cbnz/tbnz don't update the condition flags, so remove the "cc" clobbers
from inline asm blocks that only use these instructions to implement
conditional branches.
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Linux requires a number of atomic operations to provide full barrier
semantics, that is no memory accesses after the operation can be
observed before any accesses up to and including the operation in
program order.
On arm64, these operations have been incorrectly implemented as follows:
// A, B, C are independent memory locations
<Access [A]>
// atomic_op (B)
1: ldaxr x0, [B] // Exclusive load with acquire
<op(B)>
stlxr w1, x0, [B] // Exclusive store with release
cbnz w1, 1b
<Access [C]>
The assumption here being that two half barriers are equivalent to a
full barrier, so the only permitted ordering would be A -> B -> C
(where B is the atomic operation involving both a load and a store).
Unfortunately, this is not the case by the letter of the architecture
and, in fact, the accesses to A and C are permitted to pass their
nearest half barrier resulting in orderings such as Bl -> A -> C -> Bs
or Bl -> C -> A -> Bs (where Bl is the load-acquire on B and Bs is the
store-release on B). This is a clear violation of the full barrier
requirement.
The simple way to fix this is to implement the same algorithm as ARMv7
using explicit barriers:
<Access [A]>
// atomic_op (B)
dmb ish // Full barrier
1: ldxr x0, [B] // Exclusive load
<op(B)>
stxr w1, x0, [B] // Exclusive store
cbnz w1, 1b
dmb ish // Full barrier
<Access [C]>
but this has the undesirable effect of introducing *two* full barrier
instructions. A better approach is actually the following, non-intuitive
sequence:
<Access [A]>
// atomic_op (B)
1: ldxr x0, [B] // Exclusive load
<op(B)>
stlxr w1, x0, [B] // Exclusive store with release
cbnz w1, 1b
dmb ish // Full barrier
<Access [C]>
The simple observations here are:
- The dmb ensures that no subsequent accesses (e.g. the access to C)
can enter or pass the atomic sequence.
- The dmb also ensures that no prior accesses (e.g. the access to A)
can pass the atomic sequence.
- Therefore, no prior access can pass a subsequent access, or
vice-versa (i.e. A is strictly ordered before C).
- The stlxr ensures that no prior access can pass the store component
of the atomic operation.
The only tricky part remaining is the ordering between the ldxr and the
access to A, since the absence of the first dmb means that we're now
permitting re-ordering between the ldxr and any prior accesses.
From an (arbitrary) observer's point of view, there are two scenarios:
1. We have observed the ldxr. This means that if we perform a store to
[B], the ldxr will still return older data. If we can observe the
ldxr, then we can potentially observe the permitted re-ordering
with the access to A, which is clearly an issue when compared to
the dmb variant of the code. Thankfully, the exclusive monitor will
save us here since it will be cleared as a result of the store and
the ldxr will retry. Notice that any use of a later memory
observation to imply observation of the ldxr will also imply
observation of the access to A, since the stlxr/dmb ensure strict
ordering.
2. We have not observed the ldxr. This means we can perform a store
and influence the later ldxr. However, that doesn't actually tell
us anything about the access to [A], so we've not lost anything
here either when compared to the dmb variant.
This patch implements this solution for our barriered atomic operations,
ensuring that we satisfy the full barrier requirements where they are
needed.
Cc: <stable@vger.kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Make sure the value we are going to return is referenced in order to
avoid warnings from newer GCCs such as:
arch/arm64/include/asm/cmpxchg.h:162:3: warning: value computed is not used [-Wunused-value]
((__typeof__(*(ptr)))__cmpxchg_mb((ptr), \
^
net/netfilter/nf_conntrack_core.c:674:2: note: in expansion of macro ‘cmpxchg’
cmpxchg(&nf_conntrack_hash_rnd, 0, rand);
[Modified to use the current underlying implementation as current
mainline for both cmpxchg() and cmpxchg_local() does -- broonie]
Signed-off-by: Mark Hambleton <mahamble@broadcom.com>
Signed-off-by: Mark Brown <broonie@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This patch introduces cmpxchg64_relaxed for arm64 using the existing
cmpxchg_local macro, which performs a cmpxchg operation (up to 64 bits)
without barrier semantics.
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Drivers use cmpxchg64, cmpxchg64_local to perform 64-bit operation, so
they can cross 32-bit and 64-bit platforms (it is a standard way).
Signed-off-by: Chen Gang <gang.chen@asianux.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Our uses of inline asm constraints for atomic operations are fairly
wild and varied. We basically need to guarantee the following:
1. Any instructions with barrier implications
(load-acquire/store-release) have a "memory" clobber
2. When performing exclusive accesses, the addresing mode is generated
using the "Q" constraint
3. Atomic blocks which use the condition flags, have a "cc" clobber
This patch addresses these concerns which, as well as fixing the
semantics of the code, stops GCC complaining about impossible asm
constraints.
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This patch introduces a few AArch64-specific header files together with
Kbuild entries for generic headers.
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Tony Lindgren <tony@atomide.com>
Acked-by: Nicolas Pitre <nico@linaro.org>
Acked-by: Olof Johansson <olof@lixom.net>
Acked-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>