Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The comment mentioned the wrong lock. Also add an ASSERT to assert
this locking precondition.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
In quite a few places we call xfs_da_read_buf with a mappedbno that we
don't control, then assume that the function passes back either an error
code or a buffer pointer. Unfortunately, if mappedbno == -2 and bno
maps to a hole, we get a return code of zero and a NULL buffer, which
means that we crash if we actually try to use that buffer pointer. This
happens immediately when we set the buffer type for transaction context.
Therefore, check that we have no error code and a non-NULL bp before
trying to use bp. This patch is a follow-up to an incomplete fix in
96a3aefb8f ("xfs: don't crash if reading a directory results in an
unexpected hole").
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
XFS has a maximum symlink target length of 1024 bytes; this is a
holdover from the Irix days. Unfortunately, the constant establishing
this is 'MAXPATHLEN' and is /not/ the same as the Linux MAXPATHLEN,
which is 4096.
The kernel enforces its 1024 byte MAXPATHLEN on symlink targets, but
xfsprogs picks up the (Linux) system 4096 byte MAXPATHLEN, which means
that xfs_repair doesn't complain about oversized symlinks.
Since this is an on-disk format constraint, put the define in the XFS
namespace and move everything over to use the new name.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
The patch below updated xfs_dq_get_next_id() to use the XFS iext
lookup helpers to locate the next quota id rather than to seek for
data in the quota file. The updated code fails to correctly handle
the case where the quota inode might have contiguous chunks part of
the same extent. In this case, the start block offset is calculated
based on the next expected id but the extent lookup returns the same
start offset as for the previous chunk. This causes the returned id
to go backwards and livelocks the quota iteration. This problem is
reproduced intermittently by generic/232.
To handle this case, check whether the startoff from the extent
lookup is behind the startoff calculated from the next quota id. If
so, bump up got.br_startoff to the specific file offset that is
expected to hold the next dquot chunk.
Fixes: bda250dbaf ("xfs: rewrite xfs_dq_get_next_id using xfs_iext_lookup_extent")
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Switch to the iomap_seek_hole and iomap_seek_data helpers for
implementing lseek SEEK_HOLE / SEEK_DATA, and remove all the
code that isn't needed any more.
Based on patches from Andreas Gruenbacher <agruenba@redhat.com>.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Filesystems can use this for implementing lseek SEEK_HOLE / SEEK_DATA
support via iomap.
Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
[hch: split functions, coding style cleanups]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Both ext4 and xfs implement seeking for the next hole or piece of data
in unwritten extents by scanning the page cache, and both versions share
the same bug when iterating the buffers of a page: the start offset into
the page isn't taken into account, so when a page fits more than two
filesystem blocks, things will go wrong. For example, on a filesystem
with a block size of 1k, the following command will fail:
xfs_io -f -c "falloc 0 4k" \
-c "pwrite 1k 1k" \
-c "pwrite 3k 1k" \
-c "seek -a -r 0" foo
In this example, neither lseek(fd, 1024, SEEK_HOLE) nor lseek(fd, 2048,
SEEK_DATA) will return the correct result.
Introduce a generic vfs helper for seeking in the page cache that gets
this right. The next commits will replace the filesystem specific
implementations.
Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
[hch: dropped the export]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
This goes straight to a single lookup in the extent list and avoids a
roundtrip through two layers that don't add any value for the simple
quoata file that just has data or holes and no page cache, delayed
allocation, unwritten extent or COW fork (which btw, doesn't seem to
be handled by the existing SEEK HOLE/DATA code).
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
While adding error injection into IO completion, I notice the lack of
initialization check in xfs_errortag_test(), make the error injection
mechanism unable to be used there.
IO completion is executed a few times before the error injection
mechanism is initialized, so to be safer, make xfs_errortag_test() check
if the errortag is properly initialized.
Signed-off-by: Carlos Maiolino <cmaiolino@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Add a new dqget flag that grabs the dquot without taking the ilock.
This will be used by the scrubber (which will have already grabbed
the ilock) to perform basic sanity checking of the quota data.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
When new directory 'DIR1' is created in a directory 'DIR0' with SGID bit
set, DIR1 is expected to have SGID bit set (and owning group equal to
the owning group of 'DIR0'). However when 'DIR0' also has some default
ACLs that 'DIR1' inherits, setting these ACLs will result in SGID bit on
'DIR1' to get cleared if user is not member of the owning group.
Fix the problem by calling __xfs_set_acl() instead of xfs_set_acl() when
setting up inode in xfs_generic_create(). That prevents SGID bit
clearing and mode is properly set by posix_acl_create() anyway. We also
reorder arguments of __xfs_set_acl() to match the ordering of
xfs_set_acl() to make things consistent.
Fixes: 073931017b
CC: stable@vger.kernel.org
CC: Darrick J. Wong <darrick.wong@oracle.com>
CC: linux-xfs@vger.kernel.org
Signed-off-by: Jan Kara <jack@suse.cz>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
XFS runs an eofblocks reclaim scan before returning an ENOSPC error to
userspace for buffered writes. This facilitates aggressive speculative
preallocation without causing user visible side effects such as
premature ENOSPC.
Run a cowblocks scan in the same situation to reclaim lingering COW fork
preallocation throughout the filesystem.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Now that error injection tags support dynamic frequency adjustment,
replace the debug mode sysfs knob that controls log record CRC error
injection with an error injection tag.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
We now have enhanced error injection that can control the frequency
with which errors happen, so convert drop_writes to use this.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
Since we moved the injected error frequency controls to the mountpoint,
we can get rid of the last argument to XFS_TEST_ERROR.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
Creates a /sys/fs/xfs/$dev/errortag/ directory to control the errortag
values directly. This enables us to control the randomness values,
rather than having to accept the defaults.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
Remove the xfs_etest structure in favor of a per-mountpoint structure.
This will give us the flexibility to set as many error injection points
as we want, and later enable us to set up sysfs knobs to set the trigger
frequency as we wish. This comes at a cost of higher memory use, but
unti we hit 1024 injection points (we're at 29) or a lot of mounts this
shouldn't be a huge issue.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
Log recovery allocates in-core transaction and member item data
structures on-demand as it processes the on-disk log. Transactions
are allocated on first encounter on-disk and stored in a hash table
structure where they are easily accessible for subsequent lookups.
Transaction items are also allocated on demand and are attached to
the associated transactions.
When a commit record is encountered in the log, the transaction is
committed to the fs and the in-core structures are freed. If a
filesystem crashes or shuts down before all in-core log buffers are
flushed to the log, however, not all transactions may have commit
records in the log. As expected, the modifications in such an
incomplete transaction are not replayed to the fs. The in-core data
structures for the partial transaction are never freed, however,
resulting in a memory leak.
Update xlog_do_recovery_pass() to first correctly initialize the
hash table array so empty lists can be distinguished from populated
lists on function exit. Update xlog_recover_free_trans() to always
remove the transaction from the list prior to freeing the associated
memory. Finally, walk the hash table of transaction lists as the
last step before it goes out of scope and free any transactions that
may remain on the lists. This prevents a memory leak of partial
transactions in the log.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
bmap returns a dumb LBA address but not the block device that goes with
that LBA. Swapfiles don't care about this and will blindly assume that
the data volume is the correct blockdev, which is totally bogus for
files on the rt subvolume. This results in the swap code doing IOs to
arbitrary locations on the data device(!) if the passed in mapping is a
realtime file, so just turn off bmap for rt files.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Expose the readlink variant that doesn't take the inode lock so that
the scrubber can inspect symlink contents.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Teach the extended attribute reading functions to pass along a
transaction context if one was supplied. The extended attribute scrub
code will use transactions to lock buffers and avoid deadlocking with
itself in the case of loops; since it will already have the inode
locked, also create xattr get/list helpers that don't take locks.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Teach the directory reading functions to pass along a transaction context
if one was supplied. The directory scrub code will use transactions to
lock buffers and avoid deadlocking with itself in the case of loops.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Modify the existing dir leafn lasthash function to enable us to
calculate the highest hash value of a leaf1 block. This will be used by
the directory scrubbing code to check the sanity of hashes in leaf1
directory blocks.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Refactor the inode fork block counting function to count extents for us
at the same time. This will be used by the bmbt scrubber function.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
There is an inconsistency in the way that _bmap_count_blocks deals with
delalloc reservations -- if the specified fork is in extents format,
*count is set to the total number of blocks referenced by the in-core
fork, including delalloc extents. However, if the fork is in btree
format, *count is set to the number of blocks referenced by the on-disk
fork, which does /not/ include delalloc extents.
For the lone existing caller of _bmap_count_blocks this hasn't been an
issue because the function is only used to count xattr fork blocks
(where there aren't any delalloc reservations). However, when scrub
comes along it will use this same function to check di_nblocks against
both on-disk extent maps, so we need this behavior to be consistent.
Therefore, fix _bmap_count_leaves not to include delalloc extents and
remove unnecessary parameters.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Separate the "clear reflink flag" function into one function that checks
if the flag is needed, and a second function that checks and clears the
flag. The inode scrub code will want to check the necessity of the flag
without clearing it.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Adapt _reflink_find_shared to take an optional transaction pointer. The
inode scrubber code will need to decide (within transaction context) if
a file has shared blocks. To avoid buffer deadlocks, we must pass the
tp through to this function's utility calls.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Check the inode cache for a particular inode number. If it's in the
cache, check that it's not currently being reclaimed. If it's not being
reclaimed, return zero if the inode is allocated. This function will be
used by various scrubbers to decide if the cache is more up to date
than the disk in terms of checking if an inode is allocated.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Create a function to extract an in-core inobt record from a generic
btree_rec union so that scrub will be able to check inobt records
and check inode block alignment.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Plumb in the pieces (init_high_key, diff_two_keys) necessary to call
query_range on the inode space and block mapping btrees and to extract
raw btree records. This will eventually be used by the inobt and bmbt
scrubbers.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Export various internal functions so that the online scrubber can use
them to check the state of metadata.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
The btree record and key inorder check functions will be used by the
btree scrubber code, so make sure they're always built.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
This is a purely mechanical patch that removes the private
__{u,}int{8,16,32,64}_t typedefs in favor of using the system
{u,}int{8,16,32,64}_t typedefs. This is the sed script used to perform
the transformation and fix the resulting whitespace and indentation
errors:
s/typedef\t__uint8_t/typedef __uint8_t\t/g
s/typedef\t__uint/typedef __uint/g
s/typedef\t__int\([0-9]*\)_t/typedef int\1_t\t/g
s/__uint8_t\t/__uint8_t\t\t/g
s/__uint/uint/g
s/__int\([0-9]*\)_t\t/__int\1_t\t\t/g
s/__int/int/g
/^typedef.*int[0-9]*_t;$/d
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Don't bother wandering our way through the leaf nodes when the caller
issues a query_all; just zoom down the left side of the tree and walk
rightwards along level zero.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
When a buffer is modified, logged and committed, it ultimately ends
up sitting on the AIL with a dirty bli waiting for metadata
writeback. If another transaction locks and invalidates the buffer
(freeing an inode chunk, for example) in the meantime, the bli is
flagged as stale, the dirty state is cleared and the bli remains in
the AIL.
If a shutdown occurs before the transaction that has invalidated the
buffer is committed, the transaction is ultimately aborted. The log
items are flagged as such and ->iop_unlock() handles the aborted
items. Because the bli is clean (due to the invalidation),
->iop_unlock() unconditionally releases it. The log item may still
reside in the AIL, however, which means the I/O completion handler
may still run and attempt to access it. This results in assert
failure due to the release of the bli while still present in the AIL
and a subsequent NULL dereference and panic in the buffer I/O
completion handling. This can be reproduced by running generic/388
in repetition.
To avoid this problem, update xfs_buf_item_unlock() to first check
whether the bli is aborted and if so, remove it from the AIL before
it is released. This ensures that the bli is no longer accessed
during the shutdown sequence after it has been freed.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
If a filesystem shutdown occurs with a buffer log item in the CIL
and a log force occurs, the ->iop_unpin() handler is generally
expected to tear down the bli properly. This entails freeing the bli
memory and releasing the associated hold on the buffer so it can be
released and the filesystem unmounted.
If this sequence occurs while ->bli_refcount is elevated (i.e.,
another transaction is open and attempting to modify the buffer),
however, ->iop_unpin() may not be responsible for releasing the bli.
Instead, the transaction may release the final ->bli_refcount
reference and thus xfs_trans_brelse() is responsible for tearing
down the bli.
While xfs_trans_brelse() does drop the reference count, it only
attempts to release the bli if it is clean (i.e., not in the
CIL/AIL). If the filesystem is shutdown and the bli is sitting dirty
in the CIL as noted above, this ends up skipping the last
opportunity to release the bli. In turn, this leaves the hold on the
buffer and causes an unmount hang. This can be reproduced by running
generic/388 in repetition.
Update xfs_trans_brelse() to handle this shutdown corner case
correctly. If the final bli reference is dropped and the filesystem
is shutdown, remove the bli from the AIL (if necessary) and release
the bli to drop the buffer hold and ensure an unmount does not hang.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
gcc-7 flags the use of integer math inside of a condition
as a potential bug:
fs/xfs/xfs_bmap_util.c: In function 'xfs_swap_extents_check_format':
fs/xfs/xfs_bmap_util.c:1619:8: error: '<<' in boolean context, did you mean '<' ? [-Werror=int-in-bool-context]
fs/xfs/xfs_bmap_util.c:1629:8: error: '<<' in boolean context, did you mean '<' ? [-Werror=int-in-bool-context]
There is already a helper function for testing the di_forkoff
field for zero, so let's use that instead to shut up the warning.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The t_lsn is not used anymore and the t_commit_lsn is used as a tmp
storage for the checkpoint sequence number only in the current code.
And the start/commit lsn are tracked as a transaction group tag in
the xfs_cil_ctx instead of a single transaction, so remove them from
the xfs_trans structure and their users to match with the design.
Signed-off-by: Shan Hai <shan.hai@oracle.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
XFS_HSIZE is an extremly confusing way to calculate the size of handle_t.
Given that handle_t always only had two sizes, and one of them isn't
even covered by XFS_HSIZE to start with just remove the macro and use
a constant sizeof expression.
Note that XFS_HSIZE isn't used in xfsprogs, xfsdump or xfstests either.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Eric Sandeen <sandeen@sandeen.net>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
If a transaction log reservation overrun occurs, the ticket data
associated with the reservation is dumped in xfs_log_commit_cil().
This occurs long after the transaction items and details have been
removed from the transaction and effectively lost. This limited set
of ticket data provides very little information to support debugging
transaction overruns based on the typical report.
To improve transaction log reservation overrun reporting, create a
helper to dump transaction details such as log items, log vector
data, etc., as well as the underlying ticket data for the
transaction. Move the overrun detection from xfs_log_commit_cil() to
xlog_cil_insert_items() so it occurs prior to migration of the
logged items to the CIL. Call the new helper such that it is able to
dump this transaction data before it is lost.
Also, warn on overrun to provide callstack context for the offending
transaction and include a few additional messages from
xlog_cil_insert_items() to display the reservation consumed locally
for overhead such as log vector headers, split region headers and
the context ticket. This provides a complete general breakdown of
the reservation consumption of a transaction when/if it happens to
overrun the reservation.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Transaction reservation overrun detection currently occurs too late
to print useful information about the offending transaction.
Ideally, the transaction data is printed before the associated log
items are moved from the transaction to the CIL, which occurs in
xlog_cil_insert_items(), such that details of the items logged by
the transaction are available for analysis.
Refactor xlog_cil_insert_items() to facilitate moving tx overrun
detection to this function. Update the function to track each bit of
extra log reservation stolen from the transaction (i.e., such as for
the CIL context ticket) and perform the log item migration as the
last operation before the CIL lock is released. This creates a
context where the transaction reservation consumption has been fully
calculated when the log items are moved to the CIL. This patch makes
no functional changes.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
xlog_print_tic_res() pre-dates delayed logging and the committed
items list (CIL) and thus retains some factoring warts, such as hard
coded function names in the output and the fact that it induces a
shutdown.
In preparation for more detailed logging of regular transaction
overrun situations, refactor xlog_print_tic_res() to be slightly
more generic. Reword some of the warning messages and pull the
shutdown into the callers.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
While configurable at runtime, the DEBUG mode assert failure
behavior is usually either desired or not for a particular
situation. For example, developers using kernel modules may prefer
for fatal asserts to remain disabled across module reloads while QE
engineers doing broad regression testing may prefer to have fatal
asserts enabled on boot to facilitate data collection for bug
reports.
To provide a compromise/convenience for developers, create a Kconfig
option that sets the default value of the DEBUG mode 'bug_on_assert'
sysfs tunable. The default behavior remains to trigger kernel BUGs
on assert failures to preserve existing behavior across kernel
configuration updates with DEBUG mode enabled.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
In DEBUG mode, assert failures unconditionally trigger a kernel BUG.
This is useful in diagnostic situations to panic a system and
collect detailed state information at the time of a failure.
This can also cause problems in cases where DEBUG mode code is
desired but it is preferable not trigger kernel BUGs on assert
failure. For example, during development of new code or during
certain xfstests tests that intentionally cause corruption and test
the kernel for survival (but otherwise may expect to trigger assert
failures).
To provide additional flexibility, create the
<sysfs>/fs/xfs/debug/bug_on_assert tunable to configure assert
failure behavior at runtime. This tunable is only available in DEBUG
mode and is enabled by default to preserve existing default
behavior. When disabled, assert failures in DEBUG mode result in
kernel warnings.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
In a pathological scenario where we are trying to bunmapi a single
extent in which every other block is shared, it's possible that trying
to unmap the entire large extent in a single transaction can generate so
many EFIs that we overflow the transaction reservation.
Therefore, use a heuristic to guess at the number of blocks we can
safely unmap from a reflink file's data fork in an single transaction.
This should prevent problems such as the log head slamming into the tail
and ASSERTs that trigger because we've exceeded the transaction
reservation.
Note that since bunmapi can fail to unmap the entire range, we must also
teach the deferred unmap code to roll into a new transaction whenever we
get low on reservation.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
[hch: random edits, all bugs are my fault]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Currently, the dir2 leaf block getdents function uses a complex state
tracking mechanism to create a shadow copy of the block mappings and
then uses the shadow copy to schedule readahead. Since the read and
readahead functions are perfectly capable of reading the mappings
themselves, we can tear all that out in favor of a simpler function that
simply keeps pushing the readahead window further out.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reclaim during quotacheck can lead to deadlocks on the dquot flush
lock:
- Quotacheck populates a local delwri queue with the physical dquot
buffers.
- Quotacheck performs the xfs_qm_dqusage_adjust() bulkstat and
dirties all of the dquots.
- Reclaim kicks in and attempts to flush a dquot whose buffer is
already queud on the quotacheck queue. The flush succeeds but
queueing to the reclaim delwri queue fails as the backing buffer is
already queued. The flush unlock is now deferred to I/O completion
of the buffer from the quotacheck queue.
- The dqadjust bulkstat continues and dirties the recently flushed
dquot once again.
- Quotacheck proceeds to the xfs_qm_flush_one() walk which requires
the flush lock to update the backing buffers with the in-core
recalculated values. It deadlocks on the redirtied dquot as the
flush lock was already acquired by reclaim, but the buffer resides
on the local delwri queue which isn't submitted until the end of
quotacheck.
This is reproduced by running quotacheck on a filesystem with a
couple million inodes in low memory (512MB-1GB) situations. This is
a regression as of commit 43ff2122e6 ("xfs: on-stack delayed write
buffer lists"), which removed a trylock and buffer I/O submission
from the quotacheck dquot flush sequence.
Quotacheck first resets and collects the physical dquot buffers in a
delwri queue. Then, it traverses the filesystem inodes via bulkstat,
updates the in-core dquots, flushes the corrected dquots to the
backing buffers and finally submits the delwri queue for I/O. Since
the backing buffers are queued across the entire quotacheck
operation, dquot reclaim cannot possibly complete a dquot flush
before quotacheck completes.
Therefore, quotacheck must submit the buffer for I/O in order to
cycle the flush lock and flush the dirty in-core dquot to the
buffer. Add a delwri queue buffer push mechanism to submit an
individual buffer for I/O without losing the delwri queue status and
use it from quotacheck to avoid the deadlock. This restores
quotacheck behavior to as before the regression was introduced.
Reported-by: Martin Svec <martin.svec@zoner.cz>
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>