The arch_mutex_cpu_relax() function, introduced by 34b133f, is
hacky and ugly. It was added a few years ago to address the fact
that common cpu_relax() calls include yielding on s390, and thus
impact the optimistic spinning functionality of mutexes. Nowadays
we use this function well beyond mutexes: rwsem, qrwlock, mcs and
lockref. Since the macro that defines the call is in the mutex header,
any users must include mutex.h and the naming is misleading as well.
This patch (i) renames the call to cpu_relax_lowlatency ("relax, but
only if you can do it with very low latency") and (ii) defines it in
each arch's asm/processor.h local header, just like for regular cpu_relax
functions. On all archs, except s390, cpu_relax_lowlatency is simply cpu_relax,
and thus we can take it out of mutex.h. While this can seem redundant,
I believe it is a good choice as it allows us to move out arch specific
logic from generic locking primitives and enables future(?) archs to
transparently define it, similarly to System Z.
Signed-off-by: Davidlohr Bueso <davidlohr@hp.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Anton Blanchard <anton@samba.org>
Cc: Aurelien Jacquiot <a-jacquiot@ti.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Bharat Bhushan <r65777@freescale.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chen Liqin <liqin.linux@gmail.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: David Howells <dhowells@redhat.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Deepthi Dharwar <deepthi@linux.vnet.ibm.com>
Cc: Dominik Dingel <dingel@linux.vnet.ibm.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Guan Xuetao <gxt@mprc.pku.edu.cn>
Cc: Haavard Skinnemoen <hskinnemoen@gmail.com>
Cc: Hans-Christian Egtvedt <egtvedt@samfundet.no>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: Hirokazu Takata <takata@linux-m32r.org>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: James E.J. Bottomley <jejb@parisc-linux.org>
Cc: James Hogan <james.hogan@imgtec.com>
Cc: Jason Wang <jasowang@redhat.com>
Cc: Jesper Nilsson <jesper.nilsson@axis.com>
Cc: Joe Perches <joe@perches.com>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: Joseph Myers <joseph@codesourcery.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Koichi Yasutake <yasutake.koichi@jp.panasonic.com>
Cc: Lennox Wu <lennox.wu@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mark Salter <msalter@redhat.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Neuling <mikey@neuling.org>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Mikael Starvik <starvik@axis.com>
Cc: Nicolas Pitre <nico@linaro.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Paul Burton <paul.burton@imgtec.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Qais Yousef <qais.yousef@imgtec.com>
Cc: Qiaowei Ren <qiaowei.ren@intel.com>
Cc: Rafael Wysocki <rafael.j.wysocki@intel.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Richard Kuo <rkuo@codeaurora.org>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Steven Miao <realmz6@gmail.com>
Cc: Steven Rostedt <srostedt@redhat.com>
Cc: Stratos Karafotis <stratosk@semaphore.gr>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vasily Kulikov <segoon@openwall.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Vineet Gupta <Vineet.Gupta1@synopsys.com>
Cc: Waiman Long <Waiman.Long@hp.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Wolfram Sang <wsa@the-dreams.de>
Cc: adi-buildroot-devel@lists.sourceforge.net
Cc: linux390@de.ibm.com
Cc: linux-alpha@vger.kernel.org
Cc: linux-am33-list@redhat.com
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-c6x-dev@linux-c6x.org
Cc: linux-cris-kernel@axis.com
Cc: linux-hexagon@vger.kernel.org
Cc: linux-ia64@vger.kernel.org
Cc: linux@lists.openrisc.net
Cc: linux-m32r-ja@ml.linux-m32r.org
Cc: linux-m32r@ml.linux-m32r.org
Cc: linux-m68k@lists.linux-m68k.org
Cc: linux-metag@vger.kernel.org
Cc: linux-mips@linux-mips.org
Cc: linux-parisc@vger.kernel.org
Cc: linuxppc-dev@lists.ozlabs.org
Cc: linux-s390@vger.kernel.org
Cc: linux-sh@vger.kernel.org
Cc: linux-xtensa@linux-xtensa.org
Cc: sparclinux@vger.kernel.org
Link: http://lkml.kernel.org/r/1404079773.2619.4.camel@buesod1.americas.hpqcorp.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
SMP ARMv7 CPUs implement the pldw instruction, which allows them to
prefetch data cachelines in an exclusive state.
This patch defines the prefetchw macro using pldw for CPUs that support
it.
Acked-by: Nicolas Pitre <nico@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Patching UP/SMP alternatives inside inline assembly blocks is useful
outside of the spinlock implementation, where it is used for sev and wfe.
This patch lifts the macro into processor.h and gives it a scarier name
to (a) avoid conflicts in the global namespace and (b) to try and deter
its usage unless you "know what you're doing". The W macro for generating
wide instructions when targetting Thumb-2 is also made available under
the name WASM, to reduce the potential for conflicts with other headers.
Acked-by: Nicolas Pitre <nico@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
The pld instruction does not affect the condition flags, so don't bother
clobbering them.
Acked-by: Nicolas Pitre <nico@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
a.out support on ARM requires that argc, argv and envp are passed in
r0-r2 respectively, which requires hacking load_aout_binary to
prevent argc being clobbered by the return code. Whilst mainline kernels
do set the registers up in start_thread, the aout loader has never
carried the hack in mainline.
Initialising the registers in this way actually goes against the libc
expectations for ELF binaries, where argc, argv and envp are passed on
the stack, with r0 being used to hold a pointer to an exit function for
cleaning up after the dynamic linker if required. If the pointer is
NULL, then it is ignored. When execing an ELF binary, Linux currently
zeroes r0, then sets it to argc and then finally clobbers it with the
return value of the execve syscall, so we actually end up with:
r0 = 0
stack[0] = argc
r1 = stack[1] = argv
r2 = stack[2] = envp
libc treats r1 and r2 as undefined. The clobbering of r0 by sys_execve
works for user-spawned threads, but when executing an ELF binary from a
kernel thread (via call_usermodehelper), the execve is performed on the
ret_from_fork path, which restores r0 from the saved pt_regs, resulting
in argc being presented to the C library. This has horrible consequences
when the application exits, since we have an exit function registered
using argc, resulting in a jump to hyperspace.
This patch solves the problem by removing the partial a.out support from
arch/arm/ altogether.
Cc: <stable@vger.kernel.org>
Cc: Ashish Sangwan <ashishsangwan2@gmail.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Pull fpu state cleanups from Ingo Molnar:
"This tree streamlines further aspects of FPU handling by eliminating
the prepare_to_copy() complication and moving that logic to
arch_dup_task_struct().
It also fixes the FPU dumps in threaded core dumps, removes and old
(and now invalid) assumption plus micro-optimizes the exit path by
avoiding an FPU save for dead tasks."
Fixed up trivial add-add conflict in arch/sh/kernel/process.c that came
in because we now do the FPU handling in arch_dup_task_struct() rather
than the legacy (and now gone) prepare_to_copy().
* 'x86-fpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86, fpu: drop the fpu state during thread exit
x86, xsave: remove thread_has_fpu() bug check in __sanitize_i387_state()
coredump: ensure the fpu state is flushed for proper multi-threaded core dump
fork: move the real prepare_to_copy() users to arch_dup_task_struct()
Historical prepare_to_copy() is mostly a no-op, duplicated for majority of
the architectures and the rest following the x86 model of flushing the extended
register state like fpu there.
Remove it and use the arch_dup_task_struct() instead.
Suggested-by: Oleg Nesterov <oleg@redhat.com>
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Link: http://lkml.kernel.org/r/1336692811-30576-1-git-send-email-suresh.b.siddha@intel.com
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: David Howells <dhowells@redhat.com>
Cc: Koichi Yasutake <yasutake.koichi@jp.panasonic.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Chris Zankel <chris@zankel.net>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Haavard Skinnemoen <hskinnemoen@gmail.com>
Cc: Mike Frysinger <vapier@gentoo.org>
Cc: Mark Salter <msalter@redhat.com>
Cc: Aurelien Jacquiot <a-jacquiot@ti.com>
Cc: Mikael Starvik <starvik@axis.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Richard Kuo <rkuo@codeaurora.org>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: James E.J. Bottomley <jejb@parisc-linux.org>
Cc: Helge Deller <deller@gmx.de>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Chen Liqin <liqin.chen@sunplusct.com>
Cc: Lennox Wu <lennox.wu@gmail.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Jeff Dike <jdike@addtoit.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Guan Xuetao <gxt@mprc.pku.edu.cn>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
cpuidle uses a generic function now. Remove the unused code.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Russell King <linux@arm.linux.org.uk>
Link: http://lkml.kernel.org/r/20120507175652.260797846@linutronix.de
Pull more ARM updates from Russell King.
This got a fair number of conflicts with the <asm/system.h> split, but
also with some other sparse-irq and header file include cleanups. They
all looked pretty trivial, though.
* 'for-linus' of git://git.linaro.org/people/rmk/linux-arm: (59 commits)
ARM: fix Kconfig warning for HAVE_BPF_JIT
ARM: 7361/1: provide XIP_VIRT_ADDR for no-MMU builds
ARM: 7349/1: integrator: convert to sparse irqs
ARM: 7259/3: net: JIT compiler for packet filters
ARM: 7334/1: add jump label support
ARM: 7333/2: jump label: detect %c support for ARM
ARM: 7338/1: add support for early console output via semihosting
ARM: use set_current_blocked() and block_sigmask()
ARM: exec: remove redundant set_fs(USER_DS)
ARM: 7332/1: extract out code patch function from kprobes
ARM: 7331/1: extract out insn generation code from ftrace
ARM: 7330/1: ftrace: use canonical Thumb-2 wide instruction format
ARM: 7351/1: ftrace: remove useless memory checks
ARM: 7316/1: kexec: EOI active and mask all interrupts in kexec crash path
ARM: Versatile Express: add NO_IOPORT
ARM: get rid of asm/irq.h in asm/prom.h
ARM: 7319/1: Print debug info for SIGBUS in user faults
ARM: 7318/1: gic: refactor irq_start assignment
ARM: 7317/1: irq: avoid NULL check in for_each_irq_desc loop
ARM: 7315/1: perf: add support for the Cortex-A7 PMU
...
Disintegrate asm/system.h for ARM.
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Russell King <linux@arm.linux.org.uk>
cc: linux-arm-kernel@lists.infradead.org
The address limit is already set in flush_old_exec() so this
set_fs(USER_DS) is redundant.
Signed-off-by: Mathias Krause <minipli@googlemail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
For files that include asm/processor.h but not asm/system.h:
arch/arm/mach-msm/include/mach/uncompress.h: In function 'putc':
arch/arm/mach-msm/include/mach/uncompress.h:48:3: error: implicit declaration of function 'smp_mb' [-Werror=implicit-function-declaration]
In this case, smp_mb() is from the cpu_relax() call in the msm putc().
It likely went uncaught when the uncompress.h change went in since the
defconfig didn't enable that code path, but later changes (e76f4750f4:
ARM: debug: arrange Kconfig options more logically) resulted in the
option being on for msm_defconfig and thus exposed it.
Signed-off-by: Olof Johansson <olof@lixom.net>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Similar to other architectures, this adds topdown mmap support in user
process address space allocation policy. This allows mmap sizes greater
than 2GB. This support is largely copied from MIPS and the generic
implementations.
The address space randomization is moved into arch_pick_mmap_layout.
Tested on V-Express with ubuntu and a mmap test from here:
https://bugs.launchpad.net/bugs/861296
Signed-off-by: Rob Herring <rob.herring@calxeda.com>
Acked-by: Nicolas Pitre <nico@linaro.org>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
On revisions of the Cortex-A9 prior to r2p0, the Store Buffer does not
have any automatic draining mechanism and therefore a livelock may occur
if an external agent continuously polls a memory location waiting to
observe an update.
This workaround defines cpu_relax() as smp_mb(), preventing correctly
written polling loops from denying visibility of updates to memory.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
PTRACE_SINGLESTEP is a ptrace request designed to offer single-stepping
support to userspace when the underlying architecture has hardware
support for this operation.
On ARM, we set arch_has_single_step() to 1 and attempt to emulate hardware
single-stepping by disassembling the current instruction to determine the
next pc and placing a software breakpoint on that location.
Unfortunately this has the following problems:
1.) Only a subset of ARMv7 instructions are supported
2.) Thumb-2 is unsupported
3.) The code is not SMP safe
We could try to fix this code, but it turns out that because of the above
issues it is rarely used in practice. GDB, for example, uses PTRACE_POKETEXT
and PTRACE_PEEKTEXT to manage breakpoints itself and does not require any
kernel assistance.
This patch removes the single-step emulation code from ptrace meaning that
the PTRACE_SINGLESTEP request will return -EIO on ARM. Portable code must
check the return value from a ptrace call and handle the failure gracefully.
Acked-by: Nicolas Pitre <nicolas.pitre@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
For debuggers to take advantage of the hw-breakpoint framework in the kernel,
it is necessary to expose the API calls via a ptrace interface.
This patch exposes the hardware breakpoints framework as a collection of
virtual registers, accesible using PTRACE_SETHBPREGS and PTRACE_GETHBPREGS
requests. The breakpoints are stored in the debug_info struct of the running
thread.
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: S. Karthikeyan <informkarthik@gmail.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Linux expects that if a CPU modifies a memory location, then that
modification will eventually become visible to other CPUs in the system.
On an ARM11MPCore processor, loads are prioritised over stores so it is
possible for a store operation to be postponed if a polling loop immediately
follows it. If the variable being polled indirectly depends on the outstanding
store [for example, another CPU may be polling the variable that is pending
modification] then there is the potential for deadlock if interrupts are
disabled. This deadlock occurs in the KGDB testsuire when executing on an
SMP ARM11MPCore configuration.
This patch changes the definition of cpu_relax() to smp_mb() for ARMv6 cores,
forcing a flushing of the write buffer on SMP systems before the next load
takes place. If the Kernel is not compiled for SMP support, this will expand
to a barrier() as before.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Starting with ARMv6, the CPUs support the BE-8 variant of big-endian
(byte-invariant). This patch adds the core support:
- setting of the BE-8 mode via the CPSR.E register for both kernel and
user threads
- big-endian page table walking
- REV used to rotate instructions read from memory during fault
processing as they are still little-endian format
- Kconfig and Makefile support for BE-8. The --be8 option must be passed
to the final linking stage to convert the instructions to
little-endian
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Commit 8ec53663d2 ("[ARM] Improve
non-executable support") added support for detecting non-executable
stack binaries. One of the things it does is to make READ_IMPLIES_EXEC
be set in ->personality if we are running on a CPU that doesn't support
the XN ("Execute Never") page table bit or if we are running a binary
that needs an executable stack.
This exposed a latent bug in ARM's asm/processor.h due to which we'll
end up placing the stack at a very low address, where it will bump into
the heap on any application that uses significant amount of stack or
heap or both, causing many interesting crashes.
Fix this by testing the ADDR_LIMIT_32BIT bit in ->personality instead
of testing for equality against PER_LINUX_32BIT.
Reviewed-by: Nicolas Pitre <nico@marvell.com>
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
As suggested by Andrew Morton, remove memzero() - it's not supported
on other architectures so use of it is a potential build breaking bug.
Since the compiler optimizes memset(x,0,n) to __memzero() perfectly
well, we don't miss out on the underlying benefits of memzero().
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
With gcc 4.3 and later, a pointer that has already been dereferenced is
assumed not to be null since it should have caused a segmentation fault
otherwise, hence any subsequent test against NULL is optimized away.
Current inline asm constraint used in the implementation of prefetch()
makes gcc believe that the pointer is dereferenced even though the PLD
instruction does not load any data and does not cause a segmentation
fault on null pointers, which causes all sorts of interesting results
when reaching the end of a linked lists for example.
Let's use a better constraint to properly represent the actual usage of
the pointer value.
Problem reported by Chris Steel.
Signed-off-by: Nicolas Pitre <nico@marvell.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Move platform independent header files to arch/arm/include/asm, leaving
those in asm/arch* and asm/plat* alone.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>