate asm/system.h for PA-RISC
Disintegrate asm/system.h for MN10300
...
"[RFC - PATCH 0/7] consolidation of BUG support code."
https://lkml.org/lkml/2012/1/26/525
--
The changes shown here are to unify linux's BUG support under
the one <linux/bug.h> file. Due to historical reasons, we have
some BUG code in bug.h and some in kernel.h -- i.e. the support for
BUILD_BUG in linux/kernel.h predates the addition of linux/bug.h,
but old code in kernel.h wasn't moved to bug.h at that time. As
a band-aid, kernel.h was including <asm/bug.h> to pseudo link them.
This has caused confusion[1] and general yuck/WTF[2] reactions.
Here is an example that violates the principle of least surprise:
CC lib/string.o
lib/string.c: In function 'strlcat':
lib/string.c:225:2: error: implicit declaration of function 'BUILD_BUG_ON'
make[2]: *** [lib/string.o] Error 1
$
$ grep linux/bug.h lib/string.c
#include <linux/bug.h>
$
We've included <linux/bug.h> for the BUG infrastructure and yet we
still get a compile fail! [We've not kernel.h for BUILD_BUG_ON.]
Ugh - very confusing for someone who is new to kernel development.
With the above in mind, the goals of this changeset are:
1) find and fix any include/*.h files that were relying on the
implicit presence of BUG code.
2) find and fix any C files that were consuming kernel.h and
hence relying on implicitly getting some/all BUG code.
3) Move the BUG related code living in kernel.h to <linux/bug.h>
4) remove the asm/bug.h from kernel.h to finally break the chain.
During development, the order was more like 3-4, build-test, 1-2.
But to ensure that git history for bisect doesn't get needless
build failures introduced, the commits have been reorderd to fix
the problem areas in advance.
[1] https://lkml.org/lkml/2012/1/3/90
[2] https://lkml.org/lkml/2012/1/17/414
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.11 (GNU/Linux)
iQIcBAABAgAGBQJPbNwpAAoJEOvOhAQsB9HWrqYP/A0t9VB0nK6e42F0OR2P14MZ
GJFtf1B++wwioIrx+KSWSRfSur1C5FKhDbxLR3I/pvkAYl4+T4JvRdMG6xJwxyip
CC1kVQQNDjWVVqzjz2x6rYkOffx6dUlw/ERyIyk+OzP+1HzRIsIrugMqbzGLlX0X
y0v2Tbd0G6xg1DV8lcRdp95eIzcGuUvdb2iY2LGadWZczEOeSXx64Jz3QCFxg3aL
LFU4oovsg8Nb7MRJmqDvHK/oQf5vaTm9WSrS0pvVte0msSQRn8LStYdWC0G9BPCS
GwL86h/eLXlUXQlC5GpgWg1QQt5i2QpjBFcVBIG0IT5SgEPMx+gXyiqZva2KwbHu
LKicjKtfnzPitQnyEV/N6JyV1fb1U6/MsB7ebU5nCCzt9Gr7MYbjZ44peNeprAtu
HMvJ/BNnRr4Ha6nPQNu952AdASPKkxmeXFUwBL1zUbLkOX/bK/vy1ujlcdkFxCD7
fP3t7hghYa737IHk0ehUOhrE4H67hvxTSCKioLUAy/YeN1IcfH/iOQiCBQVLWmoS
AqYV6ou9cqgdYoyila2UeAqegb+8xyubPIHt+lebcaKxs5aGsTg+r3vq5juMDAPs
iwSVYUDcIw9dHer1lJfo7QCy3QUTRDTxh+LB9VlHXQICgeCK02sLBOi9hbEr4/H8
Ko9g8J3BMxcMkXLHT9ud
=PYQT
-----END PGP SIGNATURE-----
Merge tag 'bug-for-3.4' of git://git.kernel.org/pub/scm/linux/kernel/git/paulg/linux
Pull <linux/bug.h> cleanup from Paul Gortmaker:
"The changes shown here are to unify linux's BUG support under the one
<linux/bug.h> file. Due to historical reasons, we have some BUG code
in bug.h and some in kernel.h -- i.e. the support for BUILD_BUG in
linux/kernel.h predates the addition of linux/bug.h, but old code in
kernel.h wasn't moved to bug.h at that time. As a band-aid, kernel.h
was including <asm/bug.h> to pseudo link them.
This has caused confusion[1] and general yuck/WTF[2] reactions. Here
is an example that violates the principle of least surprise:
CC lib/string.o
lib/string.c: In function 'strlcat':
lib/string.c:225:2: error: implicit declaration of function 'BUILD_BUG_ON'
make[2]: *** [lib/string.o] Error 1
$
$ grep linux/bug.h lib/string.c
#include <linux/bug.h>
$
We've included <linux/bug.h> for the BUG infrastructure and yet we
still get a compile fail! [We've not kernel.h for BUILD_BUG_ON.] Ugh -
very confusing for someone who is new to kernel development.
With the above in mind, the goals of this changeset are:
1) find and fix any include/*.h files that were relying on the
implicit presence of BUG code.
2) find and fix any C files that were consuming kernel.h and hence
relying on implicitly getting some/all BUG code.
3) Move the BUG related code living in kernel.h to <linux/bug.h>
4) remove the asm/bug.h from kernel.h to finally break the chain.
During development, the order was more like 3-4, build-test, 1-2. But
to ensure that git history for bisect doesn't get needless build
failures introduced, the commits have been reorderd to fix the problem
areas in advance.
[1] https://lkml.org/lkml/2012/1/3/90
[2] https://lkml.org/lkml/2012/1/17/414"
Fix up conflicts (new radeon file, reiserfs header cleanups) as per Paul
and linux-next.
* tag 'bug-for-3.4' of git://git.kernel.org/pub/scm/linux/kernel/git/paulg/linux:
kernel.h: doesn't explicitly use bug.h, so don't include it.
bug: consolidate BUILD_BUG_ON with other bug code
BUG: headers with BUG/BUG_ON etc. need linux/bug.h
bug.h: add include of it to various implicit C users
lib: fix implicit users of kernel.h for TAINT_WARN
spinlock: macroize assert_spin_locked to avoid bug.h dependency
x86: relocate get/set debugreg fcns to include/asm/debugreg.
Since we no longer need the VM_ALWAYSDUMP flag, let's use the freed bit
for 'VM_NODUMP' flag. The idea is is to add a new madvise() flag:
MADV_DONTDUMP, which can be set by applications to specifically request
memory regions which should not dump core.
The specific application I have in mind is qemu: we can add a flag there
that wouldn't dump all of guest memory when qemu dumps core. This flag
might also be useful for security sensitive apps that want to absolutely
make sure that parts of memory are not dumped. To clear the flag use:
MADV_DODUMP.
[akpm@linux-foundation.org: s/MADV_NODUMP/MADV_DONTDUMP/, s/MADV_CLEAR_NODUMP/MADV_DODUMP/, per Roland]
[akpm@linux-foundation.org: fix up the architectures which broke]
Signed-off-by: Jason Baron <jbaron@redhat.com>
Acked-by: Roland McGrath <roland@hack.frob.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: Matt Turner <mattst88@gmail.com>
Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
Cc: Helge Deller <deller@gmx.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The motivation for this patchset was that I was looking at a way for a
qemu-kvm process, to exclude the guest memory from its core dump, which
can be quite large. There are already a number of filter flags in
/proc/<pid>/coredump_filter, however, these allow one to specify 'types'
of kernel memory, not specific address ranges (which is needed in this
case).
Since there are no more vma flags available, the first patch eliminates
the need for the 'VM_ALWAYSDUMP' flag. The flag is used internally by
the kernel to mark vdso and vsyscall pages. However, it is simple
enough to check if a vma covers a vdso or vsyscall page without the need
for this flag.
The second patch then replaces the 'VM_ALWAYSDUMP' flag with a new
'VM_NODUMP' flag, which can be set by userspace using new madvise flags:
'MADV_DONTDUMP', and unset via 'MADV_DODUMP'. The core dump filters
continue to work the same as before unless 'MADV_DONTDUMP' is set on the
region.
The qemu code which implements this features is at:
http://people.redhat.com/~jbaron/qemu-dump/qemu-dump.patch
In my testing the qemu core dump shrunk from 383MB -> 13MB with this
patch.
I also believe that the 'MADV_DONTDUMP' flag might be useful for
security sensitive apps, which might want to select which areas are
dumped.
This patch:
The VM_ALWAYSDUMP flag is currently used by the coredump code to
indicate that a vma is part of a vsyscall or vdso section. However, we
can determine if a vma is in one these sections by checking it against
the gate_vma and checking for a non-NULL return value from
arch_vma_name(). Thus, freeing a valuable vma bit.
Signed-off-by: Jason Baron <jbaron@redhat.com>
Acked-by: Roland McGrath <roland@hack.frob.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Avi Kivity <avi@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull MCE changes from Ingo Molnar.
* 'x86-mce-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mce: Fix return value of mce_chrdev_read() when erst is disabled
x86/mce: Convert static array of pointers to per-cpu variables
x86/mce: Replace hard coded hex constants with symbolic defines
x86/mce: Recognise machine check bank signature for data path error
x86/mce: Handle "action required" errors
x86/mce: Add mechanism to safely save information in MCE handler
x86/mce: Create helper function to save addr/misc when needed
HWPOISON: Add code to handle "action required" errors.
HWPOISON: Clean up memory_failure() vs. __memory_failure()
Merge first batch of patches from Andrew Morton:
"A few misc things and all the MM queue"
* emailed from Andrew Morton <akpm@linux-foundation.org>: (92 commits)
memcg: avoid THP split in task migration
thp: add HPAGE_PMD_* definitions for !CONFIG_TRANSPARENT_HUGEPAGE
memcg: clean up existing move charge code
mm/memcontrol.c: remove unnecessary 'break' in mem_cgroup_read()
mm/memcontrol.c: remove redundant BUG_ON() in mem_cgroup_usage_unregister_event()
mm/memcontrol.c: s/stealed/stolen/
memcg: fix performance of mem_cgroup_begin_update_page_stat()
memcg: remove PCG_FILE_MAPPED
memcg: use new logic for page stat accounting
memcg: remove PCG_MOVE_LOCK flag from page_cgroup
memcg: simplify move_account() check
memcg: remove EXPORT_SYMBOL(mem_cgroup_update_page_stat)
memcg: kill dead prev_priority stubs
memcg: remove PCG_CACHE page_cgroup flag
memcg: let css_get_next() rely upon rcu_read_lock()
cgroup: revert ss_id_lock to spinlock
idr: make idr_get_next() good for rcu_read_lock()
memcg: remove unnecessary thp check in page stat accounting
memcg: remove redundant returns
memcg: enum lru_list lru
...
add_from_early_node_map() is unused.
Signed-off-by: Kautuk Consul <consul.kautuk@gmail.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
sync_mm_rss() can only be used for current to avoid race conditions in
iterating and clearing its per-task counters. Remove the task argument
for it and its helper function, __sync_task_rss_stat(), to avoid thinking
it can be used safely for anything other than current.
Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
... since all callers ignore its return value and it's been
useless since commit 97a894136f
(mm: Remove i_mmap_lock lockbreak) anyway.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
If a header file is making use of BUG, BUG_ON, BUILD_BUG_ON, or any
other BUG variant in a static inline (i.e. not in a #define) then
that header really should be including <linux/bug.h> and not just
expecting it to be implicitly present.
We can make this change risk-free, since if the files using these
headers didn't have exposure to linux/bug.h already, they would have
been causing compile failures/warnings.
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
* 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/numa: Add constraints check for nid parameters
mm, x86: Remove debug_pagealloc_enabled
x86/mm: Initialize high mem before free_all_bootmem()
arch/x86/kernel/e820.c: quiet sparse noise about plain integer as NULL pointer
arch/x86/kernel/e820.c: Eliminate bubble sort from sanitize_e820_map()
x86: Fix mmap random address range
x86, mm: Unify zone_sizes_init()
x86, mm: Prepare zone_sizes_init() for unification
x86, mm: Use max_low_pfn for ZONE_NORMAL on 64-bit
x86, mm: Wrap ZONE_DMA32 with CONFIG_ZONE_DMA32
x86, mm: Use max_pfn instead of highend_pfn
x86, mm: Move zone init from paging_init() on 64-bit
x86, mm: Use MAX_DMA_PFN for ZONE_DMA on 32-bit
This one behaves similarly to the /proc/<pid>/fd/ one - it contains
symlinks one for each mapping with file, the name of a symlink is
"vma->vm_start-vma->vm_end", the target is the file. Opening a symlink
results in a file that point exactly to the same inode as them vma's one.
For example the ls -l of some arbitrary /proc/<pid>/map_files/
| lr-x------ 1 root root 64 Aug 26 06:40 7f8f80403000-7f8f80404000 -> /lib64/libc-2.5.so
| lr-x------ 1 root root 64 Aug 26 06:40 7f8f8061e000-7f8f80620000 -> /lib64/libselinux.so.1
| lr-x------ 1 root root 64 Aug 26 06:40 7f8f80826000-7f8f80827000 -> /lib64/libacl.so.1.1.0
| lr-x------ 1 root root 64 Aug 26 06:40 7f8f80a2f000-7f8f80a30000 -> /lib64/librt-2.5.so
| lr-x------ 1 root root 64 Aug 26 06:40 7f8f80a30000-7f8f80a4c000 -> /lib64/ld-2.5.so
This *helps* checkpointing process in three ways:
1. When dumping a task mappings we do know exact file that is mapped
by particular region. We do this by opening
/proc/$pid/map_files/$address symlink the way we do with file
descriptors.
2. This also helps in determining which anonymous shared mappings are
shared with each other by comparing the inodes of them.
3. When restoring a set of processes in case two of them has a mapping
shared, we map the memory by the 1st one and then open its
/proc/$pid/map_files/$address file and map it by the 2nd task.
Using /proc/$pid/maps for this is quite inconvenient since it brings
repeatable re-reading and reparsing for this text file which slows down
restore procedure significantly. Also as being pointed in (3) it is a way
easier to use top level shared mapping in children as
/proc/$pid/map_files/$address when needed.
[akpm@linux-foundation.org: coding-style fixes]
[gorcunov@openvz.org: make map_files depend on CHECKPOINT_RESTORE]
Signed-off-by: Pavel Emelyanov <xemul@parallels.com>
Signed-off-by: Cyrill Gorcunov <gorcunov@openvz.org>
Reviewed-by: Vasiliy Kulikov <segoon@openwall.com>
Reviewed-by: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Tejun Heo <tj@kernel.org>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Al Viro <viro@ZenIV.linux.org.uk>
Cc: Pavel Machek <pavel@ucw.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With CONFIG_DEBUG_PAGEALLOC configured, the CPU will generate an exception
on access (read,write) to an unallocated page, which permits us to catch
code which corrupts memory. However the kernel is trying to maximise
memory usage, hence there are usually few free pages in the system and
buggy code usually corrupts some crucial data.
This patch changes the buddy allocator to keep more free/protected pages
and to interlace free/protected and allocated pages to increase the
probability of catching corruption.
When the kernel is compiled with CONFIG_DEBUG_PAGEALLOC,
debug_guardpage_minorder defines the minimum order used by the page
allocator to grant a request. The requested size will be returned with
the remaining pages used as guard pages.
The default value of debug_guardpage_minorder is zero: no change from
current behaviour.
[akpm@linux-foundation.org: tweak documentation, s/flg/flag/]
Signed-off-by: Stanislaw Gruszka <sgruszka@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Rafael J. Wysocki" <rjw@sisk.pl>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add new flag bit "MF_ACTION_REQUIRED" to be used by machine check
code to force a signal with si_code = BUS_MCEERR_AR in the case
where the error occurs in processor execution context. Pass the
flags argument along call chain:
memory_failure()
hwpoison_user_mappings()
kill_procs()
kill_proc()
Drop the "_ao" suffix from kill_procs_ao() and kill_proc_ao() since
they can now handle "action required" as well as "action optional" errors.
Acked-by: Borislav Petkov <bp@amd64.org>
Signed-off-by: Tony Luck <tony.luck@intel.com>
There is only one caller of memory_failure(), all other users call
__memory_failure() and pass in the flags argument explicitly. The
lone user of memory_failure() will soon need to pass flags too.
Add flags argument to the callsite in mce.c. Delete the old memory_failure()
function, and then rename __memory_failure() without the leading "__".
Provide clearer message when action optional memory errors are ignored.
Acked-by: Borislav Petkov <bp@amd64.org>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Use atomic-long operations instead of looping around cmpxchg().
[akpm@linux-foundation.org: massage atomic.h inclusions]
Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org>
Cc: Dave Chinner <david@fromorbit.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now all ARCH_POPULATES_NODE_MAP archs select HAVE_MEBLOCK_NODE_MAP -
there's no user of early_node_map[] left. Kill early_node_map[] and
replace ARCH_POPULATES_NODE_MAP with HAVE_MEMBLOCK_NODE_MAP. Also,
relocate for_each_mem_pfn_range() and helper from mm.h to memblock.h
as page_alloc.c would no longer host an alternative implementation.
This change is ultimately one to one mapping and shouldn't cause any
observable difference; however, after the recent changes, there are
some functions which now would fit memblock.c better than page_alloc.c
and dependency on HAVE_MEMBLOCK_NODE_MAP instead of HAVE_MEMBLOCK
doesn't make much sense on some of them. Further cleanups for
functions inside HAVE_MEMBLOCK_NODE_MAP in mm.h would be nice.
-v2: Fix compile bug introduced by mis-spelling
CONFIG_HAVE_MEMBLOCK_NODE_MAP to CONFIG_MEMBLOCK_HAVE_NODE_MAP in
mmzone.h. Reported by Stephen Rothwell.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Chen Liqin <liqin.chen@sunplusct.com>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: "H. Peter Anvin" <hpa@zytor.com>
When (no)bootmem finish operation, it pass pages to buddy
allocator. Since debug_pagealloc_enabled is not set, we will do
not protect pages, what is not what we want with
CONFIG_DEBUG_PAGEALLOC=y.
To fix remove debug_pagealloc_enabled. That variable was
introduced by commit 12d6f21e "x86: do not PSE on
CONFIG_DEBUG_PAGEALLOC=y" to get more CPA (change page
attribude) code testing. But currently we have CONFIG_CPA_DEBUG,
which test CPA.
Signed-off-by: Stanislaw Gruszka <sgruszka@redhat.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/1322582711-14571-1-git-send-email-sgruszka@redhat.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Conflicts & resolutions:
* arch/x86/xen/setup.c
dc91c728fd "xen: allow extra memory to be in multiple regions"
24aa07882b "memblock, x86: Replace memblock_x86_reserve/free..."
conflicted on xen_add_extra_mem() updates. The resolution is
trivial as the latter just want to replace
memblock_x86_reserve_range() with memblock_reserve().
* drivers/pci/intel-iommu.c
166e9278a3 "x86/ia64: intel-iommu: move to drivers/iommu/"
5dfe8660a3 "bootmem: Replace work_with_active_regions() with..."
conflicted as the former moved the file under drivers/iommu/.
Resolved by applying the chnages from the latter on the moved
file.
* mm/Kconfig
6661672053 "memblock: add NO_BOOTMEM config symbol"
c378ddd53f "memblock, x86: Make ARCH_DISCARD_MEMBLOCK a config option"
conflicted trivially. Both added config options. Just
letting both add their own options resolves the conflict.
* mm/memblock.c
d1f0ece6cd "mm/memblock.c: small function definition fixes"
ed7b56a799 "memblock: Remove memblock_memory_can_coalesce()"
confliected. The former updates function removed by the
latter. Resolution is trivial.
Signed-off-by: Tejun Heo <tj@kernel.org>
This avoids duplicating the function in every arch gup_fast.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <jweiner@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: David Gibson <david@gibson.dropbear.id.au>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: David Miller <davem@davemloft.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Michel while working on the working set estimation code, noticed that
calling get_page_unless_zero() on a random pfn_to_page(random_pfn)
wasn't safe, if the pfn ended up being a tail page of a transparent
hugepage under splitting by __split_huge_page_refcount().
He then found the problem could also theoretically materialize with
page_cache_get_speculative() during the speculative radix tree lookups
that uses get_page_unless_zero() in SMP if the radix tree page is freed
and reallocated and get_user_pages is called on it before
page_cache_get_speculative has a chance to call get_page_unless_zero().
So the best way to fix the problem is to keep page_tail->_count zero at
all times. This will guarantee that get_page_unless_zero() can never
succeed on any tail page. page_tail->_mapcount is guaranteed zero and
is unused for all tail pages of a compound page, so we can simply
account the tail page references there and transfer them to
tail_page->_count in __split_huge_page_refcount() (in addition to the
head_page->_mapcount).
While debugging this s/_count/_mapcount/ change I also noticed get_page is
called by direct-io.c on pages returned by get_user_pages. That wasn't
entirely safe because the two atomic_inc in get_page weren't atomic. As
opposed to other get_user_page users like secondary-MMU page fault to
establish the shadow pagetables would never call any superflous get_page
after get_user_page returns. It's safer to make get_page universally safe
for tail pages and to use get_page_foll() within follow_page (inside
get_user_pages()). get_page_foll() is safe to do the refcounting for tail
pages without taking any locks because it is run within PT lock protected
critical sections (PT lock for pte and page_table_lock for
pmd_trans_huge).
The standard get_page() as invoked by direct-io instead will now take
the compound_lock but still only for tail pages. The direct-io paths
are usually I/O bound and the compound_lock is per THP so very
finegrined, so there's no risk of scalability issues with it. A simple
direct-io benchmarks with all lockdep prove locking and spinlock
debugging infrastructure enabled shows identical performance and no
overhead. So it's worth it. Ideally direct-io should stop calling
get_page() on pages returned by get_user_pages(). The spinlock in
get_page() is already optimized away for no-THP builds but doing
get_page() on tail pages returned by GUP is generally a rare operation
and usually only run in I/O paths.
This new refcounting on page_tail->_mapcount in addition to avoiding new
RCU critical sections will also allow the working set estimation code to
work without any further complexity associated to the tail page
refcounting with THP.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Reported-by: Michel Lespinasse <walken@google.com>
Reviewed-by: Michel Lespinasse <walken@google.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <jweiner@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: David Gibson <david@gibson.dropbear.id.au>
Cc: <stable@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add __attribute__((format (printf...) to the function to validate format
and arguments. Use vsprintf extension %pV to avoid any possible message
interleaving. Coalesce format string. Convert printks/pr_warning to
pr_warn.
[akpm@linux-foundation.org: use the __printf() macro]
Signed-off-by: Joe Perches <joe@perches.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This allows the cast in lowmem_page_address (introduced as a warning
fixup to 33dd4e0ec9 "mm: make some struct page's const") to be
removed.
Propagate const'ness to page_to_section() as well since it is required
by __page_to_pfn.
Signed-off-by: Ian Campbell <ian.campbell@citrix.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Followup to 33dd4e0ec9 "mm: make some struct page's const" which missed the
HASHED_PAGE_VIRTUAL case.
Signed-off-by: Ian Campbell <ian.campbell@citrix.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In commit 2efaca927f ("mm/futex: fix futex writes on archs with SW
tracking of dirty & young") we forgot about MMU=n. This patch fixes
that.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Acked-by: David Howells <dhowells@redhat.com>
Link: http://lkml.kernel.org/r/1311761831.24752.413.camel@twins
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Some trivial conflicts due to other various merges
adding to the end of common lists sooner than this one.
arch/ia64/Kconfig
arch/powerpc/Kconfig
arch/x86/Kconfig
lib/Kconfig
lib/Makefile
Signed-off-by: Len Brown <len.brown@intel.com>
memory_failure() is the entry point for HWPoison memory error
recovery. It must be called in process context. But commonly
hardware memory errors are notified via MCE or NMI, so some delayed
execution mechanism must be used. In MCE handler, a work queue + ring
buffer mechanism is used.
In addition to MCE, now APEI (ACPI Platform Error Interface) GHES
(Generic Hardware Error Source) can be used to report memory errors
too. To add support to APEI GHES memory recovery, a mechanism similar
to that of MCE is implemented. memory_failure_queue() is the new
entry point that can be called in IRQ context. The next step is to
make MCE handler uses this interface too.
Signed-off-by: Huang Ying <ying.huang@intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Len Brown <len.brown@intel.com>
I haven't reproduced it myself but the fail scenario is that on such
machines (notably ARM and some embedded powerpc), if you manage to hit
that futex path on a writable page whose dirty bit has gone from the PTE,
you'll livelock inside the kernel from what I can tell.
It will go in a loop of trying the atomic access, failing, trying gup to
"fix it up", getting succcess from gup, go back to the atomic access,
failing again because dirty wasn't fixed etc...
So I think you essentially hang in the kernel.
The scenario is probably rare'ish because affected architecture are
embedded and tend to not swap much (if at all) so we probably rarely hit
the case where dirty is missing or young is missing, but I think Shan has
a piece of SW that can reliably reproduce it using a shared writable
mapping & fork or something like that.
On archs who use SW tracking of dirty & young, a page without dirty is
effectively mapped read-only and a page without young unaccessible in the
PTE.
Additionally, some architectures might lazily flush the TLB when relaxing
write protection (by doing only a local flush), and expect a fault to
invalidate the stale entry if it's still present on another processor.
The futex code assumes that if the "in_atomic()" access -EFAULT's, it can
"fix it up" by causing get_user_pages() which would then be equivalent to
taking the fault.
However that isn't the case. get_user_pages() will not call
handle_mm_fault() in the case where the PTE seems to have the right
permissions, regardless of the dirty and young state. It will eventually
update those bits ... in the struct page, but not in the PTE.
Additionally, it will not handle the lazy TLB flushing that can be
required by some architectures in the fault case.
Basically, gup is the wrong interface for the job. The patch provides a
more appropriate one which boils down to just calling handle_mm_fault()
since what we are trying to do is simulate a real page fault.
The futex code currently attempts to write to user memory within a
pagefault disabled section, and if that fails, tries to fix it up using
get_user_pages().
This doesn't work on archs where the dirty and young bits are maintained
by software, since they will gate access permission in the TLB, and will
not be updated by gup().
In addition, there's an expectation on some archs that a spurious write
fault triggers a local TLB flush, and that is missing from the picture as
well.
I decided that adding those "features" to gup() would be too much for this
already too complex function, and instead added a new simpler
fixup_user_fault() which is essentially a wrapper around handle_mm_fault()
which the futex code can call.
[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: fix some nits Darren saw, fiddle comment layout]
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Reported-by: Shan Hai <haishan.bai@gmail.com>
Tested-by: Shan Hai <haishan.bai@gmail.com>
Cc: David Laight <David.Laight@ACULAB.COM>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Darren Hart <darren.hart@intel.com>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Correct comment on truncate_inode_pages*() in linux/mm.h; and remove
declaration of page_unuse(), it didn't exist even in 2.2.26 or 2.4.0!
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Originally, walk_hugetlb_range() didn't require a caller take any lock.
But commit d33b9f45bd ("mm: hugetlb: fix hugepage memory leak in
walk_page_range") changed its rule. Because it added find_vma() call in
walk_hugetlb_range().
Any locking-rule change commit should write a doc too.
[akpm@linux-foundation.org: clarify comment]
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Hiroyuki Kamezawa <kamezawa.hiroyuki@gmail.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Matt Mackall <mpm@selenic.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
These uses are read-only and in a subsequent patch I have a const struct
page in my hand...
[akpm@linux-foundation.org: fix warnings in lowmem_page_address()]
Signed-off-by: Ian Campbell <ian.campbell@citrix.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Michel Lespinasse <walken@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs-2.6: (107 commits)
vfs: use ERR_CAST for err-ptr tossing in lookup_instantiate_filp
isofs: Remove global fs lock
jffs2: fix IN_DELETE_SELF on overwriting rename() killing a directory
fix IN_DELETE_SELF on overwriting rename() on ramfs et.al.
mm/truncate.c: fix build for CONFIG_BLOCK not enabled
fs:update the NOTE of the file_operations structure
Remove dead code in dget_parent()
AFS: Fix silly characters in a comment
switch d_add_ci() to d_splice_alias() in "found negative" case as well
simplify gfs2_lookup()
jfs_lookup(): don't bother with . or ..
get rid of useless dget_parent() in btrfs rename() and link()
get rid of useless dget_parent() in fs/btrfs/ioctl.c
fs: push i_mutex and filemap_write_and_wait down into ->fsync() handlers
drivers: fix up various ->llseek() implementations
fs: handle SEEK_HOLE/SEEK_DATA properly in all fs's that define their own llseek
Ext4: handle SEEK_HOLE/SEEK_DATA generically
Btrfs: implement our own ->llseek
fs: add SEEK_HOLE and SEEK_DATA flags
reiserfs: make reiserfs default to barrier=flush
...
Fix up trivial conflicts in fs/xfs/linux-2.6/xfs_super.c due to the new
shrinker callout for the inode cache, that clashed with the xfs code to
start the periodic workers later.
With context based shrinkers, we can implement a per-superblock
shrinker that shrinks the caches attached to the superblock. We
currently have global shrinkers for the inode and dentry caches that
split up into per-superblock operations via a coarse proportioning
method that does not batch very well. The global shrinkers also
have a dependency - dentries pin inodes - so we have to be very
careful about how we register the global shrinkers so that the
implicit call order is always correct.
With a per-sb shrinker callout, we can encode this dependency
directly into the per-sb shrinker, hence avoiding the need for
strictly ordering shrinker registrations. We also have no need for
any proportioning code for the shrinker subsystem already provides
this functionality across all shrinkers. Allowing the shrinker to
operate on a single superblock at a time means that we do less
superblock list traversals and locking and reclaim should batch more
effectively. This should result in less CPU overhead for reclaim and
potentially faster reclaim of items from each filesystem.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
For shrinkers that have their own cond_resched* calls, having
shrink_slab break the work down into small batches is not
paticularly efficient. Add a custom batchsize field to the struct
shrinker so that shrinkers can use a larger batch size if they
desire.
A value of zero (uninitialised) means "use the default", so
behaviour is unchanged by this patch.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
From 83103b92f3234ec830852bbc5c45911bd6cbdb20 Mon Sep 17 00:00:00 2001
From: Tejun Heo <tj@kernel.org>
Date: Thu, 14 Jul 2011 11:22:16 +0200
Add optional region->nid which can be enabled by arch using
CONFIG_HAVE_MEMBLOCK_NODE_MAP. When enabled, memblock also carries
NUMA node information and replaces early_node_map[].
Newly added memblocks have MAX_NUMNODES as nid. Arch can then call
memblock_set_node() to set node information. memblock takes care of
merging and node affine allocations w.r.t. node information.
When MEMBLOCK_NODE_MAP is enabled, early_node_map[], related data
structures and functions to manipulate and iterate it are disabled.
memblock version of __next_mem_pfn_range() is provided such that
for_each_mem_pfn_range() behaves the same and its users don't have to
be updated.
-v2: Yinghai spotted section mismatch caused by missing
__init_memblock in memblock_set_node(). Fixed.
Signed-off-by: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/20110714094342.GF3455@htj.dyndns.org
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
With the previous changes, generic NUMA aware memblock API has feature
parity with memblock_x86_find_in_range_node(). There currently are
two users - x86 setup_node_data() and __alloc_memory_core_early() in
nobootmem.c.
This patch converts the former to use memblock_alloc_nid() and the
latter memblock_find_range_in_node(), and kills
memblock_x86_find_in_range_node() and related functions including
find_memory_early_core_early() in page_alloc.c.
Signed-off-by: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/1310460395-30913-9-git-send-email-tj@kernel.org
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Callback based iteration is cumbersome and much less useful than
for_each_*() iterator. This patch implements for_each_mem_pfn_range()
which replaces work_with_active_regions(). All the current users of
work_with_active_regions() are converted.
This simplifies walking over early_node_map and will allow converting
internal logics in page_alloc to use iterator instead of walking
early_node_map directly, which in turn will enable moving node
information to memblock.
powerpc change is only compile tested.
Signed-off-by: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/20110714074610.GD3455@htj.dyndns.org
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
SPARSEMEM w/o VMEMMAP and DISCONTIGMEM, both used only on 32bit, use
sections array to map pfn to nid which is limited in granularity. If
NUMA nodes are laid out such that the mapping cannot be accurate, boot
will fail triggering BUG_ON() in mminit_verify_page_links().
On 32bit, it's 512MiB w/ PAE and SPARSEMEM. This seems to have been
granular enough until commit 2706a0bf7b (x86, NUMA: Enable
CONFIG_AMD_NUMA on 32bit too). Apparently, there is a machine which
aligns NUMA nodes to 128MiB and has only AMD NUMA but not SRAT. This
led to the following BUG_ON().
On node 0 totalpages: 2096615
DMA zone: 32 pages used for memmap
DMA zone: 0 pages reserved
DMA zone: 3927 pages, LIFO batch:0
Normal zone: 1740 pages used for memmap
Normal zone: 220978 pages, LIFO batch:31
HighMem zone: 16405 pages used for memmap
HighMem zone: 1853533 pages, LIFO batch:31
BUG: Int 6: CR2 (null)
EDI (null) ESI 00000002 EBP 00000002 ESP c1543ecc
EBX f2400000 EDX 00000006 ECX (null) EAX 00000001
err (null) EIP c16209aa CS 00000060 flg 00010002
Stack: f2400000 00220000 f7200800 c1620613 00220000 01000000 04400000 00238000
(null) f7200000 00000002 f7200b58 f7200800 c1620929 000375fe (null)
f7200b80 c16395f0 00200a02 f7200a80 (null) 000375fe 00000002 (null)
Pid: 0, comm: swapper Not tainted 2.6.39-rc5-00181-g2706a0b #17
Call Trace:
[<c136b1e5>] ? early_fault+0x2e/0x2e
[<c16209aa>] ? mminit_verify_page_links+0x12/0x42
[<c1620613>] ? memmap_init_zone+0xaf/0x10c
[<c1620929>] ? free_area_init_node+0x2b9/0x2e3
[<c1607e99>] ? free_area_init_nodes+0x3f2/0x451
[<c1601d80>] ? paging_init+0x112/0x118
[<c15f578d>] ? setup_arch+0x791/0x82f
[<c15f43d9>] ? start_kernel+0x6a/0x257
This patch implements node_map_pfn_alignment() which determines
maximum internode alignment and update numa_register_memblks() to
reject NUMA configuration if alignment exceeds the pfn -> nid mapping
granularity of the memory model as determined by PAGES_PER_SECTION.
This makes the problematic machine boot w/ flatmem by rejecting the
NUMA config and provides protection against crazy NUMA configurations.
Signed-off-by: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/20110712074534.GB2872@htj.dyndns.org
LKML-Reference: <20110628174613.GP478@escobedo.osrc.amd.com>
Reported-and-Tested-by: Hans Rosenfeld <hans.rosenfeld@amd.com>
Cc: Conny Seidel <conny.seidel@amd.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Setup and cleanup of mm_struct->exe_file is currently done in fs/proc/.
This was because exe_file was needed only for /proc/<pid>/exe. Since we
will need the exe_file functionality also for core dumps (so core name can
contain full binary path), built this functionality always into the
kernel.
To achieve that move that out of proc FS to the kernel/ where in fact it
should belong. By doing that we can make dup_mm_exe_file static. Also we
can drop linux/proc_fs.h inclusion in fs/exec.c and kernel/fork.c.
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The type of vma->vm_flags is 'unsigned long'. Neither 'int' nor
'unsigned int'. This patch fixes such misuse.
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
[ Changed to use a typedef - we'll extend it to cover more cases
later, since there has been discussion about making it a 64-bit
type.. - Linus ]
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Remove noMMU declaration of shmem_get_unmapped_area() from mm.h: it fell
out of use in 2.6.21 and ceased to exist in 2.6.29.
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The problem with having two different types of counters is that developers
adding new code need to keep in mind whether it's safe to use both the
atomic and non-atomic implementations. For example, when adding new
callers of the *_mm_counter() functions a developer needs to ensure that
those paths are always executed with page_table_lock held, in case we're
using the non-atomic implementation of mm counters.
Hugh Dickins introduced the atomic mm counters in commit f412ac08c9
("[PATCH] mm: fix rss and mmlist locking"). When asked why he left the
non-atomic counters around he said,
| The only reason was to avoid adding costly atomic operations into a
| configuration that had no need for them there: the page_table_lock
| sufficed.
|
| Certainly it would be simpler just to delete the non-atomic variant.
|
| And I think it's fair to say that any configuration on which we're
| measuring performance to that degree (rather than "does it boot fast?"
| type measurements), would already be going the split ptlocks route.
Removing the non-atomic counters eases the maintenance burden because
developers no longer have to mindful of the two implementations when using
*_mm_counter().
Note that all architectures provide a means of atomically updating
atomic_long_t variables, even if they have to revert to the generic
spinlock implementation because they don't support 64-bit atomic
instructions (see lib/atomic64.c).
Signed-off-by: Matt Fleming <matt.fleming@linux.intel.com>
Acked-by: Dave Hansen <dave@linux.vnet.ibm.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Do not define PFN_SECTION_SHIFT if !CONFIG_SPARSEMEM.
Signed-off-by: Daniel Kiper <dkiper@net-space.pl>
Acked-by: Dave Hansen <dave@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
set_page_section() is meaningful only in CONFIG_SPARSEMEM and
!CONFIG_SPARSEMEM_VMEMMAP context. Move it to proper place and amend
accordingly functions which are using it.
Signed-off-by: Daniel Kiper <dkiper@net-space.pl>
Acked-by: Dave Hansen <dave@linux.vnet.ibm.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Change each shrinker's API by consolidating the existing parameters into
shrink_control struct. This will simplify any further features added w/o
touching each file of shrinker.
[akpm@linux-foundation.org: fix build]
[akpm@linux-foundation.org: fix warning]
[kosaki.motohiro@jp.fujitsu.com: fix up new shrinker API]
[akpm@linux-foundation.org: fix xfs warning]
[akpm@linux-foundation.org: update gfs2]
Signed-off-by: Ying Han <yinghan@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Acked-by: Pavel Emelyanov <xemul@openvz.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Steven Whitehouse <swhiteho@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Consolidate the existing parameters to shrink_slab() into a new
shrink_control struct. This is needed later to pass the same struct to
shrinkers.
Signed-off-by: Ying Han <yinghan@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Acked-by: Pavel Emelyanov <xemul@openvz.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This originally started as a simple patch to give vmalloc() some more
verbose output on failure on top of the plain page allocator messages.
Johannes suggested that it might be nicer to lead with the vmalloc() info
_before_ the page allocator messages.
But, I do think there's a lot of value in what __alloc_pages_slowpath()
does with its filtering and so forth.
This patch creates a new function which other allocators can call instead
of relying on the internal page allocator warnings. It also gives this
function private rate-limiting which separates it from other
printk_ratelimit() users.
Signed-off-by: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Hugh says:
"The only significant loser, I think, would be page reclaim (when
concurrent with truncation): could spin for a long time waiting for
the i_mmap_mutex it expects would soon be dropped? "
Counter points:
- cpu contention makes the spin stop (need_resched())
- zap pages should be freeing pages at a higher rate than reclaim
ever can
I think the simplification of the truncate code is definitely worth it.
Effectively reverts: 2aa15890f3 ("mm: prevent concurrent
unmap_mapping_range() on the same inode") and takes out the code that
caused its problem.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: David Miller <davem@davemloft.net>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Jeff Dike <jdike@addtoit.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: Namhyung Kim <namhyung@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Rework the existing mmu_gather infrastructure.
The direct purpose of these patches was to allow preemptible mmu_gather,
but even without that I think these patches provide an improvement to the
status quo.
The first 9 patches rework the mmu_gather infrastructure. For review
purpose I've split them into generic and per-arch patches with the last of
those a generic cleanup.
The next patch provides generic RCU page-table freeing, and the followup
is a patch converting s390 to use this. I've also got 4 patches from
DaveM lined up (not included in this series) that uses this to implement
gup_fast() for sparc64.
Then there is one patch that extends the generic mmu_gather batching.
After that follow the mm preemptibility patches, these make part of the mm
a lot more preemptible. It converts i_mmap_lock and anon_vma->lock to
mutexes which together with the mmu_gather rework makes mmu_gather
preemptible as well.
Making i_mmap_lock a mutex also enables a clean-up of the truncate code.
This also allows for preemptible mmu_notifiers, something that XPMEM I
think wants.
Furthermore, it removes the new and universially detested unmap_mutex.
This patch:
Remove the first obstacle towards a fully preemptible mmu_gather.
The current scheme assumes mmu_gather is always done with preemption
disabled and uses per-cpu storage for the page batches. Change this to
try and allocate a page for batching and in case of failure, use a small
on-stack array to make some progress.
Preemptible mmu_gather is desired in general and usable once i_mmap_lock
becomes a mutex. Doing it before the mutex conversion saves us from
having to rework the code by moving the mmu_gather bits inside the
pte_lock.
Also avoid flushing the tlb batches from under the pte lock, this is
useful even without the i_mmap_lock conversion as it significantly reduces
pte lock hold times.
[akpm@linux-foundation.org: fix comment tpyo]
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: David Miller <davem@davemloft.net>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Jeff Dike <jdike@addtoit.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Tony Luck <tony.luck@intel.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Hugh Dickins <hughd@google.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: Namhyung Kim <namhyung@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently we have expand_upwards exported while expand_downwards is
accessible only via expand_stack or expand_stack_downwards.
check_stack_guard_page is a nice example of the asymmetry. It uses
expand_stack for VM_GROWSDOWN while expand_upwards is called for
VM_GROWSUP case.
Let's clean this up by exporting both functions and make those names
consistent. Let's use expand_{upwards,downwards} because expanding
doesn't always involve stack manipulation (an example is
ia64_do_page_fault which uses expand_upwards for registers backing store
expansion). expand_downwards has to be defined for both
CONFIG_STACK_GROWS{UP,DOWN} because get_arg_page calls the downwards
version in the early process initialization phase for growsup
configuration.
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: James Bottomley <James.Bottomley@HansenPartnership.com>
Cc: "Luck, Tony" <tony.luck@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, memory hotplug calls setup_per_zone_wmarks() and
calculate_zone_inactive_ratio(), but doesn't call
setup_per_zone_lowmem_reserve().
It means the number of reserved pages aren't updated even if memory hot
plug occur. This patch fixes it.
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When an oom killing occurs, almost all processes are getting stuck at the
following two points.
1) __alloc_pages_nodemask
2) __lock_page_or_retry
1) is not very problematic because TIF_MEMDIE leads to an allocation
failure and getting out from page allocator.
2) is more problematic. In an OOM situation, zones typically don't have
page cache at all and memory starvation might lead to greatly reduced IO
performance. When a fork bomb occurs, TIF_MEMDIE tasks don't die quickly,
meaning that a fork bomb may create new process quickly rather than the
oom-killer killing it. Then, the system may become livelocked.
This patch makes the pagefault interruptible by SIGKILL.
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Matthew Wilcox <willy@linux.intel.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Architectures that implement their own show_mem() function did not pass
the filter argument to show_free_areas() to appropriately avoid emitting
the state of nodes that are disallowed in the current context. This patch
now passes the filter argument to show_free_areas() so those nodes are now
avoided.
This patch also removes the show_free_areas() wrapper around
__show_free_areas() and converts existing callers to pass an empty filter.
ia64 emits additional information for each node, so skip_free_areas_zone()
must be made global to filter disallowed nodes and it is converted to use
a nid argument rather than a zone for this use case.
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Kyle McMartin <kyle@mcmartin.ca>
Cc: Helge Deller <deller@gmx.de>
Cc: James Bottomley <jejb@parisc-linux.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Guan Xuetao <gxt@mprc.pku.edu.cn>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Linux kernel excludes guard page when performing mlock on a VMA with
down-growing stack. However, some architectures have up-growing stack
and locking the guard page should be excluded in this case too.
This patch fixes lvm2 on PA-RISC (and possibly other architectures with
up-growing stack). lvm2 calculates number of used pages when locking and
when unlocking and reports an internal error if the numbers mismatch.
[ Patch changed fairly extensively to also fix /proc/<pid>/maps for the
grows-up case, and to move things around a bit to clean it all up and
share the infrstructure with the /proc bits.
Tested on ia64 that has both grow-up and grow-down segments - Linus ]
Signed-off-by: Mikulas Patocka <mikulas@artax.karlin.mff.cuni.cz>
Tested-by: Tony Luck <tony.luck@gmail.com>
Cc: stable@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The huge_memory.c THP page fault was allowed to run if vm_ops was null
(which would succeed for /dev/zero MAP_PRIVATE, as the f_op->mmap wouldn't
setup a special vma->vm_ops and it would fallback to regular anonymous
memory) but other THP logics weren't fully activated for vmas with vm_file
not NULL (/dev/zero has a not NULL vma->vm_file).
So this removes the vm_file checks so that /dev/zero also can safely use
THP (the other albeit safer approach to fix this bug would have been to
prevent the THP initial page fault to run if vm_file was set).
After removing the vm_file checks, this also makes huge_memory.c stricter
in khugepaged for the DEBUG_VM=y case. It doesn't replace the vm_file
check with a is_pfn_mapping check (but it keeps checking for VM_PFNMAP
under VM_BUG_ON) because for a is_cow_mapping() mapping VM_PFNMAP should
only be allowed to exist before the first page fault, and in turn when
vma->anon_vma is null (so preventing khugepaged registration). So I tend
to think the previous comment saying if vm_file was set, VM_PFNMAP might
have been set and we could still be registered in khugepaged (despite
anon_vma was not NULL to be registered in khugepaged) was too paranoid.
The is_linear_pfn_mapping check is also I think superfluous (as described
by comment) but under DEBUG_VM it is safe to stay.
Addresses https://bugzilla.kernel.org/show_bug.cgi?id=33682
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Reported-by: Caspar Zhang <bugs@casparzhang.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: <stable@kernel.org> [2.6.38.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit ddd588b5dd ("oom: suppress nodes that are not allowed from
meminfo on oom kill") moved lib/show_mem.o out of lib/lib.a, which
resulted in build warnings on all architectures that implement their own
versions of show_mem():
lib/lib.a(show_mem.o): In function `show_mem':
show_mem.c:(.text+0x1f4): multiple definition of `show_mem'
arch/sparc/mm/built-in.o:(.text+0xd70): first defined here
The fix is to remove __show_mem() and add its argument to show_mem() in
all implementations to prevent this breakage.
Architectures that implement their own show_mem() actually don't do
anything with the argument yet, but they could be made to filter nodes
that aren't allowed in the current context in the future just like the
generic implementation.
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Reported-by: James Bottomley <James.Bottomley@hansenpartnership.com>
Suggested-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs-2.6:
deal with races in /proc/*/{syscall,stack,personality}
proc: enable writing to /proc/pid/mem
proc: make check_mem_permission() return an mm_struct on success
proc: hold cred_guard_mutex in check_mem_permission()
proc: disable mem_write after exec
mm: implement access_remote_vm
mm: factor out main logic of access_process_vm
mm: use mm_struct to resolve gate vma's in __get_user_pages
mm: arch: rename in_gate_area_no_task to in_gate_area_no_mm
mm: arch: make in_gate_area take an mm_struct instead of a task_struct
mm: arch: make get_gate_vma take an mm_struct instead of a task_struct
x86: mark associated mm when running a task in 32 bit compatibility mode
x86: add context tag to mark mm when running a task in 32-bit compatibility mode
auxv: require the target to be tracable (or yourself)
close race in /proc/*/environ
report errors in /proc/*/*map* sanely
pagemap: close races with suid execve
make sessionid permissions in /proc/*/task/* match those in /proc/*
fix leaks in path_lookupat()
Fix up trivial conflicts in fs/proc/base.c
Provide an alternative to access_process_vm that allows the caller to obtain a
reference to the supplied mm_struct.
Signed-off-by: Stephen Wilson <wilsons@start.ca>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Now that gate vma's are referenced with respect to a particular mm and not a
particular task it only makes sense to propagate the change to this predicate as
well.
Signed-off-by: Stephen Wilson <wilsons@start.ca>
Reviewed-by: Michel Lespinasse <walken@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Morally, the question of whether an address lies in a gate vma should be asked
with respect to an mm, not a particular task. Moreover, dropping the dependency
on task_struct will help make existing and future operations on mm's more
flexible and convenient.
Signed-off-by: Stephen Wilson <wilsons@start.ca>
Reviewed-by: Michel Lespinasse <walken@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Morally, the presence of a gate vma is more an attribute of a particular mm than
a particular task. Moreover, dropping the dependency on task_struct will help
make both existing and future operations on mm's more flexible and convenient.
Signed-off-by: Stephen Wilson <wilsons@start.ca>
Reviewed-by: Michel Lespinasse <walken@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Right now, if a mm_walk has either ->pte_entry or ->pmd_entry set, it will
unconditionally split any transparent huge pages it runs in to. In
practice, that means that anyone doing a
cat /proc/$pid/smaps
will unconditionally break down every huge page in the process and depend
on khugepaged to re-collapse it later. This is fairly suboptimal.
This patch changes that behavior. It teaches each ->pmd_entry handler
(there are five) that they must break down the THPs themselves. Also, the
_generic_ code will never break down a THP unless a ->pte_entry handler is
actually set.
This means that the ->pmd_entry handlers can now choose to deal with THPs
without breaking them down.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Dave Hansen <dave@linux.vnet.ibm.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: David Rientjes <rientjes@google.com>
Reviewed-by: Eric B Munson <emunson@mgebm.net>
Tested-by: Eric B Munson <emunson@mgebm.net>
Cc: Michael J Wolf <mjwolf@us.ibm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matt Mackall <mpm@selenic.com>
Cc: Jeremy Fitzhardinge <jeremy@goop.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
GUP user may want to try to acquire a reference to a page if it is already
in memory, but not if IO, to bring it in, is needed. For example KVM may
tell vcpu to schedule another guest process if current one is trying to
access swapped out page. Meanwhile, the page will be swapped in and the
guest process, that depends on it, will be able to run again.
This patch adds FAULT_FLAG_RETRY_NOWAIT (suggested by Linus) and
FOLL_NOWAIT follow_page flags. FAULT_FLAG_RETRY_NOWAIT, when used in
conjunction with VM_FAULT_ALLOW_RETRY, indicates to handle_mm_fault that
it shouldn't drop mmap_sem and wait on a page, but return VM_FAULT_RETRY
instead.
[akpm@linux-foundation.org: improve FOLL_NOWAIT comment]
Signed-off-by: Gleb Natapov <gleb@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Hugh Dickins <hughd@google.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The oom killer is extremely verbose for machines with a large number of
cpus and/or nodes. This verbosity can often be harmful if it causes other
important messages to be scrolled from the kernel log and incurs a
signicant time delay, specifically for kernels with CONFIG_NODES_SHIFT >
8.
This patch causes only memory information to be displayed for nodes that
are allowed by current's cpuset when dumping the VM state. Information
for all other nodes is irrelevant to the oom condition; we don't care if
there's an abundance of memory elsewhere if we can't access it.
This only affects the behavior of dumping memory information when an oom
is triggered. Other dumps, such as for sysrq+m, still display the
unfiltered form when using the existing show_mem() interface.
Additionally, the per-cpu pageset statistics are extremely verbose in oom
killer output, so it is now suppressed. This removes
nodes_weight(current->mems_allowed) * (1 + nr_cpus)
lines from the oom killer output.
Callers may use __show_mem(SHOW_MEM_FILTER_NODES) to filter disallowed
nodes.
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'kvm-updates/2.6.39' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (55 commits)
KVM: unbreak userspace that does not sets tss address
KVM: MMU: cleanup pte write path
KVM: MMU: introduce a common function to get no-dirty-logged slot
KVM: fix rcu usage in init_rmode_* functions
KVM: fix kvmclock regression due to missing clock update
KVM: emulator: Fix permission checking in io permission bitmap
KVM: emulator: Fix io permission checking for 64bit guest
KVM: SVM: Load %gs earlier if CONFIG_X86_32_LAZY_GS=n
KVM: x86: Remove useless regs_page pointer from kvm_lapic
KVM: improve comment on rcu use in irqfd_deassign
KVM: MMU: remove unused macros
KVM: MMU: cleanup page alloc and free
KVM: MMU: do not record gfn in kvm_mmu_pte_write
KVM: MMU: move mmu pages calculated out of mmu lock
KVM: MMU: set spte accessed bit properly
KVM: MMU: fix kvm_mmu_slot_remove_write_access dropping intermediate W bits
KVM: Start lock documentation
KVM: better readability of efer_reserved_bits
KVM: Clear async page fault hash after switching to real mode
KVM: VMX: Initialize vm86 TSS only once.
...
Change the _mapcount value indicating PageBuddy from -2 to -128 for
more robusteness against page_mapcount() undeflows.
Use reset_page_mapcount instead of __ClearPageBuddy in bad_page to
ignore the previous retval of PageBuddy().
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Reported-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Make __get_user_pages return -EHWPOISON for HWPOISON page only if
FOLL_HWPOISON is specified. With this patch, the interested callers
can distinguish HWPOISON pages from general FAULT pages, while other
callers will still get -EFAULT for all these pages, so the user space
interface need not to be changed.
This feature is needed by KVM, where UCR MCE should be relayed to
guest for HWPOISON page, while instruction emulation and MMIO will be
tried for general FAULT page.
The idea comes from Andrew Morton.
Signed-off-by: Huang Ying <ying.huang@intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
In most cases, get_user_pages and get_user_pages_fast should be used
to pin user pages in memory. But sometimes, some special flags except
FOLL_GET, FOLL_WRITE and FOLL_FORCE are needed, for example in
following patch, KVM needs FOLL_HWPOISON. To support these users,
__get_user_pages is exported directly.
There are some symbol name conflicts in infiniband driver, fixed them too.
Signed-off-by: Huang Ying <ying.huang@intel.com>
CC: Andrew Morton <akpm@linux-foundation.org>
CC: Michel Lespinasse <walken@google.com>
CC: Roland Dreier <roland@kernel.org>
CC: Ralph Campbell <infinipath@qlogic.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Now that bootmem.c and nobootmem.c are separate, there's no reason to
define __alloc_memory_core_early(), which is used only by nobootmem,
inside #ifdef in page_alloc.c. Move it to nobootmem.c and make it
static.
This patch doesn't introduce any behavior change.
-tj: Updated commit description.
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Tejun Heo <tj@kernel.org>
The patch "thp: export maybe_mkwrite" (commit 14fd403f21) breaks
systems without MMU.
Error log:
CC arch/microblaze/mm/init.o
In file included from include/linux/mman.h:14,
from arch/microblaze/mm/consistent.c:24:
include/linux/mm.h: In function 'maybe_mkwrite':
include/linux/mm.h:482: error: implicit declaration of function 'pte_mkwrite'
include/linux/mm.h:482: error: incompatible types in assignment
Signed-off-by: Michal Simek <monstr@monstr.eu>
CC: Andrea Arcangeli <aarcange@redhat.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
CC: Andrew Morton <akpm@linux-foundation.org>
CC: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add madvise MADV_NOHUGEPAGE to mark regions that are not important to be
hugepage backed. Return -EINVAL if the vma is not of an anonymous type,
or the feature isn't built into the kernel. Never silently return
success.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add support for transparent hugepages to x86 32bit.
Share the same VM_ bitflag for VM_MAPPED_COPY. mm/nommu.c will never
support transparent hugepages.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
PG_buddy can be converted to _mapcount == -2. So the PG_compound_lock can
be added to page->flags without overflowing (because of the sparse section
bits increasing) with CONFIG_X86_PAE=y and CONFIG_X86_PAT=y. This also
has to move the memory hotplug code from _mapcount to lru.next to avoid
any risk of clashes. We can't use lru.next for PG_buddy removal, but
memory hotplug can use lru.next even more easily than the mapcount
instead.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
No pmd_trans_huge should ever materialize in migration ptes areas, because
we split the hugepage before migration ptes are instantiated.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Lately I've been working to make KVM use hugepages transparently without
the usual restrictions of hugetlbfs. Some of the restrictions I'd like to
see removed:
1) hugepages have to be swappable or the guest physical memory remains
locked in RAM and can't be paged out to swap
2) if a hugepage allocation fails, regular pages should be allocated
instead and mixed in the same vma without any failure and without
userland noticing
3) if some task quits and more hugepages become available in the
buddy, guest physical memory backed by regular pages should be
relocated on hugepages automatically in regions under
madvise(MADV_HUGEPAGE) (ideally event driven by waking up the
kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes
not null)
4) avoidance of reservation and maximization of use of hugepages whenever
possible. Reservation (needed to avoid runtime fatal faliures) may be ok for
1 machine with 1 database with 1 database cache with 1 database cache size
known at boot time. It's definitely not feasible with a virtualization
hypervisor usage like RHEV-H that runs an unknown number of virtual machines
with an unknown size of each virtual machine with an unknown amount of
pagecache that could be potentially useful in the host for guest not using
O_DIRECT (aka cache=off).
hugepages in the virtualization hypervisor (and also in the guest!) are
much more important than in a regular host not using virtualization,
becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24
to 19 in case only the hypervisor uses transparent hugepages, and they
decrease the tlb-miss cacheline accesses from 19 to 15 in case both the
linux hypervisor and the linux guest both uses this patch (though the
guest will limit the addition speedup to anonymous regions only for
now...). Even more important is that the tlb miss handler is much slower
on a NPT/EPT guest than for a regular shadow paging or no-virtualization
scenario. So maximizing the amount of virtual memory cached by the TLB
pays off significantly more with NPT/EPT than without (even if there would
be no significant speedup in the tlb-miss runtime).
The first (and more tedious) part of this work requires allowing the VM to
handle anonymous hugepages mixed with regular pages transparently on
regular anonymous vmas. This is what this patch tries to achieve in the
least intrusive possible way. We want hugepages and hugetlb to be used in
a way so that all applications can benefit without changes (as usual we
leverage the KVM virtualization design: by improving the Linux VM at
large, KVM gets the performance boost too).
The most important design choice is: always fallback to 4k allocation if
the hugepage allocation fails! This is the _very_ opposite of some large
pagecache patches that failed with -EIO back then if a 64k (or similar)
allocation failed...
Second important decision (to reduce the impact of the feature on the
existing pagetable handling code) is that at any time we can split an
hugepage into 512 regular pages and it has to be done with an operation
that can't fail. This way the reliability of the swapping isn't decreased
(no need to allocate memory when we are short on memory to swap) and it's
trivial to plug a split_huge_page* one-liner where needed without
polluting the VM. Over time we can teach mprotect, mremap and friends to
handle pmd_trans_huge natively without calling split_huge_page*. The fact
it can't fail isn't just for swap: if split_huge_page would return -ENOMEM
(instead of the current void) we'd need to rollback the mprotect from the
middle of it (ideally including undoing the split_vma) which would be a
big change and in the very wrong direction (it'd likely be simpler not to
call split_huge_page at all and to teach mprotect and friends to handle
hugepages instead of rolling them back from the middle). In short the
very value of split_huge_page is that it can't fail.
The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and
incremental and it'll just be an "harmless" addition later if this initial
part is agreed upon. It also should be noted that locking-wise replacing
regular pages with hugepages is going to be very easy if compared to what
I'm doing below in split_huge_page, as it will only happen when
page_count(page) matches page_mapcount(page) if we can take the PG_lock
and mmap_sem in write mode. collapse_huge_page will be a "best effort"
that (unlike split_huge_page) can fail at the minimal sign of trouble and
we can try again later. collapse_huge_page will be similar to how KSM
works and the madvise(MADV_HUGEPAGE) will work similar to
madvise(MADV_MERGEABLE).
The default I like is that transparent hugepages are used at page fault
time. This can be changed with
/sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set
to three values "always", "madvise", "never" which mean respectively that
hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions,
or never used. /sys/kernel/mm/transparent_hugepage/defrag instead
controls if the hugepage allocation should defrag memory aggressively
"always", only inside "madvise" regions, or "never".
The pmd_trans_splitting/pmd_trans_huge locking is very solid. The
put_page (from get_user_page users that can't use mmu notifier like
O_DIRECT) that runs against a __split_huge_page_refcount instead was a
pain to serialize in a way that would result always in a coherent page
count for both tail and head. I think my locking solution with a
compound_lock taken only after the page_first is valid and is still a
PageHead should be safe but it surely needs review from SMP race point of
view. In short there is no current existing way to serialize the O_DIRECT
final put_page against split_huge_page_refcount so I had to invent a new
one (O_DIRECT loses knowledge on the mapping status by the time gup_fast
returns so...). And I didn't want to impact all gup/gup_fast users for
now, maybe if we change the gup interface substantially we can avoid this
locking, I admit I didn't think too much about it because changing the gup
unpinning interface would be invasive.
If we ignored O_DIRECT we could stick to the existing compound refcounting
code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM
(and any other mmu notifier user) would call it without FOLL_GET (and if
FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the
current task mmu notifier list yet). But O_DIRECT is fundamental for
decent performance of virtualized I/O on fast storage so we can't avoid it
to solve the race of put_page against split_huge_page_refcount to achieve
a complete hugepage feature for KVM.
Swap and oom works fine (well just like with regular pages ;). MMU
notifier is handled transparently too, with the exception of the young bit
on the pmd, that didn't have a range check but I think KVM will be fine
because the whole point of hugepages is that EPT/NPT will also use a huge
pmd when they notice gup returns pages with PageCompound set, so they
won't care of a range and there's just the pmd young bit to check in that
case.
NOTE: in some cases if the L2 cache is small, this may slowdown and waste
memory during COWs because 4M of memory are accessed in a single fault
instead of 8k (the payoff is that after COW the program can run faster).
So we might want to switch the copy_huge_page (and clear_huge_page too) to
not temporal stores. I also extensively researched ways to avoid this
cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k
up to 1M (I can send those patches that fully implemented prefault) but I
concluded they're not worth it and they add an huge additional complexity
and they remove all tlb benefits until the full hugepage has been faulted
in, to save a little bit of memory and some cache during app startup, but
they still don't improve substantially the cache-trashing during startup
if the prefault happens in >4k chunks. One reason is that those 4k pte
entries copied are still mapped on a perfectly cache-colored hugepage, so
the trashing is the worst one can generate in those copies (cow of 4k page
copies aren't so well colored so they trashes less, but again this results
in software running faster after the page fault). Those prefault patches
allowed things like a pte where post-cow pages were local 4k regular anon
pages and the not-yet-cowed pte entries were pointing in the middle of
some hugepage mapped read-only. If it doesn't payoff substantially with
todays hardware it will payoff even less in the future with larger l2
caches, and the prefault logic would blot the VM a lot. If one is
emebdded transparent_hugepage can be disabled during boot with sysfs or
with the boot commandline parameter transparent_hugepage=0 (or
transparent_hugepage=2 to restrict hugepages inside madvise regions) that
will ensure not a single hugepage is allocated at boot time. It is simple
enough to just disable transparent hugepage globally and let transparent
hugepages be allocated selectively by applications in the MADV_HUGEPAGE
region (both at page fault time, and if enabled with the
collapse_huge_page too through the kernel daemon).
This patch supports only hugepages mapped in the pmd, archs that have
smaller hugepages will not fit in this patch alone. Also some archs like
power have certain tlb limits that prevents mixing different page size in
the same regions so they will not fit in this framework that requires
"graceful fallback" to basic PAGE_SIZE in case of physical memory
fragmentation. hugetlbfs remains a perfect fit for those because its
software limits happen to match the hardware limits. hugetlbfs also
remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped
to be found not fragmented after a certain system uptime and that would be
very expensive to defragment with relocation, so requiring reservation.
hugetlbfs is the "reservation way", the point of transparent hugepages is
not to have any reservation at all and maximizing the use of cache and
hugepages at all times automatically.
Some performance result:
vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep
ages3
memset page fault 1566023
memset tlb miss 453854
memset second tlb miss 453321
random access tlb miss 41635
random access second tlb miss 41658
vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3
memset page fault 1566471
memset tlb miss 453375
memset second tlb miss 453320
random access tlb miss 41636
random access second tlb miss 41637
vmx andrea # ./largepages3
memset page fault 1566642
memset tlb miss 453417
memset second tlb miss 453313
random access tlb miss 41630
random access second tlb miss 41647
vmx andrea # ./largepages3
memset page fault 1566872
memset tlb miss 453418
memset second tlb miss 453315
random access tlb miss 41618
random access second tlb miss 41659
vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage
vmx andrea # ./largepages3
memset page fault 2182476
memset tlb miss 460305
memset second tlb miss 460179
random access tlb miss 44483
random access second tlb miss 44186
vmx andrea # ./largepages3
memset page fault 2182791
memset tlb miss 460742
memset second tlb miss 459962
random access tlb miss 43981
random access second tlb miss 43988
============
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/time.h>
#define SIZE (3UL*1024*1024*1024)
int main()
{
char *p = malloc(SIZE), *p2;
struct timeval before, after;
gettimeofday(&before, NULL);
memset(p, 0, SIZE);
gettimeofday(&after, NULL);
printf("memset page fault %Lu\n",
(after.tv_sec-before.tv_sec)*1000000UL +
after.tv_usec-before.tv_usec);
gettimeofday(&before, NULL);
memset(p, 0, SIZE);
gettimeofday(&after, NULL);
printf("memset tlb miss %Lu\n",
(after.tv_sec-before.tv_sec)*1000000UL +
after.tv_usec-before.tv_usec);
gettimeofday(&before, NULL);
memset(p, 0, SIZE);
gettimeofday(&after, NULL);
printf("memset second tlb miss %Lu\n",
(after.tv_sec-before.tv_sec)*1000000UL +
after.tv_usec-before.tv_usec);
gettimeofday(&before, NULL);
for (p2 = p; p2 < p+SIZE; p2 += 4096)
*p2 = 0;
gettimeofday(&after, NULL);
printf("random access tlb miss %Lu\n",
(after.tv_sec-before.tv_sec)*1000000UL +
after.tv_usec-before.tv_usec);
gettimeofday(&before, NULL);
for (p2 = p; p2 < p+SIZE; p2 += 4096)
*p2 = 0;
gettimeofday(&after, NULL);
printf("random access second tlb miss %Lu\n",
(after.tv_sec-before.tv_sec)*1000000UL +
after.tv_usec-before.tv_usec);
return 0;
}
============
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Move the copy/clear_huge_page functions to common code to share between
hugetlb.c and huge_memory.c.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
pte alloc routines must wait for split_huge_page if the pmd is not present
and not null (i.e. pmd_trans_splitting). The additional branches are
optimized away at compile time by pmd_trans_splitting if the config option
is off. However we must pass the vma down in order to know the anon_vma
lock to wait for.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
huge_memory.c needs it too when it fallbacks in copying hugepages into
regular fragmented pages if hugepage allocation fails during COW.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Alter compound get_page/put_page to keep references on subpages too, in
order to allow __split_huge_page_refcount to split an hugepage even while
subpages have been pinned by one of the get_user_pages() variants.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add a new compound_lock() needed to serialize put_page against
__split_huge_page_refcount().
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
page_mapping() has a unlikely that the mapping has PAGE_MAPPING_ANON set.
But running the annotated branch profiler on a normal desktop system doing
vairous tasks (xchat, evolution, firefox, distcc), it is not really that
unlikely that the mapping here will have the PAGE_MAPPING_ANON flag set:
correct incorrect % Function File Line
------- --------- - -------- ---- ----
35935762 1270265395 97 page_mapping mm.h 659
1306198001 143659 0 page_mapping mm.h 657
203131478 121586 0 page_mapping mm.h 657
5415491 1116 0 page_mapping mm.h 657
74899487 1116 0 page_mapping mm.h 657
203132845 224 0 page_mapping mm.h 659
5415464 27 0 page_mapping mm.h 659
13552 0 0 page_mapping mm.h 657
13552 0 0 page_mapping mm.h 659
242630 0 0 page_mapping mm.h 657
242630 0 0 page_mapping mm.h 659
74899487 0 0 page_mapping mm.h 659
The page_mapping() is a static inline, which is why it shows up multiple
times.
The unlikely in page_mapping() was correct a total of 1909540379 times and
incorrect 1270533123 times, with a 39% being incorrect. With this much of
an error, it's best to simply remove the unlikely and have the compiler
and branch prediction figure this out.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: Rik van Riel <riel@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Move the code to mlock pages from __mlock_vma_pages_range() to
follow_page().
This allows __mlock_vma_pages_range() to not have to break down work into
16-page batches.
An additional motivation for doing this within the present patch series is
that it'll make it easier for a later chagne to drop mmap_sem when
blocking on disk (we'd like to be able to resume at the page that was read
from disk instead of at the start of a 16-page batch).
Signed-off-by: Michel Lespinasse <walken@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The get_locked_pte() conditionally grabs 'ptl' in case of returning
non-NULL. This leads sparse to complain about context imbalance. Rename
and wrap it using __cond_lock() to make sparse happy.
Signed-off-by: Namhyung Kim <namhyung@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This change reduces mmap_sem hold times that are caused by waiting for
disk transfers when accessing file mapped VMAs.
It introduces the VM_FAULT_ALLOW_RETRY flag, which indicates that the call
site wants mmap_sem to be released if blocking on a pending disk transfer.
In that case, filemap_fault() returns the VM_FAULT_RETRY status bit and
do_page_fault() will then re-acquire mmap_sem and retry the page fault.
It is expected that the retry will hit the same page which will now be
cached, and thus it will complete with a low mmap_sem hold time.
Tests:
- microbenchmark: thread A mmaps a large file and does random read accesses
to the mmaped area - achieves about 55 iterations/s. Thread B does
mmap/munmap in a loop at a separate location - achieves 55 iterations/s
before, 15000 iterations/s after.
- We are seeing related effects in some applications in house, which show
significant performance regressions when running without this change.
[akpm@linux-foundation.org: fix warning & crash]
Signed-off-by: Michel Lespinasse <walken@google.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Reviewed-by: Wu Fengguang <fengguang.wu@intel.com>
Cc: Ying Han <yinghan@google.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Acked-by: "H. Peter Anvin" <hpa@zytor.com>
Cc: <linux-arch@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
NODE_NOT_IN_PAGE_FLAGS is defined in mm.h when the node information is not
stored in the page flags bitmap.
Unfortunately, there's a typo in one of the checks for it. This patch
fixes it (s/NODE_NOT_IN_PAGEFLAGS/NODE_NOT_IN_PAGE_FLAGS/). Since this
has been around for ages, I doubt it's been causing any serious problems.
Signed-off-by: Will Deacon <will.deacon@arm.com>
Cc: Christoph Lameter <clameter@sgi.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
To help developers and applications gain visibility into writeback
behaviour this patch adds two counters to /proc/vmstat.
# grep nr_dirtied /proc/vmstat
nr_dirtied 3747
# grep nr_written /proc/vmstat
nr_written 3618
These entries allow user apps to understand writeback behaviour over time
and learn how it is impacting their performance. Currently there is no
way to inspect dirty and writeback speed over time. It's not possible for
nr_dirty/nr_writeback.
These entries are necessary to give visibility into writeback behaviour.
We have /proc/diskstats which lets us understand the io in the block
layer. We have blktrace for more in depth understanding. We have
e2fsprogs and debugsfs to give insight into the file systems behaviour,
but we don't offer our users the ability understand what writeback is
doing. There is no way to know how active it is over the whole system, if
it's falling behind or to quantify it's efforts. With these values
exported users can easily see how much data applications are sending
through writeback and also at what rates writeback is processing this
data. Comparing the rates of change between the two allow developers to
see when writeback is not able to keep up with incoming traffic and the
rate of dirty memory being sent to the IO back end. This allows folks to
understand their io workloads and track kernel issues. Non kernel
engineers at Google often use these counters to solve puzzling performance
problems.
Patch #4 adds a pernode vmstat file with nr_dirtied and nr_written
Patch #5 add writeback thresholds to /proc/vmstat
Currently these values are in debugfs. But they should be promoted to
/proc since they are useful for developers who are writing databases
and file servers and are not debugging the kernel.
The output is as below:
# grep threshold /proc/vmstat
nr_pages_dirty_threshold 409111
nr_pages_dirty_background_threshold 818223
This patch:
This allows code outside of the mm core to safely manipulate page
writeback state and not worry about the other accounting. Not using these
routines means that some code will lose track of the accounting and we get
bugs.
Modify nilfs2 to use interface.
Signed-off-by: Michael Rubin <mrubin@google.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Wu Fengguang <fengguang.wu@intel.com>
Cc: KONISHI Ryusuke <konishi.ryusuke@lab.ntt.co.jp>
Cc: Jiro SEKIBA <jir@unicus.jp>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This fixes a problem introduced with the hugetlb hwpoison handling
The user space SIGBUS signalling wants to know the size of the hugepage
that caused a HWPOISON fault.
Unfortunately the architecture page fault handlers do not have easy
access to the struct page.
Pass the information out in the fault error code instead.
I added a separate VM_FAULT_HWPOISON_LARGE bit for this case and encode
the hpage index in some free upper bits of the fault code. The small
page hwpoison keeps stays with the VM_FAULT_HWPOISON name to minimize
changes.
Also add code to hugetlb.h to convert that index into a page shift.
Will be used in a further patch.
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: fengguang.wu@intel.com
Signed-off-by: Andi Kleen <ak@linux.intel.com>
So it can be used by all that need to check for that.
Signed-off-by: Stefan Bader <stefan.bader@canonical.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Stub out vm_get_page_prot() if there's no MMU.
This was added by commit 804af2cf6e ("[AGPGART] remove private page
protection map") and is used in commit c07fbfd17e ("fbmem: VM_IO set,
but not propagated") in the fbmem video driver, but the function doesn't
exist on NOMMU, resulting in an undefined symbol at link time.
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
According to node range in early_node_map[] with __memblock_find_in_range
to find free range.
Will be used by memblock_x86_find_in_range_node()
memblock_x86_find_in_range_node will be used to find right buffer for NODE_DATA
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
pa-risc and ia64 have stacks that grow upwards. Check that
they do not run into other mappings. By making VM_GROWSUP
0x0 on architectures that do not ever use it, we can avoid
some unpleasant #ifdefs in check_stack_guard_page().
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs-2.6: (96 commits)
no need for list_for_each_entry_safe()/resetting with superblock list
Fix sget() race with failing mount
vfs: don't hold s_umount over close_bdev_exclusive() call
sysv: do not mark superblock dirty on remount
sysv: do not mark superblock dirty on mount
btrfs: remove junk sb_dirt change
BFS: clean up the superblock usage
AFFS: wait for sb synchronization when needed
AFFS: clean up dirty flag usage
cifs: truncate fallout
mbcache: fix shrinker function return value
mbcache: Remove unused features
add f_flags to struct statfs(64)
pass a struct path to vfs_statfs
update VFS documentation for method changes.
All filesystems that need invalidate_inode_buffers() are doing that explicitly
convert remaining ->clear_inode() to ->evict_inode()
Make ->drop_inode() just return whether inode needs to be dropped
fs/inode.c:clear_inode() is gone
fs/inode.c:evict() doesn't care about delete vs. non-delete paths now
...
Fix up trivial conflicts in fs/nilfs2/super.c
Make sure we check the truncate constraints early on in ->setattr by adding
those checks to inode_change_ok. Also clean up and document inode_change_ok
to make this obvious.
As a fallout we don't have to call inode_newsize_ok from simple_setsize and
simplify it down to a truncate_setsize which doesn't return an error. This
simplifies a lot of setattr implementations and means we use truncate_setsize
almost everywhere. Get rid of fat_setsize now that it's trivial and mark
ext2_setsize static to make the calling convention obvious.
Keep the inode_newsize_ok in vmtruncate for now as all callers need an
audit for its removal anyway.
Note: setattr code in ecryptfs doesn't call inode_change_ok at all and
needs a deeper audit, but that is left for later.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
In common cases, guest SRAO MCE will cause corresponding poisoned page
be un-mapped and SIGBUS be sent to QEMU-KVM, then QEMU-KVM will relay
the MCE to guest OS.
But it is reported that if the poisoned page is accessed in guest
after unmapping and before MCE is relayed to guest OS, userspace will
be killed.
The reason is as follows. Because poisoned page has been un-mapped,
guest access will cause guest exit and kvm_mmu_page_fault will be
called. kvm_mmu_page_fault can not get the poisoned page for fault
address, so kernel and user space MMIO processing is tried in turn. In
user MMIO processing, poisoned page is accessed again, then userspace
is killed by force_sig_info.
To fix the bug, kvm_mmu_page_fault send HWPOISON signal to QEMU-KVM
and do not try kernel and user space MMIO processing for poisoned
page.
[xiao: fix warning introduced by avi]
Reported-by: Max Asbock <masbock@linux.vnet.ibm.com>
Signed-off-by: Huang Ying <ying.huang@intel.com>
Signed-off-by: Xiao Guangrong <xiaoguangrong@cn.fujitsu.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
The current shrinker implementation requires the registered callback
to have global state to work from. This makes it difficult to shrink
caches that are not global (e.g. per-filesystem caches). Pass the shrinker
structure to the callback so that users can embed the shrinker structure
in the context the shrinker needs to operate on and get back to it in the
callback via container_of().
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
This ensures that platforms with lowmem PAs above 32 bits work correctly
by avoiding truncating the PA during a left shift.
Signed-off-by: Chris Metcalf <cmetcalf@tilera.com>
Cc: Barry Song <21cnbao@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch is the core of a mechanism which compacts memory in a zone by
relocating movable pages towards the end of the zone.
A single compaction run involves a migration scanner and a free scanner.
Both scanners operate on pageblock-sized areas in the zone. The migration
scanner starts at the bottom of the zone and searches for all movable
pages within each area, isolating them onto a private list called
migratelist. The free scanner starts at the top of the zone and searches
for suitable areas and consumes the free pages within making them
available for the migration scanner. The pages isolated for migration are
then migrated to the newly isolated free pages.
[aarcange@redhat.com: Fix unsafe optimisation]
[mel@csn.ul.ie: do not schedule work on other CPUs for compaction]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Page migration requires rmap to be able to find all ptes mapping a page
at all times, otherwise the migration entry can be instantiated, but it
is possible to leave one behind if the second rmap_walk fails to find
the page. If this page is later faulted, migration_entry_to_page() will
call BUG because the page is locked indicating the page was migrated by
the migration PTE not cleaned up. For example
kernel BUG at include/linux/swapops.h:105!
invalid opcode: 0000 [#1] PREEMPT SMP
...
Call Trace:
[<ffffffff810e951a>] handle_mm_fault+0x3f8/0x76a
[<ffffffff8130c7a2>] do_page_fault+0x44a/0x46e
[<ffffffff813099b5>] page_fault+0x25/0x30
[<ffffffff8114de33>] load_elf_binary+0x152a/0x192b
[<ffffffff8111329b>] search_binary_handler+0x173/0x313
[<ffffffff81114896>] do_execve+0x219/0x30a
[<ffffffff8100a5c6>] sys_execve+0x43/0x5e
[<ffffffff8100320a>] stub_execve+0x6a/0xc0
RIP [<ffffffff811094ff>] migration_entry_wait+0xc1/0x129
There is a race between shift_arg_pages and migration that triggers this
bug. A temporary stack is setup during exec and later moved. If
migration moves a page in the temporary stack and the VMA is then removed
before migration completes, the migration PTE may not be found leading to
a BUG when the stack is faulted.
This patch causes pages within the temporary stack during exec to be
skipped by migration. It does this by marking the VMA covering the
temporary stack with an otherwise impossible combination of VMA flags.
These flags are cleared when the temporary stack is moved to its final
location.
[kamezawa.hiroyu@jp.fujitsu.com: idea for having migration skip temporary stacks]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When we look into pagemap using page-types with option -p, the value of
pfn for hugepages looks wrong (see below.) This is because pte was
evaluated only once for one vma although it should be updated for each
hugepage. This patch fixes it.
$ page-types -p 3277 -Nl -b huge
voffset offset len flags
7f21e8a00 11e400 1 ___U___________H_G________________
7f21e8a01 11e401 1ff ________________TG________________
^^^
7f21e8c00 11e400 1 ___U___________H_G________________
7f21e8c01 11e401 1ff ________________TG________________
^^^
One hugepage contains 1 head page and 511 tail pages in x86_64 and each
two lines represent each hugepage. Voffset and offset mean virtual
address and physical address in the page unit, respectively. The
different hugepages should not have the same offset value.
With this patch applied:
$ page-types -p 3386 -Nl -b huge
voffset offset len flags
7fec7a600 112c00 1 ___UD__________H_G________________
7fec7a601 112c01 1ff ________________TG________________
^^^
7fec7a800 113200 1 ___UD__________H_G________________
7fec7a801 113201 1ff ________________TG________________
^^^
OK
More info:
- This patch modifies walk_page_range()'s hugepage walker. But the
change only affects pagemap_read(), which is the only caller of hugepage
callback.
- Without this patch, hugetlb_entry() callback is called per vma, that
doesn't match the natural expectation from its name.
- With this patch, hugetlb_entry() is called per hugepte entry and the
callback can become much simpler.
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Matt Mackall <mpm@selenic.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Support for the PMU's BTS features has been upstreamed in
v2.6.32, but we still have the old and disabled ptrace-BTS,
as Linus noticed it not so long ago.
It's buggy: TIF_DEBUGCTLMSR is trampling all over that MSR without
regard for other uses (perf) and doesn't provide the flexibility
needed for perf either.
Its users are ptrace-block-step and ptrace-bts, since ptrace-bts
was never used and ptrace-block-step can be implemented using a
much simpler approach.
So axe all 3000 lines of it. That includes the *locked_memory*()
APIs in mm/mlock.c as well.
Reported-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Roland McGrath <roland@redhat.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Markus Metzger <markus.t.metzger@intel.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
LKML-Reference: <20100325135413.938004390@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Commit 34e55232e5 ("mm: avoid false sharing
of mm_counter") added sync_mm_rss() for syncing loosely accounted rss
counters. It's for CONFIG_MMU but sync_mm_rss is called even in NOMMU
enviroment (kerne/exit.c, fs/exec.c). Above commit doesn't handle it
well.
This patch changes
SPLIT_RSS_COUNTING depends on SPLIT_PTLOCKS && CONFIG_MMU
And for avoid unnecessary function calls, sync_mm_rss changed to be inlined
noop function in header file.
Reported-by: David Howells <dhowells@redhat.com>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Mike Frysinger <vapier@gentoo.org>
Signed-off-by: Michal Simek <monstr@monstr.eu>
Signed-off-by: David Howells <dhowells@redhat.com>
Cc: Greg Ungerer <gerg@snapgear.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When a VMA is in an inconsistent state during setup or teardown, the worst
that can happen is that the rmap code will not be able to find the page.
The mapping is in the process of being torn down (PTEs just got
invalidated by munmap), or set up (no PTEs have been instantiated yet).
It is also impossible for the rmap code to follow a pointer to an already
freed VMA, because the rmap code holds the anon_vma->lock, which the VMA
teardown code needs to take before the VMA is removed from the anon_vma
chain.
Hence, we should not need the VM_LOCK_RMAP locking at all.
Signed-off-by: Rik van Riel <riel@redhat.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Larry Woodman <lwoodman@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The old anon_vma code can lead to scalability issues with heavily forking
workloads. Specifically, each anon_vma will be shared between the parent
process and all its child processes.
In a workload with 1000 child processes and a VMA with 1000 anonymous
pages per process that get COWed, this leads to a system with a million
anonymous pages in the same anon_vma, each of which is mapped in just one
of the 1000 processes. However, the current rmap code needs to walk them
all, leading to O(N) scanning complexity for each page.
This can result in systems where one CPU is walking the page tables of
1000 processes in page_referenced_one, while all other CPUs are stuck on
the anon_vma lock. This leads to catastrophic failure for a benchmark
like AIM7, where the total number of processes can reach in the tens of
thousands. Real workloads are still a factor 10 less process intensive
than AIM7, but they are catching up.
This patch changes the way anon_vmas and VMAs are linked, which allows us
to associate multiple anon_vmas with a VMA. At fork time, each child
process gets its own anon_vmas, in which its COWed pages will be
instantiated. The parents' anon_vma is also linked to the VMA, because
non-COWed pages could be present in any of the children.
This reduces rmap scanning complexity to O(1) for the pages of the 1000
child processes, with O(N) complexity for at most 1/N pages in the system.
This reduces the average scanning cost in heavily forking workloads from
O(N) to 2.
The only real complexity in this patch stems from the fact that linking a
VMA to anon_vmas now involves memory allocations. This means vma_adjust
can fail, if it needs to attach a VMA to anon_vma structures. This in
turn means error handling needs to be added to the calling functions.
A second source of complexity is that, because there can be multiple
anon_vmas, the anon_vma linking in vma_adjust can no longer be done under
"the" anon_vma lock. To prevent the rmap code from walking up an
incomplete VMA, this patch introduces the VM_LOCK_RMAP VMA flag. This bit
flag uses the same slot as the NOMMU VM_MAPPED_COPY, with an ifdef in mm.h
to make sure it is impossible to compile a kernel that needs both symbolic
values for the same bitflag.
Some test results:
Without the anon_vma changes, when AIM7 hits around 9.7k users (on a test
box with 16GB RAM and not quite enough IO), the system ends up running
>99% in system time, with every CPU on the same anon_vma lock in the
pageout code.
With these changes, AIM7 hits the cross-over point around 29.7k users.
This happens with ~99% IO wait time, there never seems to be any spike in
system time. The anon_vma lock contention appears to be resolved.
[akpm@linux-foundation.org: cleanups]
Signed-off-by: Rik van Riel <riel@redhat.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Larry Woodman <lwoodman@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Considering the nature of per mm stats, it's the shared object among
threads and can be a cache-miss point in the page fault path.
This patch adds per-thread cache for mm_counter. RSS value will be
counted into a struct in task_struct and synchronized with mm's one at
events.
Now, in this patch, the event is the number of calls to handle_mm_fault.
Per-thread value is added to mm at each 64 calls.
rough estimation with small benchmark on parallel thread (2threads) shows
[before]
4.5 cache-miss/faults
[after]
4.0 cache-miss/faults
Anyway, the most contended object is mmap_sem if the number of threads grows.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Presently, per-mm statistics counter is defined by macro in sched.h
This patch modifies it to
- defined in mm.h as inlinf functions
- use array instead of macro's name creation.
This patch is for reducing patch size in future patch to modify
implementation of per-mm counter.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'x86-bootmem-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (30 commits)
early_res: Need to save the allocation name in drop_range_partial()
sparsemem: Fix compilation on PowerPC
early_res: Add free_early_partial()
x86: Fix non-bootmem compilation on PowerPC
core: Move early_res from arch/x86 to kernel/
x86: Add find_fw_memmap_area
Move round_up/down to kernel.h
x86: Make 32bit support NO_BOOTMEM
early_res: Enhance check_and_double_early_res
x86: Move back find_e820_area to e820.c
x86: Add find_early_area_size
x86: Separate early_res related code from e820.c
x86: Move bios page reserve early to head32/64.c
sparsemem: Put mem map for one node together.
sparsemem: Put usemap for one node together
x86: Make 64 bit use early_res instead of bootmem before slab
x86: Only call dma32_reserve_bootmem 64bit !CONFIG_NUMA
x86: Make early_node_mem get mem > 4 GB if possible
x86: Dynamically increase early_res array size
x86: Introduce max_early_res and early_res_count
...
x86/mm is on 32-rc4 and missing the spinlock namespace changes which
are needed for further commits into this topic.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Add vmemmap_alloc_block_buf for mem map only.
It will fallback to the old way if it cannot get a block that big.
Before this patch, when a node have 128g ram installed, memmap are
split into two parts or more.
[ 0.000000] [ffffea0000000000-ffffea003fffffff] PMD -> [ffff880100600000-ffff88013e9fffff] on node 1
[ 0.000000] [ffffea0040000000-ffffea006fffffff] PMD -> [ffff88013ec00000-ffff88016ebfffff] on node 1
[ 0.000000] [ffffea0070000000-ffffea007fffffff] PMD -> [ffff882000600000-ffff8820105fffff] on node 0
[ 0.000000] [ffffea0080000000-ffffea00bfffffff] PMD -> [ffff882010800000-ffff8820507fffff] on node 0
[ 0.000000] [ffffea00c0000000-ffffea00dfffffff] PMD -> [ffff882050a00000-ffff8820709fffff] on node 0
[ 0.000000] [ffffea00e0000000-ffffea00ffffffff] PMD -> [ffff884000600000-ffff8840205fffff] on node 2
[ 0.000000] [ffffea0100000000-ffffea013fffffff] PMD -> [ffff884020800000-ffff8840607fffff] on node 2
[ 0.000000] [ffffea0140000000-ffffea014fffffff] PMD -> [ffff884060a00000-ffff8840709fffff] on node 2
[ 0.000000] [ffffea0150000000-ffffea017fffffff] PMD -> [ffff886000600000-ffff8860305fffff] on node 3
[ 0.000000] [ffffea0180000000-ffffea01bfffffff] PMD -> [ffff886030800000-ffff8860707fffff] on node 3
[ 0.000000] [ffffea01c0000000-ffffea01ffffffff] PMD -> [ffff888000600000-ffff8880405fffff] on node 4
[ 0.000000] [ffffea0200000000-ffffea022fffffff] PMD -> [ffff888040800000-ffff8880707fffff] on node 4
[ 0.000000] [ffffea0230000000-ffffea023fffffff] PMD -> [ffff88a000600000-ffff88a0105fffff] on node 5
[ 0.000000] [ffffea0240000000-ffffea027fffffff] PMD -> [ffff88a010800000-ffff88a0507fffff] on node 5
[ 0.000000] [ffffea0280000000-ffffea029fffffff] PMD -> [ffff88a050a00000-ffff88a0709fffff] on node 5
[ 0.000000] [ffffea02a0000000-ffffea02bfffffff] PMD -> [ffff88c000600000-ffff88c0205fffff] on node 6
[ 0.000000] [ffffea02c0000000-ffffea02ffffffff] PMD -> [ffff88c020800000-ffff88c0607fffff] on node 6
[ 0.000000] [ffffea0300000000-ffffea030fffffff] PMD -> [ffff88c060a00000-ffff88c0709fffff] on node 6
[ 0.000000] [ffffea0310000000-ffffea033fffffff] PMD -> [ffff88e000600000-ffff88e0305fffff] on node 7
[ 0.000000] [ffffea0340000000-ffffea037fffffff] PMD -> [ffff88e030800000-ffff88e0707fffff] on node 7
after patch will get
[ 0.000000] [ffffea0000000000-ffffea006fffffff] PMD -> [ffff880100200000-ffff88016e5fffff] on node 0
[ 0.000000] [ffffea0070000000-ffffea00dfffffff] PMD -> [ffff882000200000-ffff8820701fffff] on node 1
[ 0.000000] [ffffea00e0000000-ffffea014fffffff] PMD -> [ffff884000200000-ffff8840701fffff] on node 2
[ 0.000000] [ffffea0150000000-ffffea01bfffffff] PMD -> [ffff886000200000-ffff8860701fffff] on node 3
[ 0.000000] [ffffea01c0000000-ffffea022fffffff] PMD -> [ffff888000200000-ffff8880701fffff] on node 4
[ 0.000000] [ffffea0230000000-ffffea029fffffff] PMD -> [ffff88a000200000-ffff88a0701fffff] on node 5
[ 0.000000] [ffffea02a0000000-ffffea030fffffff] PMD -> [ffff88c000200000-ffff88c0701fffff] on node 6
[ 0.000000] [ffffea0310000000-ffffea037fffffff] PMD -> [ffff88e000200000-ffff88e0701fffff] on node 7
-v2: change buf to vmemmap_buf instead according to Ingo
also add CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER according to Ingo
-v3: according to Andrew, use sizeof(name) instead of hard coded 15
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
LKML-Reference: <1265793639-15071-19-git-send-email-yinghai@kernel.org>
Cc: Christoph Lameter <cl@linux-foundation.org>
Acked-by: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Finally we can use early_res to replace bootmem for x86_64 now.
Still can use CONFIG_NO_BOOTMEM to enable it or not.
-v2: fix 32bit compiling about MAX_DMA32_PFN
-v3: folded bug fix from LKML message below
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
LKML-Reference: <4B747239.4070907@kernel.org>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Move page_is_ram() declaration to mm.h, it makes no sense in <linux/ioport.h>.
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
LKML-Reference: <20100127030639.GD8132@localhost>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Fix a problem in NOMMU mmap with ramfs whereby a shared mmap can happen
over the end of a truncation. The problem is that
ramfs_nommu_check_mappings() checks that the reduced file size against the
VMA tree, but not the vm_region tree.
The following sequence of events can cause the problem:
fd = open("/tmp/x", O_RDWR|O_TRUNC|O_CREAT, 0600);
ftruncate(fd, 32 * 1024);
a = mmap(NULL, 32 * 1024, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
b = mmap(NULL, 16 * 1024, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
munmap(a, 32 * 1024);
ftruncate(fd, 16 * 1024);
c = mmap(NULL, 32 * 1024, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
Mapping 'a' creates a vm_region covering 32KB of the file. Mapping 'b'
sees that the vm_region from 'a' is covering the region it wants and so
shares it, pinning it in memory.
Mapping 'a' then goes away and the file is truncated to the end of VMA
'b'. However, the region allocated by 'a' is still in effect, and has
_not_ been reduced.
Mapping 'c' is then created, and because there's a vm_region covering the
desired region, get_unmapped_area() is _not_ called to repeat the check,
and the mapping is granted, even though the pages from the latter half of
the mapping have been discarded.
However:
d = mmap(NULL, 16 * 1024, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
Mapping 'd' should work, and should end up sharing the region allocated by
'a'.
To deal with this, we shrink the vm_region struct during the truncation,
lest do_mmap_pgoff() take it as licence to share the full region
automatically without calling the get_unmapped_area() file op again.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Cc: Greg Ungerer <gerg@snapgear.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use the per cpu allocator functionality to avoid per cpu arrays in struct zone.
This drastically reduces the size of struct zone for systems with large
amounts of processors and allows placement of critical variables of struct
zone in one cacheline even on very large systems.
Another effect is that the pagesets of one processor are placed near one
another. If multiple pagesets from different zones fit into one cacheline
then additional cacheline fetches can be avoided on the hot paths when
allocating memory from multiple zones.
Bootstrap becomes simpler if we use the same scheme for UP, SMP, NUMA. #ifdefs
are reduced and we can drop the zone_pcp macro.
Hotplug handling is also simplified since cpu alloc can bring up and
shut down cpu areas for a specific cpu as a whole. So there is no need to
allocate or free individual pagesets.
V7-V8:
- Explain chicken egg dilemmna with percpu allocator.
V4-V5:
- Fix up cases where per_cpu_ptr is called before irq disable
- Integrate the bootstrap logic that was separate before.
tj: Build failure in pageset_cpuup_callback() due to missing ret
variable fixed.
Reviewed-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Tejun Heo <tj@kernel.org>
* 'x86-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86, irq: Allow 0xff for /proc/irq/[n]/smp_affinity on an 8-cpu system
Makefile: Unexport LC_ALL instead of clearing it
x86: Fix objdump version check in arch/x86/tools/chkobjdump.awk
x86: Reenable TSC sync check at boot, even with NONSTOP_TSC
x86: Don't use POSIX character classes in gen-insn-attr-x86.awk
Makefile: set LC_CTYPE, LC_COLLATE, LC_NUMERIC to C
x86: Increase MAX_EARLY_RES; insufficient on 32-bit NUMA
x86: Fix checking of SRAT when node 0 ram is not from 0
x86, cpuid: Add "volatile" to asm in native_cpuid()
x86, msr: msrs_alloc/free for CONFIG_SMP=n
x86, amd: Get multi-node CPU info from NodeId MSR instead of PCI config space
x86: Add IA32_TSC_AUX MSR and use it
x86, msr/cpuid: Register enough minors for the MSR and CPUID drivers
initramfs: add missing decompressor error check
bzip2: Add missing checks for malloc returning NULL
bzip2/lzma/gzip: pre-boot malloc doesn't return NULL on failure
Found one system that boot from socket1 instead of socket0, SRAT get rejected...
[ 0.000000] SRAT: Node 1 PXM 0 0-a0000
[ 0.000000] SRAT: Node 1 PXM 0 100000-80000000
[ 0.000000] SRAT: Node 1 PXM 0 100000000-2080000000
[ 0.000000] SRAT: Node 0 PXM 1 2080000000-4080000000
[ 0.000000] SRAT: Node 2 PXM 2 4080000000-6080000000
[ 0.000000] SRAT: Node 3 PXM 3 6080000000-8080000000
[ 0.000000] SRAT: Node 4 PXM 4 8080000000-a080000000
[ 0.000000] SRAT: Node 5 PXM 5 a080000000-c080000000
[ 0.000000] SRAT: Node 6 PXM 6 c080000000-e080000000
[ 0.000000] SRAT: Node 7 PXM 7 e080000000-10080000000
...
[ 0.000000] NUMA: Allocated memnodemap from 500000 - 701040
[ 0.000000] NUMA: Using 20 for the hash shift.
[ 0.000000] Adding active range (0, 0x2080000, 0x4080000) 0 entries of 3200 used
[ 0.000000] Adding active range (1, 0x0, 0x96) 1 entries of 3200 used
[ 0.000000] Adding active range (1, 0x100, 0x7f750) 2 entries of 3200 used
[ 0.000000] Adding active range (1, 0x100000, 0x2080000) 3 entries of 3200 used
[ 0.000000] Adding active range (2, 0x4080000, 0x6080000) 4 entries of 3200 used
[ 0.000000] Adding active range (3, 0x6080000, 0x8080000) 5 entries of 3200 used
[ 0.000000] Adding active range (4, 0x8080000, 0xa080000) 6 entries of 3200 used
[ 0.000000] Adding active range (5, 0xa080000, 0xc080000) 7 entries of 3200 used
[ 0.000000] Adding active range (6, 0xc080000, 0xe080000) 8 entries of 3200 used
[ 0.000000] Adding active range (7, 0xe080000, 0x10080000) 9 entries of 3200 used
[ 0.000000] SRAT: PXMs only cover 917504MB of your 1048566MB e820 RAM. Not used.
[ 0.000000] SRAT: SRAT not used.
the early_node_map is not sorted because node0 with non zero start come first.
so try to sort it right away after all regions are registered.
also fixs refression by 8716273c (x86: Export srat physical topology)
-v2: make it more solid to handle cross node case like node0 [0,4g), [8,12g) and node1 [4g, 8g), [12g, 16g)
-v3: update comments.
Reported-and-tested-by: Jens Axboe <jens.axboe@oracle.com>
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
LKML-Reference: <4B2579D2.3010201@kernel.org>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
This is a simpler, gentler variant of memory_failure() for soft page
offlining controlled from user space. It doesn't kill anything, just
tries to invalidate and if that doesn't work migrate the
page away.
This is useful for predictive failure analysis, where a page has
a high rate of corrected errors, but hasn't gone bad yet. Instead
it can be offlined early and avoided.
The offlining is controlled from sysfs, including a new generic
entry point for hard page offlining for symmetry too.
We use the page isolate facility to prevent re-allocation
race. Normally this is only used by memory hotplug. To avoid
races with memory allocation I am using lock_system_sleep().
This avoids the situation where memory hotplug is about
to isolate a page range and then hwpoison undoes that work.
This is a big hammer currently, but the simplest solution
currently.
When the page is not free or LRU we try to free pages
from slab and other caches. The slab freeing is currently
quite dumb and does not try to focus on the specific slab
cache which might own the page. This could be potentially
improved later.
Thanks to Fengguang Wu and Haicheng Li for some fixes.
[Added fix from Andrew Morton to adapt to new migrate_pages prototype]
Signed-off-by: Andi Kleen <ak@linux.intel.com>
The unpoisoning interface is useful for stress testing tools to
reclaim poisoned pages (to prevent OOM)
There is no hardware level unpoisioning, so this
cannot be used for real memory errors, only for software injected errors.
Note that it may leak pages silently - those who have been removed from
LRU cache, but not isolated from page cache/swap cache at hwpoison time.
Especially the stress test of dirty swap cache pages shall reboot system
before exhausting memory.
AK: Fix comments, add documentation, add printks, rename symbol
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Now that "ref" is just a boolean turn it into
a flags argument. First step is only a single flag
that makes the code's intention more clear, but more
may follow.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
shake_page handles more types of page caches than lru_drain_all()
- per cpu page allocator pages
- per CPU LRU
Stops early when the page became free.
Used in followon patches.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
The check code for CONFIG_SWAP is redundant, because there is a
non-CONFIG_SWAP version for PageSwapCache() which just returns 0.
Signed-off-by: Huang Shijie <shijie8@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
At present we define PageAnon(page) by the low PAGE_MAPPING_ANON bit set
in page->mapping, with the higher bits a pointer to the anon_vma; and have
defined PageKsm(page) as that with NULL anon_vma.
But KSM swapping will need to store a pointer there: so in preparation for
that, now define PAGE_MAPPING_FLAGS as the low two bits, including
PAGE_MAPPING_KSM (always set along with PAGE_MAPPING_ANON, until some
other use for the bit emerges).
Declare page_rmapping(page) to return the pointer part of page->mapping,
and page_anon_vma(page) to return the anon_vma pointer when that's what it
is. Use these in a few appropriate places: notably, unuse_vma() has been
testing page->mapping, but is better to be testing page_anon_vma() (cases
may be added in which flag bits are set without any pointer).
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Izik Eidus <ieidus@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The NOMMU fallback for is_vmalloc_or_module_addr() should be static inline,
not just static, in linux/mm.h.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs-2.6:
truncate: use new helpers
truncate: new helpers
fs: fix overflow in sys_mount() for in-kernel calls
fs: Make unload_nls() NULL pointer safe
freeze_bdev: grab active reference to frozen superblocks
freeze_bdev: kill bd_mount_sem
exofs: remove BKL from super operations
fs/romfs: correct error-handling code
vfs: seq_file: add helpers for data filling
vfs: remove redundant position check in do_sendfile
vfs: change sb->s_maxbytes to a loff_t
vfs: explicitly cast s_maxbytes in fiemap_check_ranges
libfs: return error code on failed attr set
seq_file: return a negative error code when seq_path_root() fails.
vfs: optimize touch_time() too
vfs: optimization for touch_atime()
vfs: split generic_forget_inode() so that hugetlbfs does not have to copy it
fs/inode.c: add dev-id and inode number for debugging in init_special_inode()
libfs: make simple_read_from_buffer conventional
* 'hwpoison' of git://git.kernel.org/pub/scm/linux/kernel/git/ak/linux-mce-2.6: (21 commits)
HWPOISON: Enable error_remove_page on btrfs
HWPOISON: Add simple debugfs interface to inject hwpoison on arbitary PFNs
HWPOISON: Add madvise() based injector for hardware poisoned pages v4
HWPOISON: Enable error_remove_page for NFS
HWPOISON: Enable .remove_error_page for migration aware file systems
HWPOISON: The high level memory error handler in the VM v7
HWPOISON: Add PR_MCE_KILL prctl to control early kill behaviour per process
HWPOISON: shmem: call set_page_dirty() with locked page
HWPOISON: Define a new error_remove_page address space op for async truncation
HWPOISON: Add invalidate_inode_page
HWPOISON: Refactor truncate to allow direct truncating of page v2
HWPOISON: check and isolate corrupted free pages v2
HWPOISON: Handle hardware poisoned pages in try_to_unmap
HWPOISON: Use bitmask/action code for try_to_unmap behaviour
HWPOISON: x86: Add VM_FAULT_HWPOISON handling to x86 page fault handler v2
HWPOISON: Add poison check to page fault handling
HWPOISON: Add basic support for poisoned pages in fault handler v3
HWPOISON: Add new SIGBUS error codes for hardware poison signals
HWPOISON: Add support for poison swap entries v2
HWPOISON: Export some rmap vma locking to outside world
...
It's unused.
It isn't needed -- read or write flag is already passed and sysctl
shouldn't care about the rest.
It _was_ used in two places at arch/frv for some reason.
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Cc: David Howells <dhowells@redhat.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: James Morris <jmorris@namei.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Introduce new truncate helpers truncate_pagecache and inode_newsize_ok.
vmtruncate is also consolidated from mm/memory.c and mm/nommu.c and
into mm/truncate.c.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Some archs define MODULED_VADDR/MODULES_END which is not in VMALLOC area.
This is handled only in x86-64. This patch make it more generic. And we
can use vread/vwrite to access the area. Fix it.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Jiri Slaby <jirislaby@gmail.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: WANG Cong <xiyou.wangcong@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
CONFIG_SHMEM off gives you (ramfs masquerading as) tmpfs, even when
CONFIG_TMPFS is off: that's a little anomalous, and I'd intended to make
more sense of it by removing CONFIG_TMPFS altogether, always enabling its
code when CONFIG_SHMEM; but so many defconfigs have CONFIG_SHMEM on
CONFIG_TMPFS off that we'd better leave that as is.
But there is no point in asking for CONFIG_TMPFS if CONFIG_SHMEM is off:
make TMPFS depend on SHMEM, which also prevents TMPFS_POSIX_ACL
shmem_acl.o being pointlessly built into the kernel when SHMEM is off.
And a selfish change, to prevent the world from being rebuilt when I
switch between CONFIG_SHMEM on and off: the only CONFIG_SHMEM in the
header files is mm.h shmem_lock() - give that a shmem.c stub instead.
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Acked-by: Matt Mackall <mpm@selenic.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__get_user_pages() has been taking its own GUP flags, then processing
them into FOLL flags for follow_page(). Though oddly named, the FOLL
flags are more widely used, so pass them to __get_user_pages() now.
Sorry, VM flags, VM_FAULT flags and FAULT_FLAGs are still distinct.
(The patch to __get_user_pages() looks peculiar, with both gup_flags
and foll_flags: the gup_flags remain constant; but as before there's
an exceptional case, out of scope of the patch, in which foll_flags
per page have FOLL_WRITE masked off.)
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Rik van Riel <riel@redhat.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The "FOLL_ANON optimization" and its use_zero_page() test have caused
confusion and bugs: why does it test VM_SHARED? for the very good but
unsatisfying reason that VMware crashed without. As we look to maybe
reinstating anonymous use of the ZERO_PAGE, we need to sort this out.
Easily done: it's silly for __get_user_pages() and follow_page() to
be guessing whether it's safe to assume that they're being used for
a coredump (which can take a shortcut snapshot where other uses must
handle a fault) - just tell them with GUP_FLAGS_DUMP and FOLL_DUMP.
get_dump_page() doesn't even want a ZERO_PAGE: an error suits fine.
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In preparation for the next patch, add a simple get_dump_page(addr)
interface for the CONFIG_ELF_CORE dumpers to use, instead of calling
get_user_pages() directly. They're not interested in errors: they
just want to use holes as much as possible, to save space and make
sure that the data is aligned where the headers said it would be.
Oh, and don't use that horrid DUMP_SEEK(off) macro!
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Sizing of memory allocations shouldn't depend on the number of physical
pages found in a system, as that generally includes (perhaps a huge amount
of) non-RAM pages. The amount of what actually is usable as storage
should instead be used as a basis here.
Some of the calculations (i.e. those not intending to use high memory)
should likely even use (totalram_pages - totalhigh_pages).
Signed-off-by: Jan Beulich <jbeulich@novell.com>
Acked-by: Rusty Russell <rusty@rustcorp.com.au>
Acked-by: Ingo Molnar <mingo@elte.hu>
Cc: Dave Airlie <airlied@linux.ie>
Cc: Kyle McMartin <kyle@mcmartin.ca>
Cc: Jeremy Fitzhardinge <jeremy@goop.org>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Patrick McHardy <kaber@trash.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch presents the mm interface to a dummy version of ksm.c, for
better scrutiny of that interface: the real ksm.c follows later.
When CONFIG_KSM is not set, madvise(2) reject MADV_MERGEABLE and
MADV_UNMERGEABLE with EINVAL, since that seems more helpful than
pretending that they can be serviced. But when CONFIG_KSM=y, accept them
even if KSM is not currently running, and even on areas which KSM will not
touch (e.g. hugetlb or shared file or special driver mappings).
Like other madvices, report ENOMEM despite success if any area in the
range is unmapped, and use EAGAIN to report out of memory.
Define vma flag VM_MERGEABLE to identify an area on which KSM may try
merging pages: leave it to ksm_madvise() to decide whether to set it.
Define mm flag MMF_VM_MERGEABLE to identify an mm which might contain
VM_MERGEABLE areas, to minimize callouts when forking or exiting.
Based upon earlier patches by Chris Wright and Izik Eidus.
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Signed-off-by: Chris Wright <chrisw@redhat.com>
Signed-off-by: Izik Eidus <ieidus@redhat.com>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In my test, 128M memory is hot added, but zone's pcp batch is 0, which is
an obvious error. When pages are onlined, zone pcp should be updated
accordingly.
[akpm@linux-foundation.org: fix warnings]
Signed-off-by: Shaohua Li <shaohua.li@intel.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Yakui Zhao <yakui.zhao@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add the high level memory handler that poisons pages
that got corrupted by hardware (typically by a two bit flip in a DIMM
or a cache) on the Linux level. The goal is to prevent everyone
from accessing these pages in the future.
This done at the VM level by marking a page hwpoisoned
and doing the appropriate action based on the type of page
it is.
The code that does this is portable and lives in mm/memory-failure.c
To quote the overview comment:
High level machine check handler. Handles pages reported by the
hardware as being corrupted usually due to a 2bit ECC memory or cache
failure.
This focuses on pages detected as corrupted in the background.
When the current CPU tries to consume corruption the currently
running process can just be killed directly instead. This implies
that if the error cannot be handled for some reason it's safe to
just ignore it because no corruption has been consumed yet. Instead
when that happens another machine check will happen.
Handles page cache pages in various states. The tricky part
here is that we can access any page asynchronous to other VM
users, because memory failures could happen anytime and anywhere,
possibly violating some of their assumptions. This is why this code
has to be extremely careful. Generally it tries to use normal locking
rules, as in get the standard locks, even if that means the
error handling takes potentially a long time.
Some of the operations here are somewhat inefficient and have non
linear algorithmic complexity, because the data structures have not
been optimized for this case. This is in particular the case
for the mapping from a vma to a process. Since this case is expected
to be rare we hope we can get away with this.
There are in principle two strategies to kill processes on poison:
- just unmap the data and wait for an actual reference before
killing
- kill as soon as corruption is detected.
Both have advantages and disadvantages and should be used
in different situations. Right now both are implemented and can
be switched with a new sysctl vm.memory_failure_early_kill
The default is early kill.
The patch does some rmap data structure walking on its own to collect
processes to kill. This is unusual because normally all rmap data structure
knowledge is in rmap.c only. I put it here for now to keep
everything together and rmap knowledge has been seeping out anyways
Includes contributions from Johannes Weiner, Chris Mason, Fengguang Wu,
Nick Piggin (who did a lot of great work) and others.
Cc: npiggin@suse.de
Cc: riel@redhat.com
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Acked-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Hidehiro Kawai <hidehiro.kawai.ez@hitachi.com>
Truncating metadata pages is not safe right now before
we haven't audited all file systems.
To enable truncation only for data address space define
a new address_space callback error_remove_page.
This is used for memory_failure.c memory error handling.
This can be then set to truncate_inode_page()
This patch just defines the new operation and adds documentation.
Callers and users come in followon patches.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Add a simple way to invalidate a single page
This is just a refactoring of the truncate.c code.
Originally from Fengguang, modified by Andi Kleen.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Extract out truncate_inode_page() out of the truncate path so that
it can be used by memory-failure.c
[AK: description, headers, fix typos]
v2: Some white space changes from Fengguang Wu
Signed-off-by: Andi Kleen <ak@linux.intel.com>
- Add a new VM_FAULT_HWPOISON error code to handle_mm_fault. Right now
architectures have to explicitely enable poison page support, so
this is forward compatible to all architectures. They only need
to add it when they enable poison page support.
- Add poison page handling in swap in fault code
v2: Add missing delayacct_clear_flag (Hidehiro Kawai)
v3: Really use delayacct_clear_flag (Hidehiro Kawai)
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Currently SELinux enforcement of controls on the ability to map low memory
is determined by the mmap_min_addr tunable. This patch causes SELinux to
ignore the tunable and instead use a seperate Kconfig option specific to how
much space the LSM should protect.
The tunable will now only control the need for CAP_SYS_RAWIO and SELinux
permissions will always protect the amount of low memory designated by
CONFIG_LSM_MMAP_MIN_ADDR.
This allows users who need to disable the mmap_min_addr controls (usual reason
being they run WINE as a non-root user) to do so and still have SELinux
controls preventing confined domains (like a web server) from being able to
map some area of low memory.
Signed-off-by: Eric Paris <eparis@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
Currently the 4th parameter of get_user_pages() is called len, but its
in pages, not bytes. Rename the thing to nr_pages to avoid future
confusion.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This allows the callers to now pass down the full set of FAULT_FLAG_xyz
flags to handle_mm_fault(). All callers have been (mechanically)
converted to the new calling convention, there's almost certainly room
for architectures to clean up their code and then add FAULT_FLAG_RETRY
when that support is added.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>