Kcov causes the compiler to add a call to __sanitizer_cov_trace_pc() in
every basic block. Ftrace patches in a call to _mcount() to each
function it has annotated.
Letting these mechanisms annotate each other is a bad thing. Break the
loop by adding 'notrace' to __sanitizer_cov_trace_pc() so that ftrace
won't try to patch this code.
This patch lets arm64 with KCOV and STACK_TRACER boot.
Signed-off-by: James Morse <james.morse@arm.com>
Acked-by: Dmitry Vyukov <dvyukov@google.com>
Cc: Alexander Potapenko <glider@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
PageAnon() always look at head page to check PAGE_MAPPING_ANON and tail
page's page->mapping has just a poisoned data since commit 1c290f6421
("mm: sanitize page->mapping for tail pages").
If makedumpfile checks page->mapping of a compound tail page to
distinguish anonymous page as usual, it must fail in newer kernel. So
it's necessary to export OFFSET(page.compound_head) to avoid checking
compound tail pages.
The problem is that unnecessary hugepages won't be removed from a dump
file in kernels 4.5.x and later. This means that extra disk space would
be consumed. It's a problem, but not critical.
Signed-off-by: Atsushi Kumagai <ats-kumagai@wm.jp.nec.com>
Acked-by: Dave Young <dyoung@redhat.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
makedumpfile refers page.lru.next to get the order of compound pages for
page filtering.
However, now the order is stored in page.compound_order, hence
VMCOREINFO should be updated to export the offset of
page.compound_order.
The fact is, page.compound_order was introduced already in kernel 4.0,
but the offset of it was the same as page.lru.next until kernel 4.3, so
this was not actual problem.
The above can be said also for page.lru.prev and page.compound_dtor,
it's necessary to detect hugetlbfs pages. Further, the content was
changed from direct address to the ID which means dtor.
The problem is that unnecessary hugepages won't be removed from a dump
file in kernels 4.4.x and later. This means that extra disk space would
be consumed. It's a problem, but not critical.
Signed-off-by: Atsushi Kumagai <ats-kumagai@wm.jp.nec.com>
Acked-by: Dave Young <dyoung@redhat.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The commit 35578d7984 ("bpf: Implement function bpf_perf_event_read() that get the selected hardware PMU conuter")
introduced clever way to check bpf_helper<->map_type compatibility.
Later on commit a43eec3042 ("bpf: introduce bpf_perf_event_output() helper") adjusted
the logic and inadvertently broke it.
Get rid of the clever bool compare and go back to two-way check
from map and from helper perspective.
Fixes: a43eec3042 ("bpf: introduce bpf_perf_event_output() helper")
Reported-by: Jann Horn <jannh@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
On a system with >32Gbyte of phyiscal memory and infinite RLIMIT_MEMLOCK,
the malicious application may overflow 32-bit bpf program refcnt.
It's also possible to overflow map refcnt on 1Tb system.
Impose 32k hard limit which means that the same bpf program or
map cannot be shared by more than 32k processes.
Fixes: 1be7f75d16 ("bpf: enable non-root eBPF programs")
Reported-by: Jann Horn <jannh@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
Some architectures require code written to memory as if it were data to be
'cleaned' from any data caches before the processor can fetch them as new
instructions.
During resume from hibernate, the snapshot code copies some pages directly,
meaning these architectures do not get a chance to perform their cache
maintenance. Modify the read and decompress code to call
flush_icache_range() on all pages that are restored, so that the restored
in-place pages are guaranteed to be executable on these architectures.
Signed-off-by: James Morse <james.morse@arm.com>
Acked-by: Pavel Machek <pavel@ucw.cz>
Acked-by: Rafael J. Wysocki <rjw@rjwysocki.net>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
[will: make clean_pages_on_* static and remove initialisers]
Signed-off-by: Will Deacon <will.deacon@arm.com>
By default, this is the same thing as switch_mm().
x86 will override it as an optimization.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/df401df47bdd6be3e389c6f1e3f5310d70e81b2c.1461688545.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Sometimes delta_exec is 0 due to update_curr() is called multiple times,
this is captured by:
u64 delta_exec = rq_clock_task(rq) - curr->se.exec_start;
This patch optimizes the cpufreq update kicker by bailing out when nothing
changed, it will benefit the upcoming schedutil, since otherwise it will
(over)react to the special util/max combination.
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1461316044-9520-1-git-send-email-wanpeng.li@hotmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Jann reported that the ptrace_may_access() check in
find_lively_task_by_vpid() is racy against exec().
Specifically:
perf_event_open() execve()
ptrace_may_access()
commit_creds()
... if (get_dumpable() != SUID_DUMP_USER)
perf_event_exit_task();
perf_install_in_context()
would result in installing a counter across the creds boundary.
Fix this by wrapping lots of perf_event_open() in cred_guard_mutex.
This should be fine as perf_event_exit_task() is already called with
cred_guard_mutex held, so all perf locks already nest inside it.
Reported-by: Jann Horn <jannh@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Chris Metcalf reported a that sched_can_stop_tick() sometimes fails to
re-enable the tick.
His observed problem is that rq->cfs.nr_running can be 1 even though
there are multiple runnable CFS tasks. This happens in the cgroup
case, in which case cfs.nr_running is the number of runnable entities
for that level.
If there is a single runnable cgroup (which can have an arbitrary
number of runnable child entries itself) rq->cfs.nr_running will be 1.
However, looking at that function I think there's more problems with it.
It seems to assume that if there's FIFO tasks, those will run. This is
incorrect. The FIFO task can have a lower prio than an RR task, in which
case the RR task will run.
So the whole fifo_nr_running test seems misplaced, it should go after
the rr_nr_running tests. That is, only if !rr_nr_running, can we use
fifo_nr_running like this.
Reported-by: Chris Metcalf <cmetcalf@mellanox.com>
Tested-by: Chris Metcalf <cmetcalf@mellanox.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Wanpeng Li <kernellwp@gmail.com>
Fixes: 76d92ac305 ("sched: Migrate sched to use new tick dependency mask model")
Link: http://lkml.kernel.org/r/20160421160315.GK24771@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Minor overlapping changes in the conflicts.
In the macsec case, the change of the default ID macro
name overlapped with the 64-bit netlink attribute alignment
fixes in net-next.
Signed-off-by: David S. Miller <davem@davemloft.net>
Pull workqueue fix from Tejun Heo:
"So, it turns out we had a silly bug in the most fundamental part of
workqueue for a very long time. AFAICS, this dates back to pre-git
era and has quite likely been there from the time workqueue was first
introduced.
A work item uses its PENDING bit to synchronize multiple queuers.
Anyone who wins the PENDING bit owns the pending state of the work
item. Whether a queuer wins or loses the race, one thing should be
guaranteed - there will soon be at least one execution of the work
item - where "after" means that the execution instance would be able
to see all the changes that the queuer has made prior to the queueing
attempt.
Unfortunately, we were missing a smp_mb() after clearing PENDING for
execution, so nothing guaranteed visibility of the changes that a
queueing loser has made, which manifested as a reproducible blk-mq
stall.
Lots of kudos to Roman for debugging the problem. The patch for
-stable is the minimal one. For v3.7, Peter is working on a patch to
make the code path slightly more efficient and less fragile"
* 'for-4.6-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq:
workqueue: fix ghost PENDING flag while doing MQ IO
Pull cgroup fixes from Tejun Heo:
"Two patches to fix a deadlock which can be easily triggered if memcg
charge moving is used.
This bug was introduced while converting threadgroup locking to a
global percpu_rwsem and is caused by cgroup controller task migration
path depending on the ability to create new kthreads. cpuset had a
similar issue which was fixed by performing heavy-lifting operations
asynchronous to task migration. The two patches fix the same issue in
memcg in a similar way. The first patch makes the mechanism generic
and the second relocates memcg charge moving outside the migration
path.
Given that we don't want to perform heavy operations while
writelocking threadgroup lock anyway, moving them out of the way is a
desirable solution. One thing to note is that the problem was
difficult to debug because lockdep couldn't figure out the deadlock
condition. Looking into how to improve that"
* 'for-4.6-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
memcg: relocate charge moving from ->attach to ->post_attach
cgroup, cpuset: replace cpuset_post_attach_flush() with cgroup_subsys->post_attach callback
Pull RCU updates from Paul E. McKenney:
* Documentation updates, including fixes to the design-level
requirements documentation and a fixed version of the design-level
data-structure documentation. These fixes include removing
cartoons and getting rid of the html/htmlx duplication.
* Further improvements to the new-age expedited grace periods.
* Miscellaneous fixes.
* Torture-test changes, including a new rcuperf module for measuring
RCU grace-period performance and scalability, which is useful for
the expedited-grace-period changes.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Nothing outside of the tracing directory calls filter_check_discard() or
check_filter_check_discard(). They should not be called by modules. Move
their prototypes into the local tracing header and remove their
EXPORT_SYMBOL() macros.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
The default remains 127, which is good for most cases, and not even hit
most of the time, but then for some cases, as reported by Brendan, 1024+
deep frames are appearing on the radar for things like groovy, ruby.
And in some workloads putting a _lower_ cap on this may make sense. One
that is per event still needs to be put in place tho.
The new file is:
# cat /proc/sys/kernel/perf_event_max_stack
127
Chaging it:
# echo 256 > /proc/sys/kernel/perf_event_max_stack
# cat /proc/sys/kernel/perf_event_max_stack
256
But as soon as there is some event using callchains we get:
# echo 512 > /proc/sys/kernel/perf_event_max_stack
-bash: echo: write error: Device or resource busy
#
Because we only allocate the callchain percpu data structures when there
is a user, which allows for changing the max easily, its just a matter
of having no callchain users at that point.
Reported-and-Tested-by: Brendan Gregg <brendan.d.gregg@gmail.com>
Reviewed-by: Frederic Weisbecker <fweisbec@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: David Ahern <dsahern@gmail.com>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: He Kuang <hekuang@huawei.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Milian Wolff <milian.wolff@kdab.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: Wang Nan <wangnan0@huawei.com>
Cc: Zefan Li <lizefan@huawei.com>
Link: http://lkml.kernel.org/r/20160426002928.GB16708@kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
The functions event_trigger_unlock_commit() and
event_trigger_unlock_commit_regs() are no longer used outside the tracing
system. Move them out of the generic headers and into the local one.
Along with __event_trigger_test_discard() that is only used by them.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
In the ppc64 big endian ABI, function symbols point to function
descriptors. The symbols which point to the function entry points
have a dot in front of the function name. Consequently, when the
ftrace filter mechanism searches for the symbol corresponding to
an entry point address, it gets the dot symbol.
As a result, ftrace filter users have to be aware of this ABI detail on
ppc64 and prepend a dot to the function name when setting the filter.
The perf probe command insulates the user from this by ignoring the dot
in front of the symbol name when matching function names to symbols,
but the sysfs interface does not. This patch makes the ftrace filter
mechanism do the same when searching symbols.
Fixes the following failure in ftracetest's kprobe_ftrace.tc:
.../kprobe_ftrace.tc: line 9: echo: write error: Invalid argument
That failure is on this line of kprobe_ftrace.tc:
echo _do_fork > set_ftrace_filter
This is because there's no _do_fork entry in the functions list:
# cat available_filter_functions | grep _do_fork
._do_fork
This change introduces no regressions on the perf and ftracetest
testsuite results.
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: linuxppc-dev@lists.ozlabs.org
Signed-off-by: Thiago Jung Bauermann <bauerman@linux.vnet.ibm.com>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Pull networking fixes from David Miller:
1) Handle v4/v6 mixed sockets properly in soreuseport, from Craig
Gallak.
2) Bug fixes for the new macsec facility (missing kmalloc NULL checks,
missing locking around netdev list traversal, etc.) from Sabrina
Dubroca.
3) Fix handling of host routes on ifdown in ipv6, from David Ahern.
4) Fix double-fdput in bpf verifier. From Jann Horn.
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net: (31 commits)
bpf: fix double-fdput in replace_map_fd_with_map_ptr()
net: ipv6: Delete host routes on an ifdown
Revert "ipv6: Revert optional address flusing on ifdown."
net/mlx4_en: fix spurious timestamping callbacks
net: dummy: remove note about being Y by default
cxgbi: fix uninitialized flowi6
ipv6: Revert optional address flusing on ifdown.
ipv4/fib: don't warn when primary address is missing if in_dev is dead
net/mlx5: Add pci shutdown callback
net/mlx5_core: Remove static from local variable
net/mlx5e: Use vport MTU rather than physical port MTU
net/mlx5e: Fix minimum MTU
net/mlx5e: Device's mtu field is u16 and not int
net/mlx5_core: Add ConnectX-5 to list of supported devices
net/mlx5e: Fix MLX5E_100BASE_T define
net/mlx5_core: Fix soft lockup in steering error flow
qlcnic: Update version to 5.3.64
net: stmmac: socfpga: Remove re-registration of reset controller
macsec: fix netlink attribute validation
macsec: add missing macsec prefix in uapi
...
When bpf(BPF_PROG_LOAD, ...) was invoked with a BPF program whose bytecode
references a non-map file descriptor as a map file descriptor, the error
handling code called fdput() twice instead of once (in __bpf_map_get() and
in replace_map_fd_with_map_ptr()). If the file descriptor table of the
current task is shared, this causes f_count to be decremented too much,
allowing the struct file to be freed while it is still in use
(use-after-free). This can be exploited to gain root privileges by an
unprivileged user.
This bug was introduced in
commit 0246e64d9a ("bpf: handle pseudo BPF_LD_IMM64 insn"), but is only
exploitable since
commit 1be7f75d16 ("bpf: enable non-root eBPF programs") because
previously, CAP_SYS_ADMIN was required to reach the vulnerable code.
(posted publicly according to request by maintainer)
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
The tty field was missing from AUDIT_LOGIN events.
Refactor code to create a new function audit_get_tty(), using it to
replace the call in audit_log_task_info() and to add it to
audit_log_set_loginuid(). Lock and bump the kref to protect it, adding
audit_put_tty() alias to decrement it.
Signed-off-by: Richard Guy Briggs <rgb@redhat.com>
Signed-off-by: Paul Moore <paul@paul-moore.com>
With the following code snippet:
...
char buf[64];
...
if (copy_from_user(&buf, ubuf, cnt))
...
Even though the value of "&buf" equals "buf", but there is no need
to get the address of the "buf" again. Use "buf" instead of "&buf".
Link: http://lkml.kernel.org/r/20160418152329.18b72bea@debian
Signed-off-by: Wang Xiaoqiang <wangxq10@lzu.edu.cn>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
The bug in a workqueue leads to a stalled IO request in MQ ctx->rq_list
with the following backtrace:
[ 601.347452] INFO: task kworker/u129:5:1636 blocked for more than 120 seconds.
[ 601.347574] Tainted: G O 4.4.5-1-storage+ #6
[ 601.347651] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[ 601.348142] kworker/u129:5 D ffff880803077988 0 1636 2 0x00000000
[ 601.348519] Workqueue: ibnbd_server_fileio_wq ibnbd_dev_file_submit_io_worker [ibnbd_server]
[ 601.348999] ffff880803077988 ffff88080466b900 ffff8808033f9c80 ffff880803078000
[ 601.349662] ffff880807c95000 7fffffffffffffff ffffffff815b0920 ffff880803077ad0
[ 601.350333] ffff8808030779a0 ffffffff815b01d5 0000000000000000 ffff880803077a38
[ 601.350965] Call Trace:
[ 601.351203] [<ffffffff815b0920>] ? bit_wait+0x60/0x60
[ 601.351444] [<ffffffff815b01d5>] schedule+0x35/0x80
[ 601.351709] [<ffffffff815b2dd2>] schedule_timeout+0x192/0x230
[ 601.351958] [<ffffffff812d43f7>] ? blk_flush_plug_list+0xc7/0x220
[ 601.352208] [<ffffffff810bd737>] ? ktime_get+0x37/0xa0
[ 601.352446] [<ffffffff815b0920>] ? bit_wait+0x60/0x60
[ 601.352688] [<ffffffff815af784>] io_schedule_timeout+0xa4/0x110
[ 601.352951] [<ffffffff815b3a4e>] ? _raw_spin_unlock_irqrestore+0xe/0x10
[ 601.353196] [<ffffffff815b093b>] bit_wait_io+0x1b/0x70
[ 601.353440] [<ffffffff815b056d>] __wait_on_bit+0x5d/0x90
[ 601.353689] [<ffffffff81127bd0>] wait_on_page_bit+0xc0/0xd0
[ 601.353958] [<ffffffff81096db0>] ? autoremove_wake_function+0x40/0x40
[ 601.354200] [<ffffffff81127cc4>] __filemap_fdatawait_range+0xe4/0x140
[ 601.354441] [<ffffffff81127d34>] filemap_fdatawait_range+0x14/0x30
[ 601.354688] [<ffffffff81129a9f>] filemap_write_and_wait_range+0x3f/0x70
[ 601.354932] [<ffffffff811ced3b>] blkdev_fsync+0x1b/0x50
[ 601.355193] [<ffffffff811c82d9>] vfs_fsync_range+0x49/0xa0
[ 601.355432] [<ffffffff811cf45a>] blkdev_write_iter+0xca/0x100
[ 601.355679] [<ffffffff81197b1a>] __vfs_write+0xaa/0xe0
[ 601.355925] [<ffffffff81198379>] vfs_write+0xa9/0x1a0
[ 601.356164] [<ffffffff811c59d8>] kernel_write+0x38/0x50
The underlying device is a null_blk, with default parameters:
queue_mode = MQ
submit_queues = 1
Verification that nullb0 has something inflight:
root@pserver8:~# cat /sys/block/nullb0/inflight
0 1
root@pserver8:~# find /sys/block/nullb0/mq/0/cpu* -name rq_list -print -exec cat {} \;
...
/sys/block/nullb0/mq/0/cpu2/rq_list
CTX pending:
ffff8838038e2400
...
During debug it became clear that stalled request is always inserted in
the rq_list from the following path:
save_stack_trace_tsk + 34
blk_mq_insert_requests + 231
blk_mq_flush_plug_list + 281
blk_flush_plug_list + 199
wait_on_page_bit + 192
__filemap_fdatawait_range + 228
filemap_fdatawait_range + 20
filemap_write_and_wait_range + 63
blkdev_fsync + 27
vfs_fsync_range + 73
blkdev_write_iter + 202
__vfs_write + 170
vfs_write + 169
kernel_write + 56
So blk_flush_plug_list() was called with from_schedule == true.
If from_schedule is true, that means that finally blk_mq_insert_requests()
offloads execution of __blk_mq_run_hw_queue() and uses kblockd workqueue,
i.e. it calls kblockd_schedule_delayed_work_on().
That means, that we race with another CPU, which is about to execute
__blk_mq_run_hw_queue() work.
Further debugging shows the following traces from different CPUs:
CPU#0 CPU#1
---------------------------------- -------------------------------
reqeust A inserted
STORE hctx->ctx_map[0] bit marked
kblockd_schedule...() returns 1
<schedule to kblockd workqueue>
request B inserted
STORE hctx->ctx_map[1] bit marked
kblockd_schedule...() returns 0
*** WORK PENDING bit is cleared ***
flush_busy_ctxs() is executed, but
bit 1, set by CPU#1, is not observed
As a result request B pended forever.
This behaviour can be explained by speculative LOAD of hctx->ctx_map on
CPU#0, which is reordered with clear of PENDING bit and executed _before_
actual STORE of bit 1 on CPU#1.
The proper fix is an explicit full barrier <mfence>, which guarantees
that clear of PENDING bit is to be executed before all possible
speculative LOADS or STORES inside actual work function.
Signed-off-by: Roman Pen <roman.penyaev@profitbricks.com>
Cc: Gioh Kim <gi-oh.kim@profitbricks.com>
Cc: Michael Wang <yun.wang@profitbricks.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: linux-block@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Cc: stable@vger.kernel.org
Signed-off-by: Tejun Heo <tj@kernel.org>
If tracing_map_elt_alloc() fails, it will return ERR_PTR() instead of
NULL, so change the check to IS_ERROR(). We also need to set the
failed entry in the map->elts array to NULL instead of ERR_PTR() so
tracing_map_free_elts() doesn't try freeing an ERR_PTR().
tracing_map_free_elts() should also zero out what it frees so a
reentrant call won't find previously freed elements.
Link: http://lkml.kernel.org/r/f29d03b00bce3aac8cf151a8a30e6c83e5fee66d.1461610073.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Smatch flagged create_hist_field() as possibly being able to
dereference a NULL pointer, although the current code exits in all
cases where the event field could be NULL, so it's not actually a
problem.
Still, to prevent future changes to the code from overlooking new
cases, make the NULL pointer check explicit and warn once in that
case.
Link: http://lkml.kernel.org/r/cfbc003f534a3e441b4313272fd412310aba6336.1461610073.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
In ext4, there is a race condition between changing inode journal mode
and ext4_writepages(). While ext4_writepages() is executed on a
non-journalled mode inode, the inode's journal mode could be enabled
by ioctl() and then, some pages dirtied after switching the journal
mode will be still exposed to ext4_writepages() in non-journaled mode.
To resolve this problem, we use fs-wide per-cpu rw semaphore by Jan
Kara's suggestion because we don't want to waste ext4_inode_info's
space for this extra rare case.
Signed-off-by: Daeho Jeong <daeho.jeong@samsung.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Reviewed-by: Jan Kara <jack@suse.cz>
As the event-fork option requires doing work when enabled and disabled, it
can not be passed down to created instances. The instance must clear this
flag when it is created, and must clear it when its removed.
As more options may be created with this need, a macro ZEROED_TRACE_FLAGS is
created that holds the flags that must not be inherited by the top level
instance, and must be cleared on removal of instances.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Since e93ad19d05 ("cpuset: make mm migration asynchronous"), cpuset
kicks off asynchronous NUMA node migration if necessary during task
migration and flushes it from cpuset_post_attach_flush() which is
called at the end of __cgroup_procs_write(). This is to avoid
performing migration with cgroup_threadgroup_rwsem write-locked which
can lead to deadlock through dependency on kworker creation.
memcg has a similar issue with charge moving, so let's convert it to
an official callback rather than the current one-off cpuset specific
function. This patch adds cgroup_subsys->post_attach callback and
makes cpuset register cpuset_post_attach_flush() as its ->post_attach.
The conversion is mostly one-to-one except that the new callback is
called under cgroup_mutex. This is to guarantee that no other
migration operations are started before ->post_attach callbacks are
finished. cgroup_mutex is one of the outermost mutex in the system
and has never been and shouldn't be a problem. We can add specialized
synchronization around __cgroup_procs_write() but I don't think
there's any noticeable benefit.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: <stable@vger.kernel.org> # 4.4+ prerequisite for the next patch
Goal of this patch is to use the new libnl API to align netlink attribute
when needed.
The layout of the netlink message will be a bit different after the patch,
because the padattr (TASKSTATS_TYPE_STATS) will be inside the nested
attribute instead of before it.
Signed-off-by: Nicolas Dichtel <nicolas.dichtel@6wind.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Conflicts were two cases of simple overlapping changes,
nothing serious.
In the UDP case, we need to add a hlist_add_tail_rcu()
to linux/rculist.h, because we've moved UDP socket handling
away from using nulls lists.
Signed-off-by: David S. Miller <davem@davemloft.net>
Pull perf, cpu hotplug and timer fixes from Ingo Molnar:
"perf:
- A single tooling fix for a user-triggerable segfault.
CPU hotplug:
- Fix a CPU hotplug corner case regression, introduced by the recent
hotplug rework
timers:
- Fix a boot hang in the ARM based Tango SoC clocksource driver"
* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf intel-pt: Fix segfault tracing transactions
* 'smp-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
cpu/hotplug: Fix rollback during error-out in __cpu_disable()
* 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
clocksource/drivers/tango-xtal: Fix boot hang due to incorrect test
Pull locking fixes from Ingo Molnar:
"Misc fixes:
pvqspinlocks:
- an instrumentation fix
futexes:
- preempt-count vs pagefault_disable decouple corner case fix
- futex requeue plist race window fix
- futex UNLOCK_PI transaction fix for a corner case"
* 'locking-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
asm-generic/futex: Re-enable preemption in futex_atomic_cmpxchg_inatomic()
futex: Acknowledge a new waiter in counter before plist
futex: Handle unlock_pi race gracefully
locking/pvqspinlock: Fix division by zero in qstat_read()
Pull irq fixes from Ingo Molnar:
"A core irq affinity masks related fix and a MIPS irqchip driver fix"
* 'irq-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
irqchip/mips-gic: Don't overrun pcpu_masks array
genirq: Dont allow affinity mask to be updated on IPIs
I got a minus(very big) dl_b->total_bw during my deadline tests.
# grep dl /proc/sched_debug
dl_rq[0]:
.dl_nr_running : 0
.dl_bw->bw : 996147
.dl_bw->total_bw : -222297900
Something unusual must have happened.
After some digging, I finally noticed that when changing a deadline
task to normal(cfs), and changing it back to deadline immediately,
after it died, we will got the wrong dl_bw->total_bw.
The root cause is in dl_overflow(), it has:
if (new_bw == p->dl.dl_bw)
return 0;
1) When a deadline task is changed to !deadline task, it will start
dl timer in switched_from_dl(), and retain previous deadline parameter
till the timer expires.
2) If we change it back to deadline with the same bandwidth parameter
before the timer expires, as it keeps the old bandwidth although it
is not a deadline task. dl_overflow() simply returns success without
updating the right data, and got the wrong dl_bw->total_bw.
The solution is simple, if @p is not deadline, don't return.
Signed-off-by: Xunlei Pang <xlpang@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Juri Lelli <juri.lelli@arm.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1460636368-1993-1-git-send-email-xlpang@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Some code in CPU load update only concern NO_HZ configs but it is
built on all configurations. When NO_HZ isn't built, that code is harmless
but just happens to take some useless ressources in CPU and memory:
1) one useless field in struct rq
2) jiffies record on every tick that is never used (cpu_load_update_periodic)
3) decay_load_missed is called two times on every tick to eventually
return immediately with no action taken. And that function is dead
code.
For pure optimization purposes, lets conditionally build the NO_HZ
related code.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Byungchul Park <byungchul.park@lge.com>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E . McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1461080211-16271-1-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Ticks can happen while the CPU is in dynticks-idle or dynticks-singletask
mode. In fact "nohz" or "dynticks" only mean that we exit the periodic
mode and we try to minimize the ticks as much as possible. The nohz
subsystem uses a confusing terminology with the internal state
"ts->tick_stopped" which is also available through its public interface
with tick_nohz_tick_stopped(). This is a misnomer as the tick is instead
reduced with the best effort rather than stopped. In the best case the
tick can indeed be actually stopped but there is no guarantee about that.
If a timer needs to fire one second later, a tick will fire while the
CPU is in nohz mode and this is a very common scenario.
Now this confusion happens to be a problem with CPU load updates:
cpu_load_update_active() doesn't handle nohz ticks correctly because it
assumes that ticks are completely stopped in nohz mode and that
cpu_load_update_active() can't be called in dynticks mode. When that
happens, the whole previous tickless load is ignored and the function
just records the load for the current tick, ignoring potentially long
idle periods behind.
In order to solve this, we could account the current load for the
previous nohz time but there is a risk that we account the load of a
task that got freshly enqueued for the whole nohz period.
So instead, lets record the dynticks load on nohz frame entry so we know
what to record in case of nohz ticks, then use this record to account
the tickless load on nohz ticks and nohz frame end.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Byungchul Park <byungchul.park@lge.com>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E . McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1460555812-25375-3-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The CPU load update related functions have a weak naming convention
currently, starting with update_cpu_load_*() which isn't ideal as
"update" is a very generic concept.
Since two of these functions are public already (and a third is to come)
that's enough to introduce a more conventional naming scheme. So let's
do the following rename instead:
update_cpu_load_*() -> cpu_load_update_*()
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Byungchul Park <byungchul.park@lge.com>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E . McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1460555812-25375-2-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The cpufreq hook should be called any time the root CFS rq utilization
changes. This can occur when a task is switched to or from the fair
class, or a task moves between groups or CPUs, but these paths
currently do not call the cpufreq hook.
Fix this by adding the hook to attach_entity_load_avg() and
detach_entity_load_avg().
Suggested-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Steve Muckle <smuckle@linaro.org>
[ Added the .update_freq argument to update_cfs_rq_load_avg() to avoid a double cpufreq call. ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Byungchul Park <byungchul.park@lge.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Juri Lelli <Juri.Lelli@arm.com>
Cc: Michael Turquette <mturquette@baylibre.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Patrick Bellasi <patrick.bellasi@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rafael J. Wysocki <rafael@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1458858367-2831-1-git-send-email-smuckle@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There's no reason to call the cpufreq hook if the root cfs_rq
utilization has not been modified.
Signed-off-by: Steve Muckle <smuckle@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Juri Lelli <Juri.Lelli@arm.com>
Cc: Michael Turquette <mturquette@baylibre.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Patrick Bellasi <patrick.bellasi@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rafael J. Wysocki <rafael@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Link: http://lkml.kernel.org/r/1458606068-7476-2-git-send-email-smuckle@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The cpufreq hook should be called whenever the root cfs_rq
utilization changes so update_cfs_rq_load_avg() is a better
place for it. The current location is not invoked in the
enqueue_entity() or update_blocked_averages() paths.
Suggested-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Steve Muckle <smuckle@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Juri Lelli <Juri.Lelli@arm.com>
Cc: Michael Turquette <mturquette@baylibre.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Patrick Bellasi <patrick.bellasi@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rafael J. Wysocki <rafael@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1458606068-7476-1-git-send-email-smuckle@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When asymmetric packing is set in the sched_domain and target CPU is
busy, update_sd_pick_busiest() may not select the busiest runqueue.
When target CPU is busy, find_busiest_group() will ignore checks for
asym packing and may continue to load balance using the currently
selected not-the-busiest runqueue as source runqueue.
Selecting the busiest runqueue as source when the target CPU is busy,
should result in achieving much better load balance.
Also when target CPU is not busy and asymmetric packing is set in sd,
select higher CPU as source CPU for load balancing.
While doing this change, move the check to see if target CPU is busy
into check_asym_packing().
The extent of performance benefit from this change decreases with the
increasing load. However there is benefit in undercommit as well as
overcommit conditions.
1. Record per second ebizzy (32 threads) on a 64 CPU power 7 box. (5 iterations)
4.6.0-rc2
Testcase: Min Max Avg StdDev
ebizzy: 5223767.00 10368236.00 7946971.00 1753094.76
4.6.0-rc2+asym-changes
Testcase: Min Max Avg StdDev %Change
ebizzy: 8617191.00 13872356.00 11383980.00 1783400.89 +24.78%
2. Record per second ebizzy (64 threads) on a 64 CPU power 7 box. (5 iterations)
4.6.0-rc2
Testcase: Min Max Avg StdDev
ebizzy: 6497666.00 18399783.00 10818093.20 4051452.08
4.6.0-rc2+asym-changes
Testcase: Min Max Avg StdDev %Change
ebizzy: 7567365.00 19456937.00 11674063.60 4295407.48 +4.40%
3. Record per second ebizzy (128 threads) on a 64 CPU power 7 box. (5 iterations)
4.6.0-rc2
Testcase: Min Max Avg StdDev
ebizzy: 37073983.00 40341911.00 38776241.80 1259766.82
4.6.0-rc2+asym-changes
Testcase: Min Max Avg StdDev %Change
ebizzy: 38030399.00 41333378.00 39827404.40 1255001.86 +2.54%
Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Gautham R Shenoy <ego@linux.vnet.ibm.com>
Cc: Michael Neuling <mikey@neuling.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com>
Link: http://lkml.kernel.org/r/1459948660-16073-1-git-send-email-srikar@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This patch introduces 'write_backward' bit to perf_event_attr, which
controls the direction of a ring buffer. After set, the corresponding
ring buffer is written from end to beginning. This feature is design to
support reading from overwritable ring buffer.
Ring buffer can be created by mapping a perf event fd. Kernel puts event
records into ring buffer, user tooling like perf fetch them from
address returned by mmap(). To prevent racing between kernel and tooling,
they communicate to each other through 'head' and 'tail' pointers.
Kernel maintains 'head' pointer, points it to the next free area (tail
of the last record). Tooling maintains 'tail' pointer, points it to the
tail of last consumed record (record has already been fetched). Kernel
determines the available space in a ring buffer using these two
pointers to avoid overwrite unfetched records.
By mapping without 'PROT_WRITE', an overwritable ring buffer is created.
Different from normal ring buffer, tooling is unable to maintain 'tail'
pointer because writing is forbidden. Therefore, for this type of ring
buffers, kernel overwrite old records unconditionally, works like flight
recorder. This feature would be useful if reading from overwritable ring
buffer were as easy as reading from normal ring buffer. However,
there's an obscure problem.
The following figure demonstrates a full overwritable ring buffer. In
this figure, the 'head' pointer points to the end of last record, and a
long record 'E' is pending. For a normal ring buffer, a 'tail' pointer
would have pointed to position (X), so kernel knows there's no more
space in the ring buffer. However, for an overwritable ring buffer,
kernel ignore the 'tail' pointer.
(X) head
. |
. V
+------+-------+----------+------+---+
|A....A|B.....B|C........C|D....D| |
+------+-------+----------+------+---+
Record 'A' is overwritten by event 'E':
head
|
V
+--+---+-------+----------+------+---+
|.E|..A|B.....B|C........C|D....D|E..|
+--+---+-------+----------+------+---+
Now tooling decides to read from this ring buffer. However, none of these
two natural positions, 'head' and the start of this ring buffer, are
pointing to the head of a record. Even the full ring buffer can be
accessed by tooling, it is unable to find a position to start decoding.
The first attempt tries to solve this problem AFAIK can be found from
[1]. It makes kernel to maintain 'tail' pointer: updates it when ring
buffer is half full. However, this approach introduces overhead to
fast path. Test result shows a 1% overhead [2]. In addition, this method
utilizes no more tham 50% records.
Another attempt can be found from [3], which allows putting the size of
an event at the end of each record. This approach allows tooling to find
records in a backward manner from 'head' pointer by reading size of a
record from its tail. However, because of alignment requirement, it
needs 8 bytes to record the size of a record, which is a huge waste. Its
performance is also not good, because more data need to be written.
This approach also introduces some extra branch instructions to fast
path.
'write_backward' is a better solution to this problem.
Following figure demonstrates the state of the overwritable ring buffer
when 'write_backward' is set before overwriting:
head
|
V
+---+------+----------+-------+------+
| |D....D|C........C|B.....B|A....A|
+---+------+----------+-------+------+
and after overwriting:
head
|
V
+---+------+----------+-------+---+--+
|..E|D....D|C........C|B.....B|A..|E.|
+---+------+----------+-------+---+--+
In each situation, 'head' points to the beginning of the newest record.
From this record, tooling can iterate over the full ring buffer and fetch
records one by one.
The only limitation that needs to be considered is back-to-back reading.
Due to the non-deterministic of user programs, it is impossible to ensure
the ring buffer keeps stable during reading. Consider an extreme situation:
tooling is scheduled out after reading record 'D', then a burst of events
come, eat up the whole ring buffer (one or multiple rounds). When the
tooling process comes back, reading after 'D' is incorrect now.
To prevent this problem, we need to find a way to ensure the ring buffer
is stable during reading. ioctl(PERF_EVENT_IOC_PAUSE_OUTPUT) is
suggested because its overhead is lower than
ioctl(PERF_EVENT_IOC_ENABLE).
By carefully verifying 'header' pointer, reader can avoid pausing the
ring-buffer. For example:
/* A union of all possible events */
union perf_event event;
p = head = perf_mmap__read_head();
while (true) {
/* copy header of next event */
fetch(&event.header, p, sizeof(event.header));
/* read 'head' pointer */
head = perf_mmap__read_head();
/* check overwritten: is the header good? */
if (!verify(sizeof(event.header), p, head))
break;
/* copy the whole event */
fetch(&event, p, event.header.size);
/* read 'head' pointer again */
head = perf_mmap__read_head();
/* is the whole event good? */
if (!verify(event.header.size, p, head))
break;
p += event.header.size;
}
However, the overhead is high because:
a) In-place decoding is not safe.
Copying-verifying-decoding is required.
b) Fetching 'head' pointer requires additional synchronization.
(From Alexei Starovoitov:
Even when this trick works, pause is needed for more than stability of
reading. When we collect the events into overwrite buffer we're waiting
for some other trigger (like all cpu utilization spike or just one cpu
running and all others are idle) and when it happens the buffer has
valuable info from the past. At this point new events are no longer
interesting and buffer should be paused, events read and unpaused until
next trigger comes.)
This patch utilizes event's default overflow_handler introduced
previously. perf_event_output_backward() is created as the default
overflow handler for backward ring buffers. To avoid extra overhead to
fast path, original perf_event_output() becomes __perf_event_output()
and marked '__always_inline'. In theory, there's no extra overhead
introduced to fast path.
Performance testing:
Calling 3000000 times of 'close(-1)', use gettimeofday() to check
duration. Use 'perf record -o /dev/null -e raw_syscalls:*' to capture
system calls. In ns.
Testing environment:
CPU : Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz
Kernel : v4.5.0
MEAN STDVAR
BASE 800214.950 2853.083
PRE1 2253846.700 9997.014
PRE2 2257495.540 8516.293
POST 2250896.100 8933.921
Where 'BASE' is pure performance without capturing. 'PRE1' is test
result of pure 'v4.5.0' kernel. 'PRE2' is test result before this
patch. 'POST' is test result after this patch. See [4] for the detailed
experimental setup.
Considering the stdvar, this patch doesn't introduce performance
overhead to the fast path.
[1] http://lkml.iu.edu/hypermail/linux/kernel/1304.1/04584.html
[2] http://lkml.iu.edu/hypermail/linux/kernel/1307.1/00535.html
[3] http://lkml.iu.edu/hypermail/linux/kernel/1512.0/01265.html
[4] http://lkml.kernel.org/g/56F89DCD.1040202@huawei.com
Signed-off-by: Wang Nan <wangnan0@huawei.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Cc: <acme@kernel.org>
Cc: <pi3orama@163.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Brendan Gregg <brendan.d.gregg@gmail.com>
Cc: He Kuang <hekuang@huawei.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: Zefan Li <lizefan@huawei.com>
Link: http://lkml.kernel.org/r/1459865478-53413-1-git-send-email-wangnan0@huawei.com
[ Fixed the changelog some more. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
lock_chain::base is used to store an index into the chain_hlocks[]
array, however that array contains more elements than can be indexed
using the u16.
Change the lock_chain structure to use a bitfield to encode the data
it needs and add BUILD_BUG_ON() assertions to check the fields are
wide enough.
Also, for DEBUG_LOCKDEP, assert that we don't run out of elements of
that array; as that would wreck the collision detectoring.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alfredo Alvarez Fernandez <alfredoalvarezfernandez@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sedat Dilek <sedat.dilek@gmail.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20160330093659.GS3408@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
task_irq_context() returns the encoded irq_context of the task, the
return value is encoded in the same as ->irq_context of held_lock.
Always return 0 if !(CONFIG_TRACE_IRQFLAGS && CONFIG_PROVE_LOCKING)
Signed-off-by: Boqun Feng <boqun.feng@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: sasha.levin@oracle.com
Link: http://lkml.kernel.org/r/1455602265-16490-2-git-send-email-boqun.feng@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Markus reported that 0 should also disable the throttling we per
Documentation/sysctl/kernel.txt.
Reported-by: Markus Trippelsdorf <markus@trippelsdorf.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Fixes: 91a612eea9 ("perf/core: Fix dynamic interrupt throttle")
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The do_sys_settimeofday() function uses a timespec, which is not year
2038 safe on 32bit systems.
Thus this patch introduces do_sys_settimeofday64(), which allows us to
transition users of do_sys_settimeofday() to using 64bit time types.
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Baolin Wang <baolin.wang@linaro.org>
[jstultz: Include errno-base.h to avoid build issue on some arches]
Signed-off-by: John Stultz <john.stultz@linaro.org>
The recent introduction of the hotplug thread which invokes the callbacks on
the plugged cpu, cased the following regression:
If takedown_cpu() fails, then we run into several issues:
1) The rollback of the target cpu states is not invoked. That leaves the smp
threads and the hotplug thread in disabled state.
2) notify_online() is executed due to a missing skip_onerr flag. That causes
that both CPU_DOWN_FAILED and CPU_ONLINE notifications are invoked which
confuses quite some notifiers.
3) The CPU_DOWN_FAILED notification is not invoked on the target CPU. That's
not an issue per se, but it is inconsistent and in consequence blocks the
patches which rely on these states being invoked on the target CPU and not
on the controlling cpu. It also does not preserve the strict call order on
rollback which is problematic for the ongoing state machine conversion as
well.
To fix this we add a rollback flag to the remote callback machinery and invoke
the rollback including the CPU_DOWN_FAILED notification on the remote
cpu. Further mark the notify online state with 'skip_onerr' so we don't get a
double invokation.
This workaround will go away once we moved the unplug invocation to the target
cpu itself.
[ tglx: Massaged changelog and moved the CPU_DOWN_FAILED notifiaction to the
target cpu ]
Fixes: 4cb28ced23 ("cpu/hotplug: Create hotplug threads")
Reported-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: linux-s390@vger.kernel.org
Cc: rt@linutronix.de
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Anna-Maria Gleixner <anna-maria@linutronix.de>
Link: http://lkml.kernel.org/r/20160408124015.GA21960@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Now that all the architectures implement the necessary glue code
we can introduce down_write_killable(). The only difference wrt. regular
down_write() is that the slow path waits in TASK_KILLABLE state and the
interruption by the fatal signal is reported as -EINTR to the caller.
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Chris Zankel <chris@zankel.net>
Cc: David S. Miller <davem@davemloft.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Signed-off-by: Davidlohr Bueso <dbueso@suse.de>
Cc: Signed-off-by: Jason Low <jason.low2@hp.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: linux-alpha@vger.kernel.org
Cc: linux-arch@vger.kernel.org
Cc: linux-ia64@vger.kernel.org
Cc: linux-s390@vger.kernel.org
Cc: linux-sh@vger.kernel.org
Cc: linux-xtensa@linux-xtensa.org
Cc: sparclinux@vger.kernel.org
Link: http://lkml.kernel.org/r/1460041951-22347-12-git-send-email-mhocko@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Mutation testing carried out by Iftekhar Ahmed of Oregon State
University showed that rcutorture is failing to test invocations
of call_rcu() having interrupts disabled. This commit therefore
adds interrupt disabling around one of the existing invocations
of call_rcu() (and friends).
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
When running from the scripts, rcutorture is completely headless,
so there is no way to to manually dump the trace buffer. This commit
therefore unconditionally dumps the trace buffer upon timed shutdown.
However, if you are using rmmod to end the test, it is still up to you
to manually dump the trace buffer.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Pull networking fixes from David Miller:
1) Fix memory leak in iwlwifi, from Matti Gottlieb.
2) Add missing registration of netfilter arp_tables into initial
namespace, from Florian Westphal.
3) Fix potential NULL deref in DecNET routing code.
4) Restrict NETLINK_URELEASE to truly bound sockets only, from Dmitry
Ivanov.
5) Fix dst ref counting in VRF, from David Ahern.
6) Fix TSO segmenting limits in i40e driver, from Alexander Duyck.
7) Fix heap leak in PACKET_DIAG_MCLIST, from Mathias Krause.
8) Ravalidate IPV6 datagram socket cached routes properly, particularly
with UDP, from Martin KaFai Lau.
9) Fix endian bug in RDS dp_ack_seq handling, from Qing Huang.
10) Fix stats typing in bcmgenet driver, from Eric Dumazet.
11) Openvswitch needs to orphan SKBs before ipv6 fragmentation handing,
from Joe Stringer.
12) SPI device reference leak in spi_ks8895 PHY driver, from Mark Brown.
13) atl2 doesn't actually support scatter-gather, so don't advertise the
feature. From Ben Hucthings.
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net: (72 commits)
openvswitch: use flow protocol when recalculating ipv6 checksums
Driver: Vmxnet3: set CHECKSUM_UNNECESSARY for IPv6 packets
atl2: Disable unimplemented scatter/gather feature
net/mlx4_en: Split SW RX dropped counter per RX ring
net/mlx4_core: Don't allow to VF change global pause settings
net/mlx4_core: Avoid repeated calls to pci enable/disable
net/mlx4_core: Implement pci_resume callback
net: phy: spi_ks8895: Don't leak references to SPI devices
net: ethernet: davinci_emac: Fix platform_data overwrite
net: ethernet: davinci_emac: Fix Unbalanced pm_runtime_enable
qede: Fix single MTU sized packet from firmware GRO flow
qede: Fix setting Skb network header
qede: Fix various memory allocation error flows for fastpath
tcp: Merge tx_flags and tskey in tcp_shifted_skb
tcp: Merge tx_flags and tskey in tcp_collapse_retrans
drivers: net: cpsw: fix wrong regs access in cpsw_ndo_open
tcp: Fix SOF_TIMESTAMPING_TX_ACK when handling dup acks
openvswitch: Orphan skbs before IPv6 defrag
Revert "Prevent NUll pointer dereference with two PHYs on cpsw"
VSOCK: Only check error on skb_recv_datagram when skb is NULL
...
move trace_call_bpf() into helper function to minimize the size
of perf_trace_*() tracepoint handlers.
text data bss dec hex filename
10541679 5526646 2945024 19013349 1221ee5 vmlinux_before
10509422 5526646 2945024 18981092 121a0e4 vmlinux_after
It may seem that perf_fetch_caller_regs() can also be moved,
but that is incorrect, since ip/sp will be wrong.
bpf+tracepoint performance is not affected, since
perf_swevent_put_recursion_context() is now inlined.
export_symbol_gpl can also be dropped.
No measurable change in normal perf tracepoints.
Suggested-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
The IPI domain re-purposes the IRQ affinity to signify the mask of CPUs
that this IPI will deliver to. This must not be modified before the IPI
is destroyed again, so set the IRQ_NO_BALANCING flag to prevent the
affinity being overwritten by setup_affinity().
Without this, if an IPI is reserved for a single target CPU, then
allocated using __setup_irq(), the affinity is overwritten with
cpu_online_mask. When ipi_destroy() is subsequently called on a
multi-cpu system, it will attempt to free cpumask_weight() IRQs
that were never allocated, and crash.
Fixes: d17bf24e69 ("genirq: Add a new generic IPI reservation code to irq core")
Signed-off-by: Matt Redfearn <matt.redfearn@imgtec.com>
Cc: linux-mips@linux-mips.org
Cc: jason@lakedaemon.net
Cc: marc.zyngier@arm.com
Cc: ralf@linux-mips.org
Cc: Qais Yousef <qsyousef@gmail.com>
Cc: lisa.parratt@imgtec.com
Link: http://lkml.kernel.org/r/1461229712-13057-1-git-send-email-matt.redfearn@imgtec.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Otherwise an incoming waker on the dest hash bucket can miss
the waiter adding itself to the plist during the lockless
check optimization (small window but still the correct way
of doing this); similarly to the decrement counterpart.
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Davidlohr Bueso <dbueso@suse.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: bigeasy@linutronix.de
Cc: dvhart@infradead.org
Cc: stable@kernel.org
Link: http://lkml.kernel.org/r/1461208164-29150-1-git-send-email-dave@stgolabs.net
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
If userspace calls UNLOCK_PI unconditionally without trying the TID -> 0
transition in user space first then the user space value might not have the
waiters bit set. This opens the following race:
CPU0 CPU1
uval = get_user(futex)
lock(hb)
lock(hb)
futex |= FUTEX_WAITERS
....
unlock(hb)
cmpxchg(futex, uval, newval)
So the cmpxchg fails and returns -EINVAL to user space, which is wrong because
the futex value is valid.
To handle this (yes, yet another) corner case gracefully, check for a flag
change and retry.
[ tglx: Massaged changelog and slightly reworked implementation ]
Fixes: ccf9e6a80d ("futex: Make unlock_pi more robust")
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: stable@vger.kernel.org
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Darren Hart <dvhart@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1460723739-5195-1-git-send-email-bigeasy@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This series wires up the generic memremap() function for ARM in a way
that allows it to be used as intended, i.e., without regard for whether
the region being mapped is covered by a struct page and/or the linear
mapping (lowmem)
This patch adds a new helper for cls/act programs that can push events
to user space applications. For networking, this can be f.e. for sampling,
debugging, logging purposes or pushing of arbitrary wake-up events. The
idea is similar to a43eec3042 ("bpf: introduce bpf_perf_event_output()
helper") and 39111695b1 ("samples: bpf: add bpf_perf_event_output example").
The eBPF program utilizes a perf event array map that user space populates
with fds from perf_event_open(), the eBPF program calls into the helper
f.e. as skb_event_output(skb, &my_map, BPF_F_CURRENT_CPU, raw, sizeof(raw))
so that the raw data is pushed into the fd f.e. at the map index of the
current CPU.
User space can poll/mmap/etc on this and has a data channel for receiving
events that can be post-processed. The nice thing is that since the eBPF
program and user space application making use of it are tightly coupled,
they can define their own arbitrary raw data format and what/when they
want to push.
While f.e. packet headers could be one part of the meta data that is being
pushed, this is not a substitute for things like packet sockets as whole
packet is not being pushed and push is only done in a single direction.
Intention is more of a generically usable, efficient event pipe to applications.
Workflow is that tc can pin the map and applications can attach themselves
e.g. after cls/act setup to one or multiple map slots, demuxing is done by
the eBPF program.
Adding this facility is with minimal effort, it reuses the helper
introduced in a43eec3042 ("bpf: introduce bpf_perf_event_output() helper")
and we get its functionality for free by overloading its BPF_FUNC_ identifier
for cls/act programs, ctx is currently unused, but will be made use of in
future. Example will be added to iproute2's BPF example files.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Add a BPF_F_CURRENT_CPU flag to optimize the use-case where user space has
per-CPU ring buffers and the eBPF program pushes the data into the current
CPU's ring buffer which saves us an extra helper function call in eBPF.
Also, make sure to properly reserve the remaining flags which are not used.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Fengguang Wu's bot found two comparisons of unsigned integers to zero. These
were real bugs, as it would miss error conditions returned to zero.
trace_events_hist.c:426:6-9: WARNING: Unsigned expression compared with zero: idx < 0
trace_events_hist.c:568:5-14: WARNING: Unsigned expression compared with zero: n_entries < 0
Reported-by: kbuild test robot <fengguang.wu@intel.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Allow users to define 'named' hist triggers. All triggers created
with the same 'name=xxx' option will update the same shared histogram
data.
This expands the hist trigger syntax from this:
# echo hist:keys=xxx ... [ if filter] > event/trigger
to this:
# echo hist:name=xxx:keys=xxx ... [ if filter] > event/trigger
Named histograms must use a 'compatible' set of keys and values, which
means each event added to a set of named triggers must have the same
names and types.
Reading the 'hist' file of any of the participating events will
produce the same output as any other participating event, which is to
be expected since they share the same data.
Link: http://lkml.kernel.org/r/1dbc84ee3322a75daaf5b3ef1d0cc0a2fb682fc7.1457029949.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Tested-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Reviewed-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Named triggers are sets of triggers that share a common set of trigger
data. An example of functionality that could benefit from this type
of capability would be a set of inlined probes that would each
contribute event counts, for example, to a shared counter data
structure.
The first named trigger registered with a given name owns the common
trigger data that the others subsequently registered with the same
name will reference. The functions defined here allow users to add,
delete, and find named triggers.
It also adds functions to pause and unpause named triggers; since
named triggers act upon common data, they should also be paused and
unpaused as a group.
Link: http://lkml.kernel.org/r/c09ff648360f65b10a3e321eddafe18060b4a04f.1457029949.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Tested-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Reviewed-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Allow users to define any number of hist triggers per trace event.
Any number of hist triggers may be added for a given event, which may
differ by key, value, or filter.
Reading the event's 'hist' file will display the output of all the
hist triggers defined on an event concatenated in the order they were
defined.
Link: http://lkml.kernel.org/r/48a0c8dd34c344571de880fb35e211c6d9a28961.1457029949.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Tested-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Reviewed-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Similar to enable_event/disable_event triggers, these triggers enable
and disable the aggregation of events into maps rather than enabling
and disabling their writing into the trace buffer.
They can be used to automatically start and stop hist triggers based
on a matching filter condition.
If there's a paused hist trigger on system:event, the following would
start it when the filter condition was hit:
# echo enable_hist:system:event [ if filter] > event/trigger
And the following would disable a running system:event hist trigger:
# echo disable_hist:system:event [ if filter] > event/trigger
See Documentation/trace/events.txt for real examples.
Link: http://lkml.kernel.org/r/f812f086e52c8b7c8ad5443487375e03c96a601f.1457029949.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Tested-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Reviewed-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
If we assume the maximum size for a string field, we don't have to
worry about its position. Since we only allow two keys in a compound
key and having more than one string key in a given compound key
doesn't make much sense anyway, trading a bit of extra space instead
of introducing an arbitrary restriction makes more sense.
We also need to use the event field size for static strings when
copying the contents, otherwise we get random garbage in the key.
Also, cast string return values to avoid warnings on 32-bit compiles.
Finally, rearrange the code without changing any functionality by
moving the compound key updating code into a separate function.
Link: http://lkml.kernel.org/r/8976e1ab04b66bc2700ad1ed0768a2de85ac1983.1457029949.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Tested-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Reviewed-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
The string in a trace event is usually recorded as dynamic array which
is variable length. But current hist code only support fixed length
array so it cannot support most strings.
This patch fixes it by checking filter_type of the field and get
proper pointer with it. With this, it can get a histogram of exec()
based on filenames like below:
# cd /sys/kernel/tracing/events/sched/sched_process_exec
# cat 'hist:key=filename' > trigger
# ps
PID TTY TIME CMD
1 ? 00:00:00 init
29 ? 00:00:00 sh
38 ? 00:00:00 ps
# ls
enable filter format hist id trigger
# cat hist
# trigger info: hist:keys=filename:vals=hitcount:sort=hitcount:size=2048 [active]
{ filename: /usr/bin/ps } hitcount: 1
{ filename: /usr/bin/ls } hitcount: 1
{ filename: /usr/bin/cat } hitcount: 1
Totals:
Hits: 3
Entries: 3
Dropped: 0
Link: http://lkml.kernel.org/r/610180d6df0cfdf11ee205452f3b241dea657233.1457029949.git.tom.zanussi@linux.intel.com
Cc: Tom Zanussi <tom.zanussi@linux.intel.com>
Cc: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Signed-off-by: Namhyung Kim <namhyung@kernel.org>
Tested-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
[ Added (unsigned long) typecast to fix compile warning ]
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
It's often useful to be able to use a stacktrace as a hash key, for
keeping a count of the number of times a particular call path resulted
in a trace event, for instance. Add a special key named 'stacktrace'
which can be used as key in a 'keys=' param for this purpose:
# echo hist:keys=stacktrace ... \
[ if filter] > event/trigger
Link: http://lkml.kernel.org/r/87515e90b3785232a874a12156174635a348edb1.1457029949.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Tested-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Reviewed-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Allow users to have syscall id fields displayed as syscall names in
the output by appending '.syscall' to field names:
# echo hist:keys=aaa.syscall ... \
[ if filter] > event/trigger
Link: http://lkml.kernel.org/r/2bab1e59933d76a14b545bd2e02f80b8b08ac4d3.1457029949.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Tested-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Reviewed-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Allow users to have common_pid field values displayed as program names
in the output by appending '.execname' to a common_pid field name:
# echo hist:keys=common_pid.execname ... \
[ if filter] > event/trigger
Link: http://lkml.kernel.org/r/e172e81f10f5b8d1f08450e3763c850f39fbf698.1457029949.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Tested-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Reviewed-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Allow users to have address fields displayed as symbols in the output
by appending '.sym' or 'sym-offset' to field names:
# echo hist:keys=aaa.sym,bbb.sym-offset ... \
[ if filter] > event/trigger
Link: http://lkml.kernel.org/r/87d4935821491c0275513f0fbfb9bab8d3d3f079.1457029949.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Tested-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Reviewed-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Allow users to have numeric fields displayed as hex values in the
output by appending '.hex' to field names:
# echo hist:keys=aaa,bbb.hex:vals=ccc.hex ... \
[ if filter] > event/trigger
Link: http://lkml.kernel.org/r/67bd431edda2af5798d7694818f7e8d71b6b3463.1457029949.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Tested-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Reviewed-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Allow users to append 'clear' to an existing trigger in order to have
the hash table cleared.
This expands the hist trigger syntax from this:
# echo hist:keys=xxx:vals=yyy:sort=zzz.descending:pause/cont \
[ if filter] >> event/trigger
to this:
# echo hist:keys=xxx:vals=yyy:sort=zzz.descending:pause/cont/clear \
[ if filter] >> event/trigger
Link: http://lkml.kernel.org/r/ae15dd0d9b2f7af07a37c1ff682063e2dbcdf160.1457029949.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Tested-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Reviewed-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Allow users to append 'pause' or 'continue' to an existing trigger in
order to have it paused or to have a paused trace continue.
This expands the hist trigger syntax from this:
# echo hist:keys=xxx:vals=yyy:sort=zzz.descending \
[ if filter] >> event/trigger
to this:
# echo hist:keys=xxx:vals=yyy:sort=zzz.descending:pause or cont \
[ if filter] >> event/trigger
Link: http://lkml.kernel.org/r/b672a92c14702cb924cdf6fc27ea1809bed04907.1457029949.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Tested-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Reviewed-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Allow users to specify keys and/or values to sort on. With this
addition, keys and values specified using the 'keys=' and 'vals='
keywords can be used to sort the hist trigger output via a new 'sort='
keyword. If multiple sort keys are specified, the output will be
sorted using the second key as a secondary sort key, etc. The default
sort order is ascending; if the user wants a different sort order,
'.descending' can be appended to the specific sort key. Before this
addition, output was always sorted by 'hitcount' in ascending order.
This expands the hist trigger syntax from this:
# echo hist:keys=xxx:vals=yyy \
[ if filter] > event/trigger
to this:
# echo hist:keys=xxx:vals=yyy:sort=zzz.descending \
[ if filter] > event/trigger
Link: http://lkml.kernel.org/r/b30a41db66ba486979c4f987aff5fab500ea53b3.1457029949.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Tested-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Reviewed-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Allow users to specify multiple trace event fields to use in keys by
allowing multiple fields in the 'keys=' keyword. With this addition,
any unique combination of any of the fields named in the 'keys'
keyword will result in a new entry being added to the hash table.
Link: http://lkml.kernel.org/r/0cfa24e6ac3b0dcece7737d94aa1f322ae3afc4b.1457029949.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Tested-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Reviewed-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Allow users to specify trace event fields to use in aggregated sums
via a new 'vals=' keyword. Before this addition, the only aggregated
sum supported was the implied value 'hitcount'. With this addition,
'hitcount' is also supported as an explicit value field, as is any
numeric trace event field.
This expands the hist trigger syntax from this:
# echo hist:keys=xxx [ if filter] > event/trigger
to this:
# echo hist:keys=xxx:vals=yyy [ if filter] > event/trigger
Link: http://lkml.kernel.org/r/2a5d1adb5ba6c65d7bb2148e379f2fed47f29a68.1457029949.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Tested-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Reviewed-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
'hist' triggers allow users to continually aggregate trace events,
which can then be viewed afterwards by simply reading a 'hist' file
containing the aggregation in a human-readable format.
The basic idea is very simple and boils down to a mechanism whereby
trace events, rather than being exhaustively dumped in raw form and
viewed directly, are automatically 'compressed' into meaningful tables
completely defined by the user.
This is done strictly via single-line command-line commands and
without the aid of any kind of programming language or interpreter.
A surprising number of typical use cases can be accomplished by users
via this simple mechanism. In fact, a large number of the tasks that
users typically do using the more complicated script-based tracing
tools, at least during the initial stages of an investigation, can be
accomplished by simply specifying a set of keys and values to be used
in the creation of a hash table.
The Linux kernel trace event subsystem happens to provide an extensive
list of keys and values ready-made for such a purpose in the form of
the event format files associated with each trace event. By simply
consulting the format file for field names of interest and by plugging
them into the hist trigger command, users can create an endless number
of useful aggregations to help with investigating various properties
of the system. See Documentation/trace/events.txt for examples.
hist triggers are implemented on top of the existing event trigger
infrastructure, and as such are consistent with the existing triggers
from a user's perspective as well.
The basic syntax follows the existing trigger syntax. Users start an
aggregation by writing a 'hist' trigger to the event of interest's
trigger file:
# echo hist:keys=xxx [ if filter] > event/trigger
Once a hist trigger has been set up, by default it continually
aggregates every matching event into a hash table using the event key
and a value field named 'hitcount'.
To view the aggregation at any point in time, simply read the 'hist'
file in the same directory as the 'trigger' file:
# cat event/hist
The detailed syntax provides additional options for user control, and
is described exhaustively in Documentation/trace/events.txt and in the
virtual tracing/README file in the tracing subsystem.
Link: http://lkml.kernel.org/r/72d263b5e1853fe9c314953b65833c3aa75479f2.1457029949.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Tested-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Reviewed-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Make it clear exactly how many keys and values are supported through
better defines, and add 1 to the vals count, since normally clients
want support for at least a hitcount and two other values.
Also, note the error return value for tracing_map_add_key/val_field()
in the comments.
Link: http://lkml.kernel.org/r/6696fa02ebc716aa344c27a571a2afaa25e5b4d4.1457029949.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
The config option for TRACING_MAP has "default n", which is not needed
because the default of configs is 'n'.
Also, since the TRACING_MAP has no config prompt, there's no reason to
include "If in doubt, say N" in the help text.
Fixed a typo in the comments of tracing_map.h.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Add tracing_map, a special-purpose lock-free map for tracing.
tracing_map is designed to aggregate or 'sum' one or more values
associated with a specific object of type tracing_map_elt, which
is associated by the map to a given key.
It provides various hooks allowing per-tracer customization and is
separated out into a separate file in order to allow it to be shared
between multiple tracers, but isn't meant to be generally used outside
of that context.
The tracing_map implementation was inspired by lock-free map
algorithms originated by Dr. Cliff Click:
http://www.azulsystems.com/blog/cliff/2007-03-26-non-blocking-hashtablehttp://www.azulsystems.com/events/javaone_2007/2007_LockFreeHash.pdf
Link: http://lkml.kernel.org/r/b43d68d1add33582a396f553c8ef705a33a6a748.1449767187.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Tested-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Reviewed-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Add the infrastructure needed to have the PIDs in set_event_pid to
automatically add PIDs of the children of the tasks that have their PIDs in
set_event_pid. This will also remove PIDs from set_event_pid when a task
exits
This is implemented by adding hooks into the fork and exit tracepoints. On
fork, the PIDs are added to the list, and on exit, they are removed.
Add a new option called event_fork that when set, PIDs in set_event_pid will
automatically get their children PIDs added when they fork, as well as any
task that exits will have its PID removed from set_event_pid.
This works for instances as well.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
In order to add the ability to let tasks that are filtered by the events
have their children also be traced on fork (and then not traced on exit),
convert the array into a pid bitmask. Most of the time the number of pids is
only 32768 pids or a 4k bitmask, which is the same size as the default list
currently is, and that list could grow if more pids are listed.
This also greatly simplifies the code.
Suggested-by: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
The name "check_ignore_pid" is confusing in trying to figure out if the pid
should be ignored or not. Rename it to "ignore_this_task" which is pretty
straight forward, as a task (not a pid) is passed in, and should if true
should be ignored.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
While playing with the qstat statistics (in <debugfs>/qlockstat/) I ran into
the following splat on a VM when opening pv_hash_hops:
divide error: 0000 [#1] SMP
...
RIP: 0010:[<ffffffff810b61fe>] [<ffffffff810b61fe>] qstat_read+0x12e/0x1e0
...
Call Trace:
[<ffffffff811cad7c>] ? mem_cgroup_commit_charge+0x6c/0xd0
[<ffffffff8119750c>] ? page_add_new_anon_rmap+0x8c/0xd0
[<ffffffff8118d3b9>] ? handle_mm_fault+0x1439/0x1b40
[<ffffffff811937a9>] ? do_mmap+0x449/0x550
[<ffffffff811d3de3>] ? __vfs_read+0x23/0xd0
[<ffffffff811d4ab2>] ? rw_verify_area+0x52/0xd0
[<ffffffff811d4bb1>] ? vfs_read+0x81/0x120
[<ffffffff811d5f12>] ? SyS_read+0x42/0xa0
[<ffffffff815720f6>] ? entry_SYSCALL_64_fastpath+0x1e/0xa8
Fix this by verifying that qstat_pv_kick_unlock is in fact non-zero,
similarly to what the qstat_pv_latency_wake case does, as if nothing
else, this can come from resetting the statistics, thus having 0 kicks
should be quite valid in this context.
Signed-off-by: Davidlohr Bueso <dbueso@suse.de>
Reviewed-by: Waiman Long <Waiman.Long@hpe.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dave@stgolabs.net
Cc: waiman.long@hpe.com
Link: http://lkml.kernel.org/r/1460961103-24953-1-git-send-email-dave@stgolabs.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Two new functions in bpf contain a cast from a 'u64' to a
pointer. This works on 64-bit architectures but causes a warning
on all 32-bit architectures:
kernel/trace/bpf_trace.c: In function 'bpf_perf_event_output_tp':
kernel/trace/bpf_trace.c:350:13: error: cast to pointer from integer of different size [-Werror=int-to-pointer-cast]
u64 ctx = *(long *)r1;
This changes the cast to first convert the u64 argument into a uintptr_t,
which is guaranteed to be the same size as a pointer.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Fixes: 9940d67c93 ("bpf: support bpf_get_stackid() and bpf_perf_event_output() in tracepoint programs")
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Pull locking fixlet from Ingo Molnar:
"Fixes a build warning on certain Kconfig combinations"
* 'locking-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
locking/lockdep: Fix print_collision() unused warning
This patch converts all helpers that can use ARG_PTR_TO_RAW_STACK as argument
type. For tc programs this is bpf_skb_load_bytes(), bpf_skb_get_tunnel_key(),
bpf_skb_get_tunnel_opt(). For tracing, this optimizes bpf_get_current_comm()
and bpf_probe_read(). The check in bpf_skb_load_bytes() for MAX_BPF_STACK can
also be removed since the verifier already makes sure we stay within bounds
on stack buffers.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
When passing buffers from eBPF stack space into a helper function, we have
ARG_PTR_TO_STACK argument type for helpers available. The verifier makes sure
that such buffers are initialized, within boundaries, etc.
However, the downside with this is that we have a couple of helper functions
such as bpf_skb_load_bytes() that fill out the passed buffer in the expected
success case anyway, so zero initializing them prior to the helper call is
unneeded/wasted instructions in the eBPF program that can be avoided.
Therefore, add a new helper function argument type called ARG_PTR_TO_RAW_STACK.
The idea is to skip the STACK_MISC check in check_stack_boundary() and color
the related stack slots as STACK_MISC after we checked all call arguments.
Helper functions using ARG_PTR_TO_RAW_STACK must make sure that every path of
the helper function will fill the provided buffer area, so that we cannot leak
any uninitialized stack memory. This f.e. means that error paths need to
memset() the buffers, but the expected fast-path doesn't have to do this
anymore.
Since there's no such helper needing more than at most one ARG_PTR_TO_RAW_STACK
argument, we can keep it simple and don't need to check for multiple areas.
Should in future such a use-case really appear, we have check_raw_mode() that
will make sure we implement support for it first.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Currently, when the verifier checks calls in check_call() function, we
call check_func_arg() for all 5 arguments e.g. to make sure expected types
are correct. In some cases, we collect meta data (here: map pointer) to
perform additional checks such as checking stack boundary on key/value
sizes for subsequent arguments. As we're going to extend the meta data,
add a generic struct bpf_call_arg_meta that we can use for passing into
check_func_arg().
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
In commit c4004b02f8 ("x86: remove the kernel code/data/bss resources
from /proc/iomem") I was hoping to remove the phyiscal kernel address
data from /proc/iomem entirely, but that had to be reverted because some
system programs actually use it.
This limits all the detailed resource information to properly
credentialed users instead.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When livepatch tries to patch a function it takes the function address
and asks ftrace to install the livepatch handler at that location.
ftrace will look for an mcount call site at that exact address.
On powerpc the mcount location is not the first instruction of the
function, and in fact it's not at a constant offset from the start of
the function. To accommodate this add a hook which arch code can
override to customise the behaviour.
Signed-off-by: Torsten Duwe <duwe@suse.de>
Signed-off-by: Balbir Singh <bsingharora@gmail.com>
Signed-off-by: Petr Mladek <pmladek@suse.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
In order to support live patching on powerpc we would like to call
ftrace_location_range(), so make it global.
Signed-off-by: Torsten Duwe <duwe@suse.de>
Signed-off-by: Balbir Singh <bsingharora@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
verifier must check for reserved size bits in instruction opcode and
reject BPF_LD | BPF_ABS | BPF_DW and BPF_LD | BPF_IND | BPF_DW instructions,
otherwise interpreter will WARN_RATELIMIT on them during execution.
Fixes: ddd872bc30 ("bpf: verifier: add checks for BPF_ABS | BPF_IND instructions")
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
task_pt_regs() can return NULL for kernel threads, so add a check.
This fixes an oops at boot on ppc64.
Reported-and-Tested-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Tested-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Anton Blanchard <anton@samba.org>
Acked-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: efault@gmx.de
Cc: htejun@gmail.com
Cc: linuxppc-dev@lists.ozlabs.org
Cc: tj@kernel.org
Cc: yangds.fnst@cn.fujitsu.com
Link: http://lkml.kernel.org/r/20160406215950.04bc3f0b@kryten
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The local_clock/cpu_clock functions were changed to prevent a double
identical test with sched_clock_cpu() when HAVE_UNSTABLE_SCHED_CLOCK
is set. That resulted in one line functions.
As these functions are in all the cases one line functions and in the
hot path, it is useful to specify them as static inline in order to
give a strong hint to the compiler.
After verification, it appears the compiler does not inline them
without this hint. Change those functions to static inline.
sched_clock_cpu() is called via the inlined local_clock()/cpu_clock()
functions from sched.h. So any module code including sched.h will
reference sched_clock_cpu(). Thus it must be exported with the
EXPORT_SYMBOL_GPL macro.
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1460385514-14700-2-git-send-email-daniel.lezcano@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In case the HAVE_UNSTABLE_SCHED_CLOCK config is set, the cpu_clock() version
checks if sched_clock_stable() is not set and calls sched_clock_cpu(),
otherwise it calls sched_clock().
sched_clock_cpu() checks also if sched_clock_stable() is set and, if true,
calls sched_clock().
sched_clock() will be called in sched_clock_cpu() if sched_clock_stable() is
true.
Remove the duplicate test by directly calling sched_clock_cpu() and let the
static key act in this function instead.
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1460385514-14700-1-git-send-email-daniel.lezcano@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
sysrq_sched_debug_show() can dump a lot of information. Don't print out
all that if we're just trying to get a list of blocked tasks (SysRq-W).
The information is still accessible with SysRq-T.
Signed-off-by: Rabin Vincent <rabinv@axis.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1459777322-30902-1-git-send-email-rabin.vincent@axis.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Introduce a generic implementation necessary for down_write_killable().
This is a trivial extension of the already existing down_write() call
which can be interrupted by SIGKILL. This patch doesn't provide
down_write_killable() yet because arches have to provide the necessary
pieces before.
rwsem_down_write_failed() which is a generic slow path for the
write lock is extended to take a task state and renamed to
__rwsem_down_write_failed_common(). The return value is either a valid
semaphore pointer or ERR_PTR(-EINTR).
rwsem_down_write_failed_killable() is exported as a new way to wait for
the lock and be killable.
For rwsem-spinlock implementation the current __down_write() it updated
in a similar way as __rwsem_down_write_failed_common() except it doesn't
need new exports just visible __down_write_killable().
Architectures which are not using the generic rwsem implementation are
supposed to provide their __down_write_killable() implementation and
use rwsem_down_write_failed_killable() for the slow path.
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Chris Zankel <chris@zankel.net>
Cc: David S. Miller <davem@davemloft.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Signed-off-by: Davidlohr Bueso <dbueso@suse.de>
Cc: Signed-off-by: Jason Low <jason.low2@hp.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: linux-alpha@vger.kernel.org
Cc: linux-arch@vger.kernel.org
Cc: linux-ia64@vger.kernel.org
Cc: linux-s390@vger.kernel.org
Cc: linux-sh@vger.kernel.org
Cc: linux-xtensa@linux-xtensa.org
Cc: sparclinux@vger.kernel.org
Link: http://lkml.kernel.org/r/1460041951-22347-7-git-send-email-mhocko@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This is no longer used anywhere and all callers (__down_write()) use
0 as a subclass. Ditch __down_write_nested() to make the code easier
to follow.
This shouldn't introduce any functional change.
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Davidlohr Bueso <dave@stgolabs.net>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Chris Zankel <chris@zankel.net>
Cc: David S. Miller <davem@davemloft.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Signed-off-by: Davidlohr Bueso <dbueso@suse.de>
Cc: Signed-off-by: Jason Low <jason.low2@hp.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: linux-alpha@vger.kernel.org
Cc: linux-arch@vger.kernel.org
Cc: linux-ia64@vger.kernel.org
Cc: linux-s390@vger.kernel.org
Cc: linux-sh@vger.kernel.org
Cc: linux-xtensa@linux-xtensa.org
Cc: sparclinux@vger.kernel.org
Link: http://lkml.kernel.org/r/1460041951-22347-2-git-send-email-mhocko@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This function compiles to 1328 bytes of machine code. Three callsites.
Registering a new lock class is definitely not *that* time-critical to inline it.
Signed-off-by: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/r/1460141926-13069-5-git-send-email-dvlasenk@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
It has been found that paths that invoke cleanups through
lock_torture_cleanup() can trigger NULL pointer dereferencing
bugs during the statistics printing phase. This is mainly
because we should not be calling into statistics before we are
sure things have been set up correctly.
Specifically, early checks (and the need for handling this in
the cleanup call) only include parameter checks and basic
statistics allocation. Once we start write/read kthreads
we then consider the test as started. As such, update the function
in question to check for cxt.lwsa writer stats, if not set,
we either have a bogus parameter or -ENOMEM situation and
therefore only need to deal with general torture calls.
Reported-and-tested-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Signed-off-by: Davidlohr Bueso <dbueso@suse.de>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bobby.prani@gmail.com
Cc: dhowells@redhat.com
Cc: dipankar@in.ibm.com
Cc: dvhart@linux.intel.com
Cc: edumazet@google.com
Cc: fweisbec@gmail.com
Cc: jiangshanlai@gmail.com
Cc: josh@joshtriplett.org
Cc: mathieu.desnoyers@efficios.com
Cc: oleg@redhat.com
Cc: rostedt@goodmis.org
Link: http://lkml.kernel.org/r/1460476038-27060-2-git-send-email-paulmck@linux.vnet.ibm.com
[ Improved the changelog. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
For the case of rtmutex torturing we will randomly call into the
boost() handler, including upon module exiting when the tasks are
deboosted before stopping. In such cases the task may or may not have
already been boosted, and therefore the NULL being explicitly passed
can occur anywhere. Currently we only assume that the task will is
at a higher prio, and in consequence, dereference a NULL pointer.
This patch fixes the case of a rmmod locktorture exploding while
pounding on the rtmutex lock (partial trace):
task: ffff88081026cf80 ti: ffff880816120000 task.ti: ffff880816120000
RSP: 0018:ffff880816123eb0 EFLAGS: 00010206
RAX: ffff88081026cf80 RBX: ffff880816bfa630 RCX: 0000000000160d1b
RDX: 0000000000000000 RSI: 0000000000000202 RDI: 0000000000000000
RBP: ffff88081026cf80 R08: 000000000000001f R09: ffff88017c20ca80
R10: 0000000000000000 R11: 000000000048c316 R12: ffffffffa05d1840
R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000
FS: 0000000000000000(0000) GS:ffff88203f880000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000008 CR3: 0000000001c0a000 CR4: 00000000000406e0
Stack:
ffffffffa05d141d ffff880816bfa630 ffffffffa05d1922 ffff88081e70c2c0
ffff880816bfa630 ffffffff81095fed 0000000000000000 ffffffff8107bf60
ffff880816bfa630 ffffffff00000000 ffff880800000000 ffff880816123f08
Call Trace:
[<ffffffff81095fed>] kthread+0xbd/0xe0
[<ffffffff815cf40f>] ret_from_fork+0x3f/0x70
This patch ensures that if the random state pointer is not NULL and current
is not boosted, then do nothing.
RIP: 0010:[<ffffffffa05c6185>] [<ffffffffa05c6185>] torture_random+0x5/0x60 [torture]
[<ffffffffa05d141d>] torture_rtmutex_boost+0x1d/0x90 [locktorture]
[<ffffffffa05d1922>] lock_torture_writer+0xe2/0x170 [locktorture]
Signed-off-by: Davidlohr Bueso <dbueso@suse.de>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bobby.prani@gmail.com
Cc: dhowells@redhat.com
Cc: dipankar@in.ibm.com
Cc: dvhart@linux.intel.com
Cc: edumazet@google.com
Cc: fweisbec@gmail.com
Cc: jiangshanlai@gmail.com
Cc: josh@joshtriplett.org
Cc: mathieu.desnoyers@efficios.com
Cc: oleg@redhat.com
Cc: rostedt@goodmis.org
Link: http://lkml.kernel.org/r/1460476038-27060-1-git-send-email-paulmck@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Move the point at which a key is determined to be trustworthy to
__key_link() so that we use the contents of the keyring being linked in to
to determine whether the key being linked in is trusted or not.
What is 'trusted' then becomes a matter of what's in the keyring.
Currently, the test is done when the key is parsed, but given that at that
point we can only sensibly refer to the contents of the system trusted
keyring, we can only use that as the basis for working out the
trustworthiness of a new key.
With this change, a trusted keyring is a set of keys that once the
trusted-only flag is set cannot be added to except by verification through
one of the contained keys.
Further, adding a key into a trusted keyring, whilst it might grant
trustworthiness in the context of that keyring, does not automatically
grant trustworthiness in the context of a second keyring to which it could
be secondarily linked.
To accomplish this, the authentication data associated with the key source
must now be retained. For an X.509 cert, this means the contents of the
AuthorityKeyIdentifier and the signature data.
If system keyrings are disabled then restrict_link_by_builtin_trusted()
resolves to restrict_link_reject(). The integrity digital signature code
still works correctly with this as it was previously using
KEY_FLAG_TRUSTED_ONLY, which doesn't permit anything to be added if there
is no system keyring against which trust can be determined.
Signed-off-by: David Howells <dhowells@redhat.com>
verifier is using the following structure to track the state of registers:
struct reg_state {
enum bpf_reg_type type;
union {
int imm;
struct bpf_map *map_ptr;
};
};
and later on in states_equal() does memcmp(&old->regs[i], &cur->regs[i],..)
to find equivalent states.
Throughout the code of verifier there are assignements to 'imm' and 'map_ptr'
fields and it's not obvious that most of the assignments into 'imm' don't
need to clear extra 4 bytes (like mark_reg_unknown_value() does) to make sure
that memcmp doesn't go over junk left from 'map_ptr' assignment.
Simplify the code by converting 'int' into 'long'
Suggested-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
Due to differences in the cpufreq core's handling of runtime CPU
offline and nonboot CPUs disabling during system suspend-to-RAM,
fast frequency switching gets disabled after a suspend-to-RAM and
resume cycle on all of the nonboot CPUs.
To prevent that from happening, move the invocation of
cpufreq_disable_fast_switch() from cpufreq_exit_governor() to
sugov_exit(), as the schedutil governor is the only user of fast
frequency switching today anyway.
That simply prevents cpufreq_disable_fast_switch() from being called
without invoking the ->governor callback for the CPUFREQ_GOV_POLICY_EXIT
event (which happens during system suspend now).
Fixes: b7898fda5b (cpufreq: Support for fast frequency switching)
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
The verifier needs to go through every path of the program in
order to check that it terminates safely, which can be quite a
lot of instructions that need to be processed f.e. in cases with
more branchy programs. With search pruning from f1bca824da ("bpf:
add search pruning optimization to verifier") the search space can
already be reduced significantly when the verifier detects that
a previously walked path with same register and stack contents
terminated already (see verifier's states_equal()), so the search
can skip walking those states.
When working with larger programs of > ~2000 (out of max 4096)
insns, we found that the current limit of 32k instructions is easily
hit. For example, a case we ran into is that the search space cannot
be pruned due to branches at the beginning of the program that make
use of certain stack space slots (STACK_MISC), which are never used
in the remaining program (STACK_INVALID). Therefore, the verifier
needs to walk paths for the slots in STACK_INVALID state, but also
all remaining paths with a stack structure, where the slots are in
STACK_MISC, which can nearly double the search space needed. After
various experiments, we find that a limit of 64k processed insns is
a more reasonable choice when dealing with larger programs in practice.
This still allows to reject extreme crafted cases that can have a
much higher complexity (f.e. > ~300k) within the 4096 insns limit
due to search pruning not being able to take effect.
Furthermore, we found that a lot of states can be pruned after a
call instruction, f.e. we were able to reduce the search state by
~35% in some cases with this heuristic, trade-off is to keep a bit
more states in env->explored_states. Usually, call instructions
have a number of preceding register assignments and/or stack stores,
where search pruning has a better chance to suceed in states_equal()
test. The current code marks the branch targets with STATE_LIST_MARK
in case of conditional jumps, and the next (t + 1) instruction in
case of unconditional jump so that f.e. a backjump will walk it. We
also did experiments with using t + insns[t].off + 1 as a marker in
the unconditionally jump case instead of t + 1 with the rationale
that these two branches of execution that converge after the label
might have more potential of pruning. We found that it was a bit
better, but not necessarily significantly better than the current
state, perhaps also due to clang not generating back jumps often.
Hence, we left that as is for now.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
during bpf program loading remember the last byte of ctx access
and at the time of attaching the program to tracepoint check that
the program doesn't access bytes beyond defined in tracepoint fields
This also disallows access to __dynamic_array fields, but can be
relaxed in the future.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
needs two wrapper functions to fetch 'struct pt_regs *' to convert
tracepoint bpf context into kprobe bpf context to reuse existing
helper functions
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
register tracepoint bpf program type and let it call the same set
of helper functions as BPF_PROG_TYPE_KPROBE
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
introduce BPF_PROG_TYPE_TRACEPOINT program type and allow it to be attached
to the perf tracepoint handler, which will copy the arguments into
the per-cpu buffer and pass it to the bpf program as its first argument.
The layout of the fields can be discovered by doing
'cat /sys/kernel/debug/tracing/events/sched/sched_switch/format'
prior to the compilation of the program with exception that first 8 bytes
are reserved and not accessible to the program. This area is used to store
the pointer to 'struct pt_regs' which some of the bpf helpers will use:
+---------+
| 8 bytes | hidden 'struct pt_regs *' (inaccessible to bpf program)
+---------+
| N bytes | static tracepoint fields defined in tracepoint/format (bpf readonly)
+---------+
| dynamic | __dynamic_array bytes of tracepoint (inaccessible to bpf yet)
+---------+
Not that all of the fields are already dumped to user space via perf ring buffer
and broken application access it directly without consulting tracepoint/format.
Same rule applies here: static tracepoint fields should only be accessed
in a format defined in tracepoint/format. The order of fields and
field sizes are not an ABI.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
split allows to move expensive update of 'struct trace_entry' to later phase.
Repurpose unused 1st argument of perf_tp_event() to indicate event type.
While splitting use temp variable 'rctx' instead of '*rctx' to avoid
unnecessary loads done by the compiler due to -fno-strict-aliasing
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
avoid memset in perf_fetch_caller_regs, since it's the critical path of all tracepoints.
It's called from perf_sw_event_sched, perf_event_task_sched_in and all of perf_trace_##call
with this_cpu_ptr(&__perf_regs[..]) which are zero initialized by perpcu init logic and
subsequent call to perf_arch_fetch_caller_regs initializes the same fields on all archs,
so we can safely drop memset from all of the above cases and move it into
perf_ftrace_function_call that calls it with stack allocated pt_regs.
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Commit 425595a7fc ("livepatch: reuse module loader code to write
relocations") adds a possibility of dereferncing pointers supplied by the
consumer of the livepatch API before sanity (NULL) checking them (patch
and patch->mod).
Spotted by smatch tool.
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Jessica Yu <jeyu@redhat.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Make the determination of the trustworthiness of a key dependent on whether
a key that can verify it is present in the supplied ring of trusted keys
rather than whether or not the verifying key has KEY_FLAG_TRUSTED set.
verify_pkcs7_signature() will return -ENOKEY if the PKCS#7 message trust
chain cannot be verified.
Signed-off-by: David Howells <dhowells@redhat.com>
Generalise system_verify_data() to provide access to internal content
through a callback. This allows all the PKCS#7 stuff to be hidden inside
this function and removed from the PE file parser and the PKCS#7 test key.
If external content is not required, NULL should be passed as data to the
function. If the callback is not required, that can be set to NULL.
The function is now called verify_pkcs7_signature() to contrast with
verify_pefile_signature() and the definitions of both have been moved into
linux/verification.h along with the key_being_used_for enum.
Signed-off-by: David Howells <dhowells@redhat.com>
Remove the calls to __set_current_state() to mark the task as running
and do some related cleanup in wait_for_auditd() to limit the amount
of work we do when we aren't going to reschedule the current task.
Signed-off-by: Paul Moore <paul@paul-moore.com>
Merge PAGE_CACHE_SIZE removal patches from Kirill Shutemov:
"PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time
ago with promise that one day it will be possible to implement page
cache with bigger chunks than PAGE_SIZE.
This promise never materialized. And unlikely will.
Let's stop pretending that pages in page cache are special. They are
not.
The first patch with most changes has been done with coccinelle. The
second is manual fixups on top.
The third patch removes macros definition"
[ I was planning to apply this just before rc2, but then I spaced out,
so here it is right _after_ rc2 instead.
As Kirill suggested as a possibility, I could have decided to only
merge the first two patches, and leave the old interfaces for
compatibility, but I'd rather get it all done and any out-of-tree
modules and patches can trivially do the converstion while still also
working with older kernels, so there is little reason to try to
maintain the redundant legacy model. - Linus ]
* PAGE_CACHE_SIZE-removal:
mm: drop PAGE_CACHE_* and page_cache_{get,release} definition
mm, fs: remove remaining PAGE_CACHE_* and page_cache_{get,release} usage
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros
PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time
ago with promise that one day it will be possible to implement page
cache with bigger chunks than PAGE_SIZE.
This promise never materialized. And unlikely will.
We have many places where PAGE_CACHE_SIZE assumed to be equal to
PAGE_SIZE. And it's constant source of confusion on whether
PAGE_CACHE_* or PAGE_* constant should be used in a particular case,
especially on the border between fs and mm.
Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much
breakage to be doable.
Let's stop pretending that pages in page cache are special. They are
not.
The changes are pretty straight-forward:
- <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>;
- <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>;
- PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN};
- page_cache_get() -> get_page();
- page_cache_release() -> put_page();
This patch contains automated changes generated with coccinelle using
script below. For some reason, coccinelle doesn't patch header files.
I've called spatch for them manually.
The only adjustment after coccinelle is revert of changes to
PAGE_CAHCE_ALIGN definition: we are going to drop it later.
There are few places in the code where coccinelle didn't reach. I'll
fix them manually in a separate patch. Comments and documentation also
will be addressed with the separate patch.
virtual patch
@@
expression E;
@@
- E << (PAGE_CACHE_SHIFT - PAGE_SHIFT)
+ E
@@
expression E;
@@
- E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT)
+ E
@@
@@
- PAGE_CACHE_SHIFT
+ PAGE_SHIFT
@@
@@
- PAGE_CACHE_SIZE
+ PAGE_SIZE
@@
@@
- PAGE_CACHE_MASK
+ PAGE_MASK
@@
expression E;
@@
- PAGE_CACHE_ALIGN(E)
+ PAGE_ALIGN(E)
@@
expression E;
@@
- page_cache_get(E)
+ get_page(E)
@@
expression E;
@@
- page_cache_release(E)
+ put_page(E)
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We can use kthread_run instead of kthread_create+wake_up_process for
creating the thread.
We do not need to set the task state to TASK_RUNNING after schedule(),
the process is in that state already.
And we do not need to set the state to TASK_INTERRUPTIBLE when not
doing schedule() as we set the state to TASK_RUNNING immediately
afterwards.
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
Cc: Paul Moore <paul@paul-moore.com>
Cc: Eric Paris <eparis@redhat.com>
Cc: <linux-audit@redhat.com>
Signed-off-by: Paul Moore <paul@paul-moore.com>
Currently, the memremap code serves MEMREMAP_WB mappings directly from
the kernel direct mapping, unless the region is in high memory, in which
case it falls back to using ioremap_cache(). However, the semantics of
ioremap_cache() are not unambiguously defined, and on ARM, it will
actually result in a mapping type that differs from the attributes used
for the linear mapping, and for this reason, the ioremap_cache() call
fails if the region is part of the memory managed by the kernel.
So instead, implement an optional hook 'arch_memremap_wb' whose default
implementation calls ioremap_cache() as before, but which can be
overridden by the architecture to do what is appropriate for it.
Acked-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Pull core kernel fixes from Ingo Molnar:
"This contains the nohz/atomic cleanup/fix for the fetch_or() ugliness
you noted during the original nohz pull request, plus there's also
misc fixes:
- fix liblockdep build bug
- fix uapi header build bug
- print more lockdep hash collision info to help debug recent reports
of hash collisions
- update MAINTAINERS email address"
* 'core-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
MAINTAINERS: Update my email address
locking/lockdep: Print chain_key collision information
uapi/linux/stddef.h: Provide __always_inline to userspace headers
tools/lib/lockdep: Fix unsupported 'basename -s' in run_tests.sh
locking/atomic, sched: Unexport fetch_or()
timers/nohz: Convert tick dependency mask to atomic_t
locking/atomic: Introduce atomic_fetch_or()
Pull networking fixes from David Miller:
1) Missing device reference in IPSEC input path results in crashes
during device unregistration. From Subash Abhinov Kasiviswanathan.
2) Per-queue ISR register writes not being done properly in macb
driver, from Cyrille Pitchen.
3) Stats accounting bugs in bcmgenet, from Patri Gynther.
4) Lightweight tunnel's TTL and TOS were swapped in netlink dumps, from
Quentin Armitage.
5) SXGBE driver has off-by-one in probe error paths, from Rasmus
Villemoes.
6) Fix race in save/swap/delete options in netfilter ipset, from
Vishwanath Pai.
7) Ageing time of bridge not set properly when not operating over a
switchdev device. Fix from Haishuang Yan.
8) Fix GRO regression wrt nested FOU/GUE based tunnels, from Alexander
Duyck.
9) IPV6 UDP code bumps wrong stats, from Eric Dumazet.
10) FEC driver should only access registers that actually exist on the
given chipset, fix from Fabio Estevam.
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net: (73 commits)
net: mvneta: fix changing MTU when using per-cpu processing
stmmac: fix MDIO settings
Revert "stmmac: Fix 'eth0: No PHY found' regression"
stmmac: fix TX normal DESC
net: mvneta: use cache_line_size() to get cacheline size
net: mvpp2: use cache_line_size() to get cacheline size
net: mvpp2: fix maybe-uninitialized warning
tun, bpf: fix suspicious RCU usage in tun_{attach, detach}_filter
net: usb: cdc_ncm: adding Telit LE910 V2 mobile broadband card
rtnl: fix msg size calculation in if_nlmsg_size()
fec: Do not access unexisting register in Coldfire
net: mvneta: replace MVNETA_CPU_D_CACHE_LINE_SIZE with L1_CACHE_BYTES
net: mvpp2: replace MVPP2_CPU_D_CACHE_LINE_SIZE with L1_CACHE_BYTES
net: dsa: mv88e6xxx: Clear the PDOWN bit on setup
net: dsa: mv88e6xxx: Introduce _mv88e6xxx_phy_page_{read, write}
bpf: make padding in bpf_tunnel_key explicit
ipv6: udp: fix UDP_MIB_IGNOREDMULTI updates
bnxt_en: Fix ethtool -a reporting.
bnxt_en: Fix typo in bnxt_hwrm_set_pause_common().
bnxt_en: Implement proper firmware message padding.
...
Add a new cpufreq scaling governor, called "schedutil", that uses
scheduler-provided CPU utilization information as input for making
its decisions.
Doing that is possible after commit 34e2c555f3 (cpufreq: Add
mechanism for registering utilization update callbacks) that
introduced cpufreq_update_util() called by the scheduler on
utilization changes (from CFS) and RT/DL task status updates.
In particular, CPU frequency scaling decisions may be based on
the the utilization data passed to cpufreq_update_util() by CFS.
The new governor is relatively simple.
The frequency selection formula used by it depends on whether or not
the utilization is frequency-invariant. In the frequency-invariant
case the new CPU frequency is given by
next_freq = 1.25 * max_freq * util / max
where util and max are the last two arguments of cpufreq_update_util().
In turn, if util is not frequency-invariant, the maximum frequency in
the above formula is replaced with the current frequency of the CPU:
next_freq = 1.25 * curr_freq * util / max
The coefficient 1.25 corresponds to the frequency tipping point at
(util / max) = 0.8.
All of the computations are carried out in the utilization update
handlers provided by the new governor. One of those handlers is
used for cpufreq policies shared between multiple CPUs and the other
one is for policies with one CPU only (and therefore it doesn't need
to use any extra synchronization means).
The governor supports fast frequency switching if that is supported
by the cpufreq driver in use and possible for the given policy.
In the fast switching case, all operations of the governor take
place in its utilization update handlers. If fast switching cannot
be used, the frequency switch operations are carried out with the
help of a work item which only calls __cpufreq_driver_target()
(under a mutex) to trigger a frequency update (to a value already
computed beforehand in one of the utilization update handlers).
Currently, the governor treats all of the RT and DL tasks as
"unknown utilization" and sets the frequency to the allowed
maximum when updated from the RT or DL sched classes. That
heavy-handed approach should be replaced with something more
subtle and specifically targeted at RT and DL tasks.
The governor shares some tunables management code with the
"ondemand" and "conservative" governors and uses some common
definitions from cpufreq_governor.h, but apart from that it
is stand-alone.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Replace the single helper for adding and removing cpufreq utilization
update hooks, cpufreq_set_update_util_data(), with a pair of helpers,
cpufreq_add_update_util_hook() and cpufreq_remove_update_util_hook(),
and modify the users of cpufreq_set_update_util_data() accordingly.
With the new helpers, the code using them doesn't need to worry
about the internals of struct update_util_data and in particular
it doesn't need to worry about populating the func field in it
properly upfront.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reuse module loader code to write relocations, thereby eliminating the need
for architecture specific relocation code in livepatch. Specifically, reuse
the apply_relocate_add() function in the module loader to write relocations
instead of duplicating functionality in livepatch's arch-dependent
klp_write_module_reloc() function.
In order to accomplish this, livepatch modules manage their own relocation
sections (marked with the SHF_RELA_LIVEPATCH section flag) and
livepatch-specific symbols (marked with SHN_LIVEPATCH symbol section
index). To apply livepatch relocation sections, livepatch symbols
referenced by relocs are resolved and then apply_relocate_add() is called
to apply those relocations.
In addition, remove x86 livepatch relocation code and the s390
klp_write_module_reloc() function stub. They are no longer needed since
relocation work has been offloaded to module loader.
Lastly, mark the module as a livepatch module so that the module loader
canappropriately identify and initialize it.
Signed-off-by: Jessica Yu <jeyu@redhat.com>
Reviewed-by: Miroslav Benes <mbenes@suse.cz>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com> # for s390 changes
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
For livepatch modules, copy Elf section, symbol, and string information
from the load_info struct in the module loader. Persist copies of the
original symbol table and string table.
Livepatch manages its own relocation sections in order to reuse module
loader code to write relocations. Livepatch modules must preserve Elf
information such as section indices in order to apply livepatch relocation
sections using the module loader's apply_relocate_add() function.
In order to apply livepatch relocation sections, livepatch modules must
keep a complete copy of their original symbol table in memory. Normally, a
stripped down copy of a module's symbol table (containing only "core"
symbols) is made available through module->core_symtab. But for livepatch
modules, the symbol table copied into memory on module load must be exactly
the same as the symbol table produced when the patch module was compiled.
This is because the relocations in each livepatch relocation section refer
to their respective symbols with their symbol indices, and the original
symbol indices (and thus the symtab ordering) must be preserved in order
for apply_relocate_add() to find the right symbol.
Signed-off-by: Jessica Yu <jeyu@redhat.com>
Reviewed-by: Miroslav Benes <mbenes@suse.cz>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Rusty Russell <rusty@rustcorp.com.au>
Reviewed-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
The hotplug notifier rcutorture_cpu_notify() doesn't consider the
corresponding CPU_XXX_FROZEN transitions. They occur on
suspend/resume and are usually handled the same way as the
corresponding non frozen transitions.
Mask the switch case action argument with '~CPU_TASKS_FROZEN' to map
CPU_XXX_FROZEN hotplug transitions on corresponding non-frozen
transitions.
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Signed-off-by: Anna-Maria Gleixner <anna-maria@linutronix.de>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The current code initializes the global per-CPU variables
rcu_torture_count and rcu_torture_batch to zero. However, C does this
initialization by default, and explicit initialization of per-CPU
variables now needs a different syntax if "make tags" is to work.
This commit therefore removes the initialization.
Reported-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
After finishing its tests rcuperf tries to wake up shutdown_wq even if
"shutdown" param is set to false, resulting in a wake_up() call on an
unitialized wait_queue_head_t which leads to "BUG: spinlock bad magic" and
"BUG: unable to handle kernel NULL pointer dereference".
Fix by checking "shutdown" param before waking up the queue.
Signed-off-by: Artem Savkov <artem.savkov@gmail.com>
Running rcuperf can result in RCU CPU stall warnings and RT throttling.
These occur because on of the real-time writer processes does
ftrace_dump() while still running at real-time priority. This commit
therefore prevents these problems by setting the writer thread back to
SCHED_NORMAL (AKA SCHED_OTHER) before doing ftrace_dump().
In addition, this commit adds a small fixed delay before dumping ftrace
buffer in order to decrease the probability that this dumping will
interfere with other writers' grace periods.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Boot-time activity can legitimately grab CPUs for extended time periods,
so the commit adds a boot parameter to delay the start of the performance
test until boot has completed. Defaults to 10 seconds.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit enables ftrace in the rcuperf TREE kernel build and adds
an ftrace_dump() at the end of rcuperf processing. This data will be
used to measure the actual durations of the expedited grace periods
without the added delays inherent in the kernel-module measurements.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit forces more deterministic update-side behavior by setting
rcuperf's rcu_perf_writer() kthreads to real-time priority.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit forces more deterministic behavior by binding rcuperf's
rcu_perf_reader() and rcu_perf_writer() kthreads to their respective
CPUs.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit adds a new rcuperf module that carries out simple performance
tests of RCU grace periods.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit provides rcu_exp_batches_completed() and
rcu_exp_batches_completed_sched() functions to allow torture-test modules
to check how many expedited grace period batches have completed.
These are analogous to the existing rcu_batches_completed(),
rcu_batches_completed_bh(), and rcu_batches_completed_sched() functions.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Currently, rcu_torture_writer() checks only for rcu_gp_is_expedited()
when deciding whether or not to do dynamic control of RCU expediting.
This means that if rcupdate.rcu_normal is specified, rcu_torture_writer()
will attempt to dynamically control RCU expediting, but will nonetheless
only test normal RCU grace periods. This commit therefore adds a check
for !rcu_gp_is_normal(), and prints a message and desists from testing
dynamic control of RCU expediting when doing so is futile.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
If it is necessary to kick the grace-period kthread, that is a good
time to dump the trace buffer in order to learn why kicking was needed.
This commit therefore does the dump.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Currently, we have four versions of rcu_read_lock_sched_held(), depending
on the combined choices on PREEMPT_COUNT and DEBUG_LOCK_ALLOC. However,
there is an existing function preemptible() that already distinguishes
between the PREEMPT_COUNT=y and PREEMPT_COUNT=n cases, and allows these
four implementations to be consolidated down to two.
This commit therefore uses preemptible() to achieve this consolidation.
Note that there could be a small performance regression in the case
of CONFIG_DEBUG_LOCK_ALLOC=y && PREEMPT_COUNT=n. However, given the
overhead associated with CONFIG_DEBUG_LOCK_ALLOC=y, this should be
down in the noise.
Signed-off-by: Boqun Feng <boqun.feng@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Recent kernels can fail to awaken the grace-period kthread for
quiescent-state forcing. This commit is a crude hack that does
a wakeup if a scheduling-clock interrupt sees that it has been
too long since force-quiescent-state (FQS) processing.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Currently, the force-quiescent-state (FQS) code in rcu_gp_kthread() can
advance the next FQS even if one was not executed last time. This can
happen due timeout-duration uncertainty. This commit therefore avoids
advancing the FQS schedule unless an FQS was just executed. In the
corner case where an FQS was not executed, but is due now, the code does
a one-jiffy wait.
This change prepares for kthread kicking.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Recent kernels can fail to awaken the grace-period kthread for
quiescent-state forcing. This commit is a crude hack that does
a wakeup any time a stall is detected.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The current expedited grace-period implementation makes subsequent grace
periods wait on wakeups for the prior grace period. This does not fit
the dictionary definition of "expedited", so this commit allows these two
phases to overlap. Doing this requires four waitqueues rather than two
because tasks can now be waiting on the previous, current, and next grace
periods. The fourth waitqueue makes the bit masking work out nicely.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit pulls the grace-period-start counter adjustment and tracing
from synchronize_rcu_expedited() and synchronize_sched_expedited()
into exp_funnel_lock(), thus eliminating some code duplication.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit moves some duplicate code from synchronize_rcu_expedited()
and synchronize_sched_expedited() into rcu_exp_gp_seq_snap(). This
doesn't save lines of code, but does eliminate a "tell me twice" issue.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Currently, synchronize_rcu_expedited() and rcu_sched_expedited() have
significant duplicate code. This commit therefore consolidates some of
this code into rcu_exp_wake(), which is now renamed to rcu_exp_wait_wake()
in recognition of its added responsibilities.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit speeds up the low-contention case, especially for systems
with large rcu_node trees, by attempting to directly acquire the
->exp_mutex. This fastpath checks the leaves and root first in
order to avoid excessive memory contention on the mutex itself.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The current mutex-based funnel-locking approach used by expedited grace
periods is subject to severe unfairness. The problem arises when a
few tasks, making a path from leaves to root, all wake up before other
tasks do. A new task can then follow this path all the way to the root,
which needlessly delays tasks whose grace period is done, but who do
not happen to acquire the lock quickly enough.
This commit avoids this problem by maintaining per-rcu_node wait queues,
along with a per-rcu_node counter that tracks the latest grace period
sought by an earlier task to visit this node. If that grace period
would satisfy the current task, instead of proceeding up the tree,
it waits on the current rcu_node structure using a pair of wait queues
provided for that purpose. This decouples awakening of old tasks from
the arrival of new tasks.
If the wakeups prove to be a bottleneck, additional kthreads can be
brought to bear for that purpose.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The cpu_online() function can return values other than 0 and 1, which
can result in subscript overflow when applied to a two-element array.
This commit allows for this behavior by using "!!" on the return value
from cpu_online() when used as a subscript.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Commit #cdacbe1f91264 ("rcu: Add fastpath bypassing funnel locking")
turns out to be a pessimization at high load because it forces a tree
full of tasks to wait for an expedited grace period that they probably
do not need. This commit therefore removes this optimization.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit brings the synchronize_rcu_expedited() function's header
comment into line with the new implementation.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Although cond_resched_rcu_qs() supplies quiescent states to all flavors
of normal RCU grace periods, it does nothing for expedited RCU-sched
grace periods. This commit therefore adds a check for a need for a
quiescent state from the current CPU by an expedited RCU-sched grace
period, and invokes rcu_sched_qs() to supply that quiescent state if so.
Note that the check is racy in that we might be migrated to some other
CPU just after checking the per-CPU variable. This is OK because the
act of migration will do a context switch, which will supply the needed
quiescent state. The only downside is that we might do an unnecessary
call to rcu_sched_qs(), but the probability is low and the overhead
is small.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Currently, synchronize_sched_expedited_wait() simply sets the ndetected
variable to the rcu_print_task_exp_stall() return value. This means
that if the last rcu_node structure has no stalled tasks, record of
any stalled tasks in previous rcu_node structures is lost, which can
in turn result in failure to dump out the blocking rcu_node structures.
Or could, had the test been correct.
This commit therefore adds the return value of rcu_print_task_exp_stall()
to ndetected and corrects the later test for ndetected.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Currently, sync_sched_exp_handler() will force a reschedule unless
this CPU has already checked in or unless a reschedule has already
been called for. This is clearly wasteful if sync_sched_exp_handler()
interrupted an idle CPU, so this commit immediately reports the
quiescent state in that case.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit consolidates a couple definitions and several calls for
single-shot ftrace-buffer dumping.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
A sequence of pairs [class_idx -> corresponding chain_key iteration]
is printed for both the current held_lock chain and the cached chain.
That exposes the two different class_idx sequences that led to that
particular hash value.
This helps with debugging hash chain collision reports.
Signed-off-by: Alfredo Alvarez Fernandez <alfredoalvarezfernandez@gmail.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-fsdevel@vger.kernel.org
Cc: sedat.dilek@gmail.com
Cc: tytso@mit.edu
Link: http://lkml.kernel.org/r/1459357416-19190-1-git-send-email-alfredoalvarezernandez@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
A new task's util_avg is set to full utilization of a CPU (100% time
running). This accelerates a new task's utilization ramp-up, useful to
boost its execution in early time. However, it may result in
(insanely) high utilization for a transient time period when a flood
of tasks are spawned. Importantly, it violates the "fundamentally
bounded" CPU utilization, and its side effect is negative if we don't
take any measure to bound it.
This patch proposes an algorithm to address this issue. It has
two methods to approach a sensible initial util_avg:
(1) An expected (or average) util_avg based on its cfs_rq's util_avg:
util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
(2) A trajectory of how successive new tasks' util develops, which
gives 1/2 of the left utilization budget to a new task such that
the additional util is noticeably large (when overall util is low) or
unnoticeably small (when overall util is high enough). In the meantime,
the aggregate utilization is well bounded:
util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
where n denotes the nth task.
If util_avg is larger than util_avg_cap, then the effective util is
clamped to the util_avg_cap.
Reported-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Signed-off-by: Yuyang Du <yuyang.du@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bsegall@google.com
Cc: morten.rasmussen@arm.com
Cc: pjt@google.com
Cc: steve.muckle@linaro.org
Link: http://lkml.kernel.org/r/1459283456-21682-1-git-send-email-yuyang.du@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The following commit:
ed82b8a1ff ("sched/core: Move the sched_to_prio[] arrays out of line")
renamed prio_to_weight to sched_prio_to_weight, but the old name was not
updated in comments.
Signed-off-by: Yuyang Du <yuyang.du@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1459292871-22531-1-git-send-email-yuyang.du@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
While testing the tracer preemptoff, I hit this strange trace:
<...>-259 0...1 0us : schedule <-worker_thread
<...>-259 0d..1 0us : rcu_note_context_switch <-__schedule
<...>-259 0d..1 0us : rcu_sched_qs <-rcu_note_context_switch
<...>-259 0d..1 0us : rcu_preempt_qs <-rcu_note_context_switch
<...>-259 0d..1 0us : _raw_spin_lock <-__schedule
<...>-259 0d..1 0us : preempt_count_add <-_raw_spin_lock
<...>-259 0d..2 0us : do_raw_spin_lock <-_raw_spin_lock
<...>-259 0d..2 1us : deactivate_task <-__schedule
<...>-259 0d..2 1us : update_rq_clock.part.84 <-deactivate_task
<...>-259 0d..2 1us : dequeue_task_fair <-deactivate_task
<...>-259 0d..2 1us : dequeue_entity <-dequeue_task_fair
<...>-259 0d..2 1us : update_curr <-dequeue_entity
<...>-259 0d..2 1us : update_min_vruntime <-update_curr
<...>-259 0d..2 1us : cpuacct_charge <-update_curr
<...>-259 0d..2 1us : __rcu_read_lock <-cpuacct_charge
<...>-259 0d..2 1us : __rcu_read_unlock <-cpuacct_charge
<...>-259 0d..2 1us : clear_buddies <-dequeue_entity
<...>-259 0d..2 1us : account_entity_dequeue <-dequeue_entity
<...>-259 0d..2 2us : update_min_vruntime <-dequeue_entity
<...>-259 0d..2 2us : update_cfs_shares <-dequeue_entity
<...>-259 0d..2 2us : hrtick_update <-dequeue_task_fair
<...>-259 0d..2 2us : wq_worker_sleeping <-__schedule
<...>-259 0d..2 2us : kthread_data <-wq_worker_sleeping
<...>-259 0d..2 2us : pick_next_task_fair <-__schedule
<...>-259 0d..2 2us : check_cfs_rq_runtime <-pick_next_task_fair
<...>-259 0d..2 2us : pick_next_entity <-pick_next_task_fair
<...>-259 0d..2 2us : clear_buddies <-pick_next_entity
<...>-259 0d..2 2us : pick_next_entity <-pick_next_task_fair
<...>-259 0d..2 2us : clear_buddies <-pick_next_entity
<...>-259 0d..2 2us : set_next_entity <-pick_next_task_fair
<...>-259 0d..2 3us : put_prev_entity <-pick_next_task_fair
<...>-259 0d..2 3us : check_cfs_rq_runtime <-put_prev_entity
<...>-259 0d..2 3us : set_next_entity <-pick_next_task_fair
gnome-sh-1031 0d..2 3us : finish_task_switch <-__schedule
gnome-sh-1031 0d..2 3us : _raw_spin_unlock_irq <-finish_task_switch
gnome-sh-1031 0d..2 3us : do_raw_spin_unlock <-_raw_spin_unlock_irq
gnome-sh-1031 0...2 3us!: preempt_count_sub <-_raw_spin_unlock_irq
gnome-sh-1031 0...1 582us : do_raw_spin_lock <-_raw_spin_lock
gnome-sh-1031 0...1 583us : _raw_spin_unlock <-drm_gem_object_lookup
gnome-sh-1031 0...1 583us : do_raw_spin_unlock <-_raw_spin_unlock
gnome-sh-1031 0...1 583us : preempt_count_sub <-_raw_spin_unlock
gnome-sh-1031 0...1 584us : _raw_spin_unlock <-drm_gem_object_lookup
gnome-sh-1031 0...1 584us+: trace_preempt_on <-drm_gem_object_lookup
gnome-sh-1031 0...1 603us : <stack trace>
=> preempt_count_sub
=> _raw_spin_unlock
=> drm_gem_object_lookup
=> i915_gem_madvise_ioctl
=> drm_ioctl
=> do_vfs_ioctl
=> SyS_ioctl
=> entry_SYSCALL_64_fastpath
As I'm tracing preemption disabled, it seemed incorrect that the trace
would go across a schedule and report not being in the scheduler.
Looking into this I discovered the problem.
schedule() calls preempt_disable() but the preempt_schedule() calls
preempt_enable_notrace(). What happened above was that the gnome-shell
task was preempted on another CPU, migrated over to the idle cpu. The
tracer stared with idle calling schedule(), which called
preempt_disable(), but then gnome-shell finished, and it enabled
preemption with preempt_enable_notrace() that does stop the trace, even
though preemption was enabled.
The purpose of the preempt_disable_notrace() in the preempt_schedule()
is to prevent function tracing from going into an infinite loop.
Because function tracing can trace the preempt_enable/disable() calls
that are traced. The problem with function tracing is:
NEED_RESCHED set
preempt_schedule()
preempt_disable()
preempt_count_inc()
function trace (before incrementing preempt count)
preempt_disable_notrace()
preempt_enable_notrace()
sees NEED_RESCHED set
preempt_schedule() (repeat)
Now by breaking out the preempt off/on tracing into their own code:
preempt_disable_check() and preempt_enable_check(), we can add these to
the preempt_schedule() code. As preemption would then be disabled, even
if they were to be traced by the function tracer, the disabled
preemption would prevent the recursion.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20160321112339.6dc78ad6@gandalf.local.home
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In account_entity_enqueue(), we do not do account_numa_enqueue()
as NUMA balancing is not needed for UP kernels.
Hence, we should remove the account_numa_dequeue() call from
account_entity_dequeue() for UP kernels.
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1454366879.21738.29.camel@schen9-desk2.jf.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
To force a task migration during active balancing, nr_balance_failed is set
to cache_nice_tries + 1. However nr_balance_failed is not reset. As a side
effect, the next regular load balance under the same sd, a cache hot task
might be migrated, just because nr_balance_failed count is high.
Resetting nr_balance_failed after a successful active balance ensures
that a hot task is not unreasonably migrated. This can be verified by
looking at othe number of hot task migrations reported by /proc/schedstat.
Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1458735884-30105-1-git-send-email-srikar@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Sometimes, cpuacct.usage is not detailed enough to see how much CPU
usage a group had. We want to know how much time it used in user mode
and how much in kernel mode.
This patch introduces more files to give this information:
# ls /sys/fs/cgroup/cpuacct/cpuacct.usage*
/sys/fs/cgroup/cpuacct/cpuacct.usage
/sys/fs/cgroup/cpuacct/cpuacct.usage_percpu
/sys/fs/cgroup/cpuacct/cpuacct.usage_user
/sys/fs/cgroup/cpuacct/cpuacct.usage_percpu_user
/sys/fs/cgroup/cpuacct/cpuacct.usage_sys
/sys/fs/cgroup/cpuacct/cpuacct.usage_percpu_sys
... while keeping the ABI with the existing counter.
Signed-off-by: Dongsheng Yang <yangds.fnst@cn.fujitsu.com>
[ Ported to newer kernels. ]
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tejun Heo <htejun@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/aa171da036b520b51c79549e9b3215d29473f19d.1458635566.git.zhaolei@cn.fujitsu.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Current code show stats of online CPUs in cpuacct.statcpus,
show stats of present cpus in cpuacct.usage(_percpu), and using
present CPUs for setting cpuacct.usage.
It will cause inconsistent result when a CPU is online or offline
or hotpluged.
We should always use possible CPUs to avoid above problem.
Here are the contents of a cpuacct.usage_percpu sysfs file,
on a 4 CPU system with maxcpus=32:
Before the patch:
# cat cpuacct.usage_percpu
2456565 411435 1052897 832584
After the patch:
# cat cpuacct.usage_percpu
2456565 411435 1052897 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Tejun Heo <htejun@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/a11d56cef12d0b4807f8be3a46bf9798c3014d59.1458635566.git.zhaolei@cn.fujitsu.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Convert perf_output_begin() to __perf_output_begin() and make the later
function able to write records from the end of the ring-buffer.
Following commits will utilize the 'backward' flag.
This is the core patch to support writing to the ring-buffer backwards,
which will be introduced by upcoming patches to support reading from
overwritable ring-buffers.
In theory, this patch should not introduce any extra performance
overhead since we use always_inline, but it does not hurt to double
check that assumption:
When CONFIG_OPTIMIZE_INLINING is disabled, the output object is nearly
identical to original one. See:
http://lkml.kernel.org/g/56F52E83.70409@huawei.com
When CONFIG_OPTIMIZE_INLINING is enabled, the resuling object file becomes
smaller:
$ size kernel/events/ring_buffer.o*
text data bss dec hex filename
4641 4 8 4653 122d kernel/events/ring_buffer.o.old
4545 4 8 4557 11cd kernel/events/ring_buffer.o.new
Performance testing results:
Calling 3000000 times of 'close(-1)', use gettimeofday() to check
duration. Use 'perf record -o /dev/null -e raw_syscalls:*' to capture
system calls. In ns.
Testing environment:
CPU : Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz
Kernel : v4.5.0
MEAN STDVAR
BASE 800214.950 2853.083
PRE 2253846.700 9997.014
POST 2257495.540 8516.293
Where 'BASE' is pure performance without capturing. 'PRE' is test
result of pure 'v4.5.0' kernel. 'POST' is test result after this
patch.
Considering the stdvar, this patch doesn't hurt performance, within
noise margin.
For testing details, see:
http://lkml.kernel.org/g/56F89DCD.1040202@huawei.com
Signed-off-by: Wang Nan <wangnan0@huawei.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <pi3orama@163.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Brendan Gregg <brendan.d.gregg@gmail.com>
Cc: He Kuang <hekuang@huawei.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: Zefan Li <lizefan@huawei.com>
Link: http://lkml.kernel.org/r/1459147292-239310-4-git-send-email-wangnan0@huawei.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Set a default event->overflow_handler in perf_event_alloc() so don't
need to check event->overflow_handler in __perf_event_overflow().
Following commits can give a different default overflow_handler.
Initial idea comes from Peter:
http://lkml.kernel.org/r/20130708121557.GA17211@twins.programming.kicks-ass.net
Since the default value of event->overflow_handler is not NULL, existing
'if (!overflow_handler)' checks need to be changed.
is_default_overflow_handler() is introduced for this.
No extra performance overhead is introduced into the hot path because in the
original code we still need to read this handler from memory. A conditional
branch is avoided so actually we remove some instructions.
Signed-off-by: Wang Nan <wangnan0@huawei.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <pi3orama@163.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Brendan Gregg <brendan.d.gregg@gmail.com>
Cc: He Kuang <hekuang@huawei.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: Zefan Li <lizefan@huawei.com>
Link: http://lkml.kernel.org/r/1459147292-239310-3-git-send-email-wangnan0@huawei.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Add new ioctl() to pause/resume ring-buffer output.
In some situations we want to read from the ring-buffer only when we
ensure nothing can write to the ring-buffer during reading. Without
this patch we have to turn off all events attached to this ring-buffer
to achieve this.
This patch is a prerequisite to enable overwrite support for the
perf ring-buffer support. Following commits will introduce new methods
support reading from overwrite ring buffer. Before reading, caller
must ensure the ring buffer is frozen, or the reading is unreliable.
Signed-off-by: Wang Nan <wangnan0@huawei.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <pi3orama@163.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Brendan Gregg <brendan.d.gregg@gmail.com>
Cc: He Kuang <hekuang@huawei.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: Zefan Li <lizefan@huawei.com>
Link: http://lkml.kernel.org/r/1459147292-239310-2-git-send-email-wangnan0@huawei.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently we check sample type for ftrace:function events
even if it's not created as a sampling event. That prevents
creating ftrace_function event in counting mode.
Make sure we check sample types only for sampling events.
Before:
$ sudo perf stat -e ftrace:function ls
...
Performance counter stats for 'ls':
<not supported> ftrace:function
0.001983662 seconds time elapsed
After:
$ sudo perf stat -e ftrace:function ls
...
Performance counter stats for 'ls':
44,498 ftrace:function
0.037534722 seconds time elapsed
Suggested-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Link: http://lkml.kernel.org/r/1458138873-1553-2-git-send-email-jolsa@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In order to ensure safe AUX buffer management, we rely on the assumption
that pmu::stop() stops its ongoing AUX transaction and not just the hw.
This patch documents this requirement for the perf_aux_output_{begin,end}()
APIs.
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mathieu Poirier <mathieu.poirier@linaro.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: vince@deater.net
Link: http://lkml.kernel.org/r/1457098969-21595-4-git-send-email-alexander.shishkin@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Now that we can ensure that when ring buffer's AUX area is on the way
to getting unmapped new transactions won't start, we only need to stop
all events that can potentially be writing aux data to our ring buffer.
Having done that, we can safely free the AUX pages and corresponding
PMU data, as this time it is guaranteed to be the last aux reference
holder.
This partially reverts:
57ffc5ca67 ("perf: Fix AUX buffer refcounting")
... which was made to defer deallocation that was otherwise possible
from an NMI context. Now it is no longer the case; the last call to
rb_free_aux() that drops the last AUX reference has to happen in
perf_mmap_close() on that AUX area.
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: vince@deater.net
Link: http://lkml.kernel.org/r/87d1qtz23d.fsf@ashishki-desk.ger.corp.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When ring buffer's AUX area is unmapped and rb->aux_mmap_count drops to
zero, new AUX transactions into this buffer can still be started,
even though the buffer in en route to deallocation.
This patch adds a check to perf_aux_output_begin() for rb->aux_mmap_count
being zero, in which case there is no point starting new transactions,
in other words, the ring buffers that pass a certain point in
perf_mmap_close will not have their events sending new data, which
clears path for freeing those buffers' pages right there and then,
provided that no active transactions are holding the AUX reference.
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: vince@deater.net
Link: http://lkml.kernel.org/r/1457098969-21595-2-git-send-email-alexander.shishkin@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There should (and can) only be a single PMU for perf_hw_context
events.
This is because of how we schedule events: once a hardware event fails to
schedule (the PMU is 'full') we stop trying to add more. The trivial
'fix' would break the Round-Robin scheduling we do.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Export irq_domain_free_irqs_common so it can be used by modules.
Signed-off-by: Axel Lin <axel.lin@ingics.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
In the error path, event_file not being NULL is used to determine
whether the event itself still needs to be free'd, so fix it up to
avoid leaking.
Reported-by: Leon Yu <chianglungyu@gmail.com>
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Fixes: 130056275a ("perf: Do not double free")
Link: http://lkml.kernel.org/r/87twk06yxp.fsf@ashishki-desk.ger.corp.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Stephane reported that commit:
3cbaa59069 ("perf: Fix ctx time tracking by introducing EVENT_TIME")
introduced a regression wrt. time tracking, as easily observed by:
> This patch introduce a bug in the time tracking of events when
> multiplexing is used.
>
> The issue is easily reproducible with the following perf run:
>
> $ perf stat -a -C 0 -e branches,branches,branches,branches,branches,branches -I 1000
> 1.000730239 652,394 branches (66.41%)
> 1.000730239 597,809 branches (66.41%)
> 1.000730239 593,870 branches (66.63%)
> 1.000730239 651,440 branches (67.03%)
> 1.000730239 656,725 branches (66.96%)
> 1.000730239 <not counted> branches
>
> One branches event is shown as not having run. Yet, with
> multiplexing, all events should run especially with a 1s (-I 1000)
> interval. The delta for time_running comes out to 0. Yet, the event
> has run because the kernel is actually multiplexing the events. The
> problem is that the time tracking is the kernel and especially in
> ctx_sched_out() is wrong now.
>
> The problem is that in case that the kernel enters ctx_sched_out() with the
> following state:
> ctx->is_active=0x7 event_type=0x1
> Call Trace:
> [<ffffffff813ddd41>] dump_stack+0x63/0x82
> [<ffffffff81182bdc>] ctx_sched_out+0x2bc/0x2d0
> [<ffffffff81183896>] perf_mux_hrtimer_handler+0xf6/0x2c0
> [<ffffffff811837a0>] ? __perf_install_in_context+0x130/0x130
> [<ffffffff810f5818>] __hrtimer_run_queues+0xf8/0x2f0
> [<ffffffff810f6097>] hrtimer_interrupt+0xb7/0x1d0
> [<ffffffff810509a8>] local_apic_timer_interrupt+0x38/0x60
> [<ffffffff8175ca9d>] smp_apic_timer_interrupt+0x3d/0x50
> [<ffffffff8175ac7c>] apic_timer_interrupt+0x8c/0xa0
>
> In that case, the test:
> if (is_active & EVENT_TIME)
>
> will be false and the time will not be updated. Time must always be updated on
> sched out.
Fix this by always updating time if EVENT_TIME was set, as opposed to
only updating time when EVENT_TIME changed.
Reported-by: Stephane Eranian <eranian@google.com>
Tested-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: kan.liang@intel.com
Cc: namhyung@kernel.org
Fixes: 3cbaa59069 ("perf: Fix ctx time tracking by introducing EVENT_TIME")
Link: http://lkml.kernel.org/r/20160329072644.GB3408@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This patch functionally reverts:
5fd7a09cfb ("atomic: Export fetch_or()")
During the merge Linus observed that the generic version of fetch_or()
was messy:
" This makes the ugly "fetch_or()" macro that the scheduler used
internally a new generic helper, and does a bad job at it. "
e23604edac Merge branch 'timers-nohz-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Now that we have introduced atomic_fetch_or(), fetch_or() is only used
by the scheduler in order to deal with thread_info flags which type
can vary across architectures.
Lets confine fetch_or() back to the scheduler so that we encourage
future users to use the more robust and well typed atomic_t version
instead.
While at it, fetch_or() gets robustified, pasting improvements from a
previous patch by Ingo Molnar that avoids needless expression
re-evaluations in the loop.
Reported-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1458830281-4255-4-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The tick dependency mask was intially unsigned long because this is the
type on which clear_bit() operates on and fetch_or() accepts it.
But now that we have atomic_fetch_or(), we can instead use
atomic_andnot() to clear the bit. This consolidates the type of our
tick dependency mask, reduce its size on structures and benefit from
possible architecture optimizations on atomic_t operations.
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1458830281-4255-3-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
KASAN needs to know whether the allocation happens in an IRQ handler.
This lets us strip everything below the IRQ entry point to reduce the
number of unique stack traces needed to be stored.
Move the definition of __irq_entry to <linux/interrupt.h> so that the
users don't need to pull in <linux/ftrace.h>. Also introduce the
__softirq_entry macro which is similar to __irq_entry, but puts the
corresponding functions to the .softirqentry.text section.
Signed-off-by: Alexander Potapenko <glider@google.com>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Andrey Konovalov <adech.fo@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Konstantin Serebryany <kcc@google.com>
Cc: Dmitry Chernenkov <dmitryc@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When oom_reaper manages to unmap all the eligible vmas there shouldn't
be much of the freable memory held by the oom victim left anymore so it
makes sense to clear the TIF_MEMDIE flag for the victim and allow the
OOM killer to select another task.
The lack of TIF_MEMDIE also means that the victim cannot access memory
reserves anymore but that shouldn't be a problem because it would get
the access again if it needs to allocate and hits the OOM killer again
due to the fatal_signal_pending resp. PF_EXITING check. We can safely
hide the task from the OOM killer because it is clearly not a good
candidate anymore as everyhing reclaimable has been torn down already.
This patch will allow to cap the time an OOM victim can keep TIF_MEMDIE
and thus hold off further global OOM killer actions granted the oom
reaper is able to take mmap_sem for the associated mm struct. This is
not guaranteed now but further steps should make sure that mmap_sem for
write should be blocked killable which will help to reduce such a lock
contention. This is not done by this patch.
Note that exit_oom_victim might be called on a remote task from
__oom_reap_task now so we have to check and clear the flag atomically
otherwise we might race and underflow oom_victims or wake up waiters too
early.
Signed-off-by: Michal Hocko <mhocko@suse.com>
Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Suggested-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Andrea Argangeli <andrea@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This will be needed in the patch "mm, oom: introduce oom reaper".
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add map_flags attribute to bpf_map_show_fdinfo(), so that tools like
tc can check for them when loading objects from a pinned entry, e.g.
if user intent wrt allocation (BPF_F_NO_PREALLOC) is different to the
pinned object, it can bail out. Follow-up to 6c90598174 ("bpf:
pre-allocate hash map elements"), so that tc can still support this
with v4.6.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
- Fix for an intel_pstate driver issue related to the handling of
MSR updates uncovered by the recent cpufreq rework (Rafael Wysocki).
- cpufreq core cleanups related to starting governors and frequency
synchronization during resume from system suspend and a locking
fix for cpufreq_quick_get() (Rafael Wysocki, Richard Cochran).
- acpi-cpufreq and powernv cpufreq driver updates (Jisheng Zhang,
Michael Neuling, Richard Cochran, Shilpasri Bhat).
- intel_idle driver update preventing some Skylake-H systems
from hanging during initialization by disabling deep C-states
mishandled by the platform in the problematic configurations (Len
Brown).
- Intel Xeon Phi Processor x200 support for intel_idle (Dasaratharaman
Chandramouli).
- cpuidle menu governor updates to make it always honor PM QoS
latency constraints (and prevent C1 from being used as the
fallback C-state on x86 when they are set below its exit latency)
and to restore the previous behavior to fall back to C1 if the next
timer event is set far enough in the future that was changed in 4.4
which led to an energy consumption regression (Rik van Riel, Rafael
Wysocki).
- New device ID for a future AMD UART controller in the ACPI driver
for AMD SoCs (Wang Hongcheng).
- Rockchip rk3399 support for the rockchip-io-domain adaptive voltage
scaling (AVS) driver (David Wu).
- ACPI PCI resources management fix for the handling of IO space
resources on architectures where the IO space is memory mapped
(IA64 and ARM64) broken by the introduction of common ACPI
resources parsing for PCI host bridges in 4.4 (Lorenzo Pieralisi).
- Fix for the ACPI backend of the generic device properties API
to make it parse non-device (data node only) children of an
ACPI device correctly (Irina Tirdea).
- Fixes for the handling of global suspend flags (introduced in 4.4)
during hibernation and resume from it (Lukas Wunner).
- Support for obtaining configuration information from Device Trees
in the PM clocks framework (Jon Hunter).
- ACPI _DSM helper code and devfreq framework cleanups (Colin Ian
King, Geert Uytterhoeven).
/
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQIcBAABCAAGBQJW9JaRAAoJEILEb/54YlRx/GAQAJujANWilWHZYm24a9JDcIE9
rsNZIC/FdeBVilPtRTZQnig/Pj32Z4Jm7IZ/DLOq0Deu1YK/9uv3y59M3BcX6WyL
H5VR80L8geUJZ7RRk0WfM5D4X82ovzwpE/kWt2Z7HDuvJSCBmFBZOvNrXbaRncKD
jIvat/p6uCuxt5c08+ebnBLQ6tOs8wLTWiCx3fO128GIrGRGN2xFV6hzRWVGnJ4g
WXGAR+AdLxRMZz4PPmqdTfRj4TNSR071GjKyaeKfZUjQGAsf5O9A77JFjeNVomDx
g1K37Byid2bTByzVavlEXPJZ7eKb5dAhlo7IJ9HAcOAXChLqH2Czjrpd+1XjR9MF
SV/78rCnF8eet83QYLbGV/Mzf7gbJP2Xp6wiaM22VAPpGe+sYfphJoQka9XRTfId
OgAjyYMYdWAKo5DhxVNI8WyN0W5dsoBFPxnaUFhHSGDCIJH7Ksy20m6y3plG2Bxf
ahoiQhmd9ohjtB5JbRnf4MY0hjekp8Srdf+DoNKsk/+JscIyROpYY3msQ3smUKo+
f628MC/wAosMpSV+l+KOYkbjCbtB49IabWtZ//NVD9hYB3E1f6aTN59yFbWB+1rp
L7Y8iaxzSkyJy/yYVuBal3rSk356+BvvoXBlLXmBsyu1TMlcDjALIYztSiTVT5MB
RZBhgNwdkxNCYJfU3ex+
=hUVj
-----END PGP SIGNATURE-----
Merge tag 'pm+acpi-4.6-rc1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull more power management and ACPI updates from Rafael Wysocki:
"The second batch of power management and ACPI updates for v4.6.
Included are fixups on top of the previous PM/ACPI pull request and
other material that didn't make into it but still should go into 4.6.
Among other things, there's a fix for an intel_pstate driver issue
uncovered by recent cpufreq changes, a workaround for a boot hang on
Skylake-H related to the handling of deep C-states by the platform and
a PCI/ACPI fix for the handling of IO port resources on non-x86
architectures plus some new device IDs and similar.
Specifics:
- Fix for an intel_pstate driver issue related to the handling of MSR
updates uncovered by the recent cpufreq rework (Rafael Wysocki).
- cpufreq core cleanups related to starting governors and frequency
synchronization during resume from system suspend and a locking fix
for cpufreq_quick_get() (Rafael Wysocki, Richard Cochran).
- acpi-cpufreq and powernv cpufreq driver updates (Jisheng Zhang,
Michael Neuling, Richard Cochran, Shilpasri Bhat).
- intel_idle driver update preventing some Skylake-H systems from
hanging during initialization by disabling deep C-states mishandled
by the platform in the problematic configurations (Len Brown).
- Intel Xeon Phi Processor x200 support for intel_idle
(Dasaratharaman Chandramouli).
- cpuidle menu governor updates to make it always honor PM QoS
latency constraints (and prevent C1 from being used as the fallback
C-state on x86 when they are set below its exit latency) and to
restore the previous behavior to fall back to C1 if the next timer
event is set far enough in the future that was changed in 4.4 which
led to an energy consumption regression (Rik van Riel, Rafael
Wysocki).
- New device ID for a future AMD UART controller in the ACPI driver
for AMD SoCs (Wang Hongcheng).
- Rockchip rk3399 support for the rockchip-io-domain adaptive voltage
scaling (AVS) driver (David Wu).
- ACPI PCI resources management fix for the handling of IO space
resources on architectures where the IO space is memory mapped
(IA64 and ARM64) broken by the introduction of common ACPI
resources parsing for PCI host bridges in 4.4 (Lorenzo Pieralisi).
- Fix for the ACPI backend of the generic device properties API to
make it parse non-device (data node only) children of an ACPI
device correctly (Irina Tirdea).
- Fixes for the handling of global suspend flags (introduced in 4.4)
during hibernation and resume from it (Lukas Wunner).
- Support for obtaining configuration information from Device Trees
in the PM clocks framework (Jon Hunter).
- ACPI _DSM helper code and devfreq framework cleanups (Colin Ian
King, Geert Uytterhoeven)"
* tag 'pm+acpi-4.6-rc1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (23 commits)
PM / AVS: rockchip-io: add io selectors and supplies for rk3399
intel_idle: Support for Intel Xeon Phi Processor x200 Product Family
intel_idle: prevent SKL-H boot failure when C8+C9+C10 enabled
ACPI / PM: Runtime resume devices when waking from hibernate
PM / sleep: Clear pm_suspend_global_flags upon hibernate
cpufreq: governor: Always schedule work on the CPU running update
cpufreq: Always update current frequency before startig governor
cpufreq: Introduce cpufreq_update_current_freq()
cpufreq: Introduce cpufreq_start_governor()
cpufreq: powernv: Add sysfs attributes to show throttle stats
cpufreq: acpi-cpufreq: make Intel/AMD MSR access, io port access static
PCI: ACPI: IA64: fix IO port generic range check
ACPI / util: cast data to u64 before shifting to fix sign extension
cpufreq: powernv: Define per_cpu chip pointer to optimize hot-path
cpuidle: menu: Fall back to polling if next timer event is near
cpufreq: acpi-cpufreq: Clean up hot plug notifier callback
intel_pstate: Do not call wrmsrl_on_cpu() with disabled interrupts
cpufreq: Make cpufreq_quick_get() safe to call
ACPI / property: fix data node parsing in acpi_get_next_subnode()
ACPI / APD: Add device HID for future AMD UART controller
...
Some visible changes:
A new flag was added to distinguish traces done in NMI context.
Preempt tracer now shows functions where preemption is disabled but
interrupts are still enabled.
Other notes:
Updates were done to function tracing to allow better performance
with perf.
Infrastructure code has been added to allow for a new histogram
feature for recording live trace event histograms that can be
configured by simple user commands. The feature itself was just
finished, but needs a round in linux-next before being pulled.
This only includes some infrastructure changes that will be needed.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJW8/WPAAoJEKKk/i67LK/8wrAH/j2gU9ZfjVxTu8068TBGWRJP
yvvzq0cK5evB3dsVuUmKKRfU52nSv4J1WcFF569X0RulSLylR0dHlcxFJMn4kkgR
bm0AHRrqOf87ub3VimcpG146iVQij37l5A0SRoFbvSPLQx1KUW18v99x41Ji8dv6
oWXRc6/YhdzEE7l0nUsVjmScQ4b2emsems3cxZzXOY+nRJsiim6i+VaDeatdyey1
csLVqtRCs+x62TVtxG3+GhcLdRoPRbnHAGzrKDFIn1SrQaRXCc54wN5d2hWxjgNI
1laOwaj070lnJiWfBLIP/K+lx+VKRx5/O0rKZX35foLUTqJJKSyjAbKXuMCcSAM=
=2h2K
-----END PGP SIGNATURE-----
Merge tag 'trace-v4.6' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace
Pull tracing updates from Steven Rostedt:
"Nothing major this round. Mostly small clean ups and fixes.
Some visible changes:
- A new flag was added to distinguish traces done in NMI context.
- Preempt tracer now shows functions where preemption is disabled but
interrupts are still enabled.
Other notes:
- Updates were done to function tracing to allow better performance
with perf.
- Infrastructure code has been added to allow for a new histogram
feature for recording live trace event histograms that can be
configured by simple user commands. The feature itself was just
finished, but needs a round in linux-next before being pulled.
This only includes some infrastructure changes that will be needed"
* tag 'trace-v4.6' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace: (22 commits)
tracing: Record and show NMI state
tracing: Fix trace_printk() to print when not using bprintk()
tracing: Remove redundant reset per-CPU buff in irqsoff tracer
x86: ftrace: Fix the misleading comment for arch/x86/kernel/ftrace.c
tracing: Fix crash from reading trace_pipe with sendfile
tracing: Have preempt(irqs)off trace preempt disabled functions
tracing: Fix return while holding a lock in register_tracer()
ftrace: Use kasprintf() in ftrace_profile_tracefs()
ftrace: Update dynamic ftrace calls only if necessary
ftrace: Make ftrace_hash_rec_enable return update bool
tracing: Fix typoes in code comment and printk in trace_nop.c
tracing, writeback: Replace cgroup path to cgroup ino
tracing: Use flags instead of bool in trigger structure
tracing: Add an unreg_all() callback to trigger commands
tracing: Add needs_rec flag to event triggers
tracing: Add a per-event-trigger 'paused' field
tracing: Add get_syscall_name()
tracing: Add event record param to trigger_ops.func()
tracing: Make event trigger functions available
tracing: Make ftrace_event_field checking functions available
...
Pull perf fixes from Ingo Molnar:
"This tree contains various perf fixes on the kernel side, plus three
hw/event-enablement late additions:
- Intel Memory Bandwidth Monitoring events and handling
- the AMD Accumulated Power Mechanism reporting facility
- more IOMMU events
... and a final round of perf tooling updates/fixes"
* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (44 commits)
perf llvm: Use strerror_r instead of the thread unsafe strerror one
perf llvm: Use realpath to canonicalize paths
perf tools: Unexport some methods unused outside strbuf.c
perf probe: No need to use formatting strbuf method
perf help: Use asprintf instead of adhoc equivalents
perf tools: Remove unused perf_pathdup, xstrdup functions
perf tools: Do not include stringify.h from the kernel sources
tools include: Copy linux/stringify.h from the kernel
tools lib traceevent: Remove redundant CPU output
perf tools: Remove needless 'extern' from function prototypes
perf tools: Simplify die() mechanism
perf tools: Remove unused DIE_IF macro
perf script: Remove lots of unused arguments
perf thread: Rename perf_event__preprocess_sample_addr to thread__resolve
perf machine: Rename perf_event__preprocess_sample to machine__resolve
perf tools: Add cpumode to struct perf_sample
perf tests: Forward the perf_sample in the dwarf unwind test
perf tools: Remove misplaced __maybe_unused
perf list: Fix documentation of :ppp
perf bench numa: Fix assertion for nodes bitfield
...
Pull scheduler fixes from Ingo Molnar:
"Misc fixes: a cgroup fix, a fair-scheduler migration accounting fix, a
cputime fix and two cpuacct cleanups"
* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/cpuacct: Simplify the cpuacct code
sched/cpuacct: Rename parameter in cpuusage_write() for readability
sched/fair: Add comments to explain select_idle_sibling()
sched/fair: Fix fairness issue on migration
sched/cgroup: Fix/cleanup cgroup teardown/init
sched/cputime: Fix steal time accounting vs. CPU hotplug
When suspending to RAM, waking up and later suspending to disk,
we gratuitously runtime resume devices after the thaw phase.
This does not occur if we always suspend to RAM or always to disk.
pm_complete_with_resume_check(), which gets called from
pci_pm_complete() among others, schedules a runtime resume
if PM_SUSPEND_FLAG_FW_RESUME is set. The flag is set during
a suspend-to-RAM cycle. It is cleared at the beginning of
the suspend-to-RAM cycle but not afterwards and it is not
cleared during a suspend-to-disk cycle at all. Fix it.
Fixes: ef25ba0476 (PM / sleep: Add flags to indicate platform firmware involvement)
Signed-off-by: Lukas Wunner <lukas@wunner.de>
Cc: 4.4+ <stable@vger.kernel.org> # 4.4+
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Use the more common logging method with the eventual goal of removing
pr_warning altogether.
Miscellanea:
- Realign arguments
- Coalesce formats
- Add missing space between a few coalesced formats
Signed-off-by: Joe Perches <joe@perches.com>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> [kernel/power/suspend.c]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add a flag to memremap() for writecombine mappings. Mappings satisfied
by this flag will not be cached, however writes may be delayed or
combined into more efficient bursts. This is most suitable for buffers
written sequentially by the CPU for use by other DMA devices.
Signed-off-by: Brian Starkey <brian.starkey@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
These patches implement a MEMREMAP_WC flag for memremap(), which can be
used to obtain writecombine mappings. This is then used for setting up
dma_coherent_mem regions which use the DMA_MEMORY_MAP flag.
The motivation is to fix an alignment fault on arm64, and the suggestion
to implement MEMREMAP_WC for this case was made at [1]. That particular
issue is handled in patch 4, which makes sure that the appropriate
memset function is used when zeroing allocations mapped as IO memory.
This patch (of 4):
Don't modify the flags input argument to memremap(). MEMREMAP_WB is
already a special case so we can check for it directly instead of
clearing flag bits in each mapper.
Signed-off-by: Brian Starkey <brian.starkey@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The value of __ARCH_SI_PREAMBLE_SIZE defines the size (including
padding) of the part of the struct siginfo that is before the union, and
it is then used to calculate the needed padding (SI_PAD_SIZE) to make
the size of struct siginfo equal to 128 (SI_MAX_SIZE) bytes.
Depending on the target architecture and word width it equals to either
3 or 4 times sizeof int.
Since the very beginning we had __ARCH_SI_PREAMBLE_SIZE wrong on the
parisc architecture for the 64bit kernel build. It's even more
frustrating, because it can easily be checked at compile time if the
value was defined correctly.
This patch adds such a check for the correctness of
__ARCH_SI_PREAMBLE_SIZE in the hope that it will prevent existing and
future architectures from running into the same problem.
I refrained from replacing __ARCH_SI_PREAMBLE_SIZE by offsetof() in
copy_siginfo() in include/asm-generic/siginfo.h, because a) it doesn't
make any difference and b) it's used in the Documentation/kmemcheck.txt
example.
I ran this patch through the 0-DAY kernel test infrastructure and only
the parisc architecture triggered as expected. That means that this
patch should be OK for all major architectures.
Signed-off-by: Helge Deller <deller@gmx.de>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
kcov provides code coverage collection for coverage-guided fuzzing
(randomized testing). Coverage-guided fuzzing is a testing technique
that uses coverage feedback to determine new interesting inputs to a
system. A notable user-space example is AFL
(http://lcamtuf.coredump.cx/afl/). However, this technique is not
widely used for kernel testing due to missing compiler and kernel
support.
kcov does not aim to collect as much coverage as possible. It aims to
collect more or less stable coverage that is function of syscall inputs.
To achieve this goal it does not collect coverage in soft/hard
interrupts and instrumentation of some inherently non-deterministic or
non-interesting parts of kernel is disbled (e.g. scheduler, locking).
Currently there is a single coverage collection mode (tracing), but the
API anticipates additional collection modes. Initially I also
implemented a second mode which exposes coverage in a fixed-size hash
table of counters (what Quentin used in his original patch). I've
dropped the second mode for simplicity.
This patch adds the necessary support on kernel side. The complimentary
compiler support was added in gcc revision 231296.
We've used this support to build syzkaller system call fuzzer, which has
found 90 kernel bugs in just 2 months:
https://github.com/google/syzkaller/wiki/Found-Bugs
We've also found 30+ bugs in our internal systems with syzkaller.
Another (yet unexplored) direction where kcov coverage would greatly
help is more traditional "blob mutation". For example, mounting a
random blob as a filesystem, or receiving a random blob over wire.
Why not gcov. Typical fuzzing loop looks as follows: (1) reset
coverage, (2) execute a bit of code, (3) collect coverage, repeat. A
typical coverage can be just a dozen of basic blocks (e.g. an invalid
input). In such context gcov becomes prohibitively expensive as
reset/collect coverage steps depend on total number of basic
blocks/edges in program (in case of kernel it is about 2M). Cost of
kcov depends only on number of executed basic blocks/edges. On top of
that, kernel requires per-thread coverage because there are always
background threads and unrelated processes that also produce coverage.
With inlined gcov instrumentation per-thread coverage is not possible.
kcov exposes kernel PCs and control flow to user-space which is
insecure. But debugfs should not be mapped as user accessible.
Based on a patch by Quentin Casasnovas.
[akpm@linux-foundation.org: make task_struct.kcov_mode have type `enum kcov_mode']
[akpm@linux-foundation.org: unbreak allmodconfig]
[akpm@linux-foundation.org: follow x86 Makefile layout standards]
Signed-off-by: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Cc: syzkaller <syzkaller@googlegroups.com>
Cc: Vegard Nossum <vegard.nossum@oracle.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Tavis Ormandy <taviso@google.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Quentin Casasnovas <quentin.casasnovas@oracle.com>
Cc: Kostya Serebryany <kcc@google.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Kees Cook <keescook@google.com>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: David Drysdale <drysdale@google.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Jiri Slaby <jslaby@suse.cz>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A couple of functions and variables in the profile implementation are
used only on SMP systems by the procfs code, but are unused if either
procfs is disabled or in uniprocessor kernels. gcc prints a harmless
warning about the unused symbols:
kernel/profile.c:243:13: error: 'profile_flip_buffers' defined but not used [-Werror=unused-function]
static void profile_flip_buffers(void)
^
kernel/profile.c:266:13: error: 'profile_discard_flip_buffers' defined but not used [-Werror=unused-function]
static void profile_discard_flip_buffers(void)
^
kernel/profile.c:330:12: error: 'profile_cpu_callback' defined but not used [-Werror=unused-function]
static int profile_cpu_callback(struct notifier_block *info,
^
This adds further #ifdef to the file, to annotate exactly in which cases
they are used. I have done several thousand ARM randconfig kernels with
this patch applied and no longer get any warnings in this file.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Robin Holt <robinmholt@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 1717f2096b ("panic, x86: Fix re-entrance problem due to panic
on NMI") and commit 58c5661f21 ("panic, x86: Allow CPUs to save
registers even if looping in NMI context") introduced nmi_panic() which
prevents concurrent/recursive execution of panic(). It also saves
registers for the crash dump on x86.
However, there are some cases where NMI handlers still use panic().
This patch set partially replaces them with nmi_panic() in those cases.
Even this patchset is applied, some NMI or similar handlers (e.g. MCE
handler) continue to use panic(). This is because I can't test them
well and actual problems won't happen. For example, the possibility
that normal panic and panic on MCE happen simultaneously is very low.
This patch (of 3):
Convert nmi_panic() to a proper function and export it instead of
exporting internal implementation details to modules, for obvious
reasons.
Signed-off-by: Hidehiro Kawai <hidehiro.kawai.ez@hitachi.com>
Acked-by: Borislav Petkov <bp@suse.de>
Acked-by: Michal Nazarewicz <mina86@mina86.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Cc: Nicolas Iooss <nicolas.iooss_linux@m4x.org>
Cc: Javi Merino <javi.merino@arm.com>
Cc: Gobinda Charan Maji <gobinda.cemk07@gmail.com>
Cc: "Steven Rostedt (Red Hat)" <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: HATAYAMA Daisuke <d.hatayama@jp.fujitsu.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This commit fixes the following security hole affecting systems where
all of the following conditions are fulfilled:
- The fs.suid_dumpable sysctl is set to 2.
- The kernel.core_pattern sysctl's value starts with "/". (Systems
where kernel.core_pattern starts with "|/" are not affected.)
- Unprivileged user namespace creation is permitted. (This is
true on Linux >=3.8, but some distributions disallow it by
default using a distro patch.)
Under these conditions, if a program executes under secure exec rules,
causing it to run with the SUID_DUMP_ROOT flag, then unshares its user
namespace, changes its root directory and crashes, the coredump will be
written using fsuid=0 and a path derived from kernel.core_pattern - but
this path is interpreted relative to the root directory of the process,
allowing the attacker to control where a coredump will be written with
root privileges.
To fix the security issue, always interpret core_pattern for dumps that
are written under SUID_DUMP_ROOT relative to the root directory of init.
Signed-off-by: Jann Horn <jann@thejh.net>
Acked-by: Kees Cook <keescook@chromium.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This test-case (simplified version of generated by syzkaller)
#include <unistd.h>
#include <sys/ptrace.h>
#include <sys/wait.h>
void test(void)
{
for (;;) {
if (fork()) {
wait(NULL);
continue;
}
ptrace(PTRACE_SEIZE, getppid(), 0, 0);
ptrace(PTRACE_INTERRUPT, getppid(), 0, 0);
_exit(0);
}
}
int main(void)
{
int np;
for (np = 0; np < 8; ++np)
if (!fork())
test();
while (wait(NULL) > 0)
;
return 0;
}
triggers the 2nd WARN_ON_ONCE(!signr) warning in do_jobctl_trap(). The
problem is that __ptrace_unlink() clears task->jobctl under siglock but
task->ptrace is cleared without this lock held; this fools the "else"
branch which assumes that !PT_SEIZED means PT_PTRACED.
Note also that most of other PTRACE_SEIZE checks can race with detach
from the exiting tracer too. Say, the callers of ptrace_trap_notify()
assume that SEIZED can't go away after it was checked.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: syzkaller <syzkaller@googlegroups.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Except on SPARC, this is what the code always did. SPARC compat seccomp
was buggy, although the impact of the bug was limited because SPARC
32-bit and 64-bit syscall numbers are the same.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Paul Moore <paul@paul-moore.com>
Cc: Eric Paris <eparis@redhat.com>
Cc: David Miller <davem@davemloft.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Users of the 32-bit ptrace() ABI expect the full 32-bit ABI. siginfo
translation should check ptrace() ABI, not caller task ABI.
This is an ABI change on SPARC. Let's hope that no one relied on the
old buggy ABI.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Seccomp wants to know the syscall bitness, not the caller task bitness,
when it selects the syscall whitelist.
As far as I know, this makes no difference on any architecture, so it's
not a security problem. (It generates identical code everywhere except
sparc, and, on sparc, the syscall numbering is the same for both ABIs.)
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When new timeout is written to /proc/sys/kernel/hung_task_timeout_secs,
khungtaskd is interrupted and again sleeps for full timeout duration.
This means that hang task will not be checked if new timeout is written
periodically within old timeout duration and/or checking of hang task
will be delayed for up to previous timeout duration. Fix this by
remembering last time khungtaskd checked hang task.
This change will allow other watchdog tasks (if any) to share khungtaskd
by sleeping for minimal timeout diff of all watchdog tasks. Doing more
watchdog tasks from khungtaskd will reduce the possibility of printk()
collisions by multiple watchdog threads.
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Aaron Tomlin <atomlin@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The latency tracer format has a nice column to indicate IRQ state, but
this is not able to tell us about NMI state.
When tracing perf interrupt handlers (which often run in NMI context)
it is very useful to see how the events nest.
Link: http://lkml.kernel.org/r/20160318153022.105068893@infradead.org
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
The trace_printk() code will allocate extra buffers if the compile detects
that a trace_printk() is used. To do this, the format of the trace_printk()
is saved to the __trace_printk_fmt section, and if that section is bigger
than zero, the buffers are allocated (along with a message that this has
happened).
If trace_printk() uses a format that is not a constant, and thus something
not guaranteed to be around when the print happens, the compiler optimizes
the fmt out, as it is not used, and the __trace_printk_fmt section is not
filled. This means the kernel will not allocate the special buffers needed
for the trace_printk() and the trace_printk() will not write anything to the
tracing buffer.
Adding a "__used" to the variable in the __trace_printk_fmt section will
keep it around, even though it is set to NULL. This will keep the string
from being printed in the debugfs/tracing/printk_formats section as it is
not needed.
Reported-by: Vlastimil Babka <vbabka@suse.cz>
Fixes: 07d777fe8c "tracing: Add percpu buffers for trace_printk()"
Cc: stable@vger.kernel.org # v3.5+
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Pull cgroup namespace support from Tejun Heo:
"These are changes to implement namespace support for cgroup which has
been pending for quite some time now. It is very straight-forward and
only affects what part of cgroup hierarchies are visible.
After unsharing, mounting a cgroup fs will be scoped to the cgroups
the task belonged to at the time of unsharing and the cgroup paths
exposed to userland would be adjusted accordingly"
* 'for-4.6-ns' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
cgroup: fix and restructure error handling in copy_cgroup_ns()
cgroup: fix alloc_cgroup_ns() error handling in copy_cgroup_ns()
Add FS_USERNS_FLAG to cgroup fs
cgroup: Add documentation for cgroup namespaces
cgroup: mount cgroupns-root when inside non-init cgroupns
kernfs: define kernfs_node_dentry
cgroup: cgroup namespace setns support
cgroup: introduce cgroup namespaces
sched: new clone flag CLONE_NEWCGROUP for cgroup namespace
kernfs: Add API to generate relative kernfs path
- Use for() instead of while() loop in some functions
to make the code simpler.
- Use this_cpu_ptr() instead of per_cpu_ptr() to make the code
cleaner and a bit faster.
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Tejun Heo <htejun@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/d8a7ef9592f55224630cb26dea239f05b6398a4e.1458187654.git.zhaolei@cn.fujitsu.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The name of the 'reset' parameter to cpuusage_write() is quite confusing,
because the only valid value we allow is '0', so !reset is actually the
case that resets ...
Rename it to 'val' and explain it in a comment that we only allow 0.
Signed-off-by: Dongsheng Yang <yangds.fnst@cn.fujitsu.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: cgroups@vger.kernel.org
Cc: tj@kernel.org
Link: http://lkml.kernel.org/r/1450696483-2864-1-git-send-email-yangds.fnst@cn.fujitsu.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
It's not entirely obvious how the main loop in select_idle_sibling()
works on first glance. Sprinkle a few comments to explain the design
and intention behind the loop based on some conversations with Mike
and Peter.
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.com>
Cc: Mike Galbraith <mgalbraith@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1457535548-15329-1-git-send-email-matt@codeblueprint.co.uk
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pavan reported that in the presence of very light tasks (or cgroups)
the placement of migrated tasks can cause severe fairness issues.
The problem is that enqueue_entity() places the task before it updates
time, thereby it can place the task far in the past (remember that
light tasks will shoot virtual time forward at a high speed, so in
relation to the pre-existing light task, we can land far in the past).
This is done because update_curr() needs the current task, and we
might be placing the current task.
The obvious solution is to differentiate between the current and any
other task; placing the current before we update time, and placing any
other task after, such that !curr tasks end up at the current moment
in time, and not in the past.
Reported-by: Pavan Kondeti <pkondeti@codeaurora.org>
Tested-by: Pavan Kondeti <pkondeti@codeaurora.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Ben Segall <bsegall@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: byungchul.park@lge.com
Link: http://lkml.kernel.org/r/20160309120403.GK6344@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The CPU controller hasn't kept up with the various changes in the whole
cgroup initialization / destruction sequence, and commit:
2e91fa7f6d ("cgroup: keep zombies associated with their original cgroups")
caused it to explode.
The reason for this is that zombies do not inhibit css_offline() from
being called, but do stall css_released(). Now we tear down the cfs_rq
structures on css_offline() but zombies can run after that, leading to
use-after-free issues.
The solution is to move the tear-down to css_released(), which
guarantees nobody (including no zombies) is still using our cgroup.
Furthermore, a few simple cleanups are possible too. There doesn't
appear to be any point to us using css_online() (anymore?) so fold that
in css_alloc().
And since cgroup code guarantees an RCU grace period between
css_released() and css_free() we can forgo using call_rcu() and free the
stuff immediately.
Suggested-by: Tejun Heo <tj@kernel.org>
Reported-by: Kazuki Yamaguchi <k@rhe.jp>
Reported-by: Niklas Cassel <niklas.cassel@axis.com>
Tested-by: Niklas Cassel <niklas.cassel@axis.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 2e91fa7f6d ("cgroup: keep zombies associated with their original cgroups")
Link: http://lkml.kernel.org/r/20160316152245.GY6344@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Sasha reported:
[ 3494.030114] UBSAN: Undefined behaviour in kernel/events/ring_buffer.c:685:22
[ 3494.030647] shift exponent -1 is negative
Andrey spotted that this is because:
It happens if nr_pages = 0:
rb->page_order = ilog2(nr_pages);
Fix it by making both assignments conditional on nr_pages; since
otherwise they should both be 0 anyway, and will be because of the
kzalloc() used to allocate the structure.
Reported-by: Sasha Levin <sasha.levin@oracle.com>
Reported-by: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: David Ahern <dsahern@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Link: http://lkml.kernel.org/r/20160129141751.GA407@worktop
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There were two problems with the dynamic interrupt throttle mechanism,
both triggered by the same action.
When you (or perf_fuzzer) write a huge value into
/proc/sys/kernel/perf_event_max_sample_rate the computed
perf_sample_allowed_ns becomes 0. This effectively disables the whole
dynamic throttle.
This is fixed by ensuring update_perf_cpu_limits() never sets the
value to 0. However, we allow disabling of the dynamic throttle by
writing 100 to /proc/sys/kernel/perf_cpu_time_max_percent. This will
generate a warning in dmesg.
The second problem is that by setting the max_sample_rate to a huge
number, the adaptive process can take a few tries, since it halfs the
limit each time. Change that to directly compute a new value based on
the observed duration.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: David Ahern <dsahern@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Its possible to IOC_PERIOD while the event is throttled, this would
re-start the event and the next tick would then try to unthrottle it,
and find the event wasn't actually stopped anymore.
This would tickle a WARN in the x86-pmu code which isn't expecting to
start a !stopped event.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: David Ahern <dsahern@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: dvyukov@google.com
Cc: oleg@redhat.com
Cc: panand@redhat.com
Cc: sasha.levin@oracle.com
Cc: vince@deater.net
Link: http://lkml.kernel.org/r/20160310143924.GR6356@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull x86 protection key support from Ingo Molnar:
"This tree adds support for a new memory protection hardware feature
that is available in upcoming Intel CPUs: 'protection keys' (pkeys).
There's a background article at LWN.net:
https://lwn.net/Articles/643797/
The gist is that protection keys allow the encoding of
user-controllable permission masks in the pte. So instead of having a
fixed protection mask in the pte (which needs a system call to change
and works on a per page basis), the user can map a (handful of)
protection mask variants and can change the masks runtime relatively
cheaply, without having to change every single page in the affected
virtual memory range.
This allows the dynamic switching of the protection bits of large
amounts of virtual memory, via user-space instructions. It also
allows more precise control of MMU permission bits: for example the
executable bit is separate from the read bit (see more about that
below).
This tree adds the MM infrastructure and low level x86 glue needed for
that, plus it adds a high level API to make use of protection keys -
if a user-space application calls:
mmap(..., PROT_EXEC);
or
mprotect(ptr, sz, PROT_EXEC);
(note PROT_EXEC-only, without PROT_READ/WRITE), the kernel will notice
this special case, and will set a special protection key on this
memory range. It also sets the appropriate bits in the Protection
Keys User Rights (PKRU) register so that the memory becomes unreadable
and unwritable.
So using protection keys the kernel is able to implement 'true'
PROT_EXEC on x86 CPUs: without protection keys PROT_EXEC implies
PROT_READ as well. Unreadable executable mappings have security
advantages: they cannot be read via information leaks to figure out
ASLR details, nor can they be scanned for ROP gadgets - and they
cannot be used by exploits for data purposes either.
We know about no user-space code that relies on pure PROT_EXEC
mappings today, but binary loaders could start making use of this new
feature to map binaries and libraries in a more secure fashion.
There is other pending pkeys work that offers more high level system
call APIs to manage protection keys - but those are not part of this
pull request.
Right now there's a Kconfig that controls this feature
(CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS) that is default enabled
(like most x86 CPU feature enablement code that has no runtime
overhead), but it's not user-configurable at the moment. If there's
any serious problem with this then we can make it configurable and/or
flip the default"
* 'mm-pkeys-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (38 commits)
x86/mm/pkeys: Fix mismerge of protection keys CPUID bits
mm/pkeys: Fix siginfo ABI breakage caused by new u64 field
x86/mm/pkeys: Fix access_error() denial of writes to write-only VMA
mm/core, x86/mm/pkeys: Add execute-only protection keys support
x86/mm/pkeys: Create an x86 arch_calc_vm_prot_bits() for VMA flags
x86/mm/pkeys: Allow kernel to modify user pkey rights register
x86/fpu: Allow setting of XSAVE state
x86/mm: Factor out LDT init from context init
mm/core, x86/mm/pkeys: Add arch_validate_pkey()
mm/core, arch, powerpc: Pass a protection key in to calc_vm_flag_bits()
x86/mm/pkeys: Actually enable Memory Protection Keys in the CPU
x86/mm/pkeys: Add Kconfig prompt to existing config option
x86/mm/pkeys: Dump pkey from VMA in /proc/pid/smaps
x86/mm/pkeys: Dump PKRU with other kernel registers
mm/core, x86/mm/pkeys: Differentiate instruction fetches
x86/mm/pkeys: Optimize fault handling in access_error()
mm/core: Do not enforce PKEY permissions on remote mm access
um, pkeys: Add UML arch_*_access_permitted() methods
mm/gup, x86/mm/pkeys: Check VMAs and PTEs for protection keys
x86/mm/gup: Simplify get_user_pages() PTE bit handling
...
Pull 'objtool' stack frame validation from Ingo Molnar:
"This tree adds a new kernel build-time object file validation feature
(ONFIG_STACK_VALIDATION=y): kernel stack frame correctness validation.
It was written by and is maintained by Josh Poimboeuf.
The motivation: there's a category of hard to find kernel bugs, most
of them in assembly code (but also occasionally in C code), that
degrades the quality of kernel stack dumps/backtraces. These bugs are
hard to detect at the source code level. Such bugs result in
incorrect/incomplete backtraces most of time - but can also in some
rare cases result in crashes or other undefined behavior.
The build time correctness checking is done via the new 'objtool'
user-space utility that was written for this purpose and which is
hosted in the kernel repository in tools/objtool/. The tool's (very
simple) UI and source code design is shaped after Git and perf and
shares quite a bit of infrastructure with tools/perf (which tooling
infrastructure sharing effort got merged via perf and is already
upstream). Objtool follows the well-known kernel coding style.
Objtool does not try to check .c or .S files, it instead analyzes the
resulting .o generated machine code from first principles: it decodes
the instruction stream and interprets it. (Right now objtool supports
the x86-64 architecture.)
From tools/objtool/Documentation/stack-validation.txt:
"The kernel CONFIG_STACK_VALIDATION option enables a host tool named
objtool which runs at compile time. It has a "check" subcommand
which analyzes every .o file and ensures the validity of its stack
metadata. It enforces a set of rules on asm code and C inline
assembly code so that stack traces can be reliable.
Currently it only checks frame pointer usage, but there are plans to
add CFI validation for C files and CFI generation for asm files.
For each function, it recursively follows all possible code paths
and validates the correct frame pointer state at each instruction.
It also follows code paths involving special sections, like
.altinstructions, __jump_table, and __ex_table, which can add
alternative execution paths to a given instruction (or set of
instructions). Similarly, it knows how to follow switch statements,
for which gcc sometimes uses jump tables."
When this new kernel option is enabled (it's disabled by default), the
tool, if it finds any suspicious assembly code pattern, outputs
warnings in compiler warning format:
warning: objtool: rtlwifi_rate_mapping()+0x2e7: frame pointer state mismatch
warning: objtool: cik_tiling_mode_table_init()+0x6ce: call without frame pointer save/setup
warning: objtool:__schedule()+0x3c0: duplicate frame pointer save
warning: objtool:__schedule()+0x3fd: sibling call from callable instruction with changed frame pointer
... so that scripts that pick up compiler warnings will notice them.
All known warnings triggered by the tool are fixed by the tree, most
of the commits in fact prepare the kernel to be warning-free. Most of
them are bugfixes or cleanups that stand on their own, but there are
also some annotations of 'special' stack frames for justified cases
such entries to JIT-ed code (BPF) or really special boot time code.
There are two other long-term motivations behind this tool as well:
- To improve the quality and reliability of kernel stack frames, so
that they can be used for optimized live patching.
- To create independent infrastructure to check the correctness of
CFI stack frames at build time. CFI debuginfo is notoriously
unreliable and we cannot use it in the kernel as-is without extra
checking done both on the kernel side and on the build side.
The quality of kernel stack frames matters to debuggability as well,
so IMO we can merge this without having to consider the live patching
or CFI debuginfo angle"
* 'core-objtool-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (52 commits)
objtool: Only print one warning per function
objtool: Add several performance improvements
tools: Copy hashtable.h into tools directory
objtool: Fix false positive warnings for functions with multiple switch statements
objtool: Rename some variables and functions
objtool: Remove superflous INIT_LIST_HEAD
objtool: Add helper macros for traversing instructions
objtool: Fix false positive warnings related to sibling calls
objtool: Compile with debugging symbols
objtool: Detect infinite recursion
objtool: Prevent infinite recursion in noreturn detection
objtool: Detect and warn if libelf is missing and don't break the build
tools: Support relative directory path for 'O='
objtool: Support CROSS_COMPILE
x86/asm/decoder: Use explicitly signed chars
objtool: Enable stack metadata validation on 64-bit x86
objtool: Add CONFIG_STACK_VALIDATION option
objtool: Add tool to perform compile-time stack metadata validation
x86/kprobes: Mark kretprobe_trampoline() stack frame as non-standard
sched: Always inline context_switch()
...
Pull audit updates from Paul Moore:
"A small set of patches for audit this time; just three in total and
one is a spelling fix.
The two patches with actual content are designed to help prevent new
instances of auditd from displacing an existing, functioning auditd
and to generate a log of the attempt. Not to worry, dead/stuck auditd
instances can still be replaced by a new instance without problem.
Nothing controversial, and everything passes our regression suite"
* 'stable-4.6' of git://git.infradead.org/users/pcmoore/audit:
audit: Fix typo in comment
audit: log failed attempts to change audit_pid configuration
audit: stop an old auditd being starved out by a new auditd
Pull networking updates from David Miller:
"Highlights:
1) Support more Realtek wireless chips, from Jes Sorenson.
2) New BPF types for per-cpu hash and arrap maps, from Alexei
Starovoitov.
3) Make several TCP sysctls per-namespace, from Nikolay Borisov.
4) Allow the use of SO_REUSEPORT in order to do per-thread processing
of incoming TCP/UDP connections. The muxing can be done using a
BPF program which hashes the incoming packet. From Craig Gallek.
5) Add a multiplexer for TCP streams, to provide a messaged based
interface. BPF programs can be used to determine the message
boundaries. From Tom Herbert.
6) Add 802.1AE MACSEC support, from Sabrina Dubroca.
7) Avoid factorial complexity when taking down an inetdev interface
with lots of configured addresses. We were doing things like
traversing the entire address less for each address removed, and
flushing the entire netfilter conntrack table for every address as
well.
8) Add and use SKB bulk free infrastructure, from Jesper Brouer.
9) Allow offloading u32 classifiers to hardware, and implement for
ixgbe, from John Fastabend.
10) Allow configuring IRQ coalescing parameters on a per-queue basis,
from Kan Liang.
11) Extend ethtool so that larger link mode masks can be supported.
From David Decotigny.
12) Introduce devlink, which can be used to configure port link types
(ethernet vs Infiniband, etc.), port splitting, and switch device
level attributes as a whole. From Jiri Pirko.
13) Hardware offload support for flower classifiers, from Amir Vadai.
14) Add "Local Checksum Offload". Basically, for a tunneled packet
the checksum of the outer header is 'constant' (because with the
checksum field filled into the inner protocol header, the payload
of the outer frame checksums to 'zero'), and we can take advantage
of that in various ways. From Edward Cree"
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next: (1548 commits)
bonding: fix bond_get_stats()
net: bcmgenet: fix dma api length mismatch
net/mlx4_core: Fix backward compatibility on VFs
phy: mdio-thunder: Fix some Kconfig typos
lan78xx: add ndo_get_stats64
lan78xx: handle statistics counter rollover
RDS: TCP: Remove unused constant
RDS: TCP: Add sysctl tunables for sndbuf/rcvbuf on rds-tcp socket
net: smc911x: convert pxa dma to dmaengine
team: remove duplicate set of flag IFF_MULTICAST
bonding: remove duplicate set of flag IFF_MULTICAST
net: fix a comment typo
ethernet: micrel: fix some error codes
ip_tunnels, bpf: define IP_TUNNEL_OPTS_MAX and use it
bpf, dst: add and use dst_tclassid helper
bpf: make skb->tc_classid also readable
net: mvneta: bm: clarify dependencies
cls_bpf: reset class and reuse major in da
ldmvsw: Checkpatch sunvnet.c and sunvnet_common.c
ldmvsw: Add ldmvsw.c driver code
...
Pull cgroup updates from Tejun Heo:
"cgroup changes for v4.6-rc1. No userland visible behavior changes in
this pull request. I'll send out a separate pull request for the
addition of cgroup namespace support.
- The biggest change is the revamping of cgroup core task migration
and controller handling logic. There are quite a few places where
controllers and tasks are manipulated. Previously, many of those
places implemented custom operations for each specific use case
assuming specific starting conditions. While this worked, it makes
the code fragile and difficult to follow.
The bulk of this pull request restructures these operations so that
most related operations are performed through common helpers which
implement recursive (subtrees are always processed consistently)
and idempotent (they make cgroup hierarchy converge to the target
state rather than performing operations assuming specific starting
conditions). This makes the code a lot easier to understand,
verify and extend.
- Implicit controller support is added. This is primarily for using
perf_event on the v2 hierarchy so that perf can match cgroup v2
path without requiring the user to do anything special. The kernel
portion of perf_event changes is acked but userland changes are
still pending review.
- cgroup_no_v1= boot parameter added to ease testing cgroup v2 in
certain environments.
- There is a regression introduced during v4.4 devel cycle where
attempts to migrate zombie tasks can mess up internal object
management. This was fixed earlier this week and included in this
pull request w/ stable cc'd.
- Misc non-critical fixes and improvements"
* 'for-4.6' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: (44 commits)
cgroup: avoid false positive gcc-6 warning
cgroup: ignore css_sets associated with dead cgroups during migration
Documentation: cgroup v2: Trivial heading correction.
cgroup: implement cgroup_subsys->implicit_on_dfl
cgroup: use css_set->mg_dst_cgrp for the migration target cgroup
cgroup: make cgroup[_taskset]_migrate() take cgroup_root instead of cgroup
cgroup: move migration destination verification out of cgroup_migrate_prepare_dst()
cgroup: fix incorrect destination cgroup in cgroup_update_dfl_csses()
cgroup: Trivial correction to reflect controller.
cgroup: remove stale item in cgroup-v1 document INDEX file.
cgroup: update css iteration in cgroup_update_dfl_csses()
cgroup: allocate 2x cgrp_cset_links when setting up a new root
cgroup: make cgroup_calc_subtree_ss_mask() take @this_ss_mask
cgroup: reimplement rebind_subsystems() using cgroup_apply_control() and friends
cgroup: use cgroup_apply_enable_control() in cgroup creation path
cgroup: combine cgroup_mutex locking and offline css draining
cgroup: factor out cgroup_{apply|finalize}_control() from cgroup_subtree_control_write()
cgroup: introduce cgroup_{save|propagate|restore}_control()
cgroup: make cgroup_drain_offline() and cgroup_apply_control_{disable|enable}() recursive
cgroup: factor out cgroup_apply_control_enable() from cgroup_subtree_control_write()
...
Pull workqueue updates from Tejun Heo:
"Three trivial workqueue changes"
* 'for-4.6' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq:
workqueue: Fix comment for work_on_cpu()
sched/core: Get rid of 'cpu' argument in wq_worker_sleeping()
workqueue: Replace usage of init_name with dev_set_name()
Merge second patch-bomb from Andrew Morton:
- a couple of hotfixes
- the rest of MM
- a new timer slack control in procfs
- a couple of procfs fixes
- a few misc things
- some printk tweaks
- lib/ updates, notably to radix-tree.
- add my and Nick Piggin's old userspace radix-tree test harness to
tools/testing/radix-tree/. Matthew said it was a godsend during the
radix-tree work he did.
- a few code-size improvements, switching to __always_inline where gcc
screwed up.
- partially implement character sets in sscanf
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (118 commits)
sscanf: implement basic character sets
lib/bug.c: use common WARN helper
param: convert some "on"/"off" users to strtobool
lib: add "on"/"off" support to kstrtobool
lib: update single-char callers of strtobool()
lib: move strtobool() to kstrtobool()
include/linux/unaligned: force inlining of byteswap operations
include/uapi/linux/byteorder, swab: force inlining of some byteswap operations
include/asm-generic/atomic-long.h: force inlining of some atomic_long operations
usb: common: convert to use match_string() helper
ide: hpt366: convert to use match_string() helper
ata: hpt366: convert to use match_string() helper
power: ab8500: convert to use match_string() helper
power: charger_manager: convert to use match_string() helper
drm/edid: convert to use match_string() helper
pinctrl: convert to use match_string() helper
device property: convert to use match_string() helper
lib/string: introduce match_string() helper
radix-tree tests: add test for radix_tree_iter_next
radix-tree tests: add regression3 test
...
There is no reason to do it twice: from commit b6f11df26f
("trace: Call tracing_reset_online_cpus before tracer->init()")
resetting of per-CPU buffers done before tracer->init() call.
tracer->init() calls {irqs,preempt,preemptirqs}off_tracer_init() and it
calls __irqsoff_tracer_init(), which resets per-CPU ringbuffer second
time.
It's slowpath, but anyway.
Link: http://lkml.kernel.org/r/1445278226-16187-1-git-send-email-0x7f454c46@gmail.com
Signed-off-by: Dmitry Safonov <0x7f454c46@gmail.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
If tracing contains data and the trace_pipe file is read with sendfile(),
then it can trigger a NULL pointer dereference and various BUG_ON within the
VM code.
There's a patch to fix this in the splice_to_pipe() code, but it's also a
good idea to not let that happen from trace_pipe either.
Link: http://lkml.kernel.org/r/1457641146-9068-1-git-send-email-rabin@rab.in
Cc: stable@vger.kernel.org # 2.6.30+
Reported-by: Rabin Vincent <rabin.vincent@gmail.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Joel Fernandes reported that the function tracing of preempt disabled
sections was not being reported when running either the preemptirqsoff or
preemptoff tracers. This was due to the fact that the function tracer
callback for those tracers checked if irqs were disabled before tracing. But
this fails when we want to trace preempt off locations as well.
Joel explained that he wanted to see funcitons where interrupts are enabled
but preemption was disabled. The expected output he wanted:
<...>-2265 1d.h1 3419us : preempt_count_sub <-irq_exit
<...>-2265 1d..1 3419us : __do_softirq <-irq_exit
<...>-2265 1d..1 3419us : msecs_to_jiffies <-__do_softirq
<...>-2265 1d..1 3420us : irqtime_account_irq <-__do_softirq
<...>-2265 1d..1 3420us : __local_bh_disable_ip <-__do_softirq
<...>-2265 1..s1 3421us : run_timer_softirq <-__do_softirq
<...>-2265 1..s1 3421us : hrtimer_run_pending <-run_timer_softirq
<...>-2265 1..s1 3421us : _raw_spin_lock_irq <-run_timer_softirq
<...>-2265 1d.s1 3422us : preempt_count_add <-_raw_spin_lock_irq
<...>-2265 1d.s2 3422us : _raw_spin_unlock_irq <-run_timer_softirq
<...>-2265 1..s2 3422us : preempt_count_sub <-_raw_spin_unlock_irq
<...>-2265 1..s1 3423us : rcu_bh_qs <-__do_softirq
<...>-2265 1d.s1 3423us : irqtime_account_irq <-__do_softirq
<...>-2265 1d.s1 3423us : __local_bh_enable <-__do_softirq
There's a comment saying that the irq disabled check is because there's a
possible race that tracing_cpu may be set when the function is executed. But
I don't remember that race. For now, I added a check for preemption being
enabled too to not record the function, as there would be no race if that
was the case. I need to re-investigate this, as I'm now thinking that the
tracing_cpu will always be correct. But no harm in keeping the check for
now, except for the slight performance hit.
Link: http://lkml.kernel.org/r/1457770386-88717-1-git-send-email-agnel.joel@gmail.com
Fixes: 5e6d2b9cfa "tracing: Use one prologue for the preempt irqs off tracer function tracers"
Cc: stable@vget.kernel.org # 2.6.37+
Reported-by: Joel Fernandes <agnel.joel@gmail.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
commit d39cdd2036 ("tracing: Make tracer_flags use the right set_flag
callback") introduces a potential mutex deadlock issue, as it forgets to
free the mutex when allocaing the tracer_flags gets fail.
The issue was found by Dan Carpenter through Smatch static code check tool.
Link: http://lkml.kernel.org/r/1457958941-30265-1-git-send-email-chuhu@redhat.com
Fixes: d39cdd2036 ("tracing: Make tracer_flags use the right set_flag callback")
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Chunyu Hu <chuhu@redhat.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Currently dynamic ftrace calls are updated any time
the ftrace_ops is un/registered. If we do this update
only when it's needed, we save lot of time for perf
system wide ftrace function sampling/counting.
The reason is that for system wide sampling/counting,
perf creates event for each cpu in the system.
Each event then registers separate copy of ftrace_ops,
which ends up in FTRACE_UPDATE_CALLS updates. On servers
with many cpus that means serious stall (240 cpus server):
Counting:
# time ./perf stat -e ftrace:function -a sleep 1
Performance counter stats for 'system wide':
370,663 ftrace:function
1.401427505 seconds time elapsed
real 3m51.743s
user 0m0.023s
sys 3m48.569s
Sampling:
# time ./perf record -e ftrace:function -a sleep 1
[ perf record: Woken up 0 times to write data ]
Warning:
Processed 141200 events and lost 5 chunks!
[ perf record: Captured and wrote 10.703 MB perf.data (135950 samples) ]
real 2m31.429s
user 0m0.213s
sys 2m29.494s
There's no reason to do the FTRACE_UPDATE_CALLS update
for each event in perf case, because all the ftrace_ops
always share the same filter, so the updated calls are
always the same.
It's required that only first ftrace_ops registration
does the FTRACE_UPDATE_CALLS update (also sometimes
the second if the first one used the trampoline), but
the rest can be only cheaply linked into the ftrace_ops
list.
Counting:
# time ./perf stat -e ftrace:function -a sleep 1
Performance counter stats for 'system wide':
398,571 ftrace:function
1.377503733 seconds time elapsed
real 0m2.787s
user 0m0.005s
sys 0m1.883s
Sampling:
# time ./perf record -e ftrace:function -a sleep 1
[ perf record: Woken up 0 times to write data ]
Warning:
Processed 261730 events and lost 9 chunks!
[ perf record: Captured and wrote 19.907 MB perf.data (256293 samples) ]
real 1m31.948s
user 0m0.309s
sys 1m32.051s
Link: http://lkml.kernel.org/r/1458138873-1553-6-git-send-email-jolsa@kernel.org
Acked-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Change __ftrace_hash_rec_update to return true in case
we need to update dynamic ftrace call records. It return
false in case no update is needed.
Link: http://lkml.kernel.org/r/1458138873-1553-5-git-send-email-jolsa@kernel.org
Acked-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Pull livepatching update from Jiri Kosina:
- cleanup of module notifiers; this depends on a module.c cleanup which
has been acked by Rusty; from Jessica Yu
- small assorted fixes and MAINTAINERS update
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/livepatching:
livepatch/module: remove livepatch module notifier
modules: split part of complete_formation() into prepare_coming_module()
livepatch: Update maintainers
livepatch: Fix the error message about unresolvable ambiguity
klp: remove CONFIG_LIVEPATCH dependency from klp headers
klp: remove superfluous errors in asm/livepatch.h
Pull trivial tree updates from Jiri Kosina.
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial:
drivers/rtc: broken link fix
drm/i915 Fix typos in i915_gem_fence.c
Docs: fix missing word in REPORTING-BUGS
lib+mm: fix few spelling mistakes
MAINTAINERS: add git URL for APM driver
treewide: Fix typo in printk
The traceoff_on_warning option doesn't have any effect on s390, powerpc,
arm64, parisc, and sh because there are two different types of WARN
implementations:
1) The above mentioned architectures treat WARN() as a special case of a
BUG() exception. They handle warnings in report_bug() in lib/bug.c.
2) All other architectures just call warn_slowpath_*() directly. Their
warnings are handled in warn_slowpath_common() in kernel/panic.c.
Support traceoff_on_warning on all architectures and prevent any future
divergence by using a single common function to emit the warning.
Also remove the '()' from '%pS()', because the parentheses look funky:
[ 45.607629] WARNING: at /root/warn_mod/warn_mod.c:17 .init_dummy+0x20/0x40 [warn_mod]()
Reported-by: Chunyu Hu <chuhu@redhat.com>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Tested-by: Prarit Bhargava <prarit@redhat.com>
Acked-by: Prarit Bhargava <prarit@redhat.com>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This changes several users of manual "on"/"off" parsing to use
strtobool.
Some side-effects:
- these uses will now parse y/n/1/0 meaningfully too
- the early_param uses will now bubble up parse errors
Signed-off-by: Kees Cook <keescook@chromium.org>
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Acked-by: Michael Ellerman <mpe@ellerman.id.au>
Cc: Amitkumar Karwar <akarwar@marvell.com>
Cc: Andy Shevchenko <andy.shevchenko@gmail.com>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Cc: Joe Perches <joe@perches.com>
Cc: Kalle Valo <kvalo@codeaurora.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Nishant Sarmukadam <nishants@marvell.com>
Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Cc: Steve French <sfrench@samba.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This allows us to extract from the vmcore only the messages emitted
since the last time the ring buffer was cleared. We just have to make
sure its value is always up-to-date, when old messages are discarded to
free space in log_make_free_space() for example.
Signed-off-by: Zeyu Zhao <zzy8200@gmail.com>
Signed-off-by: Ivan Delalande <colona@arista.com>
Cc: Kay Sievers <kay@vrfy.org>
Cc: Neil Horman <nhorman@tuxdriver.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>