In the FPU emulator code of the MIPS, the Cause bits of the FCSR register
are not currently writeable by the ctc1 instruction. In odd corner cases,
this can cause problems. For example, a case existed where a divide-by-zero
exception was generated by the FPU, and the signal handler attempted to
restore the FPU registers to their state before the exception occurred. In
this particular setup, writing the old value to the FCSR register would
cause another divide-by-zero exception to occur immediately. The solution
is to change the ctc1 instruction emulator code to allow the Cause bits of
the FCSR register to be writeable. This is the behaviour of the hardware
that the code is emulating.
This problem was found by Shane McDonald, but the credit for the fix goes
to Kevin Kissell. In Kevin's words:
I submit that the bug is indeed in that ctc_op: case of the emulator. The
Cause bits (17:12) are supposed to be writable by that instruction, but the
CTC1 emulation won't let them be updated by the instruction. I think that
actually if you just completely removed lines 387-388 [...] things would
work a good deal better. At least, it would be a more accurate emulation of
the architecturally defined FPU. If I wanted to be really, really pedantic
(which I sometimes do), I'd also protect the reserved bits that aren't
necessarily writable.
Signed-off-by: Shane McDonald <mcdonald.shane@gmail.com>
To: anemo@mba.ocn.ne.jp
To: kevink@paralogos.com
To: sshtylyov@mvista.com
Patchwork: http://patchwork.linux-mips.org/patch/1205/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
---
For processors that have more than 64 TLBs, we need to decode both
config1 and config4 to determine the total number TLBs.
Signed-off-by: David Daney <ddaney@caviumnetworks.com>
To: linux-mips@linux-mips.org
Patchwork: http://patchwork.linux-mips.org/patch/866/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
The MIPS processor is limited to 64 external interrupt sources. Using a
greater number without IRQ sharing requires reading platform-specific
registers. On such platforms, reading the IntCtl register to determine
which interrupt corresponds to a timer interrupt will not work.
On MIPSR2 systems there is a solution - the TI bit in the Cause register,
specifically indicates that a timer interrupt has occured. This patch uses
that bit to detect interrupts for MIPSR2 processors, which may be expected
to work regardless of how the timer interrupt may be routed in the hardware.
Signed-off-by: David VomLehn (dvomlehn@cisco.com)
To: linux-mips@linux-mips.org
Patchwork: http://patchwork.linux-mips.org/patch/804/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
Beyond the requirements of the architecture standard Cavium also supports
8k and 32k pages.
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
Acked-by: David Daney <ddaney@caviumnetworks.com>
Gas from binutils 2.19 fails to compile some cop1 instructions with
-march=octeon. Since the cop1 instructions are present in mips1, use
that arch instead. This will be fixed in binutils 2.20.
Signed-off-by: David Daney <ddaney@caviumnetworks.com>
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
We already have sufficient infrastructure to support VR5500 and VR5500A
series processors. Here's a Makefile support to make it selectable by
ports, and enable it for NEC EMMA2RH Markeins board.
This patch also fixes a confused target help, and adds 1Gb PageMask bits
supported by VR5500 and its variants.
Signed-off-by: Shinya Kuribayashi <shinya.kuribayashi@necel.com>
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>