The current code does not set the SLC/MLC information for onfi nand.
(This makes that the kernel treats all the onfi nand as SLC nand.)
This patch fills the cell information for ONFI nands.
Signed-off-by: Huang Shijie <b32955@freescale.com>
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
The legacy ID NAND are all SLC.
This patch sets 1 to the @bits_per_cell for the legacy ID NAND,
which means they are all SLC.
Signed-off-by: Huang Shijie <b32955@freescale.com>
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
The @cellinfo fields contains unused information, such as write caching,
internal chip numbering, etc. But we only use it to check the SLC or MLC.
This patch tries to make it more clear and simple, renames the @cellinfo
to @bits_per_cell.
In order to avoiding the bisect issue, this patch also does the following
changes:
(0) add a macro NAND_CI_CELLTYPE_SHIFT to avoid the hardcode.
(1) add a helper to parse out the cell type : nand_get_bits_per_cell()
(2) parse out the cell type for extended-ID chips and the full-id nand chips.
Signed-off-by: Huang Shijie <b32955@freescale.com>
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Add a helper to check if a nand chip is SLC or MLC.
This helper makes the code more readable.
Signed-off-by: Huang Shijie <b32955@freescale.com>
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
If the ONFI extended parameter page gives codeword_size == 0, the
extended ECC information is corrupt and should not be used. Currently,
we (correctly) avoid using the information, but we don't report the
error to the caller, so the caller doesn't know that we didn't
initialize ecc_strength_ds and ecc_step_ds. Now the caller can warn the
user that it does not have sufficient information.
This also removes the false and useless "ONFI extended param page
detected" debug message (it was printed even on the aforementioned
corruption, and for the success case, we don't really want a print).
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Acked-by: Huang Shijie <b32955@freescale.com>
The ONFI detection routine is too verbose in some cases and not verbose
enough in others. This patch refactors it to print only when there are
significant warnings/errors.
Probing in 16-bit mode:
It is unnecessary to print until after the READID (address 20h)
command. READID *has* to work properly in whatever bus width
configuration we are in, or else no identification mode works. So we
can silence some useless warnings on systems which come up in 16-bit
mode and do not even respond with an O-N-F-I string.
Valid parameter page:
Nobody needs to see this. Do we inform the user every time other
hardware responds properly? Instead, add an error message if *no*
uncorrupted parameter pages are found.
ONFI ECC:
Most drivers don't yet use the reported minimum ECC values, so it
shouldn't yet be a fatal condition if the extended parameter page is
incorrect. But we should at least give a warning for the corner cases
that we don't expect.
ONFI flash detected:
Nobody needs to see this. This is the expected case, that we detect
ONFI properly, or else it wasn't ONFI-compliant and is detected by
some other routine.
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Cc: Huang Shijie <b32955@freescale.com>
Cc: Ezequiel Garcia <ezequiel.garcia@free-electrons.com>
This fixes a memory leak in the ONFI support code for detecting the
required ECC levels from this commit:
commit 6dcbe0cdd8
Author: Huang Shijie <b32955@freescale.com>
Date: Wed May 22 10:28:27 2013 +0800
mtd: get the ECC info from the Extended Parameter Page
In the success case, we never freed the 'ep' buffer.
Also, this fixes an oversight in the same commit where we (harmlessly)
freed the NULL pointer.
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Acked-by: Huang Shijie <b32955@freescale.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
First, the function argument is 'offset' not 'column'.
Second, the 'data_buf' name is inconsistent with the rest of this file.
Just use 'buf'.
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Cc: Gupta, Pekon <pekon@ti.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
We may do some ONFI get/set features operations before we call the
nand_scan_tail().
So move the default ONFI nand hooks into nand_set_defaults().
Signed-off-by: Huang Shijie <b32955@freescale.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
Set the ecc step size for master/slave mtd_info{}.
Signed-off-by: Huang Shijie <b32955@freescale.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
There are static checkers which complain when we declare variables as
64 bit bitfields but only use the lower 32 bits because of shift
wrapping. In this case "len" is declared as u64 as opposed to unsigned
long or something which might be 32 bits.
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
Parse out the ECC information for the full-id nand chips.
Signed-off-by: Huang Shijie <b32955@freescale.com>
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
The current code uses the hardcode to detect the 16-bit bus width.
Use the onfi_feature() to replace it.
Signed-off-by: Huang Shijie <b32955@freescale.com>
[Brian: small fixup]
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
Since the ONFI 2.1, the onfi spec adds the Extended Parameter Page
to store the ECC info.
The onfi spec tells us that if the nand chip's recommended ECC codeword
size is not 512 bytes, then the @ecc_bits is 0xff. The host _SHOULD_ then
read the Extended ECC information that is part of the extended parameter
page to retrieve the ECC requirements for this device.
This patch implement the reading of the Extended Parameter Page, and parses
the sections for ECC type, and get the ECC info from the ECC section.
Tested this patch with Micron MT29F64G08CBABAWP.
Acked-by: Pekon Gupta <pekon@ti.com>
Signed-off-by: Huang Shijie <b32955@freescale.com>
Reviewed-and-tested-by: Brian Norris <computersforpeace@gmail.com>
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
From the ONFI spec, we can just get the ECC info from the @ecc_bits field of
the parameter page.
Signed-off-by: Huang Shijie <b32955@freescale.com>
Reviewed-and-tested-by: Brian Norris <computersforpeace@gmail.com>
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
nand_base.c shouldn't have to know the implementation details of
nand_bbt's in-memory BBT. Specifically, nand_base shouldn't perform the
bit masking and shifting to isolate a BBT entry.
Instead, just move some of the BBT code into a new nand_markbad_bbt()
interface. This interface allows external users (i.e., nand_base) to
mark a single block as bad in the BBT. Then nand_bbt will take care of
modifying the in-memory BBT and updating the flash-based BBT (if
applicable).
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
The chip->block_markbad pointer should really only be responsible for
writing a bad block marker for new bad blocks. It should not take care
of BBT-related functionality, nor should it handle bookkeeping of bad
block stats.
This patch refactors the 3 users of the block_markbad interface (plus
the default nand_base implementation) so that the common code is kept in
nand_block_markbad_lowlevel(). It removes some inconsistencies between
the various implementations and should allow for more centralized
improvements in the future.
Because gpmi-nand no longer needs the nand_update_bbt() function, let's
stop exporting it as well.
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Acked-by: Huang Shijie <b32955@freescale.com> (for gpmi-nand parts)
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
Toshiba NAND datasheets have not been very forthcoming on OOB size
information; they do not provide any bitfields in the ID string for
spare area. In their 24nm technology flash, however, Toshiba migrated
their NAND to have 32 bytes spare per 512 bytes of page area (up from
the traditional 16 bytes), as they now require 8-bit ECC or higher.
I have discussed this issue directly with Toshiba representatives, and
they acknowledge this problem. They recommend detecting these flash
based on their technology node as follows:
For 24nm Toshiba SLC raw NAND (not BENAND -- Built-in Ecc NAND), there
are 32 bytes of spare area for every 512 bytes of in-band data area.
We can implement this rule with the following snippet of a device ID
decode table, which applies to all their 43nm, 32nm, and 24nm SLC NAND
(this table is not fully in the NAND datasheets, but it was provided
directly by Toshiba representatives):
- ID byte 5, bit[7]:
1 -> BENAND
0 -> raw SLC
- ID byte 6, bits[2:0]:
100b -> 43nm
101b -> 32nm
110b -> 24nm
111b -> Reserved
I'm also working with Toshiba on including this bitfield description for
their 5th and 6th ID bytes in their public data sheets.
I will provide the 8-byte ID strings from the two 24nm Toshiba samples I
have; their first 6 bytes match the documentation I received from
Toshiba:
24nm SLC 1Gbit TC58NVG0S3HTA00
0x98 0xf1 0x80 0x15 0x72 0x16 0x08 0x00
24nm SLC 2Gbit TC58NVG1S3HTA00
0x98 0xda 0x90 0x15 0x76 0x16 0x08 0x00
I have also tested for regressions with:
43nm SLC 4Gbit TC58NVG2S3ETA00
0x98 0xdc 0x90 0x15 0x76 0x14 0x03 0x10
32nm SLC 8Gbit TC58NVG3SOFA00
0x98 0xd3 0x90 0x26 0x76 0x15 0x02 0x08
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
The code for NAND_BUSWIDTH_AUTO is broken. According to Alexander:
"I have a problem with attach NAND UBI in 16 bit mode.
NAND works fine if I specify NAND_BUSWIDTH_16 option, but not
working with NAND_BUSWIDTH_AUTO option. In second case NAND
chip is identifyed with ONFI."
See his report for the rest of the details:
http://lists.infradead.org/pipermail/linux-mtd/2013-July/047515.html
Anyway, the problem is that nand_set_defaults() is called twice, we
intend it to reset the chip functions to their x16 buswidth verions
if the buswidth changed from x8 to x16; however, nand_set_defaults()
does exactly nothing if called a second time.
Fix this by hacking nand_set_defaults() to reset the buswidth-dependent
functions if they were set to the x8 version the first time. Note that
this does not do anything to reset from x16 to x8, but that's not the
supported use case for NAND_BUSWIDTH_AUTO anyway.
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Reported-by: Alexander Shiyan <shc_work@mail.ru>
Tested-by: Alexander Shiyan <shc_work@mail.ru>
Cc: Matthieu Castet <matthieu.castet@parrot.com>
Cc: <stable@vger.kernel.org> # v3.8+
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
Spansion's S34MLx chips support ONFI but not the GET/SET FEATURES calls.
Signed-off-by: David Mosberger <dmosberger@gmail.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
This patch replaces the usage of loops in the nand_base code with
io{read,write}{8,16}_rep calls instead.
Signed-off-by: Alexander Shiyan <shc_work@mail.ru>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
This patch adds support for subpage (partial-page) writes when using
hardware based ECC schemes.
Advantages:
(1) reduces storage overhead when using file-systems like UBIFS, which
store LEB header at page-size granularity.
(2) allows independent subpage writes, thereby increasing NAND storage
efficiency for non-page aligned data.
+ updated cafe_nand and lpc32xx_mlc NAND drivers for change in
chip->write_page interface.
Signed-off-by: Gupta, Pekon <pekon@ti.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
When we meet a full-id nand type whose @id_len is not zero, we can use
the find_full_id_nand() to parse out the necessary information for a
nand chip.
If we meet a non full-id nand type, we can handle it in the legacy way.
Signed-off-by: Huang Shijie <b32955@freescale.com>
Reviewed-by: Brian Norris <computersforpeace@gmail.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
Variable "onfi_version" is already set to zero before nand_flash_detect_onfi()
call, so additional cleaning is not necessary.
Signed-off-by: Alexander Shiyan <shc_work@mail.ru>
Acked-by: Brian Norris <computersforpeace@gmail.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
NAND command, passed to cmd_ctrl(), is masked with 0xff. This patch
removes this since masking is not necessary and masking is not performed
in other places for same call.
Signed-off-by: Alexander Shiyan <shc_work@mail.ru>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
NAND flashes with 256 bytes NAND pages are so old that probably do not exist
any more. Let's remove few related pieces of code and forget about them
forever. The assumption will be that 512 bytes NAND page size is the minimum
possible.
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
The 'id' is a bit confusing name because NAND IDs are multi-byte. Re-name
it to 'dev_id' to make it clear that this is the "device ID" part (the second
byte).
While on it, clean-up the commentary for 'struct nand_flash_dev'.
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Acked-by: Brian Norris <computersforpeace@gmail.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
We have this unused macro, let's use it and justify its existence.
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Acked-by: Brian Norris <computersforpeace@gmail.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
We have only one AG-AND driver and it was not touched since 2005. It looks
like AG-AND was not really make it to mass-production and can be considered
a dead technology.
Along with the AG-AND support, this patch removes the BBT_AUTO_REFRESH feature,
because the only user of this feature is AG-AND. And even though it is
implemented as a generic feature, I prefer to remove it because NAND flashes do
not really need it in this form.
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Acked-by: Brian Norris <computersforpeace@gmail.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
This partially reverts commit 1696e6bc2a
("mtd: nand: kill NAND_NO_READRDY").
In that patch I overlooked a few things.
The original documentation for NAND_NO_READRDY included "True for all
large page devices, as they do not support autoincrement." I was
conflating "not support autoincrement" with the NAND_NO_AUTOINCR option,
which was in fact doing nothing. So, when I dropped NAND_NO_AUTOINCR, I
concluded that I then could harmlessly drop NAND_NO_READRDY. But of
course the fact the NAND_NO_AUTOINCR was doing nothing didn't mean
NAND_NO_READRDY was doing nothing...
So, NAND_NO_READRDY is re-introduced as NAND_NEED_READRDY and applied
only to those few remaining small-page NAND which needed it in the first
place.
Cc: stable@kernel.org [3.5+]
Reported-by: Alexander Shiyan <shc_work@mail.ru>
Tested-by: Alexander Shiyan <shc_work@mail.ru>
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
* misc clean-ups in the MTD command-line partitioning parser (cmdlinepart)
* add flash locking support for STmicro chips serial flash chips, as well as
for CFI command set 2 chips.
* new driver for the ELM error correction HW module found in various TI chips,
enable the OMAP NAND driver to use the ELM HW error correction
* added number of new serial flash IDs
* various fixes and improvements in the gpmi NAND driver
* bcm47xx NAND driver improvements
* make the mtdpart module actually removable
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.13 (GNU/Linux)
iEYEABECAAYFAlExEs8ACgkQdwG7hYl686Oa+gCgiBNt+I0MiixDeN+MGuE1uw9s
i2wAniD9sR2HDy6y5SkbdXK/aPr8ez/p
=xV1l
-----END PGP SIGNATURE-----
Merge tag 'for-linus-20130301' of git://git.infradead.org/linux-mtd
Pull MTD update from David Woodhouse:
"Fairly unexciting MTD merge for 3.9:
- misc clean-ups in the MTD command-line partitioning parser
(cmdlinepart)
- add flash locking support for STmicro chips serial flash chips, as
well as for CFI command set 2 chips.
- new driver for the ELM error correction HW module found in various
TI chips, enable the OMAP NAND driver to use the ELM HW error
correction
- added number of new serial flash IDs
- various fixes and improvements in the gpmi NAND driver
- bcm47xx NAND driver improvements
- make the mtdpart module actually removable"
* tag 'for-linus-20130301' of git://git.infradead.org/linux-mtd: (45 commits)
mtd: map: BUG() in non handled cases
mtd: bcm47xxnflash: use pr_fmt for module prefix in messages
mtd: davinci_nand: Use managed resources
mtd: mtd_torturetest can cause stack overflows
mtd: physmap_of: Convert device allocation to managed devm_kzalloc()
mtd: at91: atmel_nand: for PMECC, add code to check the ONFI parameter ECC requirement.
mtd: atmel_nand: make pmecc-cap, pmecc-sector-size in dts is optional.
mtd: atmel_nand: avoid to report an error when lookup table offset is 0.
mtd: bcm47xxsflash: adjust names of bus-specific functions
mtd: bcm47xxpart: improve probing of nvram partition
mtd: bcm47xxpart: add support for other erase sizes
mtd: bcm47xxnflash: register this as normal driver
mtd: bcm47xxnflash: fix message
mtd: bcm47xxsflash: register this as normal driver
mtd: bcm47xxsflash: write number of written bytes
mtd: gpmi: add sanity check for the ECC
mtd: gpmi: set the Golois Field bit for mx6q's BCH
mtd: devices: elm: Removes <xx> literals in elm DT node
mtd: gpmi: fix a dereferencing freed memory error
mtd: fix the wrong timeo for panic_nand_wait()
...
The panic_nand_wait() expects the timeo in ms and not in jiffies.
But in nand_wait(), the timeo for panic_nand_wait() is assigned with
wrong value(jiffies + some delay). The timeo should be set like the
panic_nand_write() does.
This patch passes timeo in ms to panic_nand_wait().
And this patch also passes timeo in jiffies(converted by msecs_to_jiffies)
to time_before() which makes the code more readable.
Signed-off-by: Huang Shijie <b32955@freescale.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Commit ff3206b245 ('mtd: nand: onfi need
to be probed in 8 bits mode') adds a WARN if the onfi probe is in 16
bits mode. This allows to detect driver that need to be fixed, but this
is a bit noisy¹. Transform the WARN in a pr_err.
¹ http://article.gmane.org/gmane.linux.ports.arm.omap/91317
Signed-off-by: Matthieu CASTET <matthieu.castet@parrot.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
The simple example provided in the comments for nand_id_has_period()
actually has a period of 3, not 2. Silly mistake...
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
- NAND_CMD_READID want an address that it is not scaled on x16 device (it is always 0x20)
- NAND_CMD_PARAM want 8 bits data
Signed-off-by: Matthieu CASTET <matthieu.castet@parrot.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
The driver call nand_scan_ident in 8 bit mode, then
readid or onfi detection are done (and detect bus width).
The driver should update its bus width before calling nand_scan_tail.
This work because readid and onfi are read work 8 byte mode.
Note that nand_scan_ident send command (NAND_CMD_RESET, NAND_CMD_READID, NAND_CMD_PARAM), address and read data
The ONFI specificication is not very clear for x16 device if high byte of address should be driven to 0,
but according to [1] it should be ok to not drive it during autodetection.
[1]
3.3.2. Target Initialization
[...]
The Read ID and Read Parameter Page commands only use the lower 8-bits of the data bus.
The host shall not issue commands that use a word data width on x16 devices until the host
determines the device supports a 16-bit data bus width in the parameter page.
Signed-off-by: Matthieu CASTET <matthieu.castet@parrot.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
This help to detect bad flash identification in case the size is not present
on the name (ONFI).
Signed-off-by: Matthieu CASTET <matthieu.castet@parrot.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
nand_wait_ready timeout should not assume HZ=100.
Make it independent of HZ value by using msecs_to_jiffies.
Signed-off-by: Matthieu CASTET <matthieu.castet@parrot.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
There are two reasons to remove the "chip" parameter in nand_get_device():
[1] The nand_release_device() does not have the "chip" parameter.
[2] We can get the nand_chip by the mtd->priv field.
This patch removes the "chip" parameter in nand_get_device().
Signed-off-by: Huang Shijie <b32955@freescale.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
The nand_get_device() does not select the chip, but nand_release_device()
does de-select the chip. It is really strange.
With the current code, nand_sync() will de-select the chip, even if the chip
has never been selected.
To make the balance of select/de-select chip, it's better to remove the
de-select chip code in nand_release_device() which makes the code more
clear.
Signed-off-by: Huang Shijie <b32955@freescale.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
When we scan several nand chips with nand_scan(), such as
.......................
nand_scan(*, 2);
.......................
In nand_scan_ident(), the maxchips will become 2, so the current code
will select chip 1 to read the device ID. But the chip 0 is still
selected in this case.
To make the logic clear, we'd better de-select the chip when it is not used.
This patch de-select the nand chip if it is not used any more.
Signed-off-by: Huang Shijie <b32955@freescale.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
This patch allow to detect buggy driver/hardware with
bad RnB (dev_ready) management or when timeout occurs in polling mode.
This works when dev_ready is set or not set.
There are 2 methods to wait for an erase/program command completion:
1. Wait until nand RnB pin goes high (that's what chip->dev_ready usually does)
2. Poll the device: send a status (0x70) command and read status byte in a loop
until bit NAND_STATUS_READY is set
In all cases, you should send a status command after completion, to check if
the operation was successful. And if the operation completed, the status should
have bit NAND_STATUS_READY set.
Signed-off-by: Matthieu CASTET <matthieu.castet@parrot.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Use the NAND_STATUS_FAIL to replace the hardcode "0x01",
which make the code more readable.
Signed-off-by: Huang Shijie <shijie8@gmail.com>
Acked-by: Brian Norris <computersforpeace@gmail.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
This patch fixes errors seen in identifying old Samsung SLC, due to the
following commits:
commit e2d3a35ee4
mtd: nand: detect Samsung K9GBG08U0A, K9GAG08U0F ID
commit e3b88bd604
mtd: nand: add generic READ ID length calculation functions
Some Samsung NAND with "5-byte" ID really appear to have 6-byte IDs, with
wraparound like:
Samsung K9K8G08U0D
ec d3 51 95 58 ec ec d3
Samsung K9F1G08U0C
ec f1 00 95 40 ec ec f1
Samsung K9F2G08U0B
ec da 10 95 44 00 ec da
This bad wraparound makes it hard to reliably detect the difference
between Samsung SLC with 5-byte ID and Samsung SLC with 6-byte ID.
The fix is to, for now, only use the new Samsung table for MLC. We
cannot support the new SLC (K9FAG08U0M) until Samsung gives better ID
decode information.
Note that this applies in addition to the previous regression fix:
commit bc86cf7af2
mtd: nand: fix Samsung SLC NAND identification regression
Together, these patches completely restore the previous detection
behavior so that we cannot see any more regressions in Samsung SLC NAND
(finger crossed). With luck, I can get a hold of a Samsung
representative and stop having to cross my fingers eventually.
Reported-by: Sylwester Nawrocki <sylvester.nawrocki@gmail.com>
Tested-by: Sylwester Nawrocki <sylvester.nawrocki@gmail.com>
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
A combination of the following two commits caused a regression in 3.7-rc1
when identifying some Samsung NAND, so that some previously working NAND
were no longer detected properly:
commit e3b88bd604
mtd: nand: add generic READ ID length calculation functions
commit e2d3a35ee4
mtd: nand: detect Samsung K9GBG08U0A, K9GAG08U0F ID
Particularly, a regression was seen on Samsung K9F2G08U0B, with the
following full 8-byte READ ID string:
ec da 10 95 44 00 ec da
The basic problem is that Samsung manufactures both SLC and MLC NAND
that use a non-standard decoding table for deriving information from
their IDs. I have heuristically determined that all the chips that use
the new table have ID strings which wrap around after the 6th byte.
Unfortunately, I overlooked the fact that some older Samsung SLC (which
use a different decoding table) have "5 byte ID strings" which also wrap
around after the 6th byte.
This patch re-introduces a distinction between these old and new Samsung
NAND by checking that the 6th byte is non-zero, allowing both old and
new Samsung NAND to be detected properly.
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Tested-by: Brian Norris <computersforpeace@gmail.com>
Reported-by: Marek Vasut <marex@denx.de>
Tested-by: Marek Vasut <marex@denx.de>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Datasheets for the following Samsung NAND parts (both MLC and SLC) describe
extensions to the Samsung 6-byte extended ID decoding table:
K9GBG08U0A (MLC, 6-byte ID)
K9GAG08U0F (MLC, 6-byte ID)
K9FAG08U0M (SLC, 6-byte ID)
The table found in K9GAG08U0F, p.44, contains a superset of the information
found in other previous datasheets.
This patch adds support for all of these chips, with 512B and 640B OOB sizes.
It also changes the detection pattern such that this table applies to all
Samsung 6-byte ID NAND, not just MLC. This is safe, according to the NAND
parameter data I have collected:
Note that nand_base.c does not yet support the bad block marker scheme defined
for these chips (i.e., scan 1st and last page for BB markers).
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
Hynix has introduced a new ID decoding scheme for their newer MLC, some of
which don't support ONFI. The following devices all follow the pattern given in
the datasheet for Hynix H27UBG8T2B, p.22:
Hynix H27UAG8T2A
Hynix H27UBG8T2A
Hynix H27UBG8T2B
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
When decoding the extended ID bytes of a NAND chip, we have to calculate the ID
length according to some heuristic patterns (e.g., Does the ID wrap around?
Does it end in trailing zeros?). Currently, these heuristics are built into
complicated if/else blocks that can be hard to understand.
Now, these checks can be done generically in a function, making them more
robust and reusable. In fact, this sort of calculation is needed in future
additions to nand_base.c. And with this advancement, we get the added benefit
of a more readable "extended ID decode".
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
When detecting NAND parameters, the code gets a little ugly so that the
logic is obscured. Try to remedy that by moving code to separate functions
that have well-defined purposes.
This patch splits out the simple ID decode functionality, where all the
information regarding NAND size/blocksize/pagesize/oobsize/busw is encoded in
the first two bytes of the ID string.
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
When detecting NAND parameters, the code gets a little ugly so that the
logic is obscured. Try to remedy that by moving code to separate functions
that have well-defined purposes.
This patch splits out the extended ID decode functionality, which handles
decoding the 3rd-8th ID bytes to determine NAND device parameters.
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
When detecting NAND parameters, the code gets a little ugly so that the
logic is obscured. Try to remedy that by moving code to separate functions
that have well-defined purposes.
This patch splits the bad block marker options detection into its own function,
away from the other parameters (e.g., chip size, page size, etc.).
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
Instead of reading 2 bytes then later 8 bytes, we can simply read all 8
bytes from the start.
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
We don't actually use the 'ret' variable; we set it, test it, and then it dies.
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
Add the set-features(0xef)/get-features(0xee) helpers for ONFI nand.
Also add the necessary macros.
Signed-off-by: Huang Shijie <b32955@freescale.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
Added a NAND device flag for subpage read support. Previously this was
hard coded based on large page and soft ECC.
Updated base NAND driver to use the new subpage read flag if the NAND is
large page and soft ECC.
Signed-off-by: Jeff Westfahl <jeff.westfahl@ni.com>
Reviewed-by: Brian Norris <computersforpeace@gmail.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
Just as Artem suggested:
"Both UBI and JFFS2 are able to read verify what they wrote already.
There are also MTD tests which do this verification. So I think there
is no reason to keep this in the NAND layer, let alone wasting RAM in
the driver to support this feature. Besides, it does not work for sub-pages
and many drivers have it broken. It hurts more than it provides benefits."
So kill MTD_NAND_VERIFY_WRITE entirely.
Signed-off-by: Huang Shijie <shijie8@gmail.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
The NAND_CHIPOPTIONS_MSK has limited utility and is causing real bugs. It
silently masks off at least one flag that might be set by the driver
(NAND_NO_SUBPAGE_WRITE). This breaks the GPMI NAND driver and possibly
others.
Really, as long as driver writers exercise a small amount of care with
NAND_* options, this mask is not necessary at all; it was only here to
prevent certain options from accidentally being set by the driver. But the
original thought turns out to be a bad idea occasionally. Thus, kill it.
Note, this patch fixes some major gpmi-nand breakage.
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Tested-by: Huang Shijie <shijie8@gmail.com>
Cc: stable@vger.kernel.org
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
Use the MTD_OPS_PLACE_OOB to replace the hard code "0".
Make the code more readable.
Signed-off-by: Huang Shijie <b32955@freescale.com>
Acked-by: Brian Norris <computersforpeace@gmail.com>
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@linux.intel.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
There is an implemention of hardware ECC write page function which may return an
error indication.
For instance, using Atmel HW PMECC to write one page into a nand flash, the hardware
engine will compute the BCH ecc code for this page. so we need read a the
status register to theck whether the ecc code is generated.
But we cannot assume the status register always can be ready, for example,
incorrect hardware configuration or hardware issue, in such case we need
write_page() to return a error code.
Since the definition of 'write_page' function in struct nand_ecc_ctrl is 'void'.
So this patch will:
1. add return 'int' value for 'write_page' function.
2. to be consitent, add return 'int' value for 'write_page_raw' fuctions too.
3. add code to test the return value, and if negative, indicate an
error happend when write page with ECC.
4. fix the compile warning in all impacted nand flash driver.
Note: I couldn't compile-test all of these easily, as some had ARCH dependencies.
Signed-off-by: Josh Wu <josh.wu@atmel.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
According to its documentation, the NAND_NO_READRDY option is always used
when autoincrement is not supported. Autoincrement support was recently
dropped, so we can drop this options as well (defaulting to "no read ready
check").
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
As of edbc454 [mtd: driver _read() returns max_bitflips; mtd_read()
returns -EUCLEAN], 'mtd->bitflip_threshold' must be set for mtd devices
having ECC, prior any 'mtd_read()' call.
Otherwise, 'mtd_read()' will falsely return -EUCLEAN.
Normally, 'mtd->bitflip_threshold' is initialized when the MTD is added.
However, this is too late for NAND MTDs, as 'scan_bbt()' is invoked
prior the existing initialization of 'mtd->bitflip_threshold'.
This is a problem since 'scan_bbt()' calls 'mtd_read()', in the case
of a flash-based bad block table.
It resulted in a falsely reported bitflips indication during BBT read,
which lead to constant scrubbing of the flash BBT blocks.
Initialize 'mtd->bitflip_threshold' to its default value (if not already
set by the driver), prior to invocation of 'scan_bbt()'.
Reported-by: Sascha Hauer <s.hauer@pengutronix.de>
Tested-by: Sascha Hauer <s.hauer@pengutronix.de>
Signed-off-by: Shmulik Ladkani <shmulik.ladkani@gmail.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
Apparently, there is an implementor of 'read_oob' which may return an
error inidication (e.g. docg4_read_oob may return -EIO).
Test the return value of 'read_oob/read_oob_raw', and if negative,
propagate the error, so it's returned by the '_read_oob' interface.
Signed-off-by: Shmulik Ladkani <shmulik.ladkani@gmail.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
As of [mtd: nand: remove autoincrement 'sndcmd' code], the
NAND_CMD_READ0 command is issued unconditionally.
Thus, read_oob/read_oob_raw's 'sndcmd' argument is no longer needed, as
well as their return code.
Remove the 'sndcmd' parameter, and set the return code to 0.
Signed-off-by: Shmulik Ladkani <shmulik.ladkani@gmail.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
Don't read/write OOB if the caller doesn't require it.
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
We now have an interface for notifying the nand_ecc_ctrl functions when OOB
data must be returned to the upper layers and when it may be left untouched.
This patch fills in the 'oob_required' parameter properly from
nand_do_{read,write}_ops. When utilized properly in the lower layers, this
parameter can improve performance and/or reduce complexity for NAND HW and SW
that can simply avoid transferring the OOB data.
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Reviewed-by: Shmulik Ladkani <shmulik.ladkani@gmail.com>
Acked-by: Jiandong Zheng <jdzheng@broadcom.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
New NAND controllers can perform read/write via HW engines which don't expose
OOB data in their DMA mode. To reflect this, we should rework the nand_chip /
nand_ecc_ctrl interfaces that assume that drivers will always read/write OOB
data in the nand_chip.oob_poi buffer. A better interface includes a boolean
argument that explicitly tells the callee when OOB data is requested by the
calling layer (for reading/writing to/from nand_chip.oob_poi).
This patch adds the 'oob_required' parameter to each relevant {read,write}_page
interface; all 'oob_required' parameters are left unused for now. The next
patch will set the parameter properly in the nand_base.c callers, and follow-up
patches will make use of 'oob_required' in some of the callee functions.
Note that currently, there is no harm in ignoring the 'oob_required' parameter
and *always* utilizing nand_chip.oob_poi, but there can be
performance/complexity/design benefits from avoiding filling oob_poi in the
common case. I will try to implement this for some drivers which can be ported
easily.
Note: I couldn't compile-test all of these easily, as some had ARCH
dependencies.
[dwmw2: Merge later 1/0 vs. true/false cleanup]
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Reviewed-by: Shmulik Ladkani <shmulik.ladkani@gmail.com>
Acked-by: Jiandong Zheng <jdzheng@broadcom.com>
Acked-by: Mike Dunn <mikedunn@newsguy.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
No drivers use auto-increment NAND, so kill the NO_AUTOINCR option entirely.
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
The NAND_NO_AUTOINCR option is always set, so we will kill the option and make
"no autoincrement" the default behavior for nand_base.c. Thus, we should remove
the code which decides whether or not to send the NAND_CMD_READ0 command.
Instead, we unconditionally send the command.
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
The drivers' _read() method, absent an error, returns a non-negative integer
indicating the maximum number of bit errors that were corrected in any one
region comprising an ecc step. MTD returns -EUCLEAN if this is >=
bitflip_threshold, 0 otherwise. If bitflip_threshold is zero, the comparison is
not made since these devices lack ECC and always return zero in the non-error
case (thanks Brian)¹. Note that this is a subtle change to the driver
interface.
This and the preceding patches in this set were tested with ubi on top of the
nandsim and docg4 devices, running the ubi test io_basic from mtd-utils.
¹ http://lists.infradead.org/pipermail/linux-mtd/2012-March/040468.html
Signed-off-by: Mike Dunn <mikedunn@newsguy.com>
Acked-by: Robert Jarzmik <robert.jarzmik@free.fr>
Acked-by: Brian Norris <computersforpeace@gmail.com>
Ivan Djelic <ivan.djelic@parrot.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
This patch adds sanity checks that ensure that drivers for controllers with
hardware ECC set the 'strength' element in struct nand_ecc_ctrl. Also stylistic
changes to the line that calculates strength for software ECC.
This v2 simplifies the check. Thanks Brian!¹
¹ http://lists.infradead.org/pipermail/linux-mtd/2012-April/040890.html
Signed-off-by: Mike Dunn <mikedunn@newsguy.com>
Acked-by: Brian Norris <computersforpeace@gmail.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
The ecc.read_page() method for nand drivers is changed to return the maximum
number of bitflips that were corrected on any one region covering an ecc step,
This patch doesn't change what the nand code returns to mtd.
This v2 includes the change to the fsl_ifc_nand driver requested by Scott¹.
¹ http://lists.infradead.org/pipermail/linux-mtd/2012-April/040883.html
Signed-off-by: Mike Dunn <mikedunn@newsguy.com>
Acked-by (freescale changes): Scott Wood <scottwood@freescale.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
ecc_strength element of mtd_info will be the strength of one ecc step, not of
the entire writesize, as was previously planned. This is the appropriate way
because, as was pointed out¹, bit errors in excess of the strength of one
step can cause a hard error if they all occur within the same ecc region.
¹ http://lists.infradead.org/pipermail/linux-mtd/2012-March/040313.html
Signed-off-by: Mike Dunn <mikedunn@newsguy.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
To make sure the NAND chip is properly programmed we need a status
command before each page write. When CONFIG_MTD_NAND_VERIFY_WRITE=y this
assumption is broken when writing multiple pages consecutively. This
patch fixes this.
Signed-off-by: Bastian Hecht <hechtb@gmail.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
Some not-supported nand chips may pass the current parsing code,
and get the wrong page size and oob size. Sometimes, it's hard to notice
that you get the wrong values, because there is no warning or error.
So it's useful to print out the page size and oob size in the end of
the parsing function. We can check these values with the datasheet of the nand
chip as soon as possible.
Artem: amend the print a bit
Signed-off-by: Huang Shijie <b32955@freescale.com>
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@linux.intel.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
Initialization of 'erase_info->fail_addr' to MTD_FAIL_ADDR_UNKNOWN prior
erase operation is duplicated accross several MTD drivers, and also taken
care of by some MTD users as well.
Harmonize it: initialize 'fail_addr' within 'mtd_erase()' interface.
Signed-off-by: Shmulik Ladkani <shmulik.ladkani@gmail.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
With onfi a flash is organized into one or more logical units (LUNs).
A logical unit (LUN) is the minimum unit that can independently execute
commands and report status.
Mtd does not exploit LUN, so make it see a big single flash where size is
lun_size * number_of_lun.
Without this patch MT29F8G08ADBDAH4 size is 512MiB instead of 1GiB.
Artem: split long line on 2 shorter ones.
Signed-off-by: Matthieu Castet <matthieu.castet@parrot.com>
Acked-by: Florian Fainelli <ffainelli@freebox.fr>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
Flash device drivers initialize 'ecc_strength' in struct mtd_info, which is the
maximum number of bit errors that can be corrected in one writesize region.
Drivers using the nand interface intitialize 'strength' in struct nand_ecc_ctrl,
which is the maximum number of bit errors that can be corrected in one ecc step.
Nand infrastructure code translates this to 'ecc_strength'.
Also for nand drivers, the nand infrastructure code sets ecc.strength for ecc
modes NAND_ECC_SOFT, NAND_ECC_SOFT_BCH, and NAND_ECC_NONE. It is set in the
driver for all other modes.
Signed-off-by: Mike Dunn <mikedunn@newsguy.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
Some strange nand chip(such as Hynix H27UBG8T2A) can pass the `ONFI` signature
check. So the log can be printed out even it is not an ONFI nand indeed.
Change this log to the end of the function. Print out the log only when we
really detect an ONFI nand.
Signed-off-by: Huang Shijie <b32955@freescale.com>
Acked-by: Florian Fainelli <ffainelli@freebox.fr>
Acked-by: Brian Norris <computersforpeace@gmail.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
In many places in drivers we verify for the zero length, but this is very
inconsistent across drivers. This is obviously the right thing to do, though.
This patch moves the check to the MTD API functions instead and removes a lot
of duplication.
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Reviewed-by: Shmulik Ladkani <shmulik.ladkani@gmail.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
We already verify that offset and length are within the MTD device size
in the MTD API functions. Let's remove the duplicated checks in drivers.
This patch only affects the following API's:
'mtd_erase()'
'mtd_point()'
'mtd_unpoint()'
'mtd_get_unmapped_area()'
'mtd_read()'
'mtd_write()'
'mtd_panic_write()'
'mtd_lock()'
'mtd_unlock()'
'mtd_is_locked()'
'mtd_block_isbad()'
'mtd_block_markbad()'
This patch adds a bit of noise by removing too sparse empty lines, but this is
not too bad.
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
Currently, the flash-based BBT implementation writes bad block data only
to its flash-based table and not to the OOB marker area. Then, as new bad
blocks are marked over time, the OOB markers become incomplete and the
flash-based table becomes the only source of current bad block
information. This becomes an obvious problem when, for example:
* bootloader cannot read the flash-based BBT format
* BBT is corrupted and the flash must be rescanned for bad
blocks; we want to remember bad blocks that were marked from Linux
So to keep the bad block markers in sync with the flash-based BBT, this
patch changes the default so that we write bad block markers to the proper
OOB area on each block in addition to flash-based BBT. Comments are
updated, expanded, and/or relocated as necessary.
The new flash-based BBT procedure for marking bad blocks:
(1) erase the affected block, to allow OOB marker to be written cleanly
(2) update in-memory BBT
(3) write bad block marker to OOB area of affected block
(4) update flash-based BBT
Note that we retain the first error encountered in (3) or (4), finish the
procedures, and dump the error in the end.
This should handle power cuts gracefully enough. (1) and (2) are mostly
harmless (note that (1) will not erase an already-recognized bad block).
The OOB and BBT may be "out of sync" if we experience power loss bewteen
(3) and (4), but we can reasonably expect that on next boot, subsequent
I/O operations will discover that the block should be marked bad again,
thus re-syncing the OOB and BBT.
Note that this is a change from the previous default flash-based BBT
behavior. If your system cannot support writing bad block markers to OOB,
use the new NAND_BBT_NO_OOB_BBM option (in combination with
NAND_BBT_USE_FLASH and NAND_BBT_NO_OOB).
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
This patch renames all MTD functions by adding a "_" prefix:
mtd->erase -> mtd->_erase
mtd->read_oob -> mtd->_read_oob
...
The reason is that we are re-working the MTD API and from now on it is
an error to use MTD function pointers directly - we have a corresponding
API call for every pointer. By adding a leading "_" we achieve the following:
1. Make sure we convert every direct pointer users
2. A leading "_" suggests that this interface is internal and it becomes
less likely that people will use them directly
3. Make sure all the out-of-tree modules stop compiling and the owners
spot the big API change and amend them.
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
As nand_default_block_markbad() is becoming more complex, it helps to
have code appear only in its relevant codepath(s). Here, the calculation
of `ofs' based on NAND_BBT_SCANLASTPAGE is only useful on paths where we
write bad block markers to OOB. We move the condition/calculation closer
to the `write' operation and update the comment to more correctly
describe the operation.
The variable `wr_ofs' is also used to help isolate our calculation of
the "write" offset from the usage of `ofs' to represent the eraseblock
offset. This will become useful when we reorder operations in the next
patch.
This patch should make no functional change.
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
It seems that we have developed a bad-block-marking "feature" out of
pure laziness:
"We write two bytes per location, so we dont have to mess with 16 bit
access."
It's relatively simple to write a 1 byte at a time on x8 devices and 2
bytes at a time on x16 devices, so let's do it.
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
nand_block_bad() doesn't check the correct pages when
NAND_BBT_SCAN2NDPAGE is enabled. It should scan both the OOB region of
both the 1st and 2nd page of each block.
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
Many NAND flash systems (especially those with MLC NAND) cannot be
reliably written twice in a row. For instance, when marking a bad block,
the block may already have data written to it, and so we should attempt
to erase the block before writing a bad block marker to its OOB region.
We can ignore erase failures, since the block may be bad such that it
cannot be erased properly; we still attempt to write zeros to its spare
area.
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
Funny one :) "Heck" fits somehow, too, but I am sure it was meant to be "Check".
Signed-off-by: Wolfram Sang <w.sang@pengutronix.de>
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@linux.intel.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
Our `ops' information was converted to a local variable recently, and
apparently, old code relied on the fact that the global version was
often left in a valid mode. We can't make this assumption on local
structs, and we shouldn't be relying on a previous state anyway.
Instead, we initialize mode to 0 for don't-care situations (i.e., the
operation does not use OOB anyway) and MTD_OPS_PLACE_OOB when we want to
place OOB data.
This fixes a bug with nand_default_block_markbad(), where we catch on
the BUG() call in nand_fill_oob():
Kernel bug detected[#1]:
...
Call Trace:
[<80307350>] nand_fill_oob.clone.5+0xa4/0x15c
[<803075d8>] nand_do_write_oob+0x1d0/0x260
[<803077c4>] nand_default_block_markbad+0x15c/0x1a8
[<802e8c2c>] part_block_markbad+0x80/0x98
[<802ebc74>] mtd_ioctl+0x6d8/0xbd0
[<802ec1a4>] mtd_unlocked_ioctl+0x38/0x5c
[<800d9c60>] do_vfs_ioctl+0xa4/0x6e4
[<800da2e4>] sys_ioctl+0x44/0xa0
[<8001381c>] stack_done+0x20/0x40
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
In rare cases, we are given an unaligned parameter `from' in
`nand_do_read_ops()'. In such cases, we use the page cache
(chip->buffers->databuf) as an intermediate buffer before dumping to the
client buffer. However, there are also cases where this buffer is not
cleanly reusable. In those cases, we need to make sure that we
explicitly invalidate the cache.
This patch prevents accidental reusage of the page cache, and for me,
this solves some problems I come across when reading a corrupted BBT
from flash (NAND_BBT_USE_FLASH and NAND_BBT_NO_OOB).
Note: the rare "unaligned" case is a result of the extra BBT pattern +
version located in the data area instead of OOB.
Also, this patch disables caching on raw reads, since we are reading
without error correction. This is, obviously, prone to errors and should
not be cached.
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@intel.com>
The nand_chip.ops field is a struct that is passed around globally with
no particular reason. Every time it is used, it could just as easily be
replaced with a local struct that is updated on each operation. So make
it local.
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@intel.com>
These modes are not necessarily for OOB only. Particularly, MTD_OOB_RAW
affected operations on in-band page data as well. To clarify these
options and to emphasize that their effect is applied per-operation, we
change the primary prefix to MTD_OPS_.
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@intel.com>
This fixes issues with `nanddump -n' and the MEMREADOOB[64] ioctls on
hardware that performs error correction when reading only OOB data. A
driver for such hardware needs to know when we're doing a RAW vs. a
normal write, but mtd_do_read_oob does not pass such information to the
lower layers (e.g., NAND). We should pass MTD_OOB_RAW or MTD_OOB_PLACE
based on the MTD file mode.
For now, most drivers can get away with just setting:
chip->ecc.read_oob_raw = chip->ecc.read_oob
This is done by default; but for systems that behave as described above,
you must supply your own replacement function.
This was tested with nandsim as well as on actual SLC NAND.
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Cc: Jim Quinlan <jim2101024@gmail.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@intel.com>
This fixes issues with `nandwrite -n -o' and the MEMWRITEOOB[64] ioctls
on hardware that writes ECC when writing OOB. The problem arises as
follows: `nandwrite -n' can write page data to flash without applying
ECC, but when used with the `-o' option, ECC is applied (incorrectly),
contrary to the `--noecc' option.
I found that this is the case because my hardware computes and writes
ECC data to flash upon either OOB write or page write. Thus, to support
a proper "no ECC" write, my driver must know when we're performing a raw
OOB write vs. a normal ECC OOB write. However, MTD does not pass any raw
mode information to the write_oob functions. This patch addresses the
problems by:
1) Passing MTD_OOB_RAW down to lower layers, instead of just defaulting
to MTD_OOB_PLACE
2) Handling MTD_OOB_RAW within the NAND layer's `nand_do_write_oob'
3) Adding a new (replaceable) function pointer in struct ecc_ctrl; this
function should support writing OOB without ECC data. Current
hardware often can use the same OOB write function when writing
either with or without ECC
This was tested with nandsim as well as on actual SLC NAND.
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Cc: Jim Quinlan <jim2101024@gmail.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@intel.com>
Start moving away from the MTD_DEBUG_LEVEL messages. The dynamic
debugging feature is a generic kernel feature that provides more
flexibility.
(See Documentation/dynamic-debug-howto.txt)
Also fix some punctuation, indentation, and capitalization that went
along with the affected lines.
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@intel.com>
This is a cleanup of some punctuation, indentation, and capitalization
on the lines affected affected by the last patch.
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@intel.com>
Instead of directly calling printk, it's simpler to use the built-in
pr_* functions. This shortens code and allows easy customization through
the definition of a pr_fmt() macro (not used currently). Ideally, we
could implement much of this with dev_* functions, but the MTD subsystem
does not necessarily register all its master `mtd_info.dev` device, so
we cannot use dev_* consistently. See:
http://lists.infradead.org/pipermail/linux-mtd/2011-July/036950.html
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@intel.com>
there is a bug in nand_flash_detect_onfi, busw need to be passed
by pointer to return it.
Signed-off-by: Matthieu CASTET <matthieu.castet@parrot.com>
Acked-by: Brian Norris <computersforpeace@gmail.com>
Signed-off-by: Artem Bityutskiy <dedekind1@gmail.com>