The check looked wrong, although I think it was actually safe. TASK_SIZE
is unnecessarily small for compat tasks, and it wasn't possible to make
a range breakpoint so large it started in user space and ended in kernel
space.
Nonetheless, let's fix up the check for the benefit of future
readers. A breakpoint is in the kernel if either end is in the
kernel.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/136be387950e78f18cea60e9d1bef74465d0ee8f.1438312874.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Range breakpoints will do the wrong thing if the address isn't
aligned. While we're there, add comments about why it's safe for
instruction breakpoints.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/ae25d14d61f2f43b78e0a247e469f3072df7e201.1438312874.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Code on the kprobe blacklist doesn't want unexpected int3
exceptions. It probably doesn't want unexpected debug exceptions
either. Be safe: disallow breakpoints in nokprobes code.
On non-CONFIG_KPROBES kernels, there is no kprobe blacklist. In
that case, disallow kernel breakpoints entirely.
It will be particularly important to keep hw breakpoints out of the
entry and NMI code once we move debug exceptions off the IST stack.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/e14b152af99640448d895e3c2a8c2d5ee19a1325.1438312874.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
__get_cpu_var() is used for multiple purposes in the kernel source. One of
them is address calculation via the form &__get_cpu_var(x). This calculates
the address for the instance of the percpu variable of the current processor
based on an offset.
Other use cases are for storing and retrieving data from the current
processors percpu area. __get_cpu_var() can be used as an lvalue when
writing data or on the right side of an assignment.
__get_cpu_var() is defined as :
#define __get_cpu_var(var) (*this_cpu_ptr(&(var)))
__get_cpu_var() always only does an address determination. However, store
and retrieve operations could use a segment prefix (or global register on
other platforms) to avoid the address calculation.
this_cpu_write() and this_cpu_read() can directly take an offset into a
percpu area and use optimized assembly code to read and write per cpu
variables.
This patch converts __get_cpu_var into either an explicit address
calculation using this_cpu_ptr() or into a use of this_cpu operations that
use the offset. Thereby address calculations are avoided and less registers
are used when code is generated.
Transformations done to __get_cpu_var()
1. Determine the address of the percpu instance of the current processor.
DEFINE_PER_CPU(int, y);
int *x = &__get_cpu_var(y);
Converts to
int *x = this_cpu_ptr(&y);
2. Same as #1 but this time an array structure is involved.
DEFINE_PER_CPU(int, y[20]);
int *x = __get_cpu_var(y);
Converts to
int *x = this_cpu_ptr(y);
3. Retrieve the content of the current processors instance of a per cpu
variable.
DEFINE_PER_CPU(int, y);
int x = __get_cpu_var(y)
Converts to
int x = __this_cpu_read(y);
4. Retrieve the content of a percpu struct
DEFINE_PER_CPU(struct mystruct, y);
struct mystruct x = __get_cpu_var(y);
Converts to
memcpy(&x, this_cpu_ptr(&y), sizeof(x));
5. Assignment to a per cpu variable
DEFINE_PER_CPU(int, y)
__get_cpu_var(y) = x;
Converts to
__this_cpu_write(y, x);
6. Increment/Decrement etc of a per cpu variable
DEFINE_PER_CPU(int, y);
__get_cpu_var(y)++
Converts to
__this_cpu_inc(y)
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86@kernel.org
Acked-by: H. Peter Anvin <hpa@linux.intel.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Allow kprobes on text_poke/hw_breakpoint because
those are not related to the critical int3-debug
recursive path of kprobes at this moment.
Signed-off-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Reviewed-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Link: http://lkml.kernel.org/r/20140417081807.26341.73219.stgit@ltc230.yrl.intra.hitachi.co.jp
Signed-off-by: Ingo Molnar <mingo@kernel.org>
None of these files are actually using any __init type directives
and hence don't need to include <linux/init.h>. Most are just a
left over from __devinit and __cpuinit removal, or simply due to
code getting copied from one driver to the next.
[ hpa: undid incorrect removal from arch/x86/kernel/head_32.S ]
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Link: http://lkml.kernel.org/r/1389054026-12947-1-git-send-email-paul.gortmaker@windriver.com
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
flush_ptrace_hw_breakpoint() destroys the counters set by ptrace, but
"leaks" ->debugreg6 and ->ptrace_dr7.
The problem is minor, but still it doesn't look right and flush_thread()
did this until commit 66cb591729 ("hw-breakpoints: use the new wrapper
routines to access debug registers in process/thread code"). Now that
PTRACE_DETACH does flush_ too this makes even more sense.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Jan Kratochvil <jan.kratochvil@redhat.com>
Cc: Michael Neuling <mikey@neuling.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Prasad <prasad@linux.vnet.ibm.com>
Cc: Russell King <linux@arm.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Go through x86 code and replace __get_cpu_var and get_cpu_var
instances that refer to a scalar and are not used for address
determinations.
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Ingo Molnar <mingo@elte.hu>
Acked-by: Tejun Heo <tj@kernel.org>
Acked-by: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
When a single step exception fires, the trap bits, used to
signal hardware breakpoints, are in a random state.
These trap bits might be set if another exception will follow,
like a breakpoint in the next instruction, or a watchpoint in the
previous one. Or there can be any junk there.
So if we handle these trap bits during the single step exception,
we are going to handle an exception twice, or we are going to
handle junk.
Just ignore them in this case.
This fixes https://bugzilla.kernel.org/show_bug.cgi?id=21332
Reported-by: Michael Stefaniuc <mstefani@redhat.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Rafael J. Wysocki <rjw@sisk.pl>
Cc: Maciej Rutecki <maciej.rutecki@gmail.com>
Cc: Alexandre Julliard <julliard@winehq.org>
Cc: Jason Wessel <jason.wessel@windriver.com>
Cc: All since 2.6.33.x <stable@kernel.org>
Lengths and types of breakpoints are encoded in a half byte
into CPU registers. However when we extract these values
and store them, we add a high half byte part to them: 0x40 to the
length and 0x80 to the type.
When that gets reloaded to the CPU registers, the high part
is masked.
While making the instruction breakpoints available for perf,
I zapped that high part on instruction breakpoint encoding
and that broke the arch -> generic translation used by ptrace
instruction breakpoints. Writing dr7 to set an inst breakpoint
was then failing.
There is no apparent reason for these high parts so we could get
rid of them altogether. That's an invasive change though so let's
do that later and for now fix the problem by restoring that inst
breakpoint high part encoding in this sole patch.
Reported-by: Kelvie Wong <kelvie@ieee.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Prasad <prasad@linux.vnet.ibm.com>
Cc: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Cc: Will Deacon <will.deacon@arm.com>
Instruction breakpoints need to have a specific length of 0 to
be working. Bring this support but also take care the user is not
trying to set an unsupported length, like a range breakpoint for
example.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Prasad <prasad@linux.vnet.ibm.com>
Cc: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Jason Wessel <jason.wessel@windriver.com>
Instruction breakpoints trigger before the instruction executes,
and returning back from the breakpoint handler brings us again
to the instruction that breakpointed. This naturally bring to
a breakpoint recursion.
To solve this, x86 has the Resume Bit trick. When the cpu flags
have the RF flag set, the next instruction won't trigger any
instruction breakpoint, and once this instruction is executed,
RF is cleared back.
This let's us jump back to the instruction that triggered the
breakpoint without recursion.
Use this when an instruction breakpoint triggers.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Prasad <prasad@linux.vnet.ibm.com>
Cc: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Jason Wessel <jason.wessel@windriver.com>
The current policies of breakpoints in x86 and SH are the following:
- task bound breakpoints can only break on userspace addresses
- cpu wide breakpoints can only break on kernel addresses
The former rule prevents ptrace breakpoints to be set to trigger on
kernel addresses, which is good. But as a side effect, we can't
breakpoint on kernel addresses for task bound breakpoints.
The latter rule simply makes no sense, there is no reason why we
can't set breakpoints on userspace while performing cpu bound
profiles.
We want the following new policies:
- task bound breakpoint can set userspace address breakpoints, with
no particular privilege required.
- task bound breakpoints can set kernelspace address breakpoints but
must be privileged to do that.
- cpu bound breakpoints can do what they want as they are privileged
already.
To implement these new policies, this patch checks if we are dealing
with a kernel address breakpoint, if so and if the exclude_kernel
parameter is set, we tell the user that the breakpoint is invalid,
which makes a good generic ptrace protection.
If we don't have exclude_kernel, ensure the user has the right
privileges as kernel breakpoints are quite sensitive (risk of
trap recursion attacks and global performance impacts).
[ Paul Mundt: keep addr space check for sh signal delivery and fix
double function declaration]
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Cc: K. Prasad <prasad@linux.vnet.ibm.com>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Jason Wessel <jason.wessel@windriver.com>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
We support event unthrottling in breakpoint events. It means
that if we have more than sysctl_perf_event_sample_rate/HZ,
perf will throttle, ignoring subsequent events until the next
tick.
So if ptrace exceeds this max rate, it will omit events, which
breaks the ptrace determinism that is supposed to report every
triggered breakpoints. This is likely to happen if we set
sysctl_perf_event_sample_rate to 1.
This patch removes support for unthrottling in breakpoint
events to break throttling and restore ptrace determinism.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: 2.6.33.x <stable@kernel.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: K.Prasad <prasad@linux.vnet.ibm.com>
Cc: Paul Mackerras <paulus@samba.org>
Remove the name field from the arch_hw_breakpoint. We never deal
with target symbols in the arch level, neither do we need to ever
store it. It's a legacy for the previous version of the x86
breakpoint backend.
Let's remove it.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: K.Prasad <prasad@linux.vnet.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Before we had a generic breakpoint API, ptrace was accepting
breakpoints on NULL address in x86. The new API refuse them,
without given strong reasons. We need to follow the previous
behaviour as some userspace apps like Wine need such NULL
breakpoints to ensure old emulated software protections
are still working.
This fixes a 2.6.32 - 2.6.33-x ptrace regression.
Reported-and-tested-by: Michael Stefaniuc <mstefani@redhat.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Acked-by: K.Prasad <prasad@linux.vnet.ibm.com>
Acked-by: Roland McGrath <roland@redhat.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Maneesh Soni <maneesh@linux.vnet.ibm.com>
Cc: Alexandre Julliard <julliard@winehq.org>
Cc: Rafael J. Wysocki <rjw@sisk.pl>
Cc: Maciej Rutecki <maciej.rutecki@gmail.com>
Processing of debug exceptions in do_debug() can stop if it
originated from a hw-breakpoint exception by returning NOTIFY_STOP
in most cases.
But for certain cases such as:
a) user-space breakpoints with pending SIGTRAP signal delivery (as
in the case of ptrace induced breakpoints).
b) exceptions due to other causes than breakpoints
We will continue to process the exception by returning NOTIFY_DONE.
Signed-off-by: K.Prasad <prasad@linux.vnet.ibm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Roland McGrath <roland@redhat.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Jan Kiszka <jan.kiszka@siemens.com>
LKML-Reference: <20100128111415.GC13935@in.ibm.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
struct perf_event::event callback was called when a breakpoint
triggers. But this is a rather opaque callback, pretty
tied-only to the breakpoint API and not really integrated into perf
as it triggers even when we don't overflow.
We prefer to use overflow_handler() as it fits into the perf events
rules, being called only when we overflow.
Reported-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: "K. Prasad" <prasad@linux.vnet.ibm.com>
When we schedule out a breakpoint from the cpu, we also
incidentally remove the "Global exact breakpoint" flag from the
breakpoint control register. It makes us losing the fine grained
precision about the origin of the instructions that may trigger
breakpoint exceptions for the other breakpoints running in this
cpu.
Reported-by: Prasad <prasad@linux.vnet.ibm.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
LKML-Reference: <1259211878-6013-1-git-send-regression-fweisbec@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Percpu symbols now occupy the same namespace as other global
symbols and as such short global symbols without subsystem
prefix tend to collide with local variables. dr7 percpu
variable used by x86 was hit by this. Rename it to cpu_dr7.
The rename also makes it more consistent with its fellow
cpu_debugreg percpu variable.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>,
Cc: Andrew Morton <akpm@linux-foundation.org>
LKML-Reference: <20091125115856.GA17856@elte.hu>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Attribute authorship to developers of hw-breakpoint related
files.
Signed-off-by: K.Prasad <prasad@linux.vnet.ibm.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
LKML-Reference: <20091123154713.GA5593@in.ibm.com>
[ v2: moved it to latest -tip ]
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This build error:
arch/x86/kvm/x86.c:3655: error: implicit declaration of function 'hw_breakpoint_restore'
Happens because in the CONFIG_KVM=m case there's no 'CONFIG_KVM' define
in the kernel - it's CONFIG_KVM_MODULE in that case.
Make the prototype available unconditionally.
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Prasad <prasad@linux.vnet.ibm.com>
LKML-Reference: <1258114575-32655-1-git-send-email-fweisbec@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Fix the broken a.out format dump. For now we only dump the ptrace
breakpoints.
TODO: Dump every perf breakpoints for the current thread, not only
ptrace based ones.
Reported-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: "K. Prasad" <prasad@linux.vnet.ibm.com>
This patch rebase the implementation of the breakpoints API on top of
perf events instances.
Each breakpoints are now perf events that handle the
register scheduling, thread/cpu attachment, etc..
The new layering is now made as follows:
ptrace kgdb ftrace perf syscall
\ | / /
\ | / /
/
Core breakpoint API /
/
| /
| /
Breakpoints perf events
|
|
Breakpoints PMU ---- Debug Register constraints handling
(Part of core breakpoint API)
|
|
Hardware debug registers
Reasons of this rewrite:
- Use the centralized/optimized pmu registers scheduling,
implying an easier arch integration
- More powerful register handling: perf attributes (pinned/flexible
events, exclusive/non-exclusive, tunable period, etc...)
Impact:
- New perf ABI: the hardware breakpoints counters
- Ptrace breakpoints setting remains tricky and still needs some per
thread breakpoints references.
Todo (in the order):
- Support breakpoints perf counter events for perf tools (ie: implement
perf_bpcounter_event())
- Support from perf tools
Changes in v2:
- Follow the perf "event " rename
- The ptrace regression have been fixed (ptrace breakpoint perf events
weren't released when a task ended)
- Drop the struct hw_breakpoint and store generic fields in
perf_event_attr.
- Separate core and arch specific headers, drop
asm-generic/hw_breakpoint.h and create linux/hw_breakpoint.h
- Use new generic len/type for breakpoint
- Handle off case: when breakpoints api is not supported by an arch
Changes in v3:
- Fix broken CONFIG_KVM, we need to propagate the breakpoint api
changes to kvm when we exit the guest and restore the bp registers
to the host.
Changes in v4:
- Drop the hw_breakpoint_restore() stub as it is only used by KVM
- EXPORT_SYMBOL_GPL hw_breakpoint_restore() as KVM can be built as a
module
- Restore the breakpoints unconditionally on kvm guest exit:
TIF_DEBUG_THREAD doesn't anymore cover every cases of running
breakpoints and vcpu->arch.switch_db_regs might not always be
set when the guest used debug registers.
(Waiting for a reliable optimization)
Changes in v5:
- Split-up the asm-generic/hw-breakpoint.h moving to
linux/hw_breakpoint.h into a separate patch
- Optimize the breakpoints restoring while switching from kvm guest
to host. We only want to restore the state if we have active
breakpoints to the host, otherwise we don't care about messed-up
address registers.
- Add asm/hw_breakpoint.h to Kbuild
- Fix bad breakpoint type in trace_selftest.c
Changes in v6:
- Fix wrong header inclusion in trace.h (triggered a build
error with CONFIG_FTRACE_SELFTEST
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Prasad <prasad@linux.vnet.ibm.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Jan Kiszka <jan.kiszka@web.de>
Cc: Jiri Slaby <jirislaby@gmail.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Masami Hiramatsu <mhiramat@redhat.com>
Cc: Paul Mundt <lethal@linux-sh.org>
arch_check_va_in_kernelspace() and hw_breakpoint_handler() is used only by same file so it should be static.
Also fixed non-ANSI function declaration of function 'arch_uninstall_thread_hw_breakpoint'
Fixed following sparse warnings :
arch/x86/kernel/hw_breakpoint.c:124:42: warning: non-ANSI function declaration of function 'arch_uninstall_thread_hw_breakpoint'
arch/x86/kernel/hw_breakpoint.c:169:5: warning: symbol 'arch_check_va_in_kernelspace' was not declared. Should it be static?
arch/x86/kernel/hw_breakpoint.c:313:15: warning: symbol 'hw_breakpoint_handler' was not declared. Should it be static?
Signed-off-by: Jaswinder Singh Rajput <jaswinderrajput@gmail.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: "K.Prasad" <prasad@linux.vnet.ibm.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
LKML-Reference: <1245230059.2662.4.camel@ht.satnam>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This patch resets the bit in dr6 after the corresponding exception is
handled in code, so that we keep a clean track of the current virtual debug
status register.
[ Impact: keep track of breakpoints triggering completion ]
Signed-off-by: K.Prasad <prasad@linux.vnet.ibm.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
This patch introduces the arch-specific implementation of the generic
hardware breakpoints in kernel/hw_breakpoint.c inside x86 specific directories.
It contains functions which help to validate and serve requests using
Hardware Breakpoint registers on x86 processors.
[ fweisbec@gmail.com: fix conflict against kmemcheck ]
Original-patch-by: Alan Stern <stern@rowland.harvard.edu>
Signed-off-by: K.Prasad <prasad@linux.vnet.ibm.com>
Reviewed-by: Alan Stern <stern@rowland.harvard.edu>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>