Intel now has support for Architectural Performance Monitoring Counters
( Refer to IA-32 Intel Architecture Software Developer's Manual
http://www.intel.com/design/pentium4/manuals/253669.htm ). This
feature is present starting from Intel Core Duo and Intel Core Solo processors.
What this means is, the performance monitoring counters and some performance
monitoring events are now defined in an architectural way (using cpuid).
And there will be no need to check for family/model etc for these architectural
events.
Below is the patch to use this performance counters in nmi watchdog driver.
Patch handles both i386 and x86-64 kernels.
Signed-off-by: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
On some i386/x86_64 systems, sending an NMI IPI as a broadcast will
reset the system. This seems to be a BIOS bug which affects machines
where one or more cpus are not under OS control. It occurs on HT
systems with a version of the OS that is not compiled without HT
support. It also occurs when a system is booted with max_cpus=n where
2 <= n < cpus known to the BIOS. The fix is to always send NMI IPI as
a mask instead of as a broadcast.
Signed-off-by: Keith Owens <kaos@sgi.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
x86_64 and i386 behave inconsistently when sending an IPI on vector 2
(NMI_VECTOR). Make both behave the same, so IPI 2 is sent as NMI.
The crash code was abusing send_IPI_allbutself() by passing a code
instead of a vector, it only worked because crash knew about the
internal code of send_IPI_allbutself(). Change crash to use NMI_VECTOR
instead, and remove the comment about how crash was abusing the function.
This patch is a pre-requisite for fixing the problem where sending an
IPI as NMI would reboot some Dell Xeon systems. I cannot fix that
problem while crash continus to abuse send_IPI_allbutself().
It also removes the inconsistency between i386 and x86_64 for
NMI_VECTOR. That will simplify all the RAS code that needs to bring
all the cpus to a clean stop, even when one or more cpus are spinning
disabled.
Signed-off-by: Keith Owens <kaos@sgi.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
When a process changes CPUs while doing the non atomic cpu_local_*
operations it might operate on the local_t of a different CPUs.
Fix that by disabling preemption.
Pointed out by Christopher Lameter
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
During some profiling I noticed that default_idle causes a lot of
memory traffic. I think that is caused by the atomic operations
to clear/set the polling flag in thread_info. There is actually
no reason to make this atomic - only the idle thread does it
to itself, other CPUs only read it. So I moved it into ti->status.
Converted i386/x86-64/ia64 for now because that was the easiest
way to fix ACPI which also manipulates these flags in its idle
function.
Cc: Nick Piggin <npiggin@novell.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Len Brown <len.brown@intel.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
If no unwinding is possible at all for a certain exception instance,
fall back to the old style call trace instead of not showing any trace
at all.
Also, allow setting the stack trace mode at the command line.
Signed-off-by: Jan Beulich <jbeulich@novell.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
To increase the usefulness of reliable stack unwinding, this adds CFI
unwind annotations to many low-level i386 routines.
Signed-off-by: Jan Beulich <jbeulich@novell.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
These are the i386-specific pieces to enable reliable stack traces. This is
going to be even more useful once CFI annotations get added to he assembly
code, namely to entry.S.
Signed-off-by: Jan Beulich <jbeulich@novell.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
- Factor out the duplicated access/cache code into a single file
* Shared between i386/x86-64.
- Share flush code between AGP and IOMMU
* Fix a bug: AGP didn't wait for end of flush before
- Drop 8 northbridges limit and allocate dynamically
- Add lock to serialize AGP and IOMMU GART flushes
- Add PCI ID for next AMD northbridge
- Random related cleanups
The old K8 NUMA discovery code is unchanged. New systems
should all use SRAT for this.
Cc: "Navin Boppuri" <navin.boppuri@newisys.com>
Cc: Dave Jones <davej@redhat.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Changes are largely identical to the i386 version:
* alternative #define are moved to the new alternative.h file.
* one new elf section with pointers to the lock prefixes which can be
nop'ed out for non-smp.
* two new elf sections simliar to the "classic" alternatives to
replace SMP code with simpler UP code.
* fixup headers to use alternative.h instead of defining their own
LOCK / LOCK_PREFIX macros.
The patch reuses the i386 version of the alternatives code to avoid code
duplication. The code in alternatives.c was shuffled around a bit to
reduce the number of #ifdefs needed. It also got some tweaks needed for
x86_64 (vsyscall page handling) and new features (noreplacement option
which was x86_64 only up to now). Debug printk's are changed from
compile-time to runtime.
Loosely based on a early version from Bastian Blank <waldi@debian.org>
Signed-off-by: Gerd Hoffmann <kraxel@suse.de>
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Intel systems report the cache level data from CPUID 4 in sysfs.
Add a CPUID 4 emulation for AMD CPUs to report the same
information for them. This allows programs to read this
information in a uniform way.
The AMD way to report this is less flexible so some assumptions
are hardcoded (e.g. no L3)
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
With this patch Kprobes now registers for page fault notifications only when
their is an active probe registered. Once all the active probes are
unregistered their is no need to be notified of page faults and kprobes
unregisters itself from the page fault notifications. Hence we will have ZERO
side effects when no probes are active.
Signed-off-by: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Overloading of page fault notification with the notify_die() has performance
issues(since the only interested components for page fault is kprobes and/or
kdb) and hence this patch introduces the new notifier call chain exclusively
for page fault notifications their by avoiding notifying unnecessary
components in the do_page_fault() code path.
Signed-off-by: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This converts the i386 arch to use the generic timeofday subsystem. It
enabled the GENERIC_TIME option, disables the timer_opts code and other arch
specific timekeeping code and reworks the delay code.
While this patch enables the generic timekeeping, please note that this patch
does not provide any i386 clocksource. Thus only the jiffies clocksource will
be available. To get full replacements for the code being disabled here, the
timeofday-clocks-i386 patch will needed.
Signed-off-by: John Stultz <johnstul@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
As part of the i386 conversion to the generic timekeeping infrastructure, this
introduces a new tsc.c file. The code in this file replaces the TSC
initialization, management and access code currently in timer_tsc.c (which
will be removed) that we want to preserve.
The code also introduces the following functionality:
o tsc_khz: like cpu_khz but stores the TSC frequency on systems that do not
change TSC frequency w/ CPU frequency
o check/mark_tsc_unstable: accessor/modifier flag for TSC timekeeping
usability
o minor cleanups to calibration math.
This patch also includes a one line __cpuinitdata fix from Zwane Mwaikambo.
Signed-off-by: John Stultz <johnstul@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
As described in a previous patch and documented in mm/filemap.h,
copy_from_user_inatomic* shouldn't zero out the tail of the buffer after an
incomplete copy.
This patch implements that change for i386.
For the _nocache version, a new __copy_user_intel_nocache is defined similar
to copy_user_zeroio_intel_nocache, and this is ultimately used for the copy.
For the regular version, __copy_from_user_ll_nozero is defined which uses
__copy_user and __copy_user_intel - the later needs casts to reposition the
__user annotations.
If copy_from_user_atomic is given a constant length of 1, 2, or 4, then we do
still zero the destintion on failure. This didn't seem worth the effort of
fixing as the places where it is used really don't care.
Signed-off-by: Neil Brown <neilb@suse.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: William Lee Irwin III <wli@holomorphy.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
The problem is that when we write to a file, the copy from userspace to
pagecache is first done with preemption disabled, so if the source address is
not immediately available the copy fails *and* *zeros* *the* *destination*.
This is a problem because a concurrent read (which admittedly is an odd thing
to do) might see zeros rather that was there before the write, or what was
there after, or some mixture of the two (any of these being a reasonable thing
to see).
If the copy did fail, it will immediately be retried with preemption
re-enabled so any transient problem with accessing the source won't cause an
error.
The first copying does not need to zero any uncopied bytes, and doing so
causes the problem. It uses copy_from_user_atomic rather than copy_from_user
so the simple expedient is to change copy_from_user_atomic to *not* zero out
bytes on failure.
The first of these two patches prepares for the change by fixing two places
which assume copy_from_user_atomic does zero the tail. The two usages are
very similar pieces of code which copy from a userspace iovec into one or more
page-cache pages. These are changed to remove the assumption.
The second patch changes __copy_from_user_inatomic* to not zero the tail.
Once these are accepted, I will look at similar patches of other architectures
where this is important (ppc, mips and sparc being the ones I can find).
This patch:
There is a problem with __copy_from_user_inatomic zeroing the tail of the
buffer in the case of an error. As it is called in atomic context, the error
may be transient, so it results in zeros being written where maybe they
shouldn't be.
In the usage in filemap, this opens a window for a well timed read to see data
(zeros) which is not consistent with any ordering of reads and writes.
Most cases where __copy_from_user_inatomic is called, a failure results in
__copy_from_user being called immediately. As long as the latter zeros the
tail, the former doesn't need to. However in *copy_from_user_iovec
implementations (in both filemap and ntfs/file), it is assumed that
copy_from_user_inatomic will zero the tail.
This patch removes that assumption, so that after this patch it will
be safe for copy_from_user_inatomic to not zero the tail.
This patch also adds some commentary to filemap.h and asm-i386/uaccess.h.
After this patch, all architectures that might disable preempt when
kmap_atomic is called need to have their __copy_from_user_inatomic* "fixed".
This includes
- powerpc
- i386
- mips
- sparc
Signed-off-by: Neil Brown <neilb@suse.de>
Cc: David Howells <dhowells@redhat.com>
Cc: Anton Altaparmakov <aia21@cantab.net>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: William Lee Irwin III <wli@holomorphy.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
The floppy driver is already calling add_disk_randomness as it should, so this
was redundant.
Signed-off-by: Matt Mackall <mpm@selenic.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Clean up and refactor i386 sub-architecture setup.
This change moves all the code from the
asm-i386/mach-*/setup_arch_pre/post.h headers, into
arch/i386/mach-*/setup.c. mach-*/setup_arch_pre.h is renamed to
setup_arch.h, and contains only things which should be in header files. It
is purely code-motion; there should be no functional changes at all.
Several functions in arch/i386/kernel/setup.c needed to be made non-static
so that they're visible to the code in mach-*/setup.c. asm-i386/setup.h is
used to hold the prototypes for these functions.
Signed-off-by: Jeremy Fitzhardinge <jeremy@xensource.com>
Signed-off-by: Chris Wright <chrisw@sous-sol.org>
Cc: Zachary Amsden <zach@vmware.com>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: Christian Limpach <Christian.Limpach@cl.cam.ac.uk>
Cc: Martin Bligh <mbligh@google.com>
Cc: James Bottomley <James.Bottomley@steeleye.com>
Cc: Andrey Panin <pazke@donpac.ru>
Cc: Dave Hansen <haveblue@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* 'release' of git://git.kernel.org/pub/scm/linux/kernel/git/lenb/linux-acpi-2.6: (65 commits)
ACPI: suppress power button event on S3 resume
ACPI: resolve merge conflict between sem2mutex and processor_perflib.c
ACPI: use for_each_possible_cpu() instead of for_each_cpu()
ACPI: delete newly added debugging macros in processor_perflib.c
ACPI: UP build fix for bugzilla-5737
Enable P-state software coordination via _PDC
P-state software coordination for speedstep-centrino
P-state software coordination for acpi-cpufreq
P-state software coordination for ACPI core
ACPI: create acpi_thermal_resume()
ACPI: create acpi_fan_suspend()/acpi_fan_resume()
ACPI: pass pm_message_t from acpi_device_suspend() to root_suspend()
ACPI: create acpi_device_suspend()/acpi_device_resume()
ACPI: replace spin_lock_irq with mutex for ec poll mode
ACPI: Allow a WAN module enable/disable on a Thinkpad X60.
sem2mutex: acpi, acpi_link_lock
ACPI: delete unused acpi_bus_drivers_lock
sem2mutex: drivers/acpi/processor_perflib.c
ACPI add ia64 exports to build acpi_memhotplug as a module
ACPI: asus_acpi_init(): propagate correct return value
...
Manual resolve of conflicts in:
arch/i386/kernel/cpu/cpufreq/acpi-cpufreq.c
arch/i386/kernel/cpu/cpufreq/speedstep-centrino.c
include/acpi/processor.h
compile fix: <asm-i386/alternative.h> needs <asm/types.h> for 'u8' --
just look at struct alt_instr.
My module includes <asm/bitops.h> as the first header, and as of 2.6.17 this
leads to compilation errors.
Signed-off-by: Kirill Smelkov <kirr@mns.spb.ru>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
New CPU flags for next generation of crypto engine as found in VIA C7
processors.
Signed-off-by: Michal Ludvig <michal@logix.cz>
Cc: Andi Kleen <ak@muc.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
An immediate operand can't be the destination of the cmpl instruction,
so exclude it.
Signed-off-by: Roman Zippel <zippel@linux-m68k.org>
Cc: Mattia Dongili <malattia@linux.it>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Only drm, framebuffer, mtrr parts + misc files here and there.
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Use the x86 cache-bypassing copy instructions for copy_from_user().
Some performance data are
Total of GLOBAL_POWER_EVENTS (CPU cycle samples)
2.6.12.4.orig 1921587
2.6.12.4.nt 1599424
1599424/1921587=83.23% (16.77% reduction)
BSQ_CACHE_REFERENCE (L3 cache miss)
2.6.12.4.orig 57427
2.6.12.4.nt 20858
20858/57427=36.32% (63.7% reduction)
L3 cache miss reduction of __copy_from_user_ll
samples %
37408 65.1412 vmlinux __copy_from_user_ll
23 0.1103 vmlinux __copy_user_zeroing_intel_nocache
23/37408=0.061% (99.94% reduction)
Top 5 of 2.6.12.4.nt
Counted GLOBAL_POWER_EVENTS events (time during which processor is not stopped) with a unit mask of 0x01 (mandatory) count 100000
samples % app name symbol name
128392 8.0274 vmlinux __copy_user_zeroing_intel_nocache
64206 4.0143 vmlinux journal_add_journal_head
59746 3.7355 vmlinux do_get_write_access
47674 2.9807 vmlinux journal_put_journal_head
46021 2.8774 vmlinux journal_dirty_metadata
pattern9-0-cpu4-0-09011728/summary.out
Counted BSQ_CACHE_REFERENCE events (cache references seen by the bus unit) with a unit mask of 0x3f (multiple flags) count 3000
samples % app name symbol name
69755 4.2861 vmlinux __copy_user_zeroing_intel_nocache
55685 3.4215 vmlinux journal_add_journal_head
52371 3.2179 vmlinux __find_get_block
45504 2.7960 vmlinux journal_put_journal_head
36005 2.2123 vmlinux journal_stop
pattern9-0-cpu4-0-09011744/summary.out
Counted BSQ_CACHE_REFERENCE events (cache references seen by the bus unit) with a unit mask of 0x200 (read 3rd level cache miss) count 3000
samples % app name symbol name
1147 5.4994 vmlinux journal_add_journal_head
881 4.2240 vmlinux journal_dirty_data
872 4.1809 vmlinux blk_rq_map_sg
734 3.5192 vmlinux journal_commit_transaction
617 2.9582 vmlinux radix_tree_delete
pattern9-0-cpu4-0-09011731/summary.out
iozone results are
original 2.6.12.4 CPU time = 207.768 sec
cache aware CPU time = 184.783 sec
(three times run)
184.783/207.768=88.94% (11.06% reduction)
original:
pattern9-0-cpu4-0-08191720/iozone.out: CPU Utilization: Wall time 45.997 CPU time 64.527 CPU utilization 140.28 %
pattern9-0-cpu4-0-08191741/iozone.out: CPU Utilization: Wall time 46.878 CPU time 71.933 CPU utilization 153.45 %
pattern9-0-cpu4-0-08191743/iozone.out: CPU Utilization: Wall time 45.152 CPU time 71.308 CPU utilization 157.93 %
cache awre:
pattern9-0-cpu4-0-09011728/iozone.out: CPU Utilization: Wall time 44.842 CPU time 62.465 CPU utilization 139.30 %
pattern9-0-cpu4-0-09011731/iozone.out: CPU Utilization: Wall time 44.718 CPU time 59.273 CPU utilization 132.55 %
pattern9-0-cpu4-0-09011744/iozone.out: CPU Utilization: Wall time 44.367 CPU time 63.045 CPU utilization 142.10 %
Signed-off-by: Hiro Yoshioka <hyoshiok@miraclelinux.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
sys_move_pages() support for 32bit (i386 plus x86_64 compat layer)
Add support for move_pages() on i386 and also add the compat functions
necessary to run 32 bit binaries on x86_64.
Add compat_sys_move_pages to the x86_64 32bit binary layer. Note that it is
not up to date so I added the missing pieces. Not sure if this is done the
right way.
[akpm@osdl.org: compile fix]
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Cc: Andi Kleen <ak@muc.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* master.kernel.org:/pub/scm/linux/kernel/git/gregkh/pci-2.6: (27 commits)
[PATCH] PCI: nVidia quirk to make AER PCI-E extended capability visible
[PATCH] PCI: fix issues with extended conf space when MMCONFIG disabled because of e820
[PATCH] PCI: Bus Parity Status sysfs interface
[PATCH] PCI: fix memory leak in MMCONFIG error path
[PATCH] PCI: fix error with pci_get_device() call in the mpc85xx driver
[PATCH] PCI: MSI-K8T-Neo2-Fir: run only where needed
[PATCH] PCI: fix race with pci_walk_bus and pci_destroy_dev
[PATCH] PCI: clean up pci documentation to be more specific
[PATCH] PCI: remove unneeded msi code
[PATCH] PCI: don't move ioapics below PCI bridge
[PATCH] PCI: cleanup unused variable about msi driver
[PATCH] PCI: disable msi mode in pci_disable_device
[PATCH] PCI: Allow MSI to work on kexec kernel
[PATCH] PCI: AMD 8131 MSI quirk called too late, bus_flags not inherited ?
[PATCH] PCI: Move various PCI IDs to header file
[PATCH] PCI Bus Parity Status-broken hardware attribute, EDAC foundation
[PATCH] PCI: i386/x86_84: disable PCI resource decode on device disable
[PATCH] PCI ACPI: Rename the functions to avoid multiple instances.
[PATCH] PCI: don't enable device if already enabled
[PATCH] PCI: Add a "enable" sysfs attribute to the pci devices to allow userspace (Xorg) to enable devices without doing foul direct access
...
VGA_MAP_MEM translates to ioremap() on some architectures. It makes sense
to do this to vga_vram_base, because we're going to access memory between
vga_vram_base and vga_vram_end.
But it doesn't really make sense to map starting at vga_vram_end, because
we aren't going to access memory starting there. On ia64, which always has
to be different, ioremapping vga_vram_end gives you something completely
incompatible with ioremapped vga_vram_start, so vga_vram_size ends up being
nonsense.
As a bonus, we often know the size up front, so we can use ioremap()
correctly, rather than giving it a zero size.
Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com>
Cc: "Antonino A. Daplas" <adaplas@pol.net>
Cc: "Luck, Tony" <tony.luck@intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
In IA64 platform, msi driver does not use irq_vector variable, and in
x86 platform LAST_DEVICE_VECTOR should one before FIRST_SYSTEM_VECTOR,
this patch modify this.
Signed-off-by: bibo, mao <bibo.mao@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Abstract portions of the MSI core for platforms that do not use standard
APIC interrupt controllers. This is implemented through a new arch-specific
msi setup routine, and a set of msi ops which can be set on a per platform
basis.
Signed-off-by: Mark Maule <maule@sgi.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
The patch addresses a problem with ACPI SCI interrupt entry, which gets
re-used, and the IRQ is assigned to another unrelated device. The patch
corrects the code such that SCI IRQ is skipped and duplicate entry is
avoided. Second issue came up with VIA chipset, the problem was caused by
original patch assigning IRQs starting 16 and up. The VIA chipset uses
4-bit IRQ register for internal interrupt routing, and therefore cannot
handle IRQ numbers assigned to its devices. The patch corrects this
problem by allowing PCI IRQs below 16.
Cc: len.brown@intel.com
Signed-off by: Natalie Protasevich <Natalie.Protasevich@unisys.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
The FXSAVE information leak patch introduced a bug in FP exception
handling: it clears FP exceptions only when there are already
none outstanding. Mikael Pettersson reported that causes problems
with the Erlang runtime and has tested this fix.
Signed-off-by: Chuck Ebbert <76306.1226@compuserve.com>
Acked-by: Mikael Pettersson <mikpe@it.uu.se>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
These aren't needed by glibc or klibc, and they're broken in some cases
anyway. The uClibc folks are apparently switching over to stop using
them too (now that we agreed that they should be dropped, at least).
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
Proposed fix for ptep_get_and_clear_full PAE bug. Pte_clear had the same bug,
so use the same fix for both. Turns out pmd_clear had it as well, but pgds
are not affected.
The problem is rather intricate. Page table entries in PAE mode are 64-bits
wide, but the only atomic 8-byte write operation available in 32-bit mode is
cmpxchg8b, which is expensive (at least on P4), and thus avoided. But it can
happen that the processor may prefetch entries into the TLB in the middle of an
operation which clears a page table entry. So one must always clear the P-bit
in the low word of the page table entry first when clearing it.
Since the sequence *ptep = __pte(0) leaves the order of the write dependent on
the compiler, it must be coded explicitly as a clear of the low word followed
by a clear of the high word. Further, there must be a write memory barrier
here to enforce proper ordering by the compiler (and, in the future, by the
processor as well).
On > 4GB memory machines, the implementation of pte_clear for PAE was clearly
deficient, as it could leave virtual mappings of physical memory above 4GB
aliased to memory below 4GB in the TLB. The implementation of
ptep_get_and_clear_full has a similar bug, although not nearly as likely to
occur, since the mappings being cleared are in the process of being destroyed,
and should never be dereferenced again.
But, as luck would have it, it is possible to trigger bugs even without ever
dereferencing these bogus TLB mappings, even if the clear is followed fairly
soon after with a TLB flush or invalidation. The problem is that memory above
4GB may now be aliased into the first 4GB of memory, and in fact, may hit a
region of memory with non-memory semantics. These regions include AGP and PCI
space. As such, these memory regions are not cached by the processor. This
introduces the bug.
The processor can speculate memory operations, including memory writes, as long
as they are committed with the proper ordering. Speculating a memory write to
a linear address that has a bogus TLB mapping is possible. Normally, the
speculation is harmless. But for cached memory, it does leave the falsely
speculated cacheline unmodified, but in a dirty state. This cache line will be
eventually written back. If this cacheline happens to intersect a region of
memory that is not protected by the cache coherency protocol, it can corrupt
data in I/O memory, which is generally a very bad thing to do, and can cause
total system failure or just plain undefined behavior.
These bugs are extremely unlikely, but the severity is of such magnitude, and
the fix so simple that I think fixing them immediately is justified. Also,
they are nearly impossible to debug.
Signed-off-by: Zachary Amsden <zach@vmware.com>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
sys_splice() moves data to/from pipes with a file input/output. sys_vmsplice()
moves data to a pipe, with the input being a user address range instead.
This uses an approach suggested by Linus, where we can hold partial ranges
inside the pages[] map. Hopefully this will be useful for network
receive support as well.
Signed-off-by: Jens Axboe <axboe@suse.de>
AMD K7/K8 CPUs only save/restore the FOP/FIP/FDP x87 registers in FXSAVE
when an exception is pending. This means the value leak through
context switches and allow processes to observe some x87 instruction
state of other processes.
This was actually documented by AMD, but nobody recognized it as
being different from Intel before.
The fix first adds an optimization: instead of unconditionally
calling FNCLEX after each FXSAVE test if ES is pending and skip
it when not needed. Then do a x87 load from a kernel variable to
clear FOP/FIP/FDP.
This means other processes always will only see a constant value
defined by the kernel in their FP state.
I took some pain to make sure to chose a variable that's already
in L1 during context switch to make the overhead of this low.
Also alternative() is used to patch away the new code on CPUs
who don't need it.
Patch for both i386/x86-64.
The problem was discovered originally by Jan Beulich. Richard
Brunner provided the basic code for the workarounds, with contribution
from Jan.
This is CVE-2006-1056
Cc: richard.brunner@amd.com
Cc: jbeulich@novell.com
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
atomic_add_return() if CONFIG_M386 can accidentally enable local interrupts.
Signed-off-by: Lepton Wu <ytht.net@gmail.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Basically an in-kernel implementation of tee, which uses splice and the
pipe buffers as an intelligent way to pass data around by reference.
Where the user space tee consumes the input and produces a stdout and
file output, this syscall merely duplicates the data inside a pipe to
another pipe. No data is copied, the output just grabs a reference to the
input pipe data.
Signed-off-by: Jens Axboe <axboe@suse.de>
* 'splice' of git://brick.kernel.dk/data/git/linux-2.6-block:
[PATCH] vfs: add splice_write and splice_read to documentation
[PATCH] Remove sys_ prefix of new syscalls from __NR_sys_*
[PATCH] splice: warning fix
[PATCH] another round of fs/pipe.c cleanups
[PATCH] splice: comment styles
[PATCH] splice: add Ingo as addition copyright holder
[PATCH] splice: unlikely() optimizations
[PATCH] splice: speedups and optimizations
[PATCH] pipe.c/fifo.c code cleanups
[PATCH] get rid of the PIPE_*() macros
[PATCH] splice: speedup __generic_file_splice_read
[PATCH] splice: add direct fd <-> fd splicing support
[PATCH] splice: add optional input and output offsets
[PATCH] introduce a "kernel-internal pipe object" abstraction
[PATCH] splice: be smarter about calling do_page_cache_readahead()
[PATCH] splice: optimize the splice buffer mapping
[PATCH] splice: cleanup __generic_file_splice_read()
[PATCH] splice: only call wake_up_interruptible() when we really have to
[PATCH] splice: potential !page dereference
[PATCH] splice: mark the io page as accessed
__NR_sys_kexec_load should be __NR_kexec_load. Mainly affects users of the
_syscallN() macros, and glibc is already checking for __NR_kexec_load.
Cc: Ulrich Drepper <drepper@redhat.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Mikael Starvik <starvik@axis.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Hirokazu Takata <takata@linux-m32r.org>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Kazumoto Kojima <kkojima@rr.iij4u.or.jp>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>