Sparse reports a warning at queue_pages_pmd()
context imbalance in queue_pages_pmd() - unexpected unlock
The root cause is the missing annotation at queue_pages_pmd()
Add the missing __releases(ptl)
Signed-off-by: Jules Irenge <jbi.octave@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/20200214204741.94112-8-jbi.octave@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
change_protection() was used by either the NUMA or mprotect() code,
there's one parameter for each of the callers (dirty_accountable and
prot_numa). Further, these parameters are passed along the calls:
- change_protection_range()
- change_p4d_range()
- change_pud_range()
- change_pmd_range()
- ...
Now we introduce a flag for change_protect() and all these helpers to
replace these parameters. Then we can avoid passing multiple parameters
multiple times along the way.
More importantly, it'll greatly simplify the work if we want to introduce
any new parameters to change_protection(). In the follow up patches, a
new parameter for userfaultfd write protection will be introduced.
No functional change at all.
Signed-off-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Jerome Glisse <jglisse@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Bobby Powers <bobbypowers@gmail.com>
Cc: Brian Geffon <bgeffon@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Denis Plotnikov <dplotnikov@virtuozzo.com>
Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: "Kirill A . Shutemov" <kirill@shutemov.name>
Cc: Martin Cracauer <cracauer@cons.org>
Cc: Marty McFadden <mcfadden8@llnl.gov>
Cc: Maya Gokhale <gokhale2@llnl.gov>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Pavel Emelyanov <xemul@openvz.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Shaohua Li <shli@fb.com>
Link: http://lkml.kernel.org/r/20200220163112.11409-7-peterx@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Some comments for MADV_FREE is revised and added to help people understand
the MADV_FREE code, especially the page flag, PG_swapbacked. This makes
page_is_file_cache() isn't consistent with its comments. So the function
is renamed to page_is_file_lru() to make them consistent again. All these
are put in one patch as one logical change.
Suggested-by: David Hildenbrand <david@redhat.com>
Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Suggested-by: David Rientjes <rientjes@google.com>
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Michal Hocko <mhocko@kernel.org>
Acked-by: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@surriel.com>
Link: http://lkml.kernel.org/r/20200317100342.2730705-1-ying.huang@intel.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Using an empty (malformed) nodelist that is not caught during mount option
parsing leads to a stack-out-of-bounds access.
The option string that was used was: "mpol=prefer:,". However,
MPOL_PREFERRED requires a single node number, which is not being provided
here.
Add a check that 'nodes' is not empty after parsing for MPOL_PREFERRED's
nodeid.
Fixes: 095f1fc4eb ("mempolicy: rework shmem mpol parsing and display")
Reported-by: Entropy Moe <3ntr0py1337@gmail.com>
Reported-by: syzbot+b055b1a6b2b958707a21@syzkaller.appspotmail.com
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: syzbot+b055b1a6b2b958707a21@syzkaller.appspotmail.com
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Link: http://lkml.kernel.org/r/89526377-7eb6-b662-e1d8-4430928abde9@infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The VM_BUG_ON() is already used by queue_pages_test_walk(), it sounds
better to dump more debug information by using VM_BUG_ON_VMA() to help
debugging.
Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: "Li Xinhai" <lixinhai.lxh@gmail.com>
Cc: Qian Cai <cai@lca.pw>
Link: http://lkml.kernel.org/r/1579068565-110432-1-git-send-email-yang.shi@linux.alibaba.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
vma_migratable() is called to check if pages in vma can be migrated before
go ahead to further actions. Currently it is used in below code path:
- task_numa_work
- mbind
- move_pages
For hugetlb mapping, whether vma is migratable or not is determined by:
- CONFIG_ARCH_ENABLE_HUGEPAGE_MIGRATION
- arch_hugetlb_migration_supported
Issue: current code only checks for CONFIG_ARCH_ENABLE_HUGEPAGE_MIGRATION
alone, and no code should use it directly. (note that current code in
vma_migratable don't cause failure or bug because
unmap_and_move_huge_page() will catch unsupported hugepage and handle it
properly)
This patch checks the two factors by hugepage_migration_supported for
impoving code logic and robustness. It will enable early bail out of
hugepage migration procedure, but because currently all architecture
supporting hugepage migration is able to support all page size, we would
not see performance gain with this patch applied.
vma_migratable() is moved to mm/mempolicy.c, because of the circular
reference of mempolicy.h and hugetlb.h cause defining it as inline not
feasible.
Signed-off-by: Li Xinhai <lixinhai.lxh@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Link: http://lkml.kernel.org/r/1579786179-30633-1-git-send-email-lixinhai.lxh@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
MPOL_MF_STRICT is used in mbind() for purposes:
(1) MPOL_MF_STRICT is set alone without MPOL_MF_MOVE or
MPOL_MF_MOVE_ALL, to check if there is misplaced page and return -EIO;
(2) MPOL_MF_STRICT is set with MPOL_MF_MOVE or MPOL_MF_MOVE_ALL, to
check if there is misplaced page which is failed to isolate, or page
is success on isolate but failed to move, and return -EIO.
For non hugepage mapping, (1) and (2) are implemented as expectation. For
hugepage mapping, (1) is not implemented. And in (2), the part about
failed to isolate and report -EIO is not implemented.
This patch implements the missed parts for hugepage mapping. Benefits
with it applied:
- User space can apply same code logic to handle mbind() on hugepage and
non hugepage mapping;
- Reliably using MPOL_MF_STRICT alone to check whether there is
misplaced page or not when bind policy on address range, especially for
address range which contains both hugepage and non hugepage mapping.
Analysis of potential impact to existing users:
- If MPOL_MF_STRICT alone was previously used, hugetlb pages not
following the memory policy would not cause an EIO error. After this
change, hugetlb pages are treated like all other pages. If
MPOL_MF_STRICT alone is used and hugetlb pages do not follow memory
policy an EIO error will be returned.
- For users who using MPOL_MF_STRICT with MPOL_MF_MOVE or
MPOL_MF_MOVE_ALL, the semantic about some pages could not be moved will
not be changed by this patch, because failed to isolate and failed to
move have same effects to users, so their existing code will not be
impacted.
In mbind man page, the note about 'MPOL_MF_STRICT is ignored on huge page
mappings' can be removed after this patch is applied.
Mike:
: The current behavior with MPOL_MF_STRICT and hugetlb pages is inconsistent
: and does not match documentation (as described above). The special
: behavior for hugetlb pages ideally should have been removed when hugetlb
: page migration was introduced. It is unlikely that anyone relies on
: today's inconsistent behavior, and removing one more case of special
: handling for hugetlb pages is a good thing.
Signed-off-by: Li Xinhai <lixinhai.lxh@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: linux-man <linux-man@vger.kernel.org>
Link: http://lkml.kernel.org/r/1581559627-6206-1-git-send-email-lixinhai.lxh@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
What we are trying to do is change the '=' character to a NUL terminator
and then at the end of the function we restore it back to an '='. The
problem is there are two error paths where we jump to the end of the
function before we have replaced the '=' with NUL.
We end up putting the '=' in the wrong place (possibly one element
before the start of the buffer).
Link: http://lkml.kernel.org/r/20200115055426.vdjwvry44nfug7yy@kili.mountain
Reported-by: syzbot+e64a13c5369a194d67df@syzkaller.appspotmail.com
Fixes: 095f1fc4eb ("mempolicy: rework shmem mpol parsing and display")
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Dmitry Vyukov <dvyukov@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
THP page faults now attempt a __GFP_THISNODE allocation first, which
should only compact existing free memory, followed by another attempt
that can allocate from any node using reclaim/compaction effort
specified by global defrag setting and madvise.
This patch makes the following changes to the scheme:
- Before the patch, the first allocation relies on a check for
pageblock order and __GFP_IO to prevent excessive reclaim. This
however affects also the second attempt, which is not limited to
single node.
Instead of that, reuse the existing check for costly order
__GFP_NORETRY allocations, and make sure the first THP attempt uses
__GFP_NORETRY. As a side-effect, all costly order __GFP_NORETRY
allocations will bail out if compaction needs reclaim, while
previously they only bailed out when compaction was deferred due to
previous failures.
This should be still acceptable within the __GFP_NORETRY semantics.
- Before the patch, the second allocation attempt (on all nodes) was
passing __GFP_NORETRY. This is redundant as the check for pageblock
order (discussed above) was stronger. It's also contrary to
madvise(MADV_HUGEPAGE) which means some effort to allocate THP is
requested.
After this patch, the second attempt doesn't pass __GFP_THISNODE nor
__GFP_NORETRY.
To sum up, THP page faults now try the following attempts:
1. local node only THP allocation with no reclaim, just compaction.
2. for madvised VMA's or when synchronous compaction is enabled always - THP
allocation from any node with effort determined by global defrag setting
and VMA madvise
3. fallback to base pages on any node
Link: http://lkml.kernel.org/r/08a3f4dd-c3ce-0009-86c5-9ee51aba8557@suse.cz
Fixes: b39d0ee263 ("mm, page_alloc: avoid expensive reclaim when compaction may not succeed")
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mbind() is required to report EFAULT if range, specified by addr and
len, contains unmapped holes. In current implementation, below rules
are applied for this checking:
1: Unmapped holes at any part of the specified range should be reported
as EFAULT if mbind() for none MPOL_DEFAULT cases;
2: Unmapped holes at any part of the specified range should be ignored
(do not reprot EFAULT) if mbind() for MPOL_DEFAULT case;
3: The whole range in an unmapped hole should be reported as EFAULT;
Note that rule 2 does not fullfill the mbind() API definition, but since
that behavior has existed for long days (the internal flag
MPOL_MF_DISCONTIG_OK is for this purpose), this patch does not plan to
change it.
In current code, application observed inconsistent behavior on rule 1
and rule 2 respectively. That inconsistency is fixed as below details.
Cases of rule 1:
- Hole at head side of range. Current code reprot EFAULT, no change by
this patch.
[ vma ][ hole ][ vma ]
[ range ]
- Hole at middle of range. Current code report EFAULT, no change by
this patch.
[ vma ][ hole ][ vma ]
[ range ]
- Hole at tail side of range. Current code do not report EFAULT, this
patch fixes it.
[ vma ][ hole ][ vma ]
[ range ]
Cases of rule 2:
- Hole at head side of range. Current code reports EFAULT, this patch
fixes it.
[ vma ][ hole ][ vma ]
[ range ]
- Hole at middle of range. Current code does not report EFAULT, no
change by this patch.
[ vma ][ hole ][ vma]
[ range ]
- Hole at tail side of range. Current code does not report EFAULT, no
change by this patch.
[ vma ][ hole ][ vma]
[ range ]
This patch has no changes to rule 3.
The unmapped hole checking can also be handled by using .pte_hole(),
instead of .test_walk(). But .pte_hole() is called for holes inside and
outside vma, which causes more cost, so this patch keeps the original
design with .test_walk().
Link: http://lkml.kernel.org/r/1573218104-11021-3-git-send-email-lixinhai.lxh@gmail.com
Fixes: 6f4576e368 ("mempolicy: apply page table walker on queue_pages_range()")
Signed-off-by: Li Xinhai <lixinhai.lxh@gmail.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: linux-man <linux-man@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm: Fix checking unmapped holes for mbind", v4.
This patchset fix checking unmapped holes for mbind().
First patch makes sure the vma been correctly tracked in .test_walk(),
so each time when .test_walk() is called, the neighborhood of two vma
is correct.
Current problem is that the !vma_migratable() check could cause return
immediately without update tracking to vma.
Second patch fix the inconsistent report of EFAULT when mbind() is
called for MPOL_DEFAULT and non MPOL_DEFAULT cases, so application do
not need to have workaround code to handle this special behavior.
Currently there are two problems, one is that the .test_walk() can not
know there is hole at tail side of range, because .test_walk() only
call for vma not for hole. The other one is that mbind_range() checks
for hole at head side of range but do not consider the
MPOL_MF_DISCONTIG_OK flag as done in .test_walk().
This patch (of 2):
Checking unmapped hole and updating the previous vma must be handled
first, otherwise the unmapped hole could be calculated from a wrong
previous vma.
Several commits were relevant to this error:
- commit 6f4576e368 ("mempolicy: apply page table walker on
queue_pages_range()")
This commit was correct, the VM_PFNMAP check was after updating
previous vma
- commit 48684a65b4 ("mm: pagewalk: fix misbehavior of
walk_page_range for vma(VM_PFNMAP)")
This commit added VM_PFNMAP check before updating previous vma. Then,
there were two VM_PFNMAP check did same thing twice.
- commit acda0c3340 ("mm/mempolicy.c: get rid of duplicated check for
vma(VM_PFNMAP) in queue_page s_range()")
This commit tried to fix the duplicated VM_PFNMAP check, but it
wrongly removed the one which was after updating vma.
Link: http://lkml.kernel.org/r/1573218104-11021-2-git-send-email-lixinhai.lxh@gmail.com
Fixes: acda0c3340 (mm/mempolicy.c: get rid of duplicated check for vma(VM_PFNMAP) in queue_pages_range())
Signed-off-by: Li Xinhai <lixinhai.lxh@gmail.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: linux-man <linux-man@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit d883544515 ("mm: mempolicy: make the behavior consistent when
MPOL_MF_MOVE* and MPOL_MF_STRICT were specified") fixed the return value
of mbind() for a couple of corner cases. But, it altered the errno for
some other cases, for example, mbind() should return -EFAULT when part
or all of the memory range specified by nodemask and maxnode points
outside your accessible address space, or there was an unmapped hole in
the specified memory range specified by addr and len.
Fix this by preserving the errno returned by queue_pages_range(). And,
the pagelist may be not empty even though queue_pages_range() returns
error, put the pages back to LRU since mbind_range() is not called to
really apply the policy so those pages should not be migrated, this is
also the old behavior before the problematic commit.
Link: http://lkml.kernel.org/r/1572454731-3925-1-git-send-email-yang.shi@linux.alibaba.com
Fixes: d883544515 ("mm: mempolicy: make the behavior consistent when MPOL_MF_MOVE* and MPOL_MF_STRICT were specified")
Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com>
Reported-by: Li Xinhai <lixinhai.lxh@gmail.com>
Reviewed-by: Li Xinhai <lixinhai.lxh@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: <stable@vger.kernel.org> [4.19 and 5.2+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Merge hugepage allocation updates from David Rientjes:
"We (mostly Linus, Andrea, and myself) have been discussing offlist how
to implement a sane default allocation strategy for hugepages on NUMA
platforms.
With these reverts in place, the page allocator will happily allocate
a remote hugepage immediately rather than try to make a local hugepage
available. This incurs a substantial performance degradation when
memory compaction would have otherwise made a local hugepage
available.
This series reverts those reverts and attempts to propose a more sane
default allocation strategy specifically for hugepages. Andrea
acknowledges this is likely to fix the swap storms that he originally
reported that resulted in the patches that removed __GFP_THISNODE from
hugepage allocations.
The immediate goal is to return 5.3 to the behavior the kernel has
implemented over the past several years so that remote hugepages are
not immediately allocated when local hugepages could have been made
available because the increased access latency is untenable.
The next goal is to introduce a sane default allocation strategy for
hugepages allocations in general regardless of the configuration of
the system so that we prevent thrashing of local memory when
compaction is unlikely to succeed and can prefer remote hugepages over
remote native pages when the local node is low on memory."
Note on timing: this reverts the hugepage VM behavior changes that got
introduced fairly late in the 5.3 cycle, and that fixed a huge
performance regression for certain loads that had been around since
4.18.
Andrea had this note:
"The regression of 4.18 was that it was taking hours to start a VM
where 3.10 was only taking a few seconds, I reported all the details
on lkml when it was finally tracked down in August 2018.
https://lore.kernel.org/linux-mm/20180820032640.9896-2-aarcange@redhat.com/
__GFP_THISNODE in MADV_HUGEPAGE made the above enterprise vfio
workload degrade like in the "current upstream" above. And it still
would have been that bad as above until 5.3-rc5"
where the bad behavior ends up happening as you fill up a local node,
and without that change, you'd get into the nasty swap storm behavior
due to compaction working overtime to make room for more memory on the
nodes.
As a result 5.3 got the two performance fix reverts in rc5.
However, David Rientjes then noted that those performance fixes in turn
regressed performance for other loads - although not quite to the same
degree. He suggested reverting the reverts and instead replacing them
with two small changes to how hugepage allocations are done (patch
descriptions rephrased by me):
- "avoid expensive reclaim when compaction may not succeed": just admit
that the allocation failed when you're trying to allocate a huge-page
and compaction wasn't successful.
- "allow hugepage fallback to remote nodes when madvised": when that
node-local huge-page allocation failed, retry without forcing the
local node.
but by then I judged it too late to replace the fixes for a 5.3 release.
So 5.3 was released with behavior that harked back to the pre-4.18 logic.
But now we're in the merge window for 5.4, and we can see if this
alternate model fixes not just the horrendous swap storm behavior, but
also restores the performance regression that the late reverts caused.
Fingers crossed.
* emailed patches from David Rientjes <rientjes@google.com>:
mm, page_alloc: allow hugepage fallback to remote nodes when madvised
mm, page_alloc: avoid expensive reclaim when compaction may not succeed
Revert "Revert "Revert "mm, thp: consolidate THP gfp handling into alloc_hugepage_direct_gfpmask""
Revert "Revert "mm, thp: restore node-local hugepage allocations""
For systems configured to always try hard to allocate transparent
hugepages (thp defrag setting of "always") or for memory that has been
explicitly madvised to MADV_HUGEPAGE, it is often better to fallback to
remote memory to allocate the hugepage if the local allocation fails
first.
The point is to allow the initial call to __alloc_pages_node() to attempt
to defragment local memory to make a hugepage available, if possible,
rather than immediately fallback to remote memory. Local hugepages will
always have a better access latency than remote (huge)pages, so an attempt
to make a hugepage available locally is always preferred.
If memory compaction cannot be successful locally, however, it is likely
better to fallback to remote memory. This could take on two forms: either
allow immediate fallback to remote memory or do per-zone watermark checks.
It would be possible to fallback only when per-zone watermarks fail for
order-0 memory, since that would require local reclaim for all subsequent
faults so remote huge allocation is likely better than thrashing the local
zone for large workloads.
In this case, it is assumed that because the system is configured to try
hard to allocate hugepages or the vma is advised to explicitly want to try
hard for hugepages that remote allocation is better when local allocation
and memory compaction have both failed.
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Stefan Priebe - Profihost AG <s.priebe@profihost.ag>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This reverts commit 92717d429b.
Since commit a8282608c8 ("Revert "mm, thp: restore node-local hugepage
allocations"") is reverted in this series, it is better to restore the
previous 5.2 behavior between the thp allocation and the page allocator
rather than to attempt any consolidation or cleanup for a policy that is
now reverted. It's less risky during an rc cycle and subsequent patches
in this series further modify the same policy that the pre-5.3 behavior
implements.
Consolidation and cleanup can be done subsequent to a sane default page
allocation strategy, so this patch reverts a cleanup done on a strategy
that is now reverted and thus is the least risky option.
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Stefan Priebe - Profihost AG <s.priebe@profihost.ag>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This reverts commit a8282608c8.
The commit references the original intended semantic for MADV_HUGEPAGE
which has subsequently taken on three unique purposes:
- enables or disables thp for a range of memory depending on the system's
config (is thp "enabled" set to "always" or "madvise"),
- determines the synchronous compaction behavior for thp allocations at
fault (is thp "defrag" set to "always", "defer+madvise", or "madvise"),
and
- reverts a previous MADV_NOHUGEPAGE (there is no madvise mode to only
clear previous hugepage advice).
These are the three purposes that currently exist in 5.2 and over the
past several years that userspace has been written around. Adding a
NUMA locality preference adds a fourth dimension to an already conflated
advice mode.
Based on the semantic that MADV_HUGEPAGE has provided over the past
several years, there exist workloads that use the tunable based on these
principles: specifically that the allocation should attempt to
defragment a local node before falling back. It is agreed that remote
hugepages typically (but not always) have a better access latency than
remote native pages, although on Naples this is at parity for
intersocket.
The revert commit that this patch reverts allows hugepage allocation to
immediately allocate remotely when local memory is fragmented. This is
contrary to the semantic of MADV_HUGEPAGE over the past several years:
that is, memory compaction should be attempted locally before falling
back.
The performance degradation of remote hugepages over local hugepages on
Rome, for example, is 53.5% increased access latency. For this reason,
the goal is to revert back to the 5.2 and previous behavior that would
attempt local defragmentation before falling back. With the patch that
is reverted by this patch, we see performance degradations at the tail
because the allocator happily allocates the remote hugepage rather than
even attempting to make a local hugepage available.
zone_reclaim_mode is not a solution to this problem since it does not
only impact hugepage allocations but rather changes the memory
allocation strategy for *all* page allocations.
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Stefan Priebe - Profihost AG <s.priebe@profihost.ag>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch is a part of a series that extends kernel ABI to allow to pass
tagged user pointers (with the top byte set to something else other than
0x00) as syscall arguments.
This patch allows tagged pointers to be passed to the following memory
syscalls: get_mempolicy, madvise, mbind, mincore, mlock, mlock2, mprotect,
mremap, msync, munlock, move_pages.
The mmap and mremap syscalls do not currently accept tagged addresses.
Architectures may interpret the tag as a background colour for the
corresponding vma.
Link: http://lkml.kernel.org/r/aaf0c0969d46b2feb9017f3e1b3ef3970b633d91.1563904656.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Khalid Aziz <khalid.aziz@oracle.com>
Reviewed-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Eric Auger <eric.auger@redhat.com>
Cc: Felix Kuehling <Felix.Kuehling@amd.com>
Cc: Jens Wiklander <jens.wiklander@linaro.org>
Cc: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
1) task_nodes = cpuset_mems_allowed(current);
-> cpuset_mems_allowed() guaranteed to return some non-empty
subset of node_states[N_MEMORY].
2) nodes_and(*new, *new, task_nodes);
-> after nodes_and(), the 'new' should be empty or appropriate
nodemask(online node and with memory).
After 1) and 2), we could remove unnecessary check whether the 'new'
AND node_states[N_MEMORY] is empty.
Link: http://lkml.kernel.org/r/20190806023634.55356-1-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Oscar Salvador <osalvador@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The mm_walk structure currently mixed data and code. Split out the
operations vectors into a new mm_walk_ops structure, and while we are
changing the API also declare the mm_walk structure inside the
walk_page_range and walk_page_vma functions.
Based on patch from Linus Torvalds.
Link: https://lore.kernel.org/r/20190828141955.22210-3-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Thomas Hellstrom <thellstrom@vmware.com>
Reviewed-by: Steven Price <steven.price@arm.com>
Reviewed-by: Jason Gunthorpe <jgg@mellanox.com>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
Add a new header for the two handful of users of the walk_page_range /
walk_page_vma interface instead of polluting all users of mm.h with it.
Link: https://lore.kernel.org/r/20190828141955.22210-2-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Thomas Hellstrom <thellstrom@vmware.com>
Reviewed-by: Steven Price <steven.price@arm.com>
Reviewed-by: Jason Gunthorpe <jgg@mellanox.com>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
This reverts commit 2f0799a0ff ("mm, thp: restore node-local
hugepage allocations").
commit 2f0799a0ff was rightfully applied to avoid the risk of a
severe regression that was reported by the kernel test robot at the end
of the merge window. Now we understood the regression was a false
positive and was caused by a significant increase in fairness during a
swap trashing benchmark. So it's safe to re-apply the fix and continue
improving the code from there. The benchmark that reported the
regression is very useful, but it provides a meaningful result only when
there is no significant alteration in fairness during the workload. The
removal of __GFP_THISNODE increased fairness.
__GFP_THISNODE cannot be used in the generic page faults path for new
memory allocations under the MPOL_DEFAULT mempolicy, or the allocation
behavior significantly deviates from what the MPOL_DEFAULT semantics are
supposed to be for THP and 4k allocations alike.
Setting THP defrag to "always" or using MADV_HUGEPAGE (with THP defrag
set to "madvise") has never meant to provide an implicit MPOL_BIND on
the "current" node the task is running on, causing swap storms and
providing a much more aggressive behavior than even zone_reclaim_node =
3.
Any workload who could have benefited from __GFP_THISNODE has now to
enable zone_reclaim_mode=1||2||3. __GFP_THISNODE implicitly provided
the zone_reclaim_mode behavior, but it only did so if THP was enabled:
if THP was disabled, there would have been no chance to get any 4k page
from the current node if the current node was full of pagecache, which
further shows how this __GFP_THISNODE was misplaced in MADV_HUGEPAGE.
MADV_HUGEPAGE has never been intended to provide any zone_reclaim_mode
semantics, in fact the two are orthogonal, zone_reclaim_mode = 1|2|3
must work exactly the same with MADV_HUGEPAGE set or not.
The performance characteristic of memory depends on the hardware
details. The numbers below are obtained on Naples/EPYC architecture and
the N/A projection extends them to show what we should aim for in the
future as a good THP NUMA locality default. The benchmark used
exercises random memory seeks (note: the cost of the page faults is not
part of the measurement).
D0 THP | D0 4k | D1 THP | D1 4k | D2 THP | D2 4k | D3 THP | D3 4k | ...
0% | +43% | +45% | +106% | +131% | +224% | N/A | N/A
D0 means distance zero (i.e. local memory), D1 means distance one (i.e.
intra socket memory), D2 means distance two (i.e. inter socket memory),
etc...
For the guest physical memory allocated by qemu and for guest mode
kernel the performance characteristic of RAM is more complex and an
ideal default could be:
D0 THP | D1 THP | D0 4k | D2 THP | D1 4k | D3 THP | D2 4k | D3 4k | ...
0% | +58% | +101% | N/A | +222% | N/A | N/A | N/A
NOTE: the N/A are projections and haven't been measured yet, the
measurement in this case is done on a 1950x with only two NUMA nodes.
The THP case here means THP was used both in the host and in the guest.
After applying this commit the THP NUMA locality order that we'll get
out of MADV_HUGEPAGE is this:
D0 THP | D1 THP | D2 THP | D3 THP | ... | D0 4k | D1 4k | D2 4k | D3 4k | ...
Before this commit it was:
D0 THP | D0 4k | D1 4k | D2 4k | D3 4k | ...
Even if we ignore the breakage of large workloads that can't fit in a
single node that the __GFP_THISNODE implicit "current node" mbind
caused, the THP NUMA locality order provided by __GFP_THISNODE was still
not the one we shall aim for in the long term (i.e. the first one at
the top).
After this commit is applied, we can introduce a new allocator multi
order API and to replace those two alloc_pages_vmas calls in the page
fault path, with a single multi order call:
unsigned int order = (1 << HPAGE_PMD_ORDER) | (1 << 0);
page = alloc_pages_multi_order(..., &order);
if (!page)
goto out;
if (!(order & (1 << 0))) {
VM_WARN_ON(order != 1 << HPAGE_PMD_ORDER);
/* THP fault */
} else {
VM_WARN_ON(order != 1 << 0);
/* 4k fallback */
}
The page allocator logic has to be altered so that when it fails on any
zone with order 9, it has to try again with a order 0 before falling
back to the next zone in the zonelist.
After that we need to do more measurements and evaluate if adding an
opt-in feature for guest mode is worth it, to swap "DN 4k | DN+1 THP"
with "DN+1 THP | DN 4k" at every NUMA distance crossing.
Link: http://lkml.kernel.org/r/20190503223146.2312-3-aarcange@redhat.com
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Zi Yan <zi.yan@cs.rutgers.edu>
Cc: Stefan Priebe - Profihost AG <s.priebe@profihost.ag>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "reapply: relax __GFP_THISNODE for MADV_HUGEPAGE mappings".
The fixes for what was originally reported as "pathological THP
behavior" we rightfully reverted to be sure not to introduced
regressions at end of a merge window after a severe regression report
from the kernel bot. We can safely re-apply them now that we had time
to analyze the problem.
The mm process worked fine, because the good fixes were eventually
committed upstream without excessive delay.
The regression reported by the kernel bot however forced us to revert
the good fixes to be sure not to introduce regressions and to give us
the time to analyze the issue further. The silver lining is that this
extra time allowed to think more at this issue and also plan for a
future direction to improve things further in terms of THP NUMA
locality.
This patch (of 2):
This reverts commit 356ff8a9a7 ("Revert "mm, thp: consolidate THP
gfp handling into alloc_hugepage_direct_gfpmask"). So it reapplies
89c83fb539 ("mm, thp: consolidate THP gfp handling into
alloc_hugepage_direct_gfpmask").
Consolidation of the THP allocation flags at the same place was meant to
be a clean up to easier handle otherwise scattered code which is
imposing a maintenance burden. There were no real problems observed
with the gfp mask consolidation but the reversion was rushed through
without a larger consensus regardless.
This patch brings the consolidation back because this should make the
long term maintainability easier as well as it should allow future
changes to be less error prone.
[mhocko@kernel.org: changelog additions]
Link: http://lkml.kernel.org/r/20190503223146.2312-2-aarcange@redhat.com
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Zi Yan <zi.yan@cs.rutgers.edu>
Cc: Stefan Priebe - Profihost AG <s.priebe@profihost.ag>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When running syzkaller internally, we ran into the below bug on 4.9.x
kernel:
kernel BUG at mm/huge_memory.c:2124!
invalid opcode: 0000 [#1] SMP KASAN
CPU: 0 PID: 1518 Comm: syz-executor107 Not tainted 4.9.168+ #2
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 0.5.1 01/01/2011
task: ffff880067b34900 task.stack: ffff880068998000
RIP: split_huge_page_to_list+0x8fb/0x1030 mm/huge_memory.c:2124
Call Trace:
split_huge_page include/linux/huge_mm.h:100 [inline]
queue_pages_pte_range+0x7e1/0x1480 mm/mempolicy.c:538
walk_pmd_range mm/pagewalk.c:50 [inline]
walk_pud_range mm/pagewalk.c:90 [inline]
walk_pgd_range mm/pagewalk.c:116 [inline]
__walk_page_range+0x44a/0xdb0 mm/pagewalk.c:208
walk_page_range+0x154/0x370 mm/pagewalk.c:285
queue_pages_range+0x115/0x150 mm/mempolicy.c:694
do_mbind mm/mempolicy.c:1241 [inline]
SYSC_mbind+0x3c3/0x1030 mm/mempolicy.c:1370
SyS_mbind+0x46/0x60 mm/mempolicy.c:1352
do_syscall_64+0x1d2/0x600 arch/x86/entry/common.c:282
entry_SYSCALL_64_after_swapgs+0x5d/0xdb
Code: c7 80 1c 02 00 e8 26 0a 76 01 <0f> 0b 48 c7 c7 40 46 45 84 e8 4c
RIP [<ffffffff81895d6b>] split_huge_page_to_list+0x8fb/0x1030 mm/huge_memory.c:2124
RSP <ffff88006899f980>
with the below test:
uint64_t r[1] = {0xffffffffffffffff};
int main(void)
{
syscall(__NR_mmap, 0x20000000, 0x1000000, 3, 0x32, -1, 0);
intptr_t res = 0;
res = syscall(__NR_socket, 0x11, 3, 0x300);
if (res != -1)
r[0] = res;
*(uint32_t*)0x20000040 = 0x10000;
*(uint32_t*)0x20000044 = 1;
*(uint32_t*)0x20000048 = 0xc520;
*(uint32_t*)0x2000004c = 1;
syscall(__NR_setsockopt, r[0], 0x107, 0xd, 0x20000040, 0x10);
syscall(__NR_mmap, 0x20fed000, 0x10000, 0, 0x8811, r[0], 0);
*(uint64_t*)0x20000340 = 2;
syscall(__NR_mbind, 0x20ff9000, 0x4000, 0x4002, 0x20000340, 0x45d4, 3);
return 0;
}
Actually the test does:
mmap(0x20000000, 16777216, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0x20000000
socket(AF_PACKET, SOCK_RAW, 768) = 3
setsockopt(3, SOL_PACKET, PACKET_TX_RING, {block_size=65536, block_nr=1, frame_size=50464, frame_nr=1}, 16) = 0
mmap(0x20fed000, 65536, PROT_NONE, MAP_SHARED|MAP_FIXED|MAP_POPULATE|MAP_DENYWRITE, 3, 0) = 0x20fed000
mbind(..., MPOL_MF_STRICT|MPOL_MF_MOVE) = 0
The setsockopt() would allocate compound pages (16 pages in this test)
for packet tx ring, then the mmap() would call packet_mmap() to map the
pages into the user address space specified by the mmap() call.
When calling mbind(), it would scan the vma to queue the pages for
migration to the new node. It would split any huge page since 4.9
doesn't support THP migration, however, the packet tx ring compound
pages are not THP and even not movable. So, the above bug is triggered.
However, the later kernel is not hit by this issue due to commit
d44d363f65 ("mm: don't assume anonymous pages have SwapBacked flag"),
which just removes the PageSwapBacked check for a different reason.
But, there is a deeper issue. According to the semantic of mbind(), it
should return -EIO if MPOL_MF_MOVE or MPOL_MF_MOVE_ALL was specified and
MPOL_MF_STRICT was also specified, but the kernel was unable to move all
existing pages in the range. The tx ring of the packet socket is
definitely not movable, however, mbind() returns success for this case.
Although the most socket file associates with non-movable pages, but XDP
may have movable pages from gup. So, it sounds not fine to just check
the underlying file type of vma in vma_migratable().
Change migrate_page_add() to check if the page is movable or not, if it
is unmovable, just return -EIO. But do not abort pte walk immediately,
since there may be pages off LRU temporarily. We should migrate other
pages if MPOL_MF_MOVE* is specified. Set has_unmovable flag if some
paged could not be not moved, then return -EIO for mbind() eventually.
With this change the above test would return -EIO as expected.
[yang.shi@linux.alibaba.com: fix review comments from Vlastimil]
Link: http://lkml.kernel.org/r/1563556862-54056-3-git-send-email-yang.shi@linux.alibaba.com
Link: http://lkml.kernel.org/r/1561162809-59140-3-git-send-email-yang.shi@linux.alibaba.com
Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When both MPOL_MF_MOVE* and MPOL_MF_STRICT was specified, mbind() should
try best to migrate misplaced pages, if some of the pages could not be
migrated, then return -EIO.
There are three different sub-cases:
1. vma is not migratable
2. vma is migratable, but there are unmovable pages
3. vma is migratable, pages are movable, but migrate_pages() fails
If #1 happens, kernel would just abort immediately, then return -EIO,
after a7f40cfe3b ("mm: mempolicy: make mbind() return -EIO when
MPOL_MF_STRICT is specified").
If #3 happens, kernel would set policy and migrate pages with
best-effort, but won't rollback the migrated pages and reset the policy
back.
Before that commit, they behaves in the same way. It'd better to keep
their behavior consistent. But, rolling back the migrated pages and
resetting the policy back sounds not feasible, so just make #1 behave as
same as #3.
Userspace will know that not everything was successfully migrated (via
-EIO), and can take whatever steps it deems necessary - attempt
rollback, determine which exact page(s) are violating the policy, etc.
Make queue_pages_range() return 1 to indicate there are unmovable pages
or vma is not migratable.
The #2 is not handled correctly in the current kernel, the following
patch will fix it.
[yang.shi@linux.alibaba.com: fix review comments from Vlastimil]
Link: http://lkml.kernel.org/r/1563556862-54056-2-git-send-email-yang.shi@linux.alibaba.com
Link: http://lkml.kernel.org/r/1561162809-59140-2-git-send-email-yang.shi@linux.alibaba.com
Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
nouveau is currently using this through an odd hmm wrapper, and I plan
to switch it to the real thing later in this series.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
mpol_rebind_nodemask() is called for MPOL_BIND and MPOL_INTERLEAVE
mempoclicies when the tasks's cpuset's mems_allowed changes. For
policies created without MPOL_F_STATIC_NODES or MPOL_F_RELATIVE_NODES,
it works by remapping the policy's allowed nodes (stored in v.nodes)
using the previous value of mems_allowed (stored in
w.cpuset_mems_allowed) as the domain of map and the new mems_allowed
(passed as nodes) as the range of the map (see the comment of
bitmap_remap() for details).
The result of remapping is stored back as policy's nodemask in v.nodes,
and the new value of mems_allowed should be stored in
w.cpuset_mems_allowed to facilitate the next rebind, if it happens.
However, 213980c0f2 ("mm, mempolicy: simplify rebinding mempolicies
when updating cpusets") introduced a bug where the result of remapping
is stored in w.cpuset_mems_allowed instead. Thus, a mempolicy's
allowed nodes can evolve in an unexpected way after a series of
rebinding due to cpuset mems_allowed changes, possibly binding to a
wrong node or a smaller number of nodes which may e.g. overload them.
This patch fixes the bug so rebinding again works as intended.
[vbabka@suse.cz: new changlog]
Link: http://lkml.kernel.org/r/ef6a69c6-c052-b067-8f2c-9d615c619bb9@suse.cz
Link: http://lkml.kernel.org/r/1558768043-23184-1-git-send-email-zhongjiang@huawei.com
Fixes: 213980c0f2 ("mm, mempolicy: simplify rebinding mempolicies when updating cpusets")
Signed-off-by: zhong jiang <zhongjiang@huawei.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Based on 1 normalized pattern(s):
subject to the gnu public license version 2
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-only
has been chosen to replace the boilerplate/reference in 1 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Steve Winslow <swinslow@gmail.com>
Reviewed-by: Alexios Zavras <alexios.zavras@intel.com>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190528171440.319650492@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
When MPOL_MF_STRICT was specified and an existing page was already on a
node that does not follow the policy, mbind() should return -EIO. But
commit 6f4576e368 ("mempolicy: apply page table walker on
queue_pages_range()") broke the rule.
And commit c863379849 ("mm: mempolicy: mbind and migrate_pages support
thp migration") didn't return the correct value for THP mbind() too.
If MPOL_MF_STRICT is set, ignore vma_migratable() to make sure it
reaches queue_pages_to_pte_range() or queue_pages_pmd() to check if an
existing page was already on a node that does not follow the policy.
And, non-migratable vma may be used, return -EIO too if MPOL_MF_MOVE or
MPOL_MF_MOVE_ALL was specified.
Tested with https://github.com/metan-ucw/ltp/blob/master/testcases/kernel/syscalls/mbind/mbind02.c
[akpm@linux-foundation.org: tweak code comment]
Link: http://lkml.kernel.org/r/1553020556-38583-1-git-send-email-yang.shi@linux.alibaba.com
Fixes: 6f4576e368 ("mempolicy: apply page table walker on queue_pages_range()")
Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com>
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Reported-by: Cyril Hrubis <chrubis@suse.cz>
Suggested-by: Kirill A. Shutemov <kirill@shutemov.name>
Acked-by: Rafael Aquini <aquini@redhat.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Syzbot with KMSAN reports (excerpt):
==================================================================
BUG: KMSAN: uninit-value in mpol_rebind_policy mm/mempolicy.c:353 [inline]
BUG: KMSAN: uninit-value in mpol_rebind_mm+0x249/0x370 mm/mempolicy.c:384
CPU: 1 PID: 17420 Comm: syz-executor4 Not tainted 4.20.0-rc7+ #15
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS
Google 01/01/2011
Call Trace:
__dump_stack lib/dump_stack.c:77 [inline]
dump_stack+0x173/0x1d0 lib/dump_stack.c:113
kmsan_report+0x12e/0x2a0 mm/kmsan/kmsan.c:613
__msan_warning+0x82/0xf0 mm/kmsan/kmsan_instr.c:295
mpol_rebind_policy mm/mempolicy.c:353 [inline]
mpol_rebind_mm+0x249/0x370 mm/mempolicy.c:384
update_tasks_nodemask+0x608/0xca0 kernel/cgroup/cpuset.c:1120
update_nodemasks_hier kernel/cgroup/cpuset.c:1185 [inline]
update_nodemask kernel/cgroup/cpuset.c:1253 [inline]
cpuset_write_resmask+0x2a98/0x34b0 kernel/cgroup/cpuset.c:1728
...
Uninit was created at:
kmsan_save_stack_with_flags mm/kmsan/kmsan.c:204 [inline]
kmsan_internal_poison_shadow+0x92/0x150 mm/kmsan/kmsan.c:158
kmsan_kmalloc+0xa6/0x130 mm/kmsan/kmsan_hooks.c:176
kmem_cache_alloc+0x572/0xb90 mm/slub.c:2777
mpol_new mm/mempolicy.c:276 [inline]
do_mbind mm/mempolicy.c:1180 [inline]
kernel_mbind+0x8a7/0x31a0 mm/mempolicy.c:1347
__do_sys_mbind mm/mempolicy.c:1354 [inline]
As it's difficult to report where exactly the uninit value resides in
the mempolicy object, we have to guess a bit. mm/mempolicy.c:353
contains this part of mpol_rebind_policy():
if (!mpol_store_user_nodemask(pol) &&
nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
"mpol_store_user_nodemask(pol)" is testing pol->flags, which I couldn't
ever see being uninitialized after leaving mpol_new(). So I'll guess
it's actually about accessing pol->w.cpuset_mems_allowed on line 354,
but still part of statement starting on line 353.
For w.cpuset_mems_allowed to be not initialized, and the nodes_equal()
reachable for a mempolicy where mpol_set_nodemask() is called in
do_mbind(), it seems the only possibility is a MPOL_PREFERRED policy
with empty set of nodes, i.e. MPOL_LOCAL equivalent, with MPOL_F_LOCAL
flag. Let's exclude such policies from the nodes_equal() check. Note
the uninit access should be benign anyway, as rebinding this kind of
policy is always a no-op. Therefore no actual need for stable
inclusion.
Link: http://lkml.kernel.org/r/a71997c3-e8ae-a787-d5ce-3db05768b27c@suse.cz
Link: http://lkml.kernel.org/r/73da3e9c-cc84-509e-17d9-0c434bb9967d@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reported-by: syzbot+b19c2dc2c990ea657a71@syzkaller.appspotmail.com
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Yisheng Xie <xieyisheng1@huawei.com>
Cc: zhong jiang <zhongjiang@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "Replace all open encodings for NUMA_NO_NODE", v3.
All these places for replacement were found by running the following
grep patterns on the entire kernel code. Please let me know if this
might have missed some instances. This might also have replaced some
false positives. I will appreciate suggestions, inputs and review.
1. git grep "nid == -1"
2. git grep "node == -1"
3. git grep "nid = -1"
4. git grep "node = -1"
This patch (of 2):
At present there are multiple places where invalid node number is
encoded as -1. Even though implicitly understood it is always better to
have macros in there. Replace these open encodings for an invalid node
number with the global macro NUMA_NO_NODE. This helps remove NUMA
related assumptions like 'invalid node' from various places redirecting
them to a common definition.
Link: http://lkml.kernel.org/r/1545127933-10711-2-git-send-email-anshuman.khandual@arm.com
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com> [ixgbe]
Acked-by: Jens Axboe <axboe@kernel.dk> [mtip32xx]
Acked-by: Vinod Koul <vkoul@kernel.org> [dmaengine.c]
Acked-by: Michael Ellerman <mpe@ellerman.id.au> [powerpc]
Acked-by: Doug Ledford <dledford@redhat.com> [drivers/infiniband]
Cc: Joseph Qi <jiangqi903@gmail.com>
Cc: Hans Verkuil <hverkuil@xs4all.nl>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The system call, get_mempolicy() [1], passes an unsigned long *nodemask
pointer and an unsigned long maxnode argument which specifies the length
of the user's nodemask array in bits (which is rounded up). The manual
page says that if the maxnode value is too small, get_mempolicy will
return EINVAL but there is no system call to return this minimum value.
To determine this value, some programs search /proc/<pid>/status for a
line starting with "Mems_allowed:" and use the number of digits in the
mask to determine the minimum value. A recent change to the way this line
is formatted [2] causes these programs to compute a value less than
MAX_NUMNODES so get_mempolicy() returns EINVAL.
Change get_mempolicy(), the older compat version of get_mempolicy(), and
the copy_nodes_to_user() function to use nr_node_ids instead of
MAX_NUMNODES, thus preserving the defacto method of computing the minimum
size for the nodemask array and the maxnode argument.
[1] http://man7.org/linux/man-pages/man2/get_mempolicy.2.html
[2] https://lore.kernel.org/lkml/1545405631-6808-1-git-send-email-longman@redhat.com
Link: http://lkml.kernel.org/r/20190211180245.22295-1-rcampbell@nvidia.com
Fixes: 4fb8e5b89bcbbbb ("include/linux/nodemask.h: use nr_node_ids (not MAX_NUMNODES) in __nodemask_pr_numnodes()")
Signed-off-by: Ralph Campbell <rcampbell@nvidia.com>
Suggested-by: Alexander Duyck <alexander.duyck@gmail.com>
Cc: Waiman Long <longman@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This reverts commit 89c83fb539.
This should have been done as part of 2f0799a0ff ("mm, thp: restore
node-local hugepage allocations"). The movement of the thp allocation
policy from alloc_pages_vma() to alloc_hugepage_direct_gfpmask() was
intended to only set __GFP_THISNODE for mempolicies that are not
MPOL_BIND whereas the revert could set this regardless of mempolicy.
While the check for MPOL_BIND between alloc_hugepage_direct_gfpmask()
and alloc_pages_vma() was racy, that has since been removed since the
revert. What is left is the possibility to use __GFP_THISNODE in
policy_node() when it is unexpected because the special handling for
hugepages in alloc_pages_vma() was removed as part of the consolidation.
Secondly, prior to 89c83fb539, alloc_pages_vma() implemented a somewhat
different policy for hugepage allocations, which were allocated through
alloc_hugepage_vma(). For hugepage allocations, if the allocating
process's node is in the set of allowed nodes, allocate with
__GFP_THISNODE for that node (for MPOL_PREFERRED, use that node with
__GFP_THISNODE instead). This was changed for shmem_alloc_hugepage() to
allow fallback to other nodes in 89c83fb539 as it did for new_page() in
mm/mempolicy.c which is functionally different behavior and removes the
requirement to only allocate hugepages locally.
So this commit does a full revert of 89c83fb539 instead of the partial
revert that was done in 2f0799a0ff. The result is the same thp
allocation policy for 4.20 that was in 4.19.
Fixes: 89c83fb539 ("mm, thp: consolidate THP gfp handling into alloc_hugepage_direct_gfpmask")
Fixes: 2f0799a0ff ("mm, thp: restore node-local hugepage allocations")
Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is a full revert of ac5b2c1891 ("mm: thp: relax __GFP_THISNODE for
MADV_HUGEPAGE mappings") and a partial revert of 89c83fb539 ("mm, thp:
consolidate THP gfp handling into alloc_hugepage_direct_gfpmask").
By not setting __GFP_THISNODE, applications can allocate remote hugepages
when the local node is fragmented or low on memory when either the thp
defrag setting is "always" or the vma has been madvised with
MADV_HUGEPAGE.
Remote access to hugepages often has much higher latency than local pages
of the native page size. On Haswell, ac5b2c1891 was shown to have a
13.9% access regression after this commit for binaries that remap their
text segment to be backed by transparent hugepages.
The intent of ac5b2c1891 is to address an issue where a local node is
low on memory or fragmented such that a hugepage cannot be allocated. In
every scenario where this was described as a fix, there is abundant and
unfragmented remote memory available to allocate from, even with a greater
access latency.
If remote memory is also low or fragmented, not setting __GFP_THISNODE was
also measured on Haswell to have a 40% regression in allocation latency.
Restore __GFP_THISNODE for thp allocations.
Fixes: ac5b2c1891 ("mm: thp: relax __GFP_THISNODE for MADV_HUGEPAGE mappings")
Fixes: 89c83fb539 ("mm, thp: consolidate THP gfp handling into alloc_hugepage_direct_gfpmask")
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
THP allocation mode is quite complex and it depends on the defrag mode.
This complexity is hidden in alloc_hugepage_direct_gfpmask from a large
part currently. The NUMA special casing (namely __GFP_THISNODE) is
however independent and placed in alloc_pages_vma currently. This both
adds an unnecessary branch to all vma based page allocation requests and
it makes the code more complex unnecessarily as well. Not to mention
that e.g. shmem THP used to do the node reclaiming unconditionally
regardless of the defrag mode until recently. This was not only
unexpected behavior but it was also hardly a good default behavior and I
strongly suspect it was just a side effect of the code sharing more than
a deliberate decision which suggests that such a layering is wrong.
Get rid of the thp special casing from alloc_pages_vma and move the
logic to alloc_hugepage_direct_gfpmask. __GFP_THISNODE is applied to the
resulting gfp mask only when the direct reclaim is not requested and
when there is no explicit numa binding to preserve the current logic.
Please note that there's also a slight difference wrt MPOL_BIND now. The
previous code would avoid using __GFP_THISNODE if the local node was
outside of policy_nodemask(). After this patch __GFP_THISNODE is avoided
for all MPOL_BIND policies. So there's a difference that if local node
is actually allowed by the bind policy's nodemask, previously
__GFP_THISNODE would be added, but now it won't be. From the behavior
POV this is still correct because the policy nodemask is used.
Link: http://lkml.kernel.org/r/20180925120326.24392-3-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Alex Williamson <alex.williamson@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Stefan Priebe - Profihost AG <s.priebe@profihost.ag>
Cc: Zi Yan <zi.yan@cs.rutgers.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
THP allocation might be really disruptive when allocated on NUMA system
with the local node full or hard to reclaim. Stefan has posted an
allocation stall report on 4.12 based SLES kernel which suggests the
same issue:
kvm: page allocation stalls for 194572ms, order:9, mode:0x4740ca(__GFP_HIGHMEM|__GFP_IO|__GFP_FS|__GFP_COMP|__GFP_NOMEMALLOC|__GFP_HARDWALL|__GFP_THISNODE|__GFP_MOVABLE|__GFP_DIRECT_RECLAIM), nodemask=(null)
kvm cpuset=/ mems_allowed=0-1
CPU: 10 PID: 84752 Comm: kvm Tainted: G W 4.12.0+98-ph <a href="/view.php?id=1" title="[geschlossen] Integration Ramdisk" class="resolved">0000001</a> SLE15 (unreleased)
Hardware name: Supermicro SYS-1029P-WTRT/X11DDW-NT, BIOS 2.0 12/05/2017
Call Trace:
dump_stack+0x5c/0x84
warn_alloc+0xe0/0x180
__alloc_pages_slowpath+0x820/0xc90
__alloc_pages_nodemask+0x1cc/0x210
alloc_pages_vma+0x1e5/0x280
do_huge_pmd_wp_page+0x83f/0xf00
__handle_mm_fault+0x93d/0x1060
handle_mm_fault+0xc6/0x1b0
__do_page_fault+0x230/0x430
do_page_fault+0x2a/0x70
page_fault+0x7b/0x80
[...]
Mem-Info:
active_anon:126315487 inactive_anon:1612476 isolated_anon:5
active_file:60183 inactive_file:245285 isolated_file:0
unevictable:15657 dirty:286 writeback:1 unstable:0
slab_reclaimable:75543 slab_unreclaimable:2509111
mapped:81814 shmem:31764 pagetables:370616 bounce:0
free:32294031 free_pcp:6233 free_cma:0
Node 0 active_anon:254680388kB inactive_anon:1112760kB active_file:240648kB inactive_file:981168kB unevictable:13368kB isolated(anon):0kB isolated(file):0kB mapped:280240kB dirty:1144kB writeback:0kB shmem:95832kB shmem_thp: 0kB shmem_pmdmapped: 0kB anon_thp: 81225728kB writeback_tmp:0kB unstable:0kB all_unreclaimable? no
Node 1 active_anon:250583072kB inactive_anon:5337144kB active_file:84kB inactive_file:0kB unevictable:49260kB isolated(anon):20kB isolated(file):0kB mapped:47016kB dirty:0kB writeback:4kB shmem:31224kB shmem_thp: 0kB shmem_pmdmapped: 0kB anon_thp: 31897600kB writeback_tmp:0kB unstable:0kB all_unreclaimable? no
The defrag mode is "madvise" and from the above report it is clear that
the THP has been allocated for MADV_HUGEPAGA vma.
Andrea has identified that the main source of the problem is
__GFP_THISNODE usage:
: The problem is that direct compaction combined with the NUMA
: __GFP_THISNODE logic in mempolicy.c is telling reclaim to swap very
: hard the local node, instead of failing the allocation if there's no
: THP available in the local node.
:
: Such logic was ok until __GFP_THISNODE was added to the THP allocation
: path even with MPOL_DEFAULT.
:
: The idea behind the __GFP_THISNODE addition, is that it is better to
: provide local memory in PAGE_SIZE units than to use remote NUMA THP
: backed memory. That largely depends on the remote latency though, on
: threadrippers for example the overhead is relatively low in my
: experience.
:
: The combination of __GFP_THISNODE and __GFP_DIRECT_RECLAIM results in
: extremely slow qemu startup with vfio, if the VM is larger than the
: size of one host NUMA node. This is because it will try very hard to
: unsuccessfully swapout get_user_pages pinned pages as result of the
: __GFP_THISNODE being set, instead of falling back to PAGE_SIZE
: allocations and instead of trying to allocate THP on other nodes (it
: would be even worse without vfio type1 GUP pins of course, except it'd
: be swapping heavily instead).
Fix this by removing __GFP_THISNODE for THP requests which are
requesting the direct reclaim. This effectivelly reverts 5265047ac3
on the grounds that the zone/node reclaim was known to be disruptive due
to premature reclaim when there was memory free. While it made sense at
the time for HPC workloads without NUMA awareness on rare machines, it
was ultimately harmful in the majority of cases. The existing behaviour
is similar, if not as widespare as it applies to a corner case but
crucially, it cannot be tuned around like zone_reclaim_mode can. The
default behaviour should always be to cause the least harm for the
common case.
If there are specialised use cases out there that want zone_reclaim_mode
in specific cases, then it can be built on top. Longterm we should
consider a memory policy which allows for the node reclaim like behavior
for the specific memory ranges which would allow a
[1] http://lkml.kernel.org/r/20180820032204.9591-1-aarcange@redhat.com
Mel said:
: Both patches look correct to me but I'm responding to this one because
: it's the fix. The change makes sense and moves further away from the
: severe stalling behaviour we used to see with both THP and zone reclaim
: mode.
:
: I put together a basic experiment with usemem configured to reference a
: buffer multiple times that is 80% the size of main memory on a 2-socket
: box with symmetric node sizes and defrag set to "always". The defrag
: setting is not the default but it would be functionally similar to
: accessing a buffer with madvise(MADV_HUGEPAGE). Usemem is configured to
: reference the buffer multiple times and while it's not an interesting
: workload, it would be expected to complete reasonably quickly as it fits
: within memory. The results were;
:
: usemem
: vanilla noreclaim-v1
: Amean Elapsd-1 42.78 ( 0.00%) 26.87 ( 37.18%)
: Amean Elapsd-3 27.55 ( 0.00%) 7.44 ( 73.00%)
: Amean Elapsd-4 5.72 ( 0.00%) 5.69 ( 0.45%)
:
: This shows the elapsed time in seconds for 1 thread, 3 threads and 4
: threads referencing buffers 80% the size of memory. With the patches
: applied, it's 37.18% faster for the single thread and 73% faster with two
: threads. Note that 4 threads showing little difference does not indicate
: the problem is related to thread counts. It's simply the case that 4
: threads gets spread so their workload mostly fits in one node.
:
: The overall view from /proc/vmstats is more startling
:
: 4.19.0-rc1 4.19.0-rc1
: vanillanoreclaim-v1r1
: Minor Faults 35593425 708164
: Major Faults 484088 36
: Swap Ins 3772837 0
: Swap Outs 3932295 0
:
: Massive amounts of swap in/out without the patch
:
: Direct pages scanned 6013214 0
: Kswapd pages scanned 0 0
: Kswapd pages reclaimed 0 0
: Direct pages reclaimed 4033009 0
:
: Lots of reclaim activity without the patch
:
: Kswapd efficiency 100% 100%
: Kswapd velocity 0.000 0.000
: Direct efficiency 67% 100%
: Direct velocity 11191.956 0.000
:
: Mostly from direct reclaim context as you'd expect without the patch.
:
: Page writes by reclaim 3932314.000 0.000
: Page writes file 19 0
: Page writes anon 3932295 0
: Page reclaim immediate 42336 0
:
: Writes from reclaim context is never good but the patch eliminates it.
:
: We should never have default behaviour to thrash the system for such a
: basic workload. If zone reclaim mode behaviour is ever desired but on a
: single task instead of a global basis then the sensible option is to build
: a mempolicy that enforces that behaviour.
This was a severe regression compared to previous kernels that made
important workloads unusable and it starts when __GFP_THISNODE was
added to THP allocations under MADV_HUGEPAGE. It is not a significant
risk to go to the previous behavior before __GFP_THISNODE was added, it
worked like that for years.
This was simply an optimization to some lucky workloads that can fit in
a single node, but it ended up breaking the VM for others that can't
possibly fit in a single node, so going back is safe.
[mhocko@suse.com: rewrote the changelog based on the one from Andrea]
Link: http://lkml.kernel.org/r/20180925120326.24392-2-mhocko@kernel.org
Fixes: 5265047ac3 ("mm, thp: really limit transparent hugepage allocation to local node")
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Stefan Priebe <s.priebe@profihost.ag>
Debugged-by: Andrea Arcangeli <aarcange@redhat.com>
Reported-by: Alex Williamson <alex.williamson@redhat.com>
Reviewed-by: Mel Gorman <mgorman@techsingularity.net>
Tested-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Zi Yan <zi.yan@cs.rutgers.edu>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: <stable@vger.kernel.org> [4.1+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
match_string() returns the index of an array for a matching string, which
can be used intead of open coded implementation.
Link: http://lkml.kernel.org/r/1536988365-50310-1-git-send-email-zhongjiang@huawei.com
Signed-off-by: zhong jiang <zhongjiang@huawei.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
get_mempolicy(MPOL_F_NODE|MPOL_F_ADDR) called a get_user_pages that would
not be waiting for userfaults before failing and it would hit on a SIGBUS
instead. Using get_user_pages_locked/unlocked instead will allow
get_mempolicy to allow userfaults to resolve the fault and fill the hole,
before grabbing the node id of the page.
If the user calls get_mempolicy() with MPOL_F_ADDR | MPOL_F_NODE for an
address inside an area managed by uffd and there is no page at that
address, the page allocation from within get_mempolicy() will fail
because get_user_pages() does not allow for page fault retry required
for uffd; the user will get SIGBUS.
With this patch, the page fault will be resolved by the uffd and the
get_mempolicy() will continue normally.
Background:
Via code review, previously the syscall would have returned -EFAULT
(vm_fault_to_errno), now it will block and wait for an userfault (if
it's waken before the fault is resolved it'll still -EFAULT).
This way get_mempolicy will give a chance to an "unaware" app to be
compliant with userfaults.
The reason this visible change is that becoming "userfault compliant"
cannot regress anything: all other syscalls including read(2)/write(2)
had to become "userfault compliant" long time ago (that's one of the
things userfaultfd can do that PROT_NONE and trapping segfaults can't).
So this is just one more syscall that become "userfault compliant" like
all other major ones already were.
This has been happening on virtio-bridge dpdk process which just called
get_mempolicy on the guest space post live migration, but before the
memory had a chance to be migrated to destination.
I didn't run an strace to be able to show the -EFAULT going away, but
I've the confirmation of the below debug aid information (only visible
with CONFIG_DEBUG_VM=y) going away with the patch:
[20116.371461] FAULT_FLAG_ALLOW_RETRY missing 0
[20116.371464] CPU: 1 PID: 13381 Comm: vhost-events Not tainted 4.17.12-200.fc28.x86_64 #1
[20116.371465] Hardware name: LENOVO 20FAS2BN0A/20FAS2BN0A, BIOS N1CET54W (1.22 ) 02/10/2017
[20116.371466] Call Trace:
[20116.371473] dump_stack+0x5c/0x80
[20116.371476] handle_userfault.cold.37+0x1b/0x22
[20116.371479] ? remove_wait_queue+0x20/0x60
[20116.371481] ? poll_freewait+0x45/0xa0
[20116.371483] ? do_sys_poll+0x31c/0x520
[20116.371485] ? radix_tree_lookup_slot+0x1e/0x50
[20116.371488] shmem_getpage_gfp+0xce7/0xe50
[20116.371491] ? page_add_file_rmap+0x1a/0x2c0
[20116.371493] shmem_fault+0x78/0x1e0
[20116.371495] ? filemap_map_pages+0x3a1/0x450
[20116.371498] __do_fault+0x1f/0xc0
[20116.371500] __handle_mm_fault+0xe2e/0x12f0
[20116.371502] handle_mm_fault+0xda/0x200
[20116.371504] __get_user_pages+0x238/0x790
[20116.371506] get_user_pages+0x3e/0x50
[20116.371510] kernel_get_mempolicy+0x40b/0x700
[20116.371512] ? vfs_write+0x170/0x1a0
[20116.371515] __x64_sys_get_mempolicy+0x21/0x30
[20116.371517] do_syscall_64+0x5b/0x160
[20116.371520] entry_SYSCALL_64_after_hwframe+0x44/0xa9
The above harmless debug message (not a kernel crash, just a
dump_stack()) is shown with CONFIG_DEBUG_VM=y to more quickly identify
and improve kernel spots that may have to become "userfaultfd
compliant" like this one (without having to run an strace and search
for syscall misbehavior). Spots like the above are more closer to a
kernel bug for the non-cooperative usages that Mike focuses on, than
for for dpdk qemu-cooperative usages that reproduced it, but it's still
nicer to get this fixed for dpdk too.
The part of the patch that caused me to think is only the
implementation issue of mpol_get, but it looks like it should work safe
no matter the kind of mempolicy structure that is (the default static
policy also starts at 1 so it'll go to 2 and back to 1 without crashing
everything at 0).
[rppt@linux.vnet.ibm.com: changelog addition]
http://lkml.kernel.org/r/20180904073718.GA26916@rapoport-lnx
Link: http://lkml.kernel.org/r/20180831214848.23676-1-aarcange@redhat.com
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Reported-by: Maxime Coquelin <maxime.coquelin@redhat.com>
Tested-by: Dr. David Alan Gilbert <dgilbert@redhat.com>
Reviewed-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
zone->node is configured only when CONFIG_NUMA=y, so it is a good idea to
have inline functions to access this field in order to avoid ifdef's in c
files.
Link: http://lkml.kernel.org/r/20180730101757.28058-3-osalvador@techadventures.net
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Aaron Lu <aaron.lu@intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Rather than in vm_area_alloc(). To ensure that the various oddball
stack-based vmas are in a good state. Some of the callers were zeroing
them out, others were not.
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Russell King <rmk+kernel@arm.linux.org.uk>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Make sure to initialize all VMAs properly, not only those which come
from vm_area_cachep.
Link: http://lkml.kernel.org/r/20180724121139.62570-3-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
THP migration is hacked into the generic migration with rather
surprising semantic. The migration allocation callback is supposed to
check whether the THP can be migrated at once and if that is not the
case then it allocates a simple page to migrate. unmap_and_move then
fixes that up by spliting the THP into small pages while moving the head
page to the newly allocated order-0 page. Remaning pages are moved to
the LRU list by split_huge_page. The same happens if the THP allocation
fails. This is really ugly and error prone [1].
I also believe that split_huge_page to the LRU lists is inherently wrong
because all tail pages are not migrated. Some callers will just work
around that by retrying (e.g. memory hotplug). There are other pfn
walkers which are simply broken though. e.g. madvise_inject_error will
migrate head and then advances next pfn by the huge page size.
do_move_page_to_node_array, queue_pages_range (migrate_pages, mbind),
will simply split the THP before migration if the THP migration is not
supported then falls back to single page migration but it doesn't handle
tail pages if the THP migration path is not able to allocate a fresh THP
so we end up with ENOMEM and fail the whole migration which is a
questionable behavior. Page compaction doesn't try to migrate large
pages so it should be immune.
This patch tries to unclutter the situation by moving the special THP
handling up to the migrate_pages layer where it actually belongs. We
simply split the THP page into the existing list if unmap_and_move fails
with ENOMEM and retry. So we will _always_ migrate all THP subpages and
specific migrate_pages users do not have to deal with this case in a
special way.
[1] http://lkml.kernel.org/r/20171121021855.50525-1-zi.yan@sent.com
Link: http://lkml.kernel.org/r/20180103082555.14592-4-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Zi Yan <zi.yan@cs.rutgers.edu>
Cc: Andrea Reale <ar@linux.vnet.ibm.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
No allocation callback is using this argument anymore. new_page_node
used to use this parameter to convey node_id resp. migration error up
to move_pages code (do_move_page_to_node_array). The error status never
made it into the final status field and we have a better way to
communicate node id to the status field now. All other allocation
callbacks simply ignored the argument so we can drop it finally.
[mhocko@suse.com: fix migration callback]
Link: http://lkml.kernel.org/r/20180105085259.GH2801@dhcp22.suse.cz
[akpm@linux-foundation.org: fix alloc_misplaced_dst_page()]
[mhocko@kernel.org: fix build]
Link: http://lkml.kernel.org/r/20180103091134.GB11319@dhcp22.suse.cz
Link: http://lkml.kernel.org/r/20180103082555.14592-3-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Zi Yan <zi.yan@cs.rutgers.edu>
Cc: Andrea Reale <ar@linux.vnet.ibm.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "unclutter thp migration"
Motivation:
THP migration is hacked into the generic migration with rather
surprising semantic. The migration allocation callback is supposed to
check whether the THP can be migrated at once and if that is not the
case then it allocates a simple page to migrate. unmap_and_move then
fixes that up by splitting the THP into small pages while moving the
head page to the newly allocated order-0 page. Remaining pages are
moved to the LRU list by split_huge_page. The same happens if the THP
allocation fails. This is really ugly and error prone [2].
I also believe that split_huge_page to the LRU lists is inherently wrong
because all tail pages are not migrated. Some callers will just work
around that by retrying (e.g. memory hotplug). There are other pfn
walkers which are simply broken though. e.g. madvise_inject_error will
migrate head and then advances next pfn by the huge page size.
do_move_page_to_node_array, queue_pages_range (migrate_pages, mbind),
will simply split the THP before migration if the THP migration is not
supported then falls back to single page migration but it doesn't handle
tail pages if the THP migration path is not able to allocate a fresh THP
so we end up with ENOMEM and fail the whole migration which is a
questionable behavior. Page compaction doesn't try to migrate large
pages so it should be immune.
The first patch reworks do_pages_move which relies on a very ugly
calling semantic when the return status is pushed to the migration path
via private pointer. It uses pre allocated fixed size batching to
achieve that. We simply cannot do the same if a THP is to be split
during the migration path which is done in the patch 3. Patch 2 is
follow up cleanup which removes the mentioned return status calling
convention ugliness.
On a side note:
There are some semantic issues I have encountered on the way when
working on patch 1 but I am not addressing them here. E.g. trying to
move THP tail pages will result in either success or EBUSY (the later
one more likely once we isolate head from the LRU list). Hugetlb
reports EACCESS on tail pages. Some errors are reported via status
parameter but migration failures are not even though the original
`reason' argument suggests there was an intention to do so. From a
quick look into git history this never worked. I have tried to keep the
semantic unchanged.
Then there is a relatively minor thing that the page isolation might
fail because of pages not being on the LRU - e.g. because they are
sitting on the per-cpu LRU caches. Easily fixable.
This patch (of 3):
do_pages_move is supposed to move user defined memory (an array of
addresses) to the user defined numa nodes (an array of nodes one for
each address). The user provided status array then contains resulting
numa node for each address or an error. The semantic of this function
is little bit confusing because only some errors are reported back.
Notably migrate_pages error is only reported via the return value. This
patch doesn't try to address these semantic nuances but rather change
the underlying implementation.
Currently we are processing user input (which can be really large) in
batches which are stored to a temporarily allocated page. Each address
is resolved to its struct page and stored to page_to_node structure
along with the requested target numa node. The array of these
structures is then conveyed down the page migration path via private
argument. new_page_node then finds the corresponding structure and
allocates the proper target page.
What is the problem with the current implementation and why to change
it? Apart from being quite ugly it also doesn't cope with unexpected
pages showing up on the migration list inside migrate_pages path. That
doesn't happen currently but the follow up patch would like to make the
thp migration code more clear and that would need to split a THP into
the list for some cases.
How does the new implementation work? Well, instead of batching into a
fixed size array we simply batch all pages that should be migrated to
the same node and isolate all of them into a linked list which doesn't
require any additional storage. This should work reasonably well
because page migration usually migrates larger ranges of memory to a
specific node. So the common case should work equally well as the
current implementation. Even if somebody constructs an input where the
target numa nodes would be interleaved we shouldn't see a large
performance impact because page migration alone doesn't really benefit
from batching. mmap_sem batching for the lookup is quite questionable
and isolate_lru_page which would benefit from batching is not using it
even in the current implementation.
Link: http://lkml.kernel.org/r/20180103082555.14592-2-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Kirill A. Shutemov <kirill@shutemov.name>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Zi Yan <zi.yan@cs.rutgers.edu>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Reale <ar@linux.vnet.ibm.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull removal of in-kernel calls to syscalls from Dominik Brodowski:
"System calls are interaction points between userspace and the kernel.
Therefore, system call functions such as sys_xyzzy() or
compat_sys_xyzzy() should only be called from userspace via the
syscall table, but not from elsewhere in the kernel.
At least on 64-bit x86, it will likely be a hard requirement from
v4.17 onwards to not call system call functions in the kernel: It is
better to use use a different calling convention for system calls
there, where struct pt_regs is decoded on-the-fly in a syscall wrapper
which then hands processing over to the actual syscall function. This
means that only those parameters which are actually needed for a
specific syscall are passed on during syscall entry, instead of
filling in six CPU registers with random user space content all the
time (which may cause serious trouble down the call chain). Those
x86-specific patches will be pushed through the x86 tree in the near
future.
Moreover, rules on how data may be accessed may differ between kernel
data and user data. This is another reason why calling sys_xyzzy() is
generally a bad idea, and -- at most -- acceptable in arch-specific
code.
This patchset removes all in-kernel calls to syscall functions in the
kernel with the exception of arch/. On top of this, it cleans up the
three places where many syscalls are referenced or prototyped, namely
kernel/sys_ni.c, include/linux/syscalls.h and include/linux/compat.h"
* 'syscalls-next' of git://git.kernel.org/pub/scm/linux/kernel/git/brodo/linux: (109 commits)
bpf: whitelist all syscalls for error injection
kernel/sys_ni: remove {sys_,sys_compat} from cond_syscall definitions
kernel/sys_ni: sort cond_syscall() entries
syscalls/x86: auto-create compat_sys_*() prototypes
syscalls: sort syscall prototypes in include/linux/compat.h
net: remove compat_sys_*() prototypes from net/compat.h
syscalls: sort syscall prototypes in include/linux/syscalls.h
kexec: move sys_kexec_load() prototype to syscalls.h
x86/sigreturn: use SYSCALL_DEFINE0
x86: fix sys_sigreturn() return type to be long, not unsigned long
x86/ioport: add ksys_ioperm() helper; remove in-kernel calls to sys_ioperm()
mm: add ksys_readahead() helper; remove in-kernel calls to sys_readahead()
mm: add ksys_mmap_pgoff() helper; remove in-kernel calls to sys_mmap_pgoff()
mm: add ksys_fadvise64_64() helper; remove in-kernel call to sys_fadvise64_64()
fs: add ksys_fallocate() wrapper; remove in-kernel calls to sys_fallocate()
fs: add ksys_p{read,write}64() helpers; remove in-kernel calls to syscalls
fs: add ksys_truncate() wrapper; remove in-kernel calls to sys_truncate()
fs: add ksys_sync_file_range helper(); remove in-kernel calls to syscall
kernel: add ksys_setsid() helper; remove in-kernel call to sys_setsid()
kernel: add ksys_unshare() helper; remove in-kernel calls to sys_unshare()
...
Using the mm-internal kernel_[sg]et_mempolicy() helper allows us to get
rid of the mm-internal calls to the sys_[sg]et_mempolicy() syscalls.
This patch is part of a series which removes in-kernel calls to syscalls.
On this basis, the syscall entry path can be streamlined. For details, see
http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: linux-mm@kvack.org
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Using the mm-internal kernel_mbind() helper allows us to get rid of the
mm-internal call to the sys_mbind() syscall.
This patch is part of a series which removes in-kernel calls to syscalls.
On this basis, the syscall entry path can be streamlined. For details, see
http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: linux-mm@kvack.org
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Move compat_sys_migrate_pages() to mm/mempolicy.c and make it call a newly
introduced helper -- kernel_migrate_pages() -- instead of the syscall.
This patch is part of a series which removes in-kernel calls to syscalls.
On this basis, the syscall entry path can be streamlined. For details, see
http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: linux-mm@kvack.org
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Alexander reported a use of uninitialized memory in __mpol_equal(),
which is caused by incorrect use of preferred_node.
When mempolicy in mode MPOL_PREFERRED with flags MPOL_F_LOCAL, it uses
numa_node_id() instead of preferred_node, however, __mpol_equal() uses
preferred_node without checking whether it is MPOL_F_LOCAL or not.
[akpm@linux-foundation.org: slight comment tweak]
Link: http://lkml.kernel.org/r/4ebee1c2-57f6-bcb8-0e2d-1833d1ee0bb7@huawei.com
Fixes: fc36b8d3d8 ("mempolicy: use MPOL_F_LOCAL to Indicate Preferred Local Policy")
Signed-off-by: Yisheng Xie <xieyisheng1@huawei.com>
Reported-by: Alexander Potapenko <glider@google.com>
Tested-by: Alexander Potapenko <glider@google.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Dmitriy Vyukov <dvyukov@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>