Having "test" in almost all test descriptions is redundant, simplify it
removing and rewriting tests with such descriptions.
End result:
# perf test
1: vmlinux symtab matches kallsyms : Ok
2: Detect openat syscall event : Ok
3: Detect openat syscall event on all cpus : Ok
4: Read samples using the mmap interface : Ok
5: Parse event definition strings : Ok
6: PERF_RECORD_* events & perf_sample fields : Ok
7: Parse perf pmu format : Ok
8: DSO data read : Ok
9: DSO data cache : Ok
10: DSO data reopen : Ok
11: Roundtrip evsel->name : Ok
12: Parse sched tracepoints fields : Ok
13: syscalls:sys_enter_openat event fields : Ok
14: Setup struct perf_event_attr : Ok
15: Match and link multiple hists : Ok
16: 'import perf' in python : Ok
17: Breakpoint overflow signal handler : Ok
18: Breakpoint overflow sampling : Ok
19: Number of exit events of a simple workload : Ok
20: Software clock events period values : Ok
21: Object code reading : Ok
22: Sample parsing : Ok
23: Use a dummy software event to keep tracking: Ok
24: Parse with no sample_id_all bit set : Ok
25: Filter hist entries : Ok
26: Lookup mmap thread : Ok
27: Share thread mg : Ok
28: Sort output of hist entries : Ok
29: Cumulate child hist entries : Ok
30: Track with sched_switch : Ok
31: Filter fds with revents mask in a fdarray : Ok
32: Add fd to a fdarray, making it autogrow : Ok
33: kmod_path__parse : Ok
34: Thread map : Ok
35: LLVM search and compile :
35.1: Basic BPF llvm compile : Ok
35.2: kbuild searching : Ok
35.3: Compile source for BPF prologue generation: Ok
35.4: Compile source for BPF relocation : Ok
36: Session topology : Ok
37: BPF filter :
37.1: Basic BPF filtering : Ok
37.2: BPF prologue generation : Ok
37.3: BPF relocation checker : Ok
38: Synthesize thread map : Ok
39: Synthesize cpu map : Ok
40: Synthesize stat config : Ok
41: Synthesize stat : Ok
42: Synthesize stat round : Ok
43: Synthesize attr update : Ok
44: Event times : Ok
45: Read backward ring buffer : Ok
46: Print cpu map : Ok
47: Probe SDT events : Ok
48: is_printable_array : Ok
49: Print bitmap : Ok
50: perf hooks : Ok
51: x86 rdpmc : Ok
52: Convert perf time to TSC : Ok
53: DWARF unwind : Ok
54: x86 instruction decoder - new instructions : Ok
55: Intel cqm nmi context read : Skip
#
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: David Ahern <dsahern@gmail.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Wang Nan <wangnan0@huawei.com>
Link: http://lkml.kernel.org/n/tip-rx2lbfcrrio2yx1fxcljqy0e@git.kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Peter reports that it's possible to trigger a WARN_ON_ONCE() in the
Intel CQM code by combining a hardware event and an Intel CQM
(software) event into a group. Unfortunately, the perf tools are not
able to create this bundle and we need to manually construct a test
case.
For posterity, record Peter's proof of concept test case in tools/perf
so that it presents a model for how we can perform architecture
specific tests, or "arch tests", in perf in the future.
The particular issue triggered in the test case is that when the
counter for the hardware event overflows and triggers a PMI we'll read
both the hardware event and the software event counters.
Unfortunately, for CQM that involves performing an IPI to read the CQM
event counters on all sockets, which in NMI context triggers the
WARN_ON_ONCE().
Reported-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Kanaka Juvva <kanaka.d.juvva@intel.com>
Cc: Vikas Shivappa <vikas.shivappa@intel.com>
Cc: Vince Weaver <vince@deater.net>
Link: http://lkml.kernel.org/r/1437490509-15373-1-git-send-email-matt@codeblueprint.co.uk
Link: http://lkml.kernel.org/n/tip-3p4ra0u8vzm7m289a1m799kf@git.kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Move out the x86-specific tests into tools/perf/arch/x86/tests and
define an 'arch_tests' array, which is the list of tests that only apply
to the build architecture.
We can also now begin to get rid of some of the #ifdef code that is
present in the generic perf tests.
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Kanaka Juvva <kanaka.d.juvva@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Vikas Shivappa <vikas.shivappa@intel.com>
Cc: Vince Weaver <vince@deater.net>
Link: http://lkml.kernel.org/n/tip-9s68h4ptg06ah0lgnjz55mqn@git.kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Tests that only make sense for some architectures currently live in
the same place as the generic tests. Move out the x86-specific tests
into tools/perf/arch/x86/tests and define an 'arch_tests' array, which
is the list of tests that only apply to the build architecture.
The main idea is to encourage developers to add arch tests to build
out perf's test coverage, without dumping everything in
tools/perf/tests.
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Kanaka Juvva <kanaka.d.juvva@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Vikas Shivappa <vikas.shivappa@intel.com>
Cc: Vince Weaver <vince@deater.net>
Link: http://lkml.kernel.org/n/tip-p4uc1c15ssbj8xj7ku5slpa6@git.kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>