Multiple bits might be set in the Uncorrectable Error Status
register. But aer_print_error_source() only report a error of
the lowest bit set in the error status register.
So print strings for all bits unmasked and set.
And check First Error Pointer to mark the error occured first.
This FEP is not valid when the corresponing bit of the Uncorrectable
Error Status register is not set, or unimplemented or undefined.
Signed-off-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
ERR_{,UN}CORRECTABLE_ERROR_MASK are set of error bits which linux know,
set of PCI_ERR_COR_* and PCI_ERR_UNC_* defined in linux/pci_regs.h.
This masks make aerdrv not to report errors of unknown bit, while aerdrv
have ability to report such undefined errors as "Unknown Error Bit %2d".
OTOH aerdrv_errprint does not have any check of setting in mask register.
So it could report masked wrong error by finding bit in status without
knowing that the bit is masked in the mask register.
This patch changes aerdrv to use mask state in mask register propely
instead of defined/hardcoded ERR_{,UN}CORRECTABLE_ERROR_MASK.
This change prevents aerdrv from reporting masked error, and also enable
reporting unknown errors.
Signed-off-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Reviewed-by: Andrew Patterson <andrew.patterson@hp.com>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
The static buffer errmsg_buff[] is used only for building error
message in fixed format, and is protected by a spinlock.
This patch removes this buffer and the spinlock.
Signed-off-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Reviewed-by: Andrew Patterson <andrew.patterson@hp.com>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
The flag AER_MULTI_ERROR_VALID_FLAG in info->flag does mean that the
root port receives multiple error messages. Error messages can be
posted from different devices, so it does not mean that each reported
device has multiple errors.
If there are multiple error devices and the root port has valid error
source ID, it would be nice to report which device is the error source
reported first.
Signed-off-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Definitions of MASK macros in aerdrv_errprint.c are tricky and unsafe.
For example, AER_AGENT_TRANSMITTER_MASK(_sev, _stat) does work like:
static inline func(int _sev, int _stat)
{
if (_sev == AER_CORRECTABLE)
return (_stat & (PCI_ERR_COR_REP_ROLL|PCI_ERR_COR_REP_TIMER));
else
return (_stat & PCI_ERR_COR_REP_ROLL);
}
In case of else path here, for uncorrectable errors, testing bits in
_stat by PCI_ERR_COR_* does not make sense because _stat should have only
PCI_ERR_UNC_* bits originated in uncorrectable error status register.
But at this time this is safe because uncorrectable error using bit
position same to PCI_ERR_COR_REP_ROLL(= bit position 8) is not defined.
Likewise, AER_AGENT_COMPLETER_MASK is always PCI_ERR_UNC_COMP_ABORT but
it works because bit 15 of correctable error status is not defined.
It means that these MASK macros will turn to be wrong once if new error
is defined. (In fact, bit 15 of correctable is now defined in PCIe 2.1)
This patch changes these MASK macros to be more strict, not to return
PCI_ERR_COR_* bits for uncorrectable error status and vise versa.
Signed-off-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Reviewed-by: Andrew Patterson <andrew.patterson@hp.com>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Patch 3 implements the core part of PCI-Express AER and aerdrv
port service driver.
When a root port service device is probed, the aerdrv will call
request_irq to register irq handler for AER error interrupt.
When a device sends an PCI-Express error message to the root port,
the root port will trigger an interrupt, by either MSI or IO-APIC,
then kernel would run the irq handler. The handler collects root
error status register and schedules a work. The work will call
the core part to process the error based on its type
(Correctable/non-fatal/fatal).
As for Correctable errors, the patch chooses to just clear the correctable
error status register of the device.
As for the non-fatal error, the patch follows generic PCI error handler
rules to call the error callback functions of the endpoint's driver. If
the device is a bridge, the patch chooses to broadcast the error to
downstream devices.
As for the fatal error, the patch resets the pci-express link and
follows generic PCI error handler rules to call the error callback
functions of the endpoint's driver. If the device is a bridge, the patch
chooses to broadcast the error to downstream devices.
Signed-off-by: Zhang Yanmin <yanmin.zhang@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>