Commit Graph

390 Commits

Author SHA1 Message Date
Anand Jain 5f3ab90a72 Btrfs: rename root_times_lock to root_item_lock
Originally root_times_lock was introduced as part of send/receive
code however newly developed patch to label the subvol reused
the same lock, so renaming it for a meaningful name.

Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
2012-12-16 20:46:21 -05:00
Julia Lawall 6c1500f22a fs/btrfs: drop if around WARN_ON
Just use WARN_ON rather than an if containing only WARN_ON(1).

A simplified version of the semantic patch that makes this transformation
is as follows: (http://coccinelle.lip6.fr/)

// <smpl>
@@
expression e;
@@
- if (e) WARN_ON(1);
+ WARN_ON(e);
// </smpl>

Signed-off-by: Julia Lawall <Julia.Lawall@lip6.fr>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
2012-12-12 17:15:24 -05:00
Julia Lawall 31b1a2bd75 fs/btrfs: use WARN
Use WARN rather than printk followed by WARN_ON(1), for conciseness.

A simplified version of the semantic patch that makes this transformation
is as follows: (http://coccinelle.lip6.fr/)

// <smpl>
@@
expression list es;
@@

-printk(
+WARN(1,
  es);
-WARN_ON(1);
// </smpl>

Signed-off-by: Julia Lawall <Julia.Lawall@lip6.fr>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
2012-12-12 17:15:23 -05:00
Liu Bo 32adf09013 Btrfs: cleanup unused arguments
'disk_key' is not used at all.

Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
2012-12-11 13:31:35 -05:00
Liu Bo 0e411ecec6 Btrfs: kill unnecessary arguments in del_ptr
The argument 'tree_mod_log' is not necessary since all of callers enable it.

Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
2012-12-11 13:31:35 -05:00
Liu Bo 6a7a665d78 Btrfs: reorder tree mod log operations in deleting a pointer
Since we don't use MOD_LOG_KEY_REMOVE_WHILE_MOVING to add nritems
during rewinding, we should insert a MOD_LOG_KEY_REMOVE operation first.

Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
2012-12-11 13:31:34 -05:00
Liu Bo 95c80bb1f6 Btrfs: MOD_LOG_KEY_REMOVE_WHILE_MOVING never change node's nritems
Key MOD_LOG_KEY_REMOVE_WHILE_MOVING means that we're doing memmove inside
an extent buffer node, and the node's number of items remains unchanged
(unless we are inserting a single pointer, but we have MOD_LOG_KEY_ADD for that).

So we don't need to increase node's number of items during rewinding,
otherwise we may get an node larger than leafsize and cause general protection
errors later.

Here is the details,
- If we do memory move for inserting a single pointer, we need to
  add node's nritems by one, and we honor MOD_LOG_KEY_ADD for adding.

- If we do memory move for deleting a single pointer, we need to
  decrease node's nritems by one, and we honor MOD_LOG_KEY_REMOVE for
  deleting.

- If we do memory move for balance left/right, we need to decrease
  node's nritems, and we honor MOD_LOG_KEY_REMOVE for balaning.

Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
2012-12-11 13:31:33 -05:00
Liu Bo 7bfdcf7fba Btrfs: fix memory leak when cloning root's node
After cloning root's node, we forgot to dec the src's ref
which can lead to a memory leak.

Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
2012-10-25 15:55:21 -04:00
Jan Schmidt 01763a2e37 Btrfs: comment for loop in tree_mod_log_insert_move
Emphasis the way tree_mod_log_insert_move avoids adding
MOD_LOG_KEY_REMOVE_WHILE_MOVING operations, depending on the direction of
the move operation.

Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
2012-10-24 12:36:40 +02:00
Jan Schmidt d638108484 Btrfs: fix extent buffer reference for tree mod log roots
In get_old_root we grab a lock on the extent buffer before we obtain a
reference on that buffer. That order is changed now.

Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
2012-10-24 12:36:39 +02:00
Jan Schmidt 5b6602e762 Btrfs: determine level of old roots
In btrfs_find_all_roots' termination condition, we compare the level of the
old buffer we got from btrfs_search_old_slot to the level of the current
root node. We'd better compare it to the level of the rewinded root node.

Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
2012-10-24 12:36:38 +02:00
Jan Schmidt 834328a849 Btrfs: tree mod log's old roots could still be part of the tree
Tree mod log treated old root buffers as always empty buffers when starting
the rewind operations. However, the old root may still be part of the
current tree at a lower level, with still some valid entries.

Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
2012-10-24 12:36:37 +02:00
Jan Schmidt ba1bfbd592 Btrfs: fix a tree mod logging issue for root replacement operations
Avoid the implicit free by tree_mod_log_set_root_pointer, which is wrong in
two places. Where needed, we call tree_mod_log_free_eb explicitly now.

Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
2012-10-23 15:09:14 +02:00
Jan Schmidt 57911b8ba8 Btrfs: don't put removals from push_node_left into tree mod log twice
Independant of the check (push_items < src_items) tree_mod_log_eb_copy did
log the removal of the old data entries from the source buffer. Therefore,
we must not call tree_mod_log_eb_move if the check evaluates to true, as
that would log the removal twice, finally resulting in (rewinded) buffers
with wrong values for header_nritems.

Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
2012-10-23 15:09:11 +02:00
Robin Dong 8d1a1317af btrfs: remove unused function btrfs_insert_some_items()
The function btrfs_insert_some_items() would not be called by any other functions,
so remove it.

Signed-off-by: Robin Dong <sanbai@taobao.com>
2012-10-09 09:15:43 -04:00
Chris Mason 74dd17fbe3 Btrfs: fix btrfs send for inline items and compression
The btrfs send code was assuming the offset of the file item into the
extent translated to bytes on disk.  If we're compressed, this isn't
true, and so it was off into extents owned by other files.

It was also improperly handling inline extents.  This solves a crash
where we may have gone past the end of the file extent item by not
testing early enough for an inline extent.  It also solves problems
where we have a whole between the end of the inline item and the start
of the full extent.

Signed-off-by: Chris Mason <chris.mason@fusionio.com>
2012-10-01 15:19:00 -04:00
Chris Mason b12a3b1ea2 Btrfs: don't run __tree_mod_log_free_eb on leaves
When we split a leaf, we may end up inserting a new root on top of that
leaf.  The reflog code was incorrectly assuming the old root was always
a node.  This makes sure we skip over leaves.

Signed-off-by: Chris Mason <chris.mason@fusionio.com>
2012-08-28 16:53:34 -04:00
Arne Jansen 1fa11e265f Btrfs: fix deadlock in wait_for_more_refs
Commit a168650c introduced a waiting mechanism to prevent busy waiting in
btrfs_run_delayed_refs. This can deadlock with btrfs_run_ordered_operations,
where a tree_mod_seq is held while waiting for the io to complete, while
the end_io calls btrfs_run_delayed_refs.
This whole mechanism is unnecessary. If not enough runnable refs are
available to satisfy count, just return as count is more like a guideline
than a strict requirement.
In case we have to run all refs, commit transaction makes sure that no
other threads are working in the transaction anymore, so we just assert
here that no refs are blocked.

Signed-off-by: Arne Jansen <sensille@gmx.net>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
2012-08-28 16:53:32 -04:00
Chris Mason 113c1cb530 Merge branch 'send-v2' of git://github.com/ablock84/linux-btrfs into for-linus
This is the kernel portion of btrfs send/receive

Conflicts:
	fs/btrfs/Makefile
	fs/btrfs/backref.h
	fs/btrfs/ctree.c
	fs/btrfs/ioctl.c
	fs/btrfs/ioctl.h

Signed-off-by: Chris Mason <chris.mason@fusionio.com>
2012-07-25 19:19:10 -04:00
Alexander Block 7069830a9e Btrfs: add btrfs_compare_trees function
This function is used to find the differences between
two trees. The tree compare skips whole subtrees if it
detects shared tree blocks and thus is pretty fast.

Signed-off-by: Alexander Block <ablock84@googlemail.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Reviewed-by: Arne Jansen <sensille@gmx.net>
Reviewed-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
Reviewed-by: Alex Lyakas <alex.bolshoy.btrfs@gmail.com>
2012-07-25 23:30:14 +02:00
Arne Jansen e679376911 Btrfs: add helper for tree enumeration
Often no exact match is wanted but just the next lower or
higher item. There's a lot of duplicated code throughout
btrfs to deal with the corner cases. This patch adds a
helper function that can facilitate searching.

Signed-off-by: Arne Jansen <sensille@gmx.net>
2012-07-25 17:33:18 +02:00
Arne Jansen 2f38b3e190 Btrfs: add helper for tree enumeration
Often no exact match is wanted but just the next lower or
higher item. There's a lot of duplicated code throughout
btrfs to deal with the corner cases. This patch adds a
helper function that can facilitate searching.

Signed-off-by: Arne Jansen <sensille@gmx.net>
2012-07-10 15:14:42 +02:00
Jan Schmidt 097b8a7c9e Btrfs: join tree mod log code with the code holding back delayed refs
We've got two mechanisms both required for reliable backref resolving (tree
mod log and holding back delayed refs). You cannot make use of one without
the other. So instead of requiring the user of this mechanism to setup both
correctly, we join them into a single interface.

Additionally, we stop inserting non-blockers into fs_info->tree_mod_seq_list
as we did before, which was of no value.

Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
2012-07-10 15:14:41 +02:00
Jan Schmidt cf5388307a Btrfs: fix buffer leak in btrfs_next_old_leaf
When calling btrfs_next_old_leaf, we were leaking an extent buffer in the
rare case of using the deadlock avoidance code needed for the tree mod log.

Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
2012-07-10 15:14:41 +02:00
Jan Schmidt d42244a0d3 Btrfs: resolve tree mod log locking issue in btrfs_next_leaf
With the tree mod log, we may end up with two roots (the current root and a
rewinded version of it) both pointing to two leaves, l1 and l2, of which l2
had already been cow-ed in the current transaction. If we don't rewind any
tree blocks, we cannot have two roots both pointing to an already cowed tree
block.

Now there is btrfs_next_leaf, which has a leaf locked and wants a lock on
the next (right) leaf. And there is push_leaf_left, which has a (cowed!)
leaf locked and wants a lock on the previous (left) leaf.

In order to solve this dead lock situation, we use try_lock in
btrfs_next_leaf (only in case it's called with a tree mod log time_seq
paramter) and if we fail to get a lock on the next leaf, we give up our lock
on the current leaf and retry from the very beginning.

Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
2012-06-27 16:34:40 +02:00
Jan Schmidt 19956c7e94 Btrfs: fix tree mod log rewind of ADD operations
When a MOD_LOG_KEY_ADD operation is rewinded, we remove the key from the
tree block. If its not the last key, removal involves a move operation.
This move operation was explicitly done before this commit.

However, at insertion time, there's a move operation before the actual
addition to make room for the new key, which is recorded in the tree mod
log as well. This means, we must drop the move operation when rewinding the
add operation, because the next operation we'll be rewinding will be the
corresponding MOD_LOG_MOVE_KEYS operation.

Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
2012-06-27 16:34:40 +02:00
Jan Schmidt c3e0696523 Btrfs: always put insert_ptr modifications into the tree mod log
Several callers of insert_ptr set the tree_mod_log parameter to 0 to avoid
addition to the tree mod log. In fact, we need all of those operations. This
commit simply removes the additional parameter and makes addition to the
tree mod log unconditional.

Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
2012-06-27 16:34:39 +02:00
Jan Schmidt 28da9fb446 Btrfs: fix tree mod log for root replacements at leaf level
For the tree mod log, we don't log any operations at leaf level. If the root
is at the leaf level (i.e. the tree consists only of the root), then
__tree_mod_log_oldest_root will find a ROOT_REPLACE operation in the log
(because we always log that one no matter which level), but no other
operations.

With this patch __tree_mod_log_oldest_root exits cleanly instead of
BUGging in this situation. get_old_root checks if its really a root at leaf
level in case we don't have any operations and WARNs if this assumption
breaks.

Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
2012-06-27 16:34:38 +02:00
Chris Mason 4325edd078 Btrfs: init old_generation in get_old_root
gcc was giving an uninit variable warning here.  Strictly
speaking we don't need to init it, but this will make things
much less error prone.

Signed-off-by: Chris Mason <chris.mason@fusionio.com>
2012-06-15 20:06:54 -04:00
Jan Schmidt 3310c36eef Btrfs: fix race in tree mod log addition
When adding to the tree modification log, we grab two locks at different
stages. We must not drop the outer lock until we're done with section
protected by the inner lock. This moves the unlock call for the outer lock
to the appropriate position.

Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
2012-06-14 18:52:39 +02:00
Jan Schmidt 3d7806eca4 Btrfs: add btrfs_next_old_leaf
To make sense of the tree mod log, the backref walker not only needs
btrfs_search_old_slot, but it also called btrfs_next_leaf, which in turn was
calling btrfs_search_slot. This obviously didn't give the correct result.

This commit adds btrfs_next_old_leaf, a drop-in replacement for
btrfs_next_leaf with a time_seq parameter. If it is zero, it behaves exactly
like btrfs_next_leaf. If it is non-zero, it will use btrfs_search_old_slot
with this time_seq parameter.

Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
2012-06-14 18:52:09 +02:00
Jan Schmidt a95236d99f Btrfs: fix return value for __tree_mod_log_oldest_root
In __tree_mod_log_oldest_root() we must return the found operation even if
it's not a ROOT_REPLACE operation. Otherwise, the caller assumes that there
are no operations to be rewinded and returns immediately.

The code in the caller is modified to improve readability.

Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
2012-06-14 18:44:22 +02:00
Jan Schmidt 8ba97a15e7 Btrfs: use btrfs_read_lock_root_node in get_old_root
get_old_root could race with root node updates because we weren't locking
the node early enough. Use btrfs_read_lock_root_node to grab the root locked
in the very beginning and release the lock as soon as possible (just like
btrfs_search_slot does).

Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
2012-06-14 18:44:21 +02:00
Jan Schmidt 4d5a0565ce Btrfs: remove call to btrfs_header_nritems with no effect
This is a leftover from cleanup patch 559af821. Before the cleanup,
btrfs_header_nritems was called inside an if condition. As it has no side
effects we need to preserve here, it should simply be dropped.

Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
2012-06-04 14:35:29 +02:00
Chris Mason 1e20932a23 Merge branch 'for-chris' of git://git.jan-o-sch.net/btrfs-unstable into for-linus
Conflicts:
	fs/btrfs/ulist.h

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2012-05-31 16:49:53 -04:00
Jan Schmidt c31931088f Btrfs: fix tree mod log rewinded level and rewinding of moved keys
When we rewind REMOVE_WHILE_FREEING operations, there's code that allocates
a fresh buffer instead of cloning the old one. Setting that buffer's level
correctly was missing in this case.

When rewinding a MOVE_KEYS operation, btrfs_node_key_ptr_offset(slot) was
missing for memmove_extent_buffer()'s arguments.

Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
2012-05-31 19:56:19 +02:00
Jan Schmidt f395694c2c Btrfs: fix tree mod log del_ptr
Logging for del_ptr when we're not deleting the last pointer was wrong. This
fixes both, duplicate log entries and log sequence.

Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
2012-05-31 19:56:19 +02:00
Jan Schmidt e9b7fd4d8b Btrfs: add tree_mod_dont_log helper
Replace duplicate code by small inline helper function.

Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
2012-05-31 19:56:18 +02:00
Jan Schmidt 926dd8a640 Btrfs: add missing spin_lock for insertion into tree mod log
tree_mod_alloc calls __get_tree_mod_seq and must acquire a spinlock before
doing so.

Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
2012-05-31 19:56:18 +02:00
Tsutomu Itoh 018642a1f1 Btrfs: return value of btrfs_read_buffer is checked correctly
btrfs_read_buffer() has the possibility of returning the error.
Therefore, I add the code in which the return value of btrfs_read_buffer()
is checked.

Signed-off-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
2012-05-30 10:23:41 -04:00
Jan Schmidt 5d9e75c41d Btrfs: add btrfs_search_old_slot
The tree modification log together with the current state of the tree gives
a consistent, old version of the tree. btrfs_search_old_slot is used to
search through this old version and return old (dummy!) extent buffers.
Naturally, this function cannot do any tree modifications.

Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
2012-05-30 15:17:33 +02:00
Jan Schmidt f3ea38da3e Btrfs: add del_ptr and insert_ptr modifications to the tree mod log
Record all relevant modifications to block pointers in the tree mod log so
that we can rewind them later on for backref walking.

Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
2012-05-30 15:17:32 +02:00
Jan Schmidt f230475e62 Btrfs: put all block modifications into the tree mod log
When running functions that can make changes to the internal trees
(e.g. btrfs_search_slot), we check if somebody may be interested in the
block we're currently modifying. If so, we record our modification to be
able to rewind it later on.

Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
2012-05-30 15:17:29 +02:00
Jan Schmidt bd989ba359 Btrfs: add tree modification log functions
The tree mod log will log modifications made fs-tree nodes. Most
modifications are done by autobalance of the tree. Such changes are recorded
as long as a block entry exists. When released, the log is cleaned.

With the tree modification log, it's possible to reconstruct a consistent
old state of the tree. This is required to do backref walking on a busy
file system.

Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
2012-05-30 15:17:01 +02:00
Jan Schmidt 5581a51a59 Btrfs: don't set for_cow parameter for tree block functions
Three callers of btrfs_free_tree_block or btrfs_alloc_tree_block passed
parameter for_cow = 1. In fact, these two functions should never mark
their tree modification operations as for_cow, because they can change
the number of blocks referenced by a tree.

Hence, we remove the extra for_cow parameter from these functions and
make them pass a zero down.

Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
2012-05-26 12:17:53 +02:00
Wang Sheng-Hui f775738f6f btrfs/ctree.c: remove the unnecessary 'return -1;' at the end of bin_search
The code path should not reach there. Remove it.

Signed-off-by: Wang Sheng-Hui <shhuiw@gmail.com>
2012-05-11 10:56:37 -04:00
Chris Mason b9fab919b7 Btrfs: avoid sleeping in verify_parent_transid while atomic
verify_parent_transid needs to lock the extent range to make
sure no IO is underway, and so it can safely clear the
uptodate bits if our checks fail.

But, a few callers are using it with spinlocks held.  Most
of the time, the generation numbers are going to match, and
we don't want to switch to a blocking lock just for the error
case.  This adds an atomic flag to verify_parent_transid,
and changes it to return EAGAIN if it needs to block to
properly verifiy things.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2012-05-06 07:23:47 -04:00
Chris Mason e5846fc665 Btrfs: Add properly locking around add_root_to_dirty_list
add_root_to_dirty_list happens once at the very beginning of the
transaction, but it is still racey.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2012-05-04 15:14:11 -04:00
Chris Mason 1d4284bd6e Merge branch 'error-handling' into for-linus
Conflicts:
	fs/btrfs/ctree.c
	fs/btrfs/disk-io.c
	fs/btrfs/extent-tree.c
	fs/btrfs/extent_io.c
	fs/btrfs/extent_io.h
	fs/btrfs/inode.c
	fs/btrfs/scrub.c

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2012-03-28 20:31:37 -04:00
Chris Mason f7c79f30cb Btrfs: adjust the write_lock_level as we unlock
btrfs_search_slot sometimes needs write locks on high levels of
the tree.  It remembers the highest level that needs a write lock
and will use that for all future searches through the tree in a given
call.

But, very often we'll just cow the top level or the level below and we
won't really need write locks on the root again after that.  This patch
changes things to adjust the write lock requirement as it unlocks
levels.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2012-03-26 17:04:24 -04:00
Chris Mason cfed81a04e Btrfs: add the ability to cache a pointer into the eb
This cuts down on the CPU time used by map_private_extent_buffer

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2012-03-26 17:04:23 -04:00
Josef Bacik 3083ee2e18 Btrfs: introduce free_extent_buffer_stale
Because btrfs cow's we can end up with extent buffers that are no longer
necessary just sitting around in memory.  So instead of evicting these pages, we
could end up evicting things we actually care about.  Thus we have
free_extent_buffer_stale for use when we are freeing tree blocks.  This will
make it so that the ref for the eb being in the radix tree is dropped as soon as
possible and then is freed when the refcount hits 0 instead of waiting to be
released by releasepage.  Thanks,

Signed-off-by: Josef Bacik <josef@redhat.com>
2012-03-26 16:51:08 -04:00
Jeff Mahoney 79787eaab4 btrfs: replace many BUG_ONs with proper error handling
btrfs currently handles most errors with BUG_ON. This patch is a work-in-
 progress but aims to handle most errors other than internal logic
 errors and ENOMEM more gracefully.

 This iteration prevents most crashes but can run into lockups with
 the page lock on occasion when the timing "works out."

Signed-off-by: Jeff Mahoney <jeffm@suse.com>
2012-03-22 11:52:54 +01:00
Mark Fasheh 305a26af5b btrfs: Go readonly on tree errors in balance_level
balace_level() seems to deal with missing tree nodes by BUG_ON(). Instead,
we can easily just set the file system readonly and bubble -EROFS back up
the stack.

Signed-off-by: Mark Fasheh <mfasheh@suse.com>
2012-03-22 01:45:38 +01:00
Mark Fasheh b68dc2a93e btrfs: Don't BUG_ON errors from update_ref_for_cow()
__btrfs_cow_block(), the only caller of update_ref_for_cow() will BUG_ON()
any error return.  Instead, we can go read-only fs as update_ref_for_cow()
manipulates disk data in a way which doesn't look like it's easily rolled
back.

Signed-off-by: Mark Fasheh <mfasheh@suse.de>
2012-03-22 01:45:38 +01:00
Mark Fasheh e5df957328 btrfs: Go readonly on bad extent refs in update_ref_for_cow()
update_ref_for_cow() will BUG_ON() after it's call to
btrfs_lookup_extent_info() if no existing references are found.  Since refs
are computed directly from disk, this should be treated as a corruption
instead of a logic error.

Signed-off-by: Mark Fasheh <mfasheh@suse.de>
2012-03-22 01:45:37 +01:00
Mark Fasheh be1a5564fd btrfs: Don't BUG_ON() errors in update_ref_for_cow()
The only caller of update_ref_for_cow() is __btrfs_cow_block() which was
originally ignoring any return values. update_ref_for_cow() however doesn't
look like a candidate to become a void function - there are a few places
where errors can occur.

So instead I changed update_ref_for_cow() to bubble all errors up (instead
of BUG_ON). __btrfs_cow_block() was then updated to catch and BUG_ON() any
errors from update_ref_for_cow(). The end effect is that we have no change
in behavior, but about 8 different places where a BUG_ON(ret) was removed.

Obviously a future patch will have to address the BUG_ON() in
__btrfs_cow_block().

Signed-off-by: Mark Fasheh <mfasheh@suse.de>
2012-03-22 01:45:36 +01:00
Jeff Mahoney 143bede527 btrfs: return void in functions without error conditions
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
2012-03-22 01:45:34 +01:00
Arne Jansen 66d7e7f09f Btrfs: mark delayed refs as for cow
Add a for_cow parameter to add_delayed_*_ref and pass the appropriate value
from every call site. The for_cow parameter will later on be used to
determine if a ref will change anything with respect to qgroups.

Delayed refs coming from relocation are always counted as for_cow, as they
don't change subvol quota.

Also pass in the fs_info for later use.

btrfs_find_all_roots() will use this as an optimization, as changes that are
for_cow will not change anything with respect to which root points to a
certain leaf. Thus, we don't need to add the current sequence number to
those delayed refs.

Signed-off-by: Arne Jansen <sensille@gmx.net>
Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
2011-12-22 16:22:27 +01:00
Liu Bo f1ebcc74d5 Btrfs: fix tree corruption after multi-thread snapshots and inode_cache flush
The btrfs snapshotting code requires that once a root has been
snapshotted, we don't change it during a commit.

But there are two cases to lead to tree corruptions:

1) multi-thread snapshots can commit serveral snapshots in a transaction,
   and this may change the src root when processing the following pending
   snapshots, which lead to the former snapshots corruptions;

2) the free inode cache was changing the roots when it root the cache,
   which lead to corruptions.

This fixes things by making sure we force COW the block after we create a
snapshot during commiting a transaction, then any changes to the roots
will result in COW, and we get all the fs roots and snapshot roots to be
consistent.

Signed-off-by: Liu Bo <liubo2009@cn.fujitsu.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-11-15 09:53:28 -05:00
Li Zefan a05a9bb18a Btrfs: fix array bound checking
Otherwise we can execced the array bound of path->slots[].

Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
2011-10-20 18:10:41 +02:00
Chris Mason 31533fb263 Btrfs: remove lockdep magic from btrfs_next_leaf
Before the reader/writer locks, btrfs_next_leaf needed to keep
the path blocking to avoid making lockdep upset.

Now that btrfs_next_leaf only takes read locks, this isn't required.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-07-27 12:46:47 -04:00
Chris Mason bd681513fa Btrfs: switch the btrfs tree locks to reader/writer
The btrfs metadata btree is the source of significant
lock contention, especially in the root node.   This
commit changes our locking to use a reader/writer
lock.

The lock is built on top of rw spinlocks, and it
extends the lock tracking to remember if we have a
read lock or a write lock when we go to blocking.  Atomics
count the number of blocking readers or writers at any
given time.

It removes all of the adaptive spinning from the old code
and uses only the spinning/blocking hints inside of btrfs
to decide when it should continue spinning.

In read heavy workloads this is dramatically faster.  In write
heavy workloads we're still faster because of less contention
on the root node lock.

We suffer slightly in dbench because we schedule more often
during write locks, but all other benchmarks so far are improved.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-07-27 12:46:46 -04:00
Chris Mason a65917156e Btrfs: stop using highmem for extent_buffers
The extent_buffers have a very complex interface where
we use HIGHMEM for metadata and try to cache a kmap mapping
to access the memory.

The next commit adds reader/writer locks, and concurrent use
of this kmap cache would make it even more complex.

This commit drops the ability to use HIGHMEM with extent buffers,
and rips out all of the related code.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-07-27 12:46:45 -04:00
Josef Bacik 25b8b936ed Btrfs: don't map extent buffer if path->skip_locking is set
Arne's scrub stuff exposed a problem with mapping the extent buffer in
reada_for_search.  He searches the commit root with multiple threads and with
skip_locking set, so we can race and overwrite node->map_token since node isn't
locked.  So fix this so that we only map the extent buffer if we don't already
have a map_token and skip_locking isn't set.  Without this patch scrub would
panic almost immediately, with the patch it doesn't panic anymore.  Thanks,

Reported-by: Arne Jansen <sensille@gmx.net>
Signed-off-by: Josef Bacik <josef@redhat.com>
2011-06-09 10:12:07 -04:00
Chris Mason ff5714cca9 Merge branch 'for-chris' of
git://git.kernel.org/pub/scm/linux/kernel/git/josef/btrfs-work into for-linus

Conflicts:
	fs/btrfs/disk-io.c
	fs/btrfs/extent-tree.c
	fs/btrfs/free-space-cache.c
	fs/btrfs/inode.c
	fs/btrfs/transaction.c

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-05-28 07:00:39 -04:00
Chris Mason d6c0cb379c Merge branch 'cleanups_and_fixes' into inode_numbers
Conflicts:
	fs/btrfs/tree-log.c
	fs/btrfs/volumes.c

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-05-23 14:37:47 -04:00
Tsutomu Itoh 1cd307990d Btrfs: BUG_ON is deleted from the caller of btrfs_truncate_item & btrfs_extend_item
Currently, btrfs_truncate_item and btrfs_extend_item returns only 0.
So, the check by BUG_ON in the caller is unnecessary.

Signed-off-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-05-23 13:24:39 -04:00
Josef Bacik 026fd31782 Btrfs: don't always do readahead
Our readahead is sort of sloppy, and really isn't always needed.  For example if
ls is doing a stating ls (which is the default) it's going to stat in non-disk
order, so if say you have a directory with a stupid amount of files, readahead
is going to do nothing but waste time in the case of doing the stat.  Taking the
unconditional readahead out made my test go from 57 minutes to 36 minutes.  This
means that everywhere we do loop through the tree we want to make sure we do set
path->reada properly, so I went through and found all of the places where we
loop through the path and set reada to 1.  Thanks,

Signed-off-by: Josef Bacik <josef@redhat.com>
2011-05-23 13:03:14 -04:00
Josef Bacik 7e2355ba1a Btrfs: don't look at the extent buffer level 3 times in a row
We have a bit of debugging in btrfs_search_slot to make sure the level of the
cow block is the same as the original block we were cow'ing.  I don't think I've
ever seen this tripped, so kill it.  This saves us 2 kmap's per level in our
search.  Thanks,

Signed-off-by: Josef Bacik <josef@redhat.com>
2011-05-23 13:03:11 -04:00
Josef Bacik cb25c2ea6a Btrfs: map the node block when looking for readahead targets
If we have particularly full nodes, we could call btrfs_node_blockptr up to 32
times, which is 32 pairs of kmap/kunmap, which _sucks_.  So go ahead and map the
extent buffer while we look for readahead targets.  Thanks,

Signed-off-by: Josef Bacik <josef@redhat.com>
2011-05-23 13:03:10 -04:00
Chris Mason 945d8962ce Merge branch 'cleanups' of git://repo.or.cz/linux-2.6/btrfs-unstable into inode_numbers
Conflicts:
	fs/btrfs/extent-tree.c
	fs/btrfs/free-space-cache.c
	fs/btrfs/inode.c
	fs/btrfs/tree-log.c

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-05-22 12:33:42 -04:00
Miao Xie 16cdcec736 btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
  root's radix tree, and letting btrfs inodes go.

Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
  Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
  Itaru Kitayama.

Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
  inode in time.

Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
  balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason

Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
  which is created for every directory and file, and used to manage the
  delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.

Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.

If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.

Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
  manage the delayed nodes which are created for every file/directory.
  One is used to manage all the delayed nodes that have delayed items. And the
  other is used to manage the delayed nodes which is waiting to be dealt with
  by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
  index which is going to be inserted into b+ tree, and the other is used to
  manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
  to deal with the works of the delayed directory name index items insertion
  and deletion and the delayed inode update.
  When the delayed items is beyond the lower limit, we create works for some
  delayed nodes and insert them into the work queue of the worker, and then
  go back.
  When the delayed items is beyond the upper bound, we create works for all
  the delayed nodes that haven't been dealt with, and insert them into the work
  queue of the worker, and then wait for that the untreated items is below some
  threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
  information into the delayed inserting rb-tree.
  And then we check the number of the delayed items and do delayed items
  balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
  in the inserting rb-tree at first. If we look it up, just drop it. If not,
  add the key of it into the delayed deleting rb-tree.
  Similar to the delayed inserting rb-tree, we also check the number of the
  delayed items and do delayed items balance.
  (The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
  inode into the delayed node. the worker will flush it into the b+ tree after
  dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
  delayed node, By this way, we can cache more delayed items and merge more
  inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
  and the delayed inode update.

I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.

Before applying this patch:
Create files:
        Total files: 50000
        Total time: 1.096108
        Average time: 0.000022
Delete files:
        Total files: 50000
        Total time: 1.510403
        Average time: 0.000030

After applying this patch:
Create files:
        Total files: 50000
        Total time: 0.932899
        Average time: 0.000019
Delete files:
        Total files: 50000
        Total time: 1.215732
        Average time: 0.000024

[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3

Many thanks for Kitayama-san's help!

Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-05-21 09:30:56 -04:00
David Sterba b3b4aa74b5 btrfs: drop unused parameter from btrfs_release_path
parameter tree root it's not used since commit
5f39d397df ("Btrfs: Create extent_buffer
interface for large blocksizes")

Signed-off-by: David Sterba <dsterba@suse.cz>
2011-05-02 13:57:22 +02:00
David Sterba 62a45b6092 btrfs: make functions static when possible
Signed-off-by: David Sterba <dsterba@suse.cz>
2011-05-02 13:57:20 +02:00
David Sterba edc95aec57 btrfs: remove nested duplicate variable declarations
Signed-off-by: David Sterba <dsterba@suse.cz>
2011-05-02 13:57:19 +02:00
Tsutomu Itoh 97d9a8a420 Btrfs: check return value of read_tree_block()
This patch is checking return value of read_tree_block(),
and if it is NULL, error processing.

Signed-off-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-03-28 05:37:37 -04:00
Tsutomu Itoh db5b493ac7 Btrfs: cleanup some BUG_ON()
This patch changes some BUG_ON() to the error return.
(but, most callers still use BUG_ON())

Signed-off-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-03-28 05:37:35 -04:00
liubo 1abe9b8a13 Btrfs: add initial tracepoint support for btrfs
Tracepoints can provide insight into why btrfs hits bugs and be greatly
helpful for debugging, e.g
              dd-7822  [000]  2121.641088: btrfs_inode_request: root = 5(FS_TREE), gen = 4, ino = 256, blocks = 8, disk_i_size = 0, last_trans = 8, logged_trans = 0
              dd-7822  [000]  2121.641100: btrfs_inode_new: root = 5(FS_TREE), gen = 8, ino = 257, blocks = 0, disk_i_size = 0, last_trans = 0, logged_trans = 0
 btrfs-transacti-7804  [001]  2146.935420: btrfs_cow_block: root = 2(EXTENT_TREE), refs = 2, orig_buf = 29368320 (orig_level = 0), cow_buf = 29388800 (cow_level = 0)
 btrfs-transacti-7804  [001]  2146.935473: btrfs_cow_block: root = 1(ROOT_TREE), refs = 2, orig_buf = 29364224 (orig_level = 0), cow_buf = 29392896 (cow_level = 0)
 btrfs-transacti-7804  [001]  2146.972221: btrfs_transaction_commit: root = 1(ROOT_TREE), gen = 8
   flush-btrfs-2-7821  [001]  2155.824210: btrfs_chunk_alloc: root = 3(CHUNK_TREE), offset = 1103101952, size = 1073741824, num_stripes = 1, sub_stripes = 0, type = DATA
   flush-btrfs-2-7821  [001]  2155.824241: btrfs_cow_block: root = 2(EXTENT_TREE), refs = 2, orig_buf = 29388800 (orig_level = 0), cow_buf = 29396992 (cow_level = 0)
   flush-btrfs-2-7821  [001]  2155.824255: btrfs_cow_block: root = 4(DEV_TREE), refs = 2, orig_buf = 29372416 (orig_level = 0), cow_buf = 29401088 (cow_level = 0)
   flush-btrfs-2-7821  [000]  2155.824329: btrfs_cow_block: root = 3(CHUNK_TREE), refs = 2, orig_buf = 20971520 (orig_level = 0), cow_buf = 20975616 (cow_level = 0)
 btrfs-endio-wri-7800  [001]  2155.898019: btrfs_cow_block: root = 5(FS_TREE), refs = 2, orig_buf = 29384704 (orig_level = 0), cow_buf = 29405184 (cow_level = 0)
 btrfs-endio-wri-7800  [001]  2155.898043: btrfs_cow_block: root = 7(CSUM_TREE), refs = 2, orig_buf = 29376512 (orig_level = 0), cow_buf = 29409280 (cow_level = 0)

Here is what I have added:

1) ordere_extent:
        btrfs_ordered_extent_add
        btrfs_ordered_extent_remove
        btrfs_ordered_extent_start
        btrfs_ordered_extent_put

These provide critical information to understand how ordered_extents are
updated.

2) extent_map:
        btrfs_get_extent

extent_map is used in both read and write cases, and it is useful for tracking
how btrfs specific IO is running.

3) writepage:
        __extent_writepage
        btrfs_writepage_end_io_hook

Pages are cirtical resourses and produce a lot of corner cases during writeback,
so it is valuable to know how page is written to disk.

4) inode:
        btrfs_inode_new
        btrfs_inode_request
        btrfs_inode_evict

These can show where and when a inode is created, when a inode is evicted.

5) sync:
        btrfs_sync_file
        btrfs_sync_fs

These show sync arguments.

6) transaction:
        btrfs_transaction_commit

In transaction based filesystem, it will be useful to know the generation and
who does commit.

7) back reference and cow:
	btrfs_delayed_tree_ref
	btrfs_delayed_data_ref
	btrfs_delayed_ref_head
	btrfs_cow_block

Btrfs natively supports back references, these tracepoints are helpful on
understanding btrfs's COW mechanism.

8) chunk:
	btrfs_chunk_alloc
	btrfs_chunk_free

Chunk is a link between physical offset and logical offset, and stands for space
infomation in btrfs, and these are helpful on tracing space things.

9) reserved_extent:
	btrfs_reserved_extent_alloc
	btrfs_reserved_extent_free

These can show how btrfs uses its space.

Signed-off-by: Liu Bo <liubo2009@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-03-28 05:37:33 -04:00
Chris Mason 240f62c875 Btrfs: use RCU instead of a spinlock to protect the root node
The pointer to the extent buffer for the root of each tree
is protected by a spinlock so that we can safely read the pointer
and take a reference on the extent buffer.

But now that the extent buffers are freed via RCU, we can safely
use rcu_read_lock instead.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-03-28 05:37:22 -04:00
Josef Bacik a826d6dcb3 Btrfs: check items for correctness as we search
Currently if we have corrupted items things will blow up in spectacular ways.
So as we read in blocks and they are leaves, check the entire leaf to make sure
all of the items are correct and point to valid parts in the leaf for the item
data the are responsible for.  If the item is corrupt we will kick back EIO and
not read any of the copies since they are likely to not be correct either.  This
will catch generic corruptions, it will be up to the individual callers of
btrfs_search_slot to make sure their items are right.  Thanks,

Signed-off-by: Josef Bacik <josef@redhat.com>
2011-03-17 14:21:37 -04:00
Tsutomu Itoh 91ca338d77 btrfs: check NULL or not
Should check if functions returns NULL or not.

Signed-off-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-01-16 11:30:20 -05:00
Jesper Juhl ff175d57f0 btrfs: Don't pass NULL ptr to func that may deref it.
Hi,

In fs/btrfs/inode.c::fixup_tree_root_location() we have this code:

...
 		if (!path) {
 			err = -ENOMEM;
 			goto out;
 		}
...
 	out:
 		btrfs_free_path(path);
 		return err;

btrfs_free_path() passes its argument on to other functions and some of
them end up dereferencing the pointer.
In the code above that pointer is clearly NULL, so btrfs_free_path() will
eventually cause a NULL dereference.

There are many ways to cut this cake (fix the bug). The one I chose was to
make btrfs_free_path() deal gracefully with NULL pointers. If you
disagree, feel free to come up with an alternative patch.

Signed-off-by: Jesper Juhl <jj@chaosbits.net>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-01-16 11:30:20 -05:00
Andi Kleen 559af82114 Btrfs: cleanup warnings from gcc 4.6 (nonbugs)
These are all the cases where a variable is set, but not read which are
not bugs as far as I can see, but simply leftovers.

Still needs more review.

Found by gcc 4.6's new warnings

Signed-off-by: Andi Kleen <ak@linux.intel.com>
Cc: Chris Mason <chris.mason@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2010-10-29 15:14:37 -04:00
Chris Mason cb44921a09 Btrfs: don't loop forever on bad btree blocks
When btrfs discovers the generation number in a btree block is
incorrect, it can loop forever without forcing the RAID
code to try a valid mirror, and without returning EIO.

This changes things to properly kick out the EIO.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2010-10-29 09:31:30 -04:00
Chris Mason 99d8f83c98 Btrfs: fix split_leaf double split corner case
split_leaf was not properly balancing leaves when it was forced to
split a leaf twice.  This commit adds an extra push left and right
before forcing the double split in hopes of getting the slot where
we want to insert at either the start or end of the leaf.

If the extra pushes do work, then we are able to avoid splitting twice
and we keep the tree properly balanced.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2010-07-19 16:14:50 -04:00
Yan, Zheng 5bdd3536cb Btrfs: Fix block generation verification race
After the path is released, the generation number got from block
pointer is no long valid. The race may cause disk corruption, because
verify_parent_transid() calls clear_extent_buffer_uptodate() when
generation numbers mismatch.

Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2010-05-26 21:35:33 -04:00
Yan, Zheng 3fd0a5585e Btrfs: Metadata ENOSPC handling for balance
This patch adds metadata ENOSPC handling for the balance code.
It is consisted by following major changes:

1. Avoid COW tree leave in the phrase of merging tree.

2. Handle interaction with snapshot creation.

3. make the backref cache can live across transactions.

Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2010-05-25 10:34:54 -04:00
Yan, Zheng f0486c68e4 Btrfs: Introduce contexts for metadata reservation
Introducing metadata reseravtion contexts has two major advantages.
First, it makes metadata reseravtion more traceable. Second, it can
reclaim freed space and re-add them to the itself after transaction
committed.

Besides add btrfs_block_rsv structure and related helper functions,
This patch contains following changes:

Move code that decides if freed tree block should be pinned into
btrfs_free_tree_block().

Make space accounting more accurate, mainly for handling read only
block groups.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2010-05-25 10:34:50 -04:00
Linus Torvalds 795d580bae Merge git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable
* git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable:
  Btrfs: add check for changed leaves in setup_leaf_for_split
  Btrfs: create snapshot references in same commit as snapshot
  Btrfs: fix small race with delalloc flushing waitqueue's
  Btrfs: use add_to_page_cache_lru, use __page_cache_alloc
  Btrfs: fix chunk allocate size calculation
  Btrfs: kill max_extent mount option
  Btrfs: fail to mount if we have problems reading the block groups
  Btrfs: check btrfs_get_extent return for IS_ERR()
  Btrfs: handle kmalloc() failure in inode lookup ioctl
  Btrfs: dereferencing freed memory
  Btrfs: Simplify num_stripes's calculation logical for __btrfs_alloc_chunk()
  Btrfs: Add error handle for btrfs_search_slot() in btrfs_read_chunk_tree()
  Btrfs: Remove unnecessary finish_wait() in wait_current_trans()
  Btrfs: add NULL check for do_walk_down()
  Btrfs: remove duplicate include in ioctl.c

Fix trivial conflict in fs/btrfs/compression.c due to slab.h include
cleanups.
2010-04-05 13:21:15 -07:00
Chris Mason 109f6aef5f Btrfs: add check for changed leaves in setup_leaf_for_split
setup_leaf_for_split needs to drop the path and search again, and has
checks to see if the item we want to split changed size.  But, it misses
the case where the leaf changed and now has enough room for the item
we want to insert.

This adds an extra check to make sure the leaf really needs splitting
before we call btrfs_split_leaf(), which keeps us from trying to split
a leaf with a single item.

btrfs_split_leaf() will blindly split the single item leaf, leaving us
with one good leaf and one empty leaf and then a crash.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2010-04-05 14:42:01 -04:00
Tejun Heo 5a0e3ad6af include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files.  percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.

percpu.h -> slab.h dependency is about to be removed.  Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability.  As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.

  http://userweb.kernel.org/~tj/misc/slabh-sweep.py

The script does the followings.

* Scan files for gfp and slab usages and update includes such that
  only the necessary includes are there.  ie. if only gfp is used,
  gfp.h, if slab is used, slab.h.

* When the script inserts a new include, it looks at the include
  blocks and try to put the new include such that its order conforms
  to its surrounding.  It's put in the include block which contains
  core kernel includes, in the same order that the rest are ordered -
  alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
  doesn't seem to be any matching order.

* If the script can't find a place to put a new include (mostly
  because the file doesn't have fitting include block), it prints out
  an error message indicating which .h file needs to be added to the
  file.

The conversion was done in the following steps.

1. The initial automatic conversion of all .c files updated slightly
   over 4000 files, deleting around 700 includes and adding ~480 gfp.h
   and ~3000 slab.h inclusions.  The script emitted errors for ~400
   files.

2. Each error was manually checked.  Some didn't need the inclusion,
   some needed manual addition while adding it to implementation .h or
   embedding .c file was more appropriate for others.  This step added
   inclusions to around 150 files.

3. The script was run again and the output was compared to the edits
   from #2 to make sure no file was left behind.

4. Several build tests were done and a couple of problems were fixed.
   e.g. lib/decompress_*.c used malloc/free() wrappers around slab
   APIs requiring slab.h to be added manually.

5. The script was run on all .h files but without automatically
   editing them as sprinkling gfp.h and slab.h inclusions around .h
   files could easily lead to inclusion dependency hell.  Most gfp.h
   inclusion directives were ignored as stuff from gfp.h was usually
   wildly available and often used in preprocessor macros.  Each
   slab.h inclusion directive was examined and added manually as
   necessary.

6. percpu.h was updated not to include slab.h.

7. Build test were done on the following configurations and failures
   were fixed.  CONFIG_GCOV_KERNEL was turned off for all tests (as my
   distributed build env didn't work with gcov compiles) and a few
   more options had to be turned off depending on archs to make things
   build (like ipr on powerpc/64 which failed due to missing writeq).

   * x86 and x86_64 UP and SMP allmodconfig and a custom test config.
   * powerpc and powerpc64 SMP allmodconfig
   * sparc and sparc64 SMP allmodconfig
   * ia64 SMP allmodconfig
   * s390 SMP allmodconfig
   * alpha SMP allmodconfig
   * um on x86_64 SMP allmodconfig

8. percpu.h modifications were reverted so that it could be applied as
   a separate patch and serve as bisection point.

Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.

Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-30 22:02:32 +09:00
Yan, Zheng 86b9f2eca5 Btrfs: Fix per root used space accounting
The bytes_used field in root item was originally planned to
trace the amount of used data and tree blocks. But it never
worked right since we can't trace freeing of data accurately.
This patch changes it to only trace the amount of tree blocks.

Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-12-17 12:33:35 -05:00
Yan, Zheng ad48fd7546 Btrfs: Add btrfs_duplicate_item
btrfs_duplicate_item duplicates item with new key, guaranteeing
the source item and the new items are in the same tree leaf and
contiguous. It allows us to split file extent in place, without
using lock_extent to prevent bookend extent race.

Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-12-15 21:24:25 -05:00
Yan, Zheng a571952143 Btrfs: check size of inode backref before adding hardlink
For every hardlink in btrfs, there is a corresponding inode back
reference. All inode back references for hardlinks in a given
directory are stored in single b-tree item. The size of b-tree item
is limited by the size of b-tree leaf, so we can only create limited
number of hardlinks to a given file in a directory.

The original code lacks of the check, it oops if the number of
hardlinks goes over the limit. This patch fixes the issue by adding
check to btrfs_link and btrfs_rename.

Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-09-24 09:17:31 -04:00
Yan Zheng d717aa1d31 Btrfs: Avoid delayed reference update looping
btrfs_split_leaf and btrfs_del_items can end up in a loop
where one is constantly spliting a given leaf and the other
is constantly merging it back with the adjacent nodes.

There is a better fix for this, but in the interest of something
small, this patch just changes btrfs_del_items back to balancing less
often.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-07-24 12:42:46 -04:00
Yan Zheng 0a4eefbb74 Btrfs: Fix ordering of key field checks in btrfs_previous_item
Check objectid of item before checking the item type, otherwise we may return
zero for a key that is actually too low.

Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-07-24 11:22:47 -04:00
Diego Calleja 20736abaa3 Btrfs: Remove code duplication in comp_keys
comp_keys is duplicating what is done in btrfs_comp_cpu_keys, so just
call it.

Signed-off-by: Diego Calleja <diegocg@gmail.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-07-24 11:22:46 -04:00
Yan Zheng 33c66f430b Btrfs: fix locking issue in btrfs_find_next_key
When walking up the tree, btrfs_find_next_key assumes the upper level tree
block is properly locked. This isn't always true even path->keep_locks is 1.
This is because btrfs_find_next_key may advance path->slots[] several times
instead of only once.

When 'path->slots[level] >= btrfs_header_nritems(path->nodes[level])' is found,
we can't guarantee the original value of 'path->slots[level]' is
'btrfs_header_nritems(path->nodes[level]) - 1'. If it's not, the tree block at
'level + 1' isn't locked.

This patch fixes the issue by explicitly checking the locking state,
re-searching the tree if it's not locked.

Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-07-22 09:59:00 -04:00
Yan Zheng e457afec60 Btrfs: fix double increment of path->slots[0] in btrfs_next_leaf
if 1 is returned by btrfs_search_slot, the path already points to the
first item with 'key > searching key'. So increasing path->slots[0] by
one is superfluous in that case.

Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-07-22 09:59:00 -04:00
Chris Mason cfbb930846 Btrfs: balance btree more often
With the new back reference code, the cost of a balance has gone down
in terms of the number of back reference updates done.  This commit
makes us more aggressively balance leaves and nodes as they become
less full.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 11:29:47 -04:00
Chris Mason b361242102 Btrfs: stop avoiding balancing at the end of the transaction.
When the delayed reference code was added, some checks were added
to avoid extra balancing while the delayed references were being flushed.
This made for less efficient btrees, but it reduced the chances of
loops where no forward progress was made because the balances made
more delayed ref updates.

With the new dead root removal code and the mixed back references,
the extent allocation tree is no longer using precise back refs, and
the delayed reference updates don't carry the risk of looping forever
anymore.  So, the balance avoidance is no longer required.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 11:29:47 -04:00
Yan Zheng 5d4f98a28c Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE)
This commit introduces a new kind of back reference for btrfs metadata.
Once a filesystem has been mounted with this commit, IT WILL NO LONGER
BE MOUNTABLE BY OLDER KERNELS.

When a tree block in subvolume tree is cow'd, the reference counts of all
extents it points to are increased by one.  At transaction commit time,
the old root of the subvolume is recorded in a "dead root" data structure,
and the btree it points to is later walked, dropping reference counts
and freeing any blocks where the reference count goes to 0.

The increments done during cow and decrements done after commit cancel out,
and the walk is a very expensive way to go about freeing the blocks that
are no longer referenced by the new btree root.  This commit reduces the
transaction overhead by avoiding the need for dead root records.

When a non-shared tree block is cow'd, we free the old block at once, and the
new block inherits old block's references. When a tree block with reference
count > 1 is cow'd, we increase the reference counts of all extents
the new block points to by one, and decrease the old block's reference count by
one.

This dead tree avoidance code removes the need to modify the reference
counts of lower level extents when a non-shared tree block is cow'd.
But we still need to update back ref for all pointers in the block.
This is because the location of the block is recorded in the back ref
item.

We can solve this by introducing a new type of back ref. The new
back ref provides information about pointer's key, level and in which
tree the pointer lives. This information allow us to find the pointer
by searching the tree. The shortcoming of the new back ref is that it
only works for pointers in tree blocks referenced by their owner trees.

This is mostly a problem for snapshots, where resolving one of these
fuzzy back references would be O(number_of_snapshots) and quite slow.
The solution used here is to use the fuzzy back references in the common
case where a given tree block is only referenced by one root,
and use the full back references when multiple roots have a reference
on a given block.

This commit adds per subvolume red-black tree to keep trace of cached
inodes. The red-black tree helps the balancing code to find cached
inodes whose inode numbers within a given range.

This commit improves the balancing code by introducing several data
structures to keep the state of balancing. The most important one
is the back ref cache. It caches how the upper level tree blocks are
referenced. This greatly reduce the overhead of checking back ref.

The improved balancing code scales significantly better with a large
number of snapshots.

This is a very large commit and was written in a number of
pieces.  But, they depend heavily on the disk format change and were
squashed together to make sure git bisect didn't end up in a
bad state wrt space balancing or the format change.

Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 11:29:46 -04:00
Chris Mason 76a05b35a3 Btrfs: Don't loop forever on metadata IO failures
When a btrfs metadata read fails, the first thing we try to do is find
a good copy on another mirror of the block.  If this fails, read_tree_block()
ends up returning a buffer that isn't up to date.

The btrfs btree reading code was reworked to drop locks and repeat
the search when IO was done, but the changes didn't add a check for failed
reads.  The end result was looping forever on buffers that were never
going to become up to date.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-05-14 14:00:32 -04:00
Chris Mason 8c594ea81d Btrfs: use the right node in reada_for_balance
reada_for_balance was using the wrong index into the path node array,
so it wasn't reading the right blocks.  We never directly used the
results of the read done by this function because the btree search is
started over at the end.

This fixes reada_for_balance to reada in the correct node and to
avoid searching past the last slot in the node.  It also makes sure to
hold the parent lock while we are finding the nodes to read.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-04-20 15:53:09 -04:00
Stoyan Gaydarov c293498be6 Btrfs: BUG to BUG_ON changes
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-04-02 17:05:11 -04:00
Chris Mason 8e73f27501 Btrfs: Optimize locking in btrfs_next_leaf()
btrfs_next_leaf was using blocking locks when it could have been using
faster spinning ones instead.  This adds a few extra checks around
the pieces that block and switches over to spinning locks.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-04-03 10:14:18 -04:00
Chris Mason c8c42864f6 Btrfs: break up btrfs_search_slot into smaller pieces
btrfs_search_slot was doing too many things at once.  This breaks
it up into more reasonable units.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-04-03 10:14:18 -04:00
Chris Mason a4b6e07d1a Btrfs: limit balancing work while flushing delayed refs
The delayed reference mechanism is responsible for all updates to the
extent allocation trees, including those updates created while processing
the delayed references.

This commit tries to limit the amount of work that gets created during
the final run of delayed refs before a commit.  It avoids cowing new blocks
unless it is required to finish the commit, and so it avoids new allocations
that were not really required.

The goal is to avoid infinite loops where we are always making more work
on the final run of delayed refs.  Over the long term we'll make a
special log for the last delayed ref updates as well.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-03-24 16:14:51 -04:00
Chris Mason b9473439d3 Btrfs: leave btree locks spinning more often
btrfs_mark_buffer dirty would set dirty bits in the extent_io tree
for the buffers it was dirtying.  This may require a kmalloc and it
was not atomic.  So, anyone who called btrfs_mark_buffer_dirty had to
set any btree locks they were holding to blocking first.

This commit changes dirty tracking for extent buffers to just use a flag
in the extent buffer.  Now that we have one and only one extent buffer
per page, this can be safely done without losing dirty bits along the way.

This also introduces a path->leave_spinning flag that callers of
btrfs_search_slot can use to indicate they will properly deal with a
path returned where all the locks are spinning instead of blocking.

Many of the btree search callers now expect spinning paths,
resulting in better btree concurrency overall.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-03-24 16:14:28 -04:00
Chris Mason 44871b1b24 Btrfs: reduce stack usage in some crucial tree balancing functions
Many of the tree balancing functions follow the same pattern.

1) cow a block
2) do something to the result

This commit breaks them up into two functions so the variables and
code required for part two don't suck down stack during part one.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-03-24 16:14:25 -04:00
Chris Mason 56bec294de Btrfs: do extent allocation and reference count updates in the background
The extent allocation tree maintains a reference count and full
back reference information for every extent allocated in the
filesystem.  For subvolume and snapshot trees, every time
a block goes through COW, the new copy of the block adds a reference
on every block it points to.

If a btree node points to 150 leaves, then the COW code needs to go
and add backrefs on 150 different extents, which might be spread all
over the extent allocation tree.

These updates currently happen during btrfs_cow_block, and most COWs
happen during btrfs_search_slot.  btrfs_search_slot has locks held
on both the parent and the node we are COWing, and so we really want
to avoid IO during the COW if we can.

This commit adds an rbtree of pending reference count updates and extent
allocations.  The tree is ordered by byte number of the extent and byte number
of the parent for the back reference.  The tree allows us to:

1) Modify back references in something close to disk order, reducing seeks
2) Significantly reduce the number of modifications made as block pointers
are balanced around
3) Do all of the extent insertion and back reference modifications outside
of the performance critical btrfs_search_slot code.

#3 has the added benefit of greatly reducing the btrfs stack footprint.
The extent allocation tree modifications are done without the deep
(and somewhat recursive) call chains used in the past.

These delayed back reference updates must be done before the transaction
commits, and so the rbtree is tied to the transaction.  Throttling is
implemented to help keep the queue of backrefs at a reasonable size.

Since there was a similar mechanism in place for the extent tree
extents, that is removed and replaced by the delayed reference tree.

Yan Zheng <yan.zheng@oracle.com> helped review and fixup this code.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-03-24 16:14:25 -04:00
Chris Mason 9fa8cfe706 Btrfs: don't preallocate metadata blocks during btrfs_search_slot
In order to avoid doing expensive extent management with tree locks held,
btrfs_search_slot will preallocate tree blocks for use by COW without
any tree locks held.

A later commit moves all of the extent allocation work for COW into
a delayed update mechanism, and this preallocation will no longer be
required.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-03-24 16:14:25 -04:00
Chris Mason b9447ef80b Btrfs: fix spinlock assertions on UP systems
btrfs_tree_locked was being used to make sure a given extent_buffer was
properly locked in a few places.  But, it wasn't correct for UP compiled
kernels.

This switches it to using assert_spin_locked instead, and renames it to
btrfs_assert_tree_locked to better reflect how it was really being used.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-03-09 11:45:38 -04:00
Chris Mason 4008c04a07 Btrfs: make a lockdep class for the extent buffer locks
Btrfs is currently using spin_lock_nested with a nested value based
on the tree depth of the block.  But, this doesn't quite work because
the max tree depth is bigger than what spin_lock_nested can deal with,
and because locks are sometimes taken before the level field is filled in.

The solution here is to use lockdep_set_class_and_name instead, and to
set the class before unlocking the pages when the block is read from the
disk and just after init of a freshly allocated tree block.

btrfs_clear_path_blocking is also changed to take the locks in the proper
order, and it also makes sure all the locks currently held are properly
set to blocking before it tries to retake the spinlocks.  Otherwise, lockdep
gets upset about bad lock orderin.

The lockdep magic cam from Peter Zijlstra <peterz@infradead.org>

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-02-12 14:09:45 -05:00
Jeff Mahoney e00f730865 Btrfs: remove btrfs_init_path
btrfs_init_path was initially used when the path objects were on the
stack.  Now all the work is done by btrfs_alloc_path and btrfs_init_path
isn't required.

This patch removes it, and just uses kmem_cache_zalloc to zero out the object.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-02-12 14:11:25 -05:00
Jeff Mahoney 7951f3cefb Btrfs: balance_level checks !child after access
The BUG_ON() is in the wrong spot.

Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-02-12 10:06:15 -05:00
Chris Mason 284b066af4 Btrfs: don't use spin_is_contended
Btrfs was using spin_is_contended to see if it should drop locks before
doing extent allocations during btrfs_search_slot.  The idea was to avoid
expensive searches in the tree unless the lock was actually contended.

But, spin_is_contended is specific to the ticket spinlocks on x86, so this
is causing compile errors everywhere else.

In practice, the contention could easily appear some time after we started
doing the extent allocation, and it makes more sense to always drop the lock
instead.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-02-09 16:22:03 -05:00
Chris Mason 7b78c170dc Btrfs: Only prep for btree deletion balances when nodes are mostly empty
Whenever an item deletion is done, we need to balance all the nodes
in the tree to make sure we don't end up with an empty node if a pointer
is deleted.  This balance prep happens from the root of the tree down
so we can drop our locks as we go.

reada_for_balance was triggering read-ahead on neighboring nodes even
when no balancing was required.  This adds an extra check to avoid
calling balance_level() and avoid reada_for_balance() when a balance
won't be required.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-02-04 09:12:46 -05:00
Chris Mason 12f4daccfc Btrfs: fix btrfs_unlock_up_safe to walk the entire path
btrfs_unlock_up_safe would break out at the first NULL node entry or
unlocked node it found in the path.

Some of the callers have missing nodes at the lower levels of the path, so this
commit fixes things to check all the nodes in the path before returning.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-02-04 09:31:42 -05:00
Chris Mason 4d081c41a4 Btrfs: change btrfs_del_leaf to drop locks earlier
btrfs_del_leaf does two things.  First it removes the pointer in the
parent, and then it frees the block that has the leaf.  It has the
parent node locked for both operations.

But, it only needs the parent locked while it is deleting the pointer.
After that it can safely free the block without the parent locked.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-02-04 09:31:28 -05:00
Chris Mason b4ce94de9b Btrfs: Change btree locking to use explicit blocking points
Most of the btrfs metadata operations can be protected by a spinlock,
but some operations still need to schedule.

So far, btrfs has been using a mutex along with a trylock loop,
most of the time it is able to avoid going for the full mutex, so
the trylock loop is a big performance gain.

This commit is step one for getting rid of the blocking locks entirely.
btrfs_tree_lock takes a spinlock, and the code explicitly switches
to a blocking lock when it starts an operation that can schedule.

We'll be able get rid of the blocking locks in smaller pieces over time.
Tracing allows us to find the most common cause of blocking, so we
can start with the hot spots first.

The basic idea is:

btrfs_tree_lock() returns with the spin lock held

btrfs_set_lock_blocking() sets the EXTENT_BUFFER_BLOCKING bit in
the extent buffer flags, and then drops the spin lock.  The buffer is
still considered locked by all of the btrfs code.

If btrfs_tree_lock gets the spinlock but finds the blocking bit set, it drops
the spin lock and waits on a wait queue for the blocking bit to go away.

Much of the code that needs to set the blocking bit finishes without actually
blocking a good percentage of the time.  So, an adaptive spin is still
used against the blocking bit to avoid very high context switch rates.

btrfs_clear_lock_blocking() clears the blocking bit and returns
with the spinlock held again.

btrfs_tree_unlock() can be called on either blocking or spinning locks,
it does the right thing based on the blocking bit.

ctree.c has a helper function to set/clear all the locked buffers in a
path as blocking.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-02-04 09:25:08 -05:00
Chris Mason c487685d7c Btrfs: hash_lock is no longer needed
Before metadata is written to disk, it is updated to reflect that writeout
has begun.  Once this update is done, the block must be cow'd before it
can be modified again.

This update was originally synchronized by using a per-fs spinlock.  Today
the buffers for the metadata blocks are locked before writeout begins,
and everyone that tests the flag has the buffer locked as well.

So, the per-fs spinlock (called hash_lock for no good reason) is no
longer required.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-02-04 09:24:25 -05:00
Chris Mason a717531942 Btrfs: do less aggressive btree readahead
Just before reading a leaf, btrfs scans the node for blocks that are
close by and reads them too.  It tries to build up a large window
of IO looking for blocks that are within a max distance from the top
and bottom of the IO window.

This patch changes things to just look for blocks within 64k of the
target block.  It will trigger less IO and make for lower latencies on
the read size.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-01-22 09:23:10 -05:00
Chris Mason d397712bcc Btrfs: Fix checkpatch.pl warnings
There were many, most are fixed now.  struct-funcs.c generates some warnings
but these are bogus.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-01-05 21:25:51 -05:00
Yan Zheng 87b29b208c Btrfs: properly check free space for tree balancing
btrfs_insert_empty_items takes the space needed by the btrfs_item
structure into account when calculating the required free space.

So the tree balancing code shouldn't add sizeof(struct btrfs_item)
to the size when checking the free space. This patch removes these
superfluous additions.

Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
2008-12-17 10:21:48 -05:00
Chris Mason 42dc7babdc Btrfs: Fix compressed writes on truncated pages
The compression code was using isize to limit the amount of data it
sent through zlib.  But, it wasn't properly limiting the looping to
just the pages inside i_size.  The end result was trying to compress
too many pages, including those that had not been setup and properly locked
down.  This made the compression code oops while trying find_get_page on a
page that didn't exist.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-12-15 11:44:56 -05:00
Chris Mason 459931eca5 Btrfs: Delete csum items when freeing extents
This finishes off the new checksumming code by removing csum items
for extents that are no longer in use.

The trick is doing it without racing because a single csum item may
hold csums for more than one extent.  Extra checks are added to
btrfs_csum_file_blocks to make sure that we are using the correct
csum item after dropping locks.

A new btrfs_split_item is added to split a single csum item so it
can be split without dropping the leaf lock.  This is used to
remove csum bytes from the middle of an item.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-12-10 09:10:46 -05:00
Chris Mason 934d375bac Btrfs: Use map_private_extent_buffer during generic_bin_search
It is possible that generic_bin_search will be called on a tree block
that has not been locked.  This happens because cache_block_block skips
locking on the tree blocks.

Since the tree block isn't locked, we aren't allowed to change
the extent_buffer->map_token field.  Using map_private_extent_buffer
avoids any changes to the internal extent buffer fields.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-12-08 16:43:10 -05:00
Christoph Hellwig b2950863c6 Btrfs: make things static and include the right headers
Shut up various sparse warnings about symbols that should be either
static or have their declarations in scope.

Signed-off-by: Christoph Hellwig <hch@lst.de>
2008-12-02 09:54:17 -05:00
Liu Hui b4eec2ca11 Btrfs: Some fixes for batching extent insert.
In insert_extents(), when ret==1 and last is not zero, it should
check if the current inserted item is the last item in this batching
inserts. If so, it should just break from loop. If not, 'cur =
insert_list->next' will make no sense because the list is empty now,
and 'op' will point to an unexpectable place.

There are also some trivial fixs in this patch including one comment
typo error and deleting two redundant lines.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-11-18 11:30:10 -05:00
Yan Zheng 2b82032c34 Btrfs: Seed device support
Seed device is a special btrfs with SEEDING super flag
set and can only be mounted in read-only mode. Seed
devices allow people to create new btrfs on top of it.

The new FS contains the same contents as the seed device,
but it can be mounted in read-write mode.

This patch does the following:

1) split code in btrfs_alloc_chunk into two parts. The first part does makes
the newly allocated chunk usable, but does not do any operation that modifies
the chunk tree. The second part does the the chunk tree modifications. This
division is for the bootstrap step of adding storage to the seed device.

2) Update device management code to handle seed device.
The basic idea is: For an FS grown from seed devices, its
seed devices are put into a list. Seed devices are
opened on demand at mounting time. If any seed device is
missing or has been changed, btrfs kernel module will
refuse to mount the FS.

3) make btrfs_find_block_group not return NULL when all
block groups are read-only.

Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
2008-11-17 21:11:30 -05:00
Josef Bacik f3465ca44e Btrfs: batch extent inserts/updates/deletions on the extent root
While profiling the allocator I noticed a good amount of time was being spent in
finish_current_insert and del_pending_extents, and as the filesystem filled up
more and more time was being spent in those functions.  This patch aims to try
and reduce that problem.  This happens two ways

1) track if we tried to delete an extent that we are going to update or insert.
Once we get into finish_current_insert we discard any of the extents that were
marked for deletion.  This saves us from doing unnecessary work almost every
time finish_current_insert runs.

2) Batch insertion/updates/deletions.  Instead of doing a btrfs_search_slot for
each individual extent and doing the needed operation, we instead keep the leaf
around and see if there is anything else we can do on that leaf.  On the insert
case I introduced a btrfs_insert_some_items, which will take an array of keys
with an array of data_sizes and try and squeeze in as many of those keys as
possible, and then return how many keys it was able to insert.  In the update
case we search for an extent ref, update the ref and then loop through the leaf
to see if any of the other refs we are looking to update are on that leaf, and
then once we are done we release the path and search for the next ref we need to
update.  And finally for the deletion we try and delete the extent+ref in pairs,
so we will try to find extent+ref pairs next to the extent we are trying to free
and free them in bulk if possible.

This along with the other cluster fix that Chris pushed out a bit ago helps make
the allocator preform more uniformly as it fills up the disk.  There is still a
slight drop as we fill up the disk since we start having to stick new blocks in
odd places which results in more COW's than on a empty fs, but the drop is not
nearly as severe as it was before.

Signed-off-by: Josef Bacik <jbacik@redhat.com>
2008-11-12 14:19:50 -05:00
Chris Mason 6f3577bdc7 Btrfs: Improve metadata read latencies
This fixes latency problems on metadata reads by making sure they
don't go through the async submit queue, and by tuning down the amount
of readahead done during btree searches.

Also, the btrfs bdi congestion function is tuned to ignore the
number of pending async bios and checksums pending.  There is additional
code that throttles new async bios now and the congestion function
doesn't need to worry about it anymore.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-11-13 09:59:36 -05:00
Josef Bacik 2517920135 Btrfs: nuke fs wide allocation mutex V2
This patch removes the giant fs_info->alloc_mutex and replaces it with a bunch
of little locks.

There is now a pinned_mutex, which is used when messing with the pinned_extents
extent io tree, and the extent_ins_mutex which is used with the pending_del and
extent_ins extent io trees.

The locking for the extent tree stuff was inspired by a patch that Yan Zheng
wrote to fix a race condition, I cleaned it up some and changed the locking
around a little bit, but the idea remains the same.  Basically instead of
holding the extent_ins_mutex throughout the processing of an extent on the
extent_ins or pending_del trees, we just hold it while we're searching and when
we clear the bits on those trees, and lock the extent for the duration of the
operations on the extent.

Also to keep from getting hung up waiting to lock an extent, I've added a
try_lock_extent so if we cannot lock the extent, move on to the next one in the
tree and we'll come back to that one.  I have tested this heavily and it does
not appear to break anything.  This has to be applied on top of my
find_free_extent redo patch.

I tested this patch on top of Yan's space reblancing code and it worked fine.
The only thing that has changed since the last version is I pulled out all my
debugging stuff, apparently I forgot to run guilt refresh before I sent the
last patch out.  Thank you,

Signed-off-by: Josef Bacik <jbacik@redhat.com>
2008-10-29 14:49:05 -04:00
Yan Zheng f82d02d9d8 Btrfs: Improve space balancing code
This patch improves the space balancing code to keep more sharing
of tree blocks. The only case that breaks sharing of tree blocks is
data extents get fragmented during balancing. The main changes in
this patch are:

Add a 'drop sub-tree' function. This solves the problem in old code
that BTRFS_HEADER_FLAG_WRITTEN check breaks sharing of tree block.

Remove relocation mapping tree. Relocation mappings are stored in
struct btrfs_ref_path and updated dynamically during walking up/down
the reference path. This reduces CPU usage and simplifies code.

This patch also fixes a bug. Root items for reloc trees should be
updated in btrfs_free_reloc_root.

Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
2008-10-29 14:49:05 -04:00
Yan Zheng 3bb1a1bc42 Btrfs: Remove offset field from struct btrfs_extent_ref
The offset field in struct btrfs_extent_ref records the position
inside file that file extent is referenced by. In the new back
reference system, tree leaves holding references to file extent
are recorded explicitly. We can scan these tree leaves very quickly, so the
offset field is not required.

This patch also makes the back reference system check the objectid
when extents are in deleting.

Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
2008-10-09 11:46:24 -04:00
Chris Mason 323ac95bce Btrfs: don't read leaf blocks containing only checksums during truncate
Checksum items take up a significant portion of the metadata for large files.
It is possible to avoid reading them during truncates by checking the keys in
the higher level nodes.

If a given leaf is followed by another leaf where the lowest key is a checksum
item from the same file, we know we can safely delete the leaf without
reading it.

For a 32GB file on a 6 drive raid0 array, Btrfs needs 8s to delete
the file with a cold cache.  It is read bound during the run.

With this change, Btrfs is able to delete the file in 0.5s

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-10-01 19:05:46 -04:00
Chris Mason d352ac6814 Btrfs: add and improve comments
This improves the comments at the top of many functions.  It didn't
dive into the guts of functions because I was trying to
avoid merging problems with the new allocator and back reference work.

extent-tree.c and volumes.c were both skipped, and there is definitely
more work todo in cleaning and commenting the code.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-09-29 15:18:18 -04:00
Zheng Yan 1a40e23b95 Btrfs: update space balancing code
This patch updates the space balancing code to utilize the new
backref format.  Before, btrfs-vol -b would break any COW links
on data blocks or metadata.  This was slow and caused the amount
of space used to explode if a large number of snapshots were present.

The new code can keeps the sharing of all data extents and
most of the tree blocks.

To maintain the sharing of data extents, the space balance code uses
a seperate inode hold data extent pointers, then updates the references
to point to the new location.

To maintain the sharing of tree blocks, the space balance code uses
reloc trees to relocate tree blocks in reference counted roots.
There is one reloc tree for each subvol, and all reloc trees share
same root key objectid. Reloc trees are snapshots of the latest
committed roots of subvols (root->commit_root).

To relocate a tree block referenced by a subvol, there are two steps.
COW the block through subvol's reloc tree, then update block pointer in
the subvol to point to the new block. Since all reloc trees share
same root key objectid, doing special handing for tree blocks
owned by them is easy. Once a tree block has been COWed in one
reloc tree, we can use the resulting new block directly when the
same block is required to COW again through other reloc trees.
In this way, relocated tree blocks are shared between reloc trees,
so they are also shared between subvols.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-09-26 10:09:34 -04:00
Zheng Yan 5b21f2ed3f Btrfs: extent_map and data=ordered fixes for space balancing
* Add an EXTENT_BOUNDARY state bit to keep the writepage code
from merging data extents that are in the process of being
relocated.  This allows us to do accounting for them properly.

* The balancing code relocates data extents indepdent of the underlying
inode.  The extent_map code was modified to properly account for
things moving around (invalidating extent_map caches in the inode).

* Don't take the drop_mutex in the create_subvol ioctl.  It isn't
required.

* Fix walking of the ordered extent list to avoid races with sys_unlink

* Change the lock ordering rules.  Transaction start goes outside
the drop_mutex.  This allows btrfs_commit_transaction to directly
drop the relocation trees.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-09-26 10:05:38 -04:00
Zheng Yan 31840ae1a6 Btrfs: Full back reference support
This patch makes the back reference system to explicit record the
location of parent node for all types of extents. The location of
parent node is placed into the offset field of backref key. Every
time a tree block is balanced, the back references for the affected
lower level extents are updated.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-09-25 11:04:07 -04:00
Josef Bacik 0f9dd46cda Btrfs: free space accounting redo
1) replace the per fs_info extent_io_tree that tracked free space with two
rb-trees per block group to track free space areas via offset and size.  The
reason to do this is because most allocations come with a hint byte where to
start, so we can usually find a chunk of free space at that hint byte to satisfy
the allocation and get good space packing.  If we cannot find free space at or
after the given offset we fall back on looking for a chunk of the given size as
close to that given offset as possible.  When we fall back on the size search we
also try to find a slot as close to the size we want as possible, to avoid
breaking small chunks off of huge areas if possible.

2) remove the extent_io_tree that tracked the block group cache from fs_info and
replaced it with an rb-tree thats tracks block group cache via offset.  also
added a per space_info list that tracks the block group cache for the particular
space so we can lookup related block groups easily.

3) cleaned up the allocation code to make it a little easier to read and a
little less complicated.  Basically there are 3 steps, first look from our
provided hint.  If we couldn't find from that given hint, start back at our
original search start and look for space from there.  If that fails try to
allocate space if we can and start looking again.  If not we're screwed and need
to start over again.

4) small fixes.  there were some issues in volumes.c where we wouldn't allocate
the rest of the disk.  fixed cow_file_range to actually pass the alloc_hint,
which has helped a good bit in making the fs_mark test I run have semi-normal
results as we run out of space.  Generally with data allocations we don't track
where we last allocated from, so everytime we did a data allocation we'd search
through every block group that we have looking for free space.  Now searching a
block group with no free space isn't terribly time consuming, it was causing a
slight degradation as we got more data block groups.  The alloc_hint has fixed
this slight degredation and made things semi-normal.

There is still one nagging problem I'm working on where we will get ENOSPC when
there is definitely plenty of space.  This only happens with metadata
allocations, and only when we are almost full.  So you generally hit the 85%
mark first, but sometimes you'll hit the BUG before you hit the 85% wall.  I'm
still tracking it down, but until then this seems to be pretty stable and make a
significant performance gain.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-09-25 11:04:07 -04:00
Chris Mason f25956cc58 Fix leaf overflow check in btrfs_insert_empty_items
It was incorrectly adding an extra sizeof(struct btrfs_item) and causing
false positives (oops)

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-09-25 11:04:07 -04:00
Christoph Hellwig b214107eda Btrfs: trivial sparse fixes
Fix a bunch of trivial sparse complaints.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-09-25 11:04:07 -04:00
Christoph Hellwig ad3d81ba8f Btrfs: missing endianess conversion in insert_new_root
Add two missing endianess conversions in this function, found by sparse.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-09-25 11:04:07 -04:00
Chris Mason e02119d5a7 Btrfs: Add a write ahead tree log to optimize synchronous operations
File syncs and directory syncs are optimized by copying their
items into a special (copy-on-write) log tree.  There is one log tree per
subvolume and the btrfs super block points to a tree of log tree roots.

After a crash, items are copied out of the log tree and back into the
subvolume.  See tree-log.c for all the details.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-09-25 11:04:07 -04:00
Chris Mason 65b51a009e btrfs_search_slot: reduce lock contention by cowing in two stages
A btree block cow has two parts, the first is to allocate a destination
block and the second is to copy the old bock over.

The first part needs locks in the extent allocation tree, and may need to
do IO.  This changeset splits that into a separate function that can be
called without any tree locks held.

btrfs_search_slot is changed to drop its path and start over if it has
to COW a contended block.  This often means that many writers will
pre-alloc a new destination for a the same contended block, but they
cache their prealloc for later use on lower levels in the tree.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-09-25 11:04:06 -04:00
Yan bcc63abbf3 Btrfs: implement memory reclaim for leaf reference cache
The memory reclaiming issue happens when snapshot exists. In that
case, some cache entries may not be used during old snapshot dropping,
so they will remain in the cache until umount.

The patch adds a field to struct btrfs_leaf_ref to record create time. Besides,
the patch makes all dead roots of a given snapshot linked together in order of
create time. After a old snapshot was completely dropped, we check the dead
root list and remove all cache entries created before the oldest dead root in
the list.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-09-25 11:04:05 -04:00
Yan Zheng 31153d8128 Btrfs: Add a leaf reference cache
Much of the IO done while dropping snapshots is done looking up
leaves in the filesystem trees to see if they point to any extents and
to drop the references on any extents found.

This creates a cache so that IO isn't required.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-09-25 11:04:05 -04:00