While playing around with it, I noticed we missed some sanity checks.
Also add some comments while we're there.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This is the second resubmission of the posix timer rework patch, posted
a few days ago.
This includes the changes from the previous resubmittion, which addressed
Oleg Nesterov's comments, removing the RCU stuff from the patch and
un-inlining the thread_group_cputime() function for SMP.
In addition, per Ingo Molnar it simplifies the UP code, consolidating much
of it with the SMP version and depending on lower-level SMP/UP handling to
take care of the differences.
It also cleans up some UP compile errors, moves the scheduler stats-related
macros into kernel/sched_stats.h, cleans up a merge error in
kernel/fork.c and has a few other minor fixes and cleanups as suggested
by Oleg and Ingo. Thanks for the review, guys.
Signed-off-by: Frank Mayhar <fmayhar@google.com>
Cc: Roland McGrath <roland@redhat.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
- Add some comments to try to make the ifdef puzzle a bit clearer
- Explicitly inline one of the three init_hrtick() implementations.
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
LD kernel/built-in.o
WARNING: kernel/built-in.o(.text+0x326): Section mismatch in reference
from the function init_hrtick() to the variable
.cpuinit.data:hotplug_hrtick_nb.8
The function init_hrtick() references
the variable __cpuinitdata hotplug_hrtick_nb.8.
This is often because init_hrtick lacks a __cpuinitdata
annotation or the annotation of hotplug_hrtick_nb.8 is wrong.
Signed-off-by: Md.Rakib H. Mullick <rakib.mullick@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Lin Ming reported a 10% OLTP regression against 2.6.27-rc4.
The difference seems to come from different preemption agressiveness,
which affects the cache footprint of the workload and its effective
cache trashing.
Aggresively preempt a task if its avg overlap is very small, this should
avoid the task going to sleep and find it still running when we schedule
back to it - saving a wakeup.
Reported-by: Lin Ming <ming.m.lin@intel.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Overview
This patch reworks the handling of POSIX CPU timers, including the
ITIMER_PROF, ITIMER_VIRT timers and rlimit handling. It was put together
with the help of Roland McGrath, the owner and original writer of this code.
The problem we ran into, and the reason for this rework, has to do with using
a profiling timer in a process with a large number of threads. It appears
that the performance of the old implementation of run_posix_cpu_timers() was
at least O(n*3) (where "n" is the number of threads in a process) or worse.
Everything is fine with an increasing number of threads until the time taken
for that routine to run becomes the same as or greater than the tick time, at
which point things degrade rather quickly.
This patch fixes bug 9906, "Weird hang with NPTL and SIGPROF."
Code Changes
This rework corrects the implementation of run_posix_cpu_timers() to make it
run in constant time for a particular machine. (Performance may vary between
one machine and another depending upon whether the kernel is built as single-
or multiprocessor and, in the latter case, depending upon the number of
running processors.) To do this, at each tick we now update fields in
signal_struct as well as task_struct. The run_posix_cpu_timers() function
uses those fields to make its decisions.
We define a new structure, "task_cputime," to contain user, system and
scheduler times and use these in appropriate places:
struct task_cputime {
cputime_t utime;
cputime_t stime;
unsigned long long sum_exec_runtime;
};
This is included in the structure "thread_group_cputime," which is a new
substructure of signal_struct and which varies for uniprocessor versus
multiprocessor kernels. For uniprocessor kernels, it uses "task_cputime" as
a simple substructure, while for multiprocessor kernels it is a pointer:
struct thread_group_cputime {
struct task_cputime totals;
};
struct thread_group_cputime {
struct task_cputime *totals;
};
We also add a new task_cputime substructure directly to signal_struct, to
cache the earliest expiration of process-wide timers, and task_cputime also
replaces the it_*_expires fields of task_struct (used for earliest expiration
of thread timers). The "thread_group_cputime" structure contains process-wide
timers that are updated via account_user_time() and friends. In the non-SMP
case the structure is a simple aggregator; unfortunately in the SMP case that
simplicity was not achievable due to cache-line contention between CPUs (in
one measured case performance was actually _worse_ on a 16-cpu system than
the same test on a 4-cpu system, due to this contention). For SMP, the
thread_group_cputime counters are maintained as a per-cpu structure allocated
using alloc_percpu(). The timer functions update only the timer field in
the structure corresponding to the running CPU, obtained using per_cpu_ptr().
We define a set of inline functions in sched.h that we use to maintain the
thread_group_cputime structure and hide the differences between UP and SMP
implementations from the rest of the kernel. The thread_group_cputime_init()
function initializes the thread_group_cputime structure for the given task.
The thread_group_cputime_alloc() is a no-op for UP; for SMP it calls the
out-of-line function thread_group_cputime_alloc_smp() to allocate and fill
in the per-cpu structures and fields. The thread_group_cputime_free()
function, also a no-op for UP, in SMP frees the per-cpu structures. The
thread_group_cputime_clone_thread() function (also a UP no-op) for SMP calls
thread_group_cputime_alloc() if the per-cpu structures haven't yet been
allocated. The thread_group_cputime() function fills the task_cputime
structure it is passed with the contents of the thread_group_cputime fields;
in UP it's that simple but in SMP it must also safely check that tsk->signal
is non-NULL (if it is it just uses the appropriate fields of task_struct) and,
if so, sums the per-cpu values for each online CPU. Finally, the three
functions account_group_user_time(), account_group_system_time() and
account_group_exec_runtime() are used by timer functions to update the
respective fields of the thread_group_cputime structure.
Non-SMP operation is trivial and will not be mentioned further.
The per-cpu structure is always allocated when a task creates its first new
thread, via a call to thread_group_cputime_clone_thread() from copy_signal().
It is freed at process exit via a call to thread_group_cputime_free() from
cleanup_signal().
All functions that formerly summed utime/stime/sum_sched_runtime values from
from all threads in the thread group now use thread_group_cputime() to
snapshot the values in the thread_group_cputime structure or the values in
the task structure itself if the per-cpu structure hasn't been allocated.
Finally, the code in kernel/posix-cpu-timers.c has changed quite a bit.
The run_posix_cpu_timers() function has been split into a fast path and a
slow path; the former safely checks whether there are any expired thread
timers and, if not, just returns, while the slow path does the heavy lifting.
With the dedicated thread group fields, timers are no longer "rebalanced" and
the process_timer_rebalance() function and related code has gone away. All
summing loops are gone and all code that used them now uses the
thread_group_cputime() inline. When process-wide timers are set, the new
task_cputime structure in signal_struct is used to cache the earliest
expiration; this is checked in the fast path.
Performance
The fix appears not to add significant overhead to existing operations. It
generally performs the same as the current code except in two cases, one in
which it performs slightly worse (Case 5 below) and one in which it performs
very significantly better (Case 2 below). Overall it's a wash except in those
two cases.
I've since done somewhat more involved testing on a dual-core Opteron system.
Case 1: With no itimer running, for a test with 100,000 threads, the fixed
kernel took 1428.5 seconds, 513 seconds more than the unfixed system,
all of which was spent in the system. There were twice as many
voluntary context switches with the fix as without it.
Case 2: With an itimer running at .01 second ticks and 4000 threads (the most
an unmodified kernel can handle), the fixed kernel ran the test in
eight percent of the time (5.8 seconds as opposed to 70 seconds) and
had better tick accuracy (.012 seconds per tick as opposed to .023
seconds per tick).
Case 3: A 4000-thread test with an initial timer tick of .01 second and an
interval of 10,000 seconds (i.e. a timer that ticks only once) had
very nearly the same performance in both cases: 6.3 seconds elapsed
for the fixed kernel versus 5.5 seconds for the unfixed kernel.
With fewer threads (eight in these tests), the Case 1 test ran in essentially
the same time on both the modified and unmodified kernels (5.2 seconds versus
5.8 seconds). The Case 2 test ran in about the same time as well, 5.9 seconds
versus 5.4 seconds but again with much better tick accuracy, .013 seconds per
tick versus .025 seconds per tick for the unmodified kernel.
Since the fix affected the rlimit code, I also tested soft and hard CPU limits.
Case 4: With a hard CPU limit of 20 seconds and eight threads (and an itimer
running), the modified kernel was very slightly favored in that while
it killed the process in 19.997 seconds of CPU time (5.002 seconds of
wall time), only .003 seconds of that was system time, the rest was
user time. The unmodified kernel killed the process in 20.001 seconds
of CPU (5.014 seconds of wall time) of which .016 seconds was system
time. Really, though, the results were too close to call. The results
were essentially the same with no itimer running.
Case 5: With a soft limit of 20 seconds and a hard limit of 2000 seconds
(where the hard limit would never be reached) and an itimer running,
the modified kernel exhibited worse tick accuracy than the unmodified
kernel: .050 seconds/tick versus .028 seconds/tick. Otherwise,
performance was almost indistinguishable. With no itimer running this
test exhibited virtually identical behavior and times in both cases.
In times past I did some limited performance testing. those results are below.
On a four-cpu Opteron system without this fix, a sixteen-thread test executed
in 3569.991 seconds, of which user was 3568.435s and system was 1.556s. On
the same system with the fix, user and elapsed time were about the same, but
system time dropped to 0.007 seconds. Performance with eight, four and one
thread were comparable. Interestingly, the timer ticks with the fix seemed
more accurate: The sixteen-thread test with the fix received 149543 ticks
for 0.024 seconds per tick, while the same test without the fix received 58720
for 0.061 seconds per tick. Both cases were configured for an interval of
0.01 seconds. Again, the other tests were comparable. Each thread in this
test computed the primes up to 25,000,000.
I also did a test with a large number of threads, 100,000 threads, which is
impossible without the fix. In this case each thread computed the primes only
up to 10,000 (to make the runtime manageable). System time dominated, at
1546.968 seconds out of a total 2176.906 seconds (giving a user time of
629.938s). It received 147651 ticks for 0.015 seconds per tick, still quite
accurate. There is obviously no comparable test without the fix.
Signed-off-by: Frank Mayhar <fmayhar@google.com>
Cc: Roland McGrath <roland@redhat.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
What I realized recently is that calling rebuild_sched_domains() in
arch_reinit_sched_domains() by itself is not enough when cpusets are enabled.
partition_sched_domains() code is trying to avoid unnecessary domain rebuilds
and will not actually rebuild anything if new domain masks match the old ones.
What this means is that doing
echo 1 > /sys/devices/system/cpu/sched_mc_power_savings
on a system with cpusets enabled will not take affect untill something changes
in the cpuset setup (ie new sets created or deleted).
This patch fixes restore correct behaviour where domains must be rebuilt in
order to enable MC powersaving flags.
Test on quad-core Core2 box with both CONFIG_CPUSETS and !CONFIG_CPUSETS.
Also tested on dual-core Core2 laptop. Lockdep is happy and things are working
as expected.
Signed-off-by: Max Krasnyansky <maxk@qualcomm.com>
Tested-by: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
I found that 2.6.27-rc5-mm1 does not compile with gcc 3.4.6.
The error is:
CC kernel/sched.o
kernel/sched.c: In function `start_rt_bandwidth':
kernel/sched.c:208: sorry, unimplemented: inlining failed in call to 'rt_bandwidth_enabled': function body not available
kernel/sched.c:214: sorry, unimplemented: called from here
make[1]: *** [kernel/sched.o] Error 1
make: *** [kernel] Error 2
It seems that the gcc 3.4.6 requires full inline definition before first usage.
The patch below fixes the compilation problem.
Signed-off-by: Krzysztof Helt <krzysztof.h1@wp.pl> (if needed>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
In order to be able to do range hrtimers we need to use accessor functions
to the "expire" member of the hrtimer struct.
This patch converts kernel/* to these accessors.
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Spencer reported a problem where utime and stime were going negative despite
the fixes in commit b27f03d4bd. The suspected
reason for the problem is that signal_struct maintains it's own utime and
stime (of exited tasks), these are not updated using the new task_utime()
routine, hence sig->utime can go backwards and cause the same problem
to occur (sig->utime, adds tsk->utime and not task_utime()). This patch
fixes the problem
TODO: using max(task->prev_utime, derived utime) works for now, but a more
generic solution is to implement cputime_max() and use the cputime_gt()
function for comparison.
Reported-by: spencer@bluehost.com
Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
fix:
kernel/sched.c: In function '__rt_schedulable':
kernel/sched.c:8771: error: implicit declaration of function 'walk_tg_tree'
kernel/sched.c:8771: error: 'tg_nop' undeclared (first use in this function)
kernel/sched.c:8771: error: (Each undeclared identifier is reported only once
kernel/sched.c:8771: error: for each function it appears in.)
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This patch adds kernel doc for the completion feature.
An error in the split-man.pl PERL snippet in kernel-doc-nano-HOWTO.txt is
also fixed.
Signed-off-by: Kevin Diggs <kevdig@hypersurf.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
wait_task_inactive() returns 1 when p->nvcsw == 0 || p->nvcsw == 1. This
means that two subsequent calls can return the same number while the task
was scheduled in between.
Change the code to return "nvcsw | LONG_MIN" instead of "nvcsw ?: 1", now
the overlap always needs LONG_MAX schedules.
Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
If wait_task_inactive() returns success the task was deactivated. In that
case schedule() always increments ->nvcsw which alone can be used as a
"generation counter".
If the next call returns the same number, we can be sure that the task was
unscheduled. Otherwise, because we know that .on_rq == 0 again, ->nvcsw
should have been changed in between.
Q: perhaps it is better to do "ncsw = (p->nvcsw << 1) | 1" ? This
decreases the possibility of "was it unscheduled" false positive when
->nvcsw == 0.
Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Change do_wait_for_common() to use signal_pending_state() instead of open
coding.
Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The last patch allows sysctl_sched_rt_runtime to disable bandwidth accounting
for the group scheduler - however it doesn't deal with sched_setscheduler(),
which will keep tasks out of groups that have no assigned runtime.
If we relax this, we get into the situation where RT tasks can get into a group
when we disable bandwidth control, and then starve them by enabling it again.
Rework the schedulability code to check for this condition and fail to turn
on bandwidth control with -EBUSY when this situation is found.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Extract walk_tg_tree() and make it a little more generic so we can use it
in the schedulablity test.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
More extensive disable of bandwidth control. It allows sysctl_sched_rt_runtime
to disable full group bandwidth control.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* 'sched-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
sched: scale sysctl_sched_shares_ratelimit with nr_cpus
sched: fix rt-bandwidth hotplug race
sched: fix the race between walk_tg_tree and sched_create_group
David reported that his Niagra spend a little too much time in
tg_shares_up(), which considering he has a large cpu count makes sense.
So scale the ratelimit value with the number of cpus like we do for
other controls as well.
Reported-by: David Miller <davem@davemloft.net>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
m68k fails to build with these functions inlined in completion.h. Move
them out of line into sched.c and export them to avoid this problem.
Signed-off-by: Dave Chinner <david@fromorbit.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'sched-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
sched, cpu hotplug: fix set_cpus_allowed() use in hotplug callbacks
sched: fix mysql+oltp regression
sched_clock: delay using sched_clock()
sched clock: couple local and remote clocks
sched clock: simplify __update_sched_clock()
sched: eliminate scd->prev_raw
sched clock: clean up sched_clock_cpu()
sched clock: revert various sched_clock() changes
sched: move sched_clock before first use
sched: test runtime rather than period in global_rt_runtime()
sched: fix SCHED_HRTICK dependency
sched: fix warning in hrtick_start_fair()
Instead of using a per-rq lock class, use the regular nesting operations.
However, take extra care with double_lock_balance() as it can release the
already held rq->lock (and therefore change its nesting class).
So what can happen is:
spin_lock(rq->lock); // this rq subclass 0
double_lock_balance(rq, other_rq);
// release rq
// acquire other_rq->lock subclass 0
// acquire rq->lock subclass 1
spin_unlock(other_rq->lock);
leaving you with rq->lock in subclass 1
So a subsequent double_lock_balance() call can try to nest a subclass 1
lock while already holding a subclass 1 lock.
Fix this by introducing double_unlock_balance() which releases the other
rq's lock, but also re-sets the subclass for this rq's lock to 0.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The "user" parameter to __sched_setscheduler indicates whether the
change is being done on behalf of a user process or not. If not, we
shouldn't apply any permissions checks, so don't call
security_task_setscheduler().
Signed-off-by: Jeremy Fitzhardinge <jeremy@goop.org>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: "Rafael J. Wysocki" <rjw@sisk.pl>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
While thinking about David's graph walk lockdep patch it _finally_
dawned on me that there is no reason we have a lock class per cpu ...
Sorry for being dense :-/
The below changes the annotation from a lock class per cpu, to a single
nested lock, as the scheduler never holds more that 2 rq locks at a time
anyway.
If there was code requiring holding all rq locks this would not work and
the original annotation would be the only option, but that not being the
case, this is a much lighter one.
Compiles and boots on a 2-way x86_64.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: David Miller <davem@davemloft.net>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
They are really class devices, but were incorrectly declared. This
leads to crashes with the recent changes that makes non normal sysdevs
use a different prototype.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Pierre Ossman <drzeus-list@drzeus.cx>
Cc: Greg Kroah-Hartman <gregkh@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Test runtime rather than period
Signed-off-by: Roel Kluin <roel.kluin@gmail.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This extends wait_task_inactive() with a new argument so it can be used in
a "soft" mode where it will check for the task changing state unexpectedly
and back off. There is no change to existing callers. This lays the
groundwork to allow robust, noninvasive tracing that can try to sample a
blocked thread but back off safely if it wakes up.
Signed-off-by: Roland McGrath <roland@redhat.com>
Cc: Oleg Nesterov <oleg@tv-sign.ru>
Reviewed-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A previous patch added the early_initcall(), to allow a cleaner hooking of
pre-SMP initcalls. Now we remove the older interface, converting all
existing users to the new one.
[akpm@linux-foundation.org: cleanups]
[akpm@linux-foundation.org: build fix]
[kosaki.motohiro@jp.fujitsu.com: warning fix]
[kosaki.motohiro@jp.fujitsu.com: warning fix]
Signed-off-by: Eduard - Gabriel Munteanu <eduard.munteanu@linux360.ro>
Cc: Tom Zanussi <tzanussi@gmail.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Adapt acct_update_integrals() to include user time when calculating the time
difference. The units of acct_rss_mem1 and acct_vm_mem1 are also changed from
pages-jiffies to pages-usecs to avoid calling jiffies_to_usecs() in
xacct_add_tsk() which might overflow.
Signed-off-by: Jonathan Lim <jlim@sgi.com>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'sched/for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
sched: hrtick_enabled() should use cpu_active()
sched, x86: clean up hrtick implementation
sched: fix build error, provide partition_sched_domains() unconditionally
sched: fix warning in inc_rt_tasks() to not declare variable 'rq' if it's not needed
cpu hotplug: Make cpu_active_map synchronization dependency clear
cpu hotplug, sched: Introduce cpu_active_map and redo sched domain managment (take 2)
sched: rework of "prioritize non-migratable tasks over migratable ones"
sched: reduce stack size in isolated_cpu_setup()
Revert parts of "ftrace: do not trace scheduler functions"
Fixed up conflicts in include/asm-x86/thread_info.h (due to the
TIF_SINGLESTEP unification vs TIF_HRTICK_RESCHED removal) and
kernel/sched_fair.c (due to cpu_active_map vs for_each_cpu_mask_nr()
introduction).
* 'cpus4096-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (31 commits)
NR_CPUS: Replace NR_CPUS in speedstep-centrino.c
cpumask: Provide a generic set of CPUMASK_ALLOC macros, FIXUP
NR_CPUS: Replace NR_CPUS in cpufreq userspace routines
NR_CPUS: Replace per_cpu(..., smp_processor_id()) with __get_cpu_var
NR_CPUS: Replace NR_CPUS in arch/x86/kernel/genapic_flat_64.c
NR_CPUS: Replace NR_CPUS in arch/x86/kernel/genx2apic_uv_x.c
NR_CPUS: Replace NR_CPUS in arch/x86/kernel/cpu/proc.c
NR_CPUS: Replace NR_CPUS in arch/x86/kernel/cpu/mcheck/mce_64.c
cpumask: Optimize cpumask_of_cpu in lib/smp_processor_id.c, fix
cpumask: Use optimized CPUMASK_ALLOC macros in the centrino_target
cpumask: Provide a generic set of CPUMASK_ALLOC macros
cpumask: Optimize cpumask_of_cpu in lib/smp_processor_id.c
cpumask: Optimize cpumask_of_cpu in kernel/time/tick-common.c
cpumask: Optimize cpumask_of_cpu in drivers/misc/sgi-xp/xpc_main.c
cpumask: Optimize cpumask_of_cpu in arch/x86/kernel/ldt.c
cpumask: Optimize cpumask_of_cpu in arch/x86/kernel/io_apic_64.c
cpumask: Replace cpumask_of_cpu with cpumask_of_cpu_ptr
Revert "cpumask: introduce new APIs"
cpumask: make for_each_cpu_mask a bit smaller
net: Pass reference to cpumask variable in net/sunrpc/svc.c
...
Fix up trivial conflicts in drivers/cpufreq/cpufreq.c manually
This allow to dynamically generate attributes and share show/store
functions between attributes. Right now most attributes are generated
by special macros and lots of duplicated code. With the attribute
passed it's instead possible to attach some data to the attribute
and then use that in shared low level functions to do different things.
I need this for the dynamically generated bank attributes in the x86
machine check code, but it'll allow some further cleanups.
I converted all users in tree to the new show/store prototype. It's a single
huge patch to avoid unbisectable sections.
Runtime tested: x86-32, x86-64
Compiled only: ia64, powerpc
Not compile tested/only grep converted: sh, arm, avr32
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
random uvesafb failures were reported against Gentoo:
http://bugs.gentoo.org/show_bug.cgi?id=222799
and Mihai Moldovan bisected it back to:
> 8f4d37ec07 is first bad commit
> commit 8f4d37ec07
> Author: Peter Zijlstra <a.p.zijlstra@chello.nl>
> Date: Fri Jan 25 21:08:29 2008 +0100
>
> sched: high-res preemption tick
Linus suspected it to be hrtick + vm86 interaction and observed:
> Btw, Peter, Ingo: I think that commit is doing bad things. They aren't
> _incorrect_ per se, but they are definitely bad.
>
> Why?
>
> Using random _TIF_WORK_MASK flags is really impolite for doing
> "scheduling" work. There's a reason that arch/x86/kernel/entry_32.S
> special-cases the _TIF_NEED_RESCHED flag: we don't want to exit out of
> vm86 mode unnecessarily.
>
> See the "work_notifysig_v86" label, and how it does that
> "save_v86_state()" thing etc etc.
Right, I never liked having to fiddle with those TIF flags. Initially I
needed it because the hrtimer base lock could not nest in the rq lock.
That however is fixed these days.
Currently the only reason left to fiddle with the TIF flags is remote
wakeups. We cannot program a remote cpu's hrtimer. I've been thinking
about using the new and improved IPI function call stuff to implement
hrtimer_start_on().
However that does require that smp_call_function_single(.wait=0) works
from interrupt context - /me looks at the latest series from Jens - Yes
that does seem to be supported, good.
Here's a stab at cleaning this stuff up ...
Mihai reported test success as well.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Tested-by: Mihai Moldovan <ionic@ionic.de>
Cc: Michal Januszewski <spock@gentoo.org>
Cc: Antonino Daplas <adaplas@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This is based on Linus' idea of creating cpu_active_map that prevents
scheduler load balancer from migrating tasks to the cpu that is going
down.
It allows us to simplify domain management code and avoid unecessary
domain rebuilds during cpu hotplug event handling.
Please ignore the cpusets part for now. It needs some more work in order
to avoid crazy lock nesting. Although I did simplfy and unify domain
reinitialization logic. We now simply call partition_sched_domains() in
all the cases. This means that we're using exact same code paths as in
cpusets case and hence the test below cover cpusets too.
Cpuset changes to make rebuild_sched_domains() callable from various
contexts are in the separate patch (right next after this one).
This not only boots but also easily handles
while true; do make clean; make -j 8; done
and
while true; do on-off-cpu 1; done
at the same time.
(on-off-cpu 1 simple does echo 0/1 > /sys/.../cpu1/online thing).
Suprisingly the box (dual-core Core2) is quite usable. In fact I'm typing
this on right now in gnome-terminal and things are moving just fine.
Also this is running with most of the debug features enabled (lockdep,
mutex, etc) no BUG_ONs or lockdep complaints so far.
I believe I addressed all of the Dmitry's comments for original Linus'
version. I changed both fair and rt balancer to mask out non-active cpus.
And replaced cpu_is_offline() with !cpu_active() in the main scheduler
code where it made sense (to me).
Signed-off-by: Max Krasnyanskiy <maxk@qualcomm.com>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Gregory Haskins <ghaskins@novell.com>
Cc: dmitry.adamushko@gmail.com
Cc: pj@sgi.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* 'core/softirq' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
softirq: remove irqs_disabled warning from local_bh_enable
softirq: remove initialization of static per-cpu variable
Remove argument from open_softirq which is always NULL
* 'sched/new-API-sched_setscheduler' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
sched: add new API sched_setscheduler_nocheck: add a flag to control access checks
Clean up __migrate_task(): to just have separate "done" and "fail"
cases, instead of that "out" case with random error behavior.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
I think we may have a race between try_to_wake_up() and
migrate_live_tasks() -> move_task_off_dead_cpu() when the later one
may end up looping endlessly.
Interrupts are enabled on other CPUs when migration_call(CPU_DEAD, ...) is
called so we may get a race between try_to_wake_up() and
migrate_live_tasks() -> move_task_off_dead_cpu(). The former one may push
a task out of a dead CPU causing the later one to loop endlessly.
Heiko Carstens observed:
| That's exactly what explains a dump I got yesterday. Thanks for fixing! :)
Signed-off-by: Dmitry Adamushko <dmitry.adamushko@gmail.com>
Cc: miaox@cn.fujitsu.com
Cc: Lai Jiangshan <laijs@cn.fujitsu.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Avi Kivity <avi@qumranet.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* Replace usages of MAX_NUMNODES with nr_node_ids in kernel/sched.c,
where appropriate. This saves some allocated space as well as many
wasted cycles going through node entries that are non-existent.
Signed-off-by: Mike Travis <travis@sgi.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
On Thu, Jun 19, 2008 at 12:27:14PM +0200, Peter Zijlstra wrote:
> On Thu, 2008-06-05 at 10:50 +0530, Ankita Garg wrote:
>
> > Thanks Peter for the explanation...
> >
> > I agree with the above and that is the reason why I did not see weird
> > values with cpu_time. But, run_delay still would suffer skews as the end
> > points for delta could be taken on different cpus due to migration (more
> > so on RT kernel due to the push-pull operations). With the below patch,
> > I could not reproduce the issue I had seen earlier. After every dequeue,
> > we take the delta and start wait measurements from zero when moved to a
> > different rq.
>
> OK, so task delay delay accounting is broken because it doesn't take
> migration into account.
>
> What you've done is make it symmetric wrt enqueue, and account it like
>
> cpu0 cpu1
>
> enqueue
> <wait-d1>
> dequeue
> enqueue
> <wait-d2>
> run
>
> Where you add both d1 and d2 to the run_delay,.. right?
>
Thanks for reviewing the patch. The above is exactly what I have done.
> This seems like a good fix, however it looks like the patch will break
> compilation in !CONFIG_SCHEDSTATS && !CONFIG_TASK_DELAY_ACCT, of it
> failing to provide a stub for sched_info_dequeue() in that case.
Fixed. Pl. find the new patch below.
Signed-off-by: Ankita Garg <ankita@in.ibm.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Gregory Haskins <ghaskins@novell.com>
Cc: rostedt@goodmis.org
Cc: suresh.b.siddha@intel.com
Cc: aneesh.kumar@linux.vnet.ibm.com
Cc: dhaval@linux.vnet.ibm.com
Cc: vatsa@linux.vnet.ibm.com
Cc: David Bahi <DBahi@novell.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
We have the notion of tracking process-coupling (a.k.a. buddy-wake) via
the p->se.last_wake / p->se.avg_overlap facilities, but it is only used
for cfs to cfs interactions. There is no reason why an rt to cfs
interaction cannot share in establishing a relationhip in a similar
manner.
Because PREEMPT_RT runs many kernel threads as FIFO priority, we often
times have heavy interaction between RT threads waking CFS applications.
This patch offers a substantial boost (50-60%+) in perfomance under those
circumstances.
Signed-off-by: Gregory Haskins <ghaskins@novell.com>
Cc: npiggin@suse.de
Cc: rostedt@goodmis.org
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This patch fixes the following warning:
kernel/sched.c:1667: warning: 'cfs_rq_set_shares' defined but not used
This seems the correct way to fix this; cfs_rq_set_shares() is only used
in a single place, which is also inside #ifdef CONFIG_FAIR_GROUP_SCHED.
Signed-off-by: Vegard Nossum <vegard.nossum@gmail.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
fix:
kernel/sched.c: In function ‘sched_group_set_shares':
kernel/sched.c:8635: error: implicit declaration of function ‘cfs_rq_set_shares'
Signed-off-by: Ingo Molnar <mingo@elte.hu>
the CPU hotplug problems (crashes under high-volume unplug+replug
tests) seem to be related to migrate_dead_tasks().
Firstly I added traces to see all tasks being migrated with
migrate_live_tasks() and migrate_dead_tasks(). On my setup the problem
pops up (the one with "se == NULL" in the loop of
pick_next_task_fair()) shortly after the traces indicate that some has
been migrated with migrate_dead_tasks()). btw., I can reproduce it
much faster now with just a plain cpu down/up loop.
[disclaimer] Well, unless I'm really missing something important in
this late hour [/desclaimer] pick_next_task() is not something
appropriate for migrate_dead_tasks() :-)
the following change seems to eliminate the problem on my setup
(although, I kept it running only for a few minutes to get a few
messages indicating migrate_dead_tasks() does move tasks and the
system is still ok)
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Increase the accuracy of the effective_load values.
Not only consider the current increment (as per the attempted wakeup), but
also consider the delta between when we last adjusted the shares and the
current situation.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
We found that the affine wakeup code needs rather accurate load figures
to be effective. The trouble is that updating the load figures is fairly
expensive with group scheduling. Therefore ratelimit the updating.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
In case the domain is empty, pretend there is a single task on each cpu, so
that together with the boost logic we end up giving 1/n shares to each
cpu.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The bias given by source/target_load functions can be very large, disable
it by default to get faster convergence.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Priority looses much of its meaning in a hierarchical context. So don't
use it in balance decisions.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
find_busiest_group() has some assumptions about task weight being in the
NICE_0_LOAD range. Hierarchical task groups break this assumption - fix this
by replacing it with the average task weight, which will adapt the situation.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Remove the fall-back to SCHED_LOAD_SCALE by remembering the previous value of
cpu_avg_load_per_task() - this is useful because of the hierarchical group
model in which task weight can be much smaller.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Finding the least idle cpu is more accurate when done with updated shares.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Re-compute the shares on newidle - so we can make a decision based on
recent data.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
While thinking about the previous patch - I realized that using per domain
aggregate load values in load_balance_fair() is wrong. We should use the
load value for that CPU.
By not needing per domain hierarchical load values we don't need to store
per domain aggregate shares, which greatly simplifies all the math.
It basically falls apart in two separate computations:
- per domain update of the shares
- per CPU update of the hierarchical load
Also get rid of the move_group_shares() stuff - just re-compute the shares
again after a successful load balance.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
We only need to know the task_weight of the busiest rq - nothing to do
if there are no tasks there.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
We used to try and contain the loss of 'shares' by playing arithmetic
games. Replace that by noticing that at the top sched_domain we'll
always have the full weight in shares to distribute.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
It was observed that in __update_group_shares_cpu()
rq_weight > aggregate()->rq_weight
This is caused by forks/wakeups in between the initial aggregate pass and
locking of the RQs for load balance. To avoid this situation partially re-do
the aggregation once we have the RQs locked (which avoids new tasks from
appearing).
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Keeping the aggregate on the first cpu of the sched domain has two problems:
- it could collide between different sched domains on different cpus
- it could slow things down because of the remote accesses
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Uncouple buddy selection from wakeup granularity.
The initial idea was that buddies could run ahead as far as a normal task
can - do this by measuring a pair 'slice' just as we do for a normal task.
This means we can drop the wakeup_granularity back to 5ms.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
with sched_clock_cpu() being reasonably in sync between cpus (max 1 jiffy
difference) use this to provide cpu_clock().
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Hidehiro Kawai noticed that sched_setscheduler() can fail in
stop_machine: it calls sched_setscheduler() from insmod, which can
have CAP_SYS_MODULE without CAP_SYS_NICE.
Two cases could have failed, so are changed to sched_setscheduler_nocheck:
kernel/softirq.c:cpu_callback()
- CPU hotplug callback
kernel/stop_machine.c:__stop_machine_run()
- Called from various places, including modprobe()
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Cc: Jeremy Fitzhardinge <jeremy@goop.org>
Cc: Hidehiro Kawai <hidehiro.kawai.ez@hitachi.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: linux-mm@kvack.org
Cc: sugita <yumiko.sugita.yf@hitachi.com>
Cc: Satoshi OSHIMA <satoshi.oshima.fk@hitachi.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* 'core-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
softlockup: fix NMI hangs due to lock race - 2.6.26-rc regression
rcupreempt: remove export of rcu_batches_completed_bh
cpuset: limit the input of cpuset.sched_relax_domain_level
Simplify the code and fix the boundary condition of
wait_for_completion_timeout(,0).
We can kill the first __remove_wait_queue() as well.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
It seems that the current implementaton of wait_for_completion_timeout()
has a small problem under very high load for the common pattern:
if (!wait_for_completion_timeout(&done, timeout))
/* handle failure */
because the implementation very roughly does (lots of code deleted to
show the basic flow):
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
{
if (x->done)
return timeout;
do {
timeout = schedule_timeout(timeout);
if (!timeout)
return timeout;
} while (!x->done);
return timeout;
}
so if the system is very busy and x->done is not set when
do_wait_for_common() is entered, it is possible that the first call to
schedule_timeout() returns 0 because the task doing wait_for_completion
doesn't get rescheduled for a long time, even if it is woken up early
enough.
In this case, wait_for_completion_timeout() returns 0 without even
checking x->done again, and the code above falls into its failure case
purely for scheduler reasons, even if the hardware event or whatever was
being waited for happened early enough.
It would make sense to add an extra test to do_wait_for() in the timeout
case and return 1 if x->done is actually set.
A quick audit (not exhaustive) of wait_for_completion_timeout() callers
seems to indicate that no one actually cares about the return value in
the success case -- they just test for 0 (timed out) versus non-zero
(wait succeeded).
Signed-off-by: Ingo Molnar <mingo@elte.hu>
We allow the inputs to be [-1 ... SD_LV_MAX), and return -EINVAL
for inputs outside this range.
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Acked-by: Paul Menage <menage@google.com>
Acked-by: Paul Jackson <pj@sgi.com>
Acked-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
First issue is not related to the cpusets. We're simply leaking doms_cur.
It's allocated in arch_init_sched_domains() which is called for every
hotplug event. So we just keep reallocation doms_cur without freeing it.
I introduced free_sched_domains() function that cleans things up.
Second issue is that sched domains created by the cpusets are
completely destroyed by the CPU hotplug events. For all CPU hotplug
events scheduler attaches all CPUs to the NULL domain and then puts
them all into the single domain thereby destroying domains created
by the cpusets (partition_sched_domains).
The solution is simple, when cpusets are enabled scheduler should not
create default domain and instead let cpusets do that. Which is
exactly what the patch does.
Signed-off-by: Max Krasnyansky <maxk@qualcomm.com>
Cc: pj@sgi.com
Cc: menage@google.com
Cc: rostedt@goodmis.org
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Don't re-set the entity's runqueue to the wrong rq after we've set it
to the right one.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Tested-by: Daniel K. <dk@uw.no>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
regarding this commit: 45c01e8249
I think we can do it simpler. Please take a look at the patch below.
Instead of having 2 separate arrays (which is + ~800 bytes on x86_32 and
twice so on x86_64), let's add "exclusive" (the ones that are bound to
this CPU) tasks to the head of the queue and "shared" ones -- to the
end.
In case of a few newly woken up "exclusive" tasks, they are 'stacked'
(not queued as now), meaning that a task {i+1} is being placed in front
of the previously woken up task {i}. But I don't think that this
behavior may cause any realistic problems.
There are a couple of changes on top of this one.
(1) in check_preempt_curr_rt()
I don't think there is a need for the "pick_next_rt_entity(rq, &rq->rt)
!= &rq->curr->rt" check.
enqueue_task_rt(p) and check_preempt_curr_rt() are always called one
after another with rq->lock being held so the following check
"p->rt.nr_cpus_allowed == 1 && rq->curr->rt.nr_cpus_allowed != 1" should
be enough (well, just its left part) to guarantee that 'p' has been
queued in front of the 'curr'.
(2) in set_cpus_allowed_rt()
I don't thinks there is a need for requeue_task_rt() here.
Perhaps, the only case when 'requeue' (+ reschedule) might be useful is
as follows:
i) weight == 1 && cpu_isset(task_cpu(p), *new_mask)
i.e. a task is being bound to this CPU);
ii) 'p' != rq->curr
but here, 'p' has already been on this CPU for a while and was not
migrated. i.e. it's possible that 'rq->curr' would not have high chances
to be migrated right at this particular moment (although, has chance in
a bit longer term), should we allow it to be preempted.
Anyway, I think we should not perhaps make it more complex trying to
address some rare corner cases. For instance, that's why a single queue
approach would be preferable. Unless I'm missing something obvious, this
approach gives us similar functionality at lower cost.
Verified only compilation-wise.
(Almost)-Signed-off-by: Dmitry Adamushko <dmitry.adamushko@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Fix this warning, which appears with !CONFIG_SMP:
kernel/sched.c:1216: warning: `init_hrtick' defined but not used
Signed-off-by: Rabin Vincent <rabin@rab.in>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
(overflow means weight >= 2^32 here, because inv_weigh = 2^32/weight)
A weight of a cfs_rq is the sum of weights of which entities
are queued on this cfs_rq, so it will overflow when there are
too many entities.
Although, overflow occurs very rarely, but it break fairness when
it occurs. 64-bits systems have more memory than 32-bit systems
and 64-bit systems can create more process usually, so overflow may
occur more frequently.
This patch guarantees fairness when overflow happens on 64-bit systems.
Thanks to the optimization of compiler, it changes nothing on 32-bit.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
I found a bug which can be reproduced by this way:(linux-2.6.26-rc5, x86-64)
(use 2^32, 2^33, ...., 2^63 as shares value)
# mkdir /dev/cpuctl
# mount -t cgroup -o cpu cpuctl /dev/cpuctl
# cd /dev/cpuctl
# mkdir sub
# echo 0x8000000000000000 > sub/cpu.shares
# echo $$ > sub/tasks
oops here! divide by zero.
This is because do_div() expects the 2th parameter to be 32 bits,
but unsigned long is 64 bits in x86_64.
Peter Zijstra pointed it out that the sane thing to do is limit the
shares value to something smaller instead of using an even more
expensive divide.
Also, I found another bug about "the shares value is too large":
pid1 and pid2 are set affinity to cpu#0
pid1 is attached to cg1 and pid2 is attached to cg2
if cg1/cpu.shares = 1024 cg2/cpu.shares = 2000000000
then pid2 got 100% usage of cpu, and pid1 0%
if cg1/cpu.shares = 1024 cg2/cpu.shares = 20000000000
then pid2 got 0% usage of cpu, and pid1 100%
And a weight of a cfs_rq is the sum of weights of which entities
are queued on this cfs_rq, so the shares value should be limited
to a smaller value.
I think that (1UL << 18) is a good limited value:
1) it's not too large, we can create a lot of group before overflow
2) it's several times the weight value for nice=-19 (not too small)
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Sitsofe Wheeler bisected the following commit to cause a lockdep to
warn about itself and turn itself off:
> commit c6531cce6e
> Author: Ingo Molnar <mingo@elte.hu>
> Date: Mon May 12 21:21:14 2008 +0200
>
> sched: do not trace sched_clock
do not use raw irq flags in cpu_clock() as it causes lockdep to lose
track of the true state of the IRQ flag.
Reported-and-bisected-by: Sitsofe Wheeler <sitsofe@yahoo.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Building with CONFIG_FAIR_GROUP_SCHED=y on UP results in an unused
cfs_rq_set_shares() reference. As nothing is using this dummy function
in the first place, just kill it off.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Kthreads that have called kthread_bind() are bound to specific cpus, so
other tasks should not be able to change their cpus_allowed from under
them. Otherwise, it is possible to move kthreads, such as the migration
or software watchdog threads, so they are not allowed access to the cpu
they work on.
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Paul Menage <menage@google.com>
Cc: Paul Jackson <pj@sgi.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Cliff Wickman wrote:
> I built an ia64 kernel from Andrew's tree (2.6.26-rc2-mm1)
> and get a very predictable hotplug cpu problem.
> billberry1:/tmp/cpw # ./dis
> disabled cpu 17
> enabled cpu 17
> billberry1:/tmp/cpw # ./dis
> disabled cpu 17
> enabled cpu 17
> billberry1:/tmp/cpw # ./dis
>
> The script that disables the cpu always hangs (unkillable)
> on the 3rd attempt.
>
> And a bit further:
> The kstopmachine thread always sits on the run queue (real time) for about
> 30 minutes before running.
this fix solves some (but not all) issues between CPU hotplug and
RT bandwidth throttling.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
schedule() has the special "TASK_INTERRUPTIBLE && signal_pending()" case,
this allows us to do
current->state = TASK_INTERRUPTIBLE;
schedule();
without fear to sleep with pending signal.
However, the code like
current->state = TASK_KILLABLE;
schedule();
is not right, schedule() doesn't take TASK_WAKEKILL into account. This means
that mutex_lock_killable(), wait_for_completion_killable(), down_killable(),
schedule_timeout_killable() can miss SIGKILL (and btw the second SIGKILL has
no effect).
Introduce the new helper, signal_pending_state(), and change schedule() to
use it. Hopefully it will have more users, that is why the task's state is
passed separately.
Note this "__TASK_STOPPED | __TASK_TRACED" check in signal_pending_state().
This is needed to preserve the current behaviour (ptrace_notify). I hope
this check will be removed soon, but this (afaics good) change needs the
separate discussion.
The fast path is "(state & (INTERRUPTIBLE | WAKEKILL)) + signal_pending(p)",
basically the same that schedule() does now. However, this patch of course
bloats schedule().
Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
kernel/cpu.c seems a more logical place for those maps since they do not really
have much to do with the scheduler these days.
kernel/cpu.c is now built for the UP kernel too, but it does not affect the size
the kernel sections.
$ size vmlinux
before
text data bss dec hex filename
3313797 307060 310352 3931209 3bfc49 vmlinux
after
text data bss dec hex filename
3313797 307060 310352 3931209 3bfc49 vmlinux
Signed-off-by: Max Krasnyansky <maxk@qualcomm.com>
Cc: pj@sgi.com
Cc: menage@google.com
Cc: rostedt@goodmis.org
Cc: mingo@elte.hu
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
First issue is not related to the cpusets. We're simply leaking doms_cur.
It's allocated in arch_init_sched_domains() which is called for every
hotplug event. So we just keep reallocation doms_cur without freeing it.
I introduced free_sched_domains() function that cleans things up.
Second issue is that sched domains created by the cpusets are
completely destroyed by the CPU hotplug events. For all CPU hotplug
events scheduler attaches all CPUs to the NULL domain and then puts
them all into the single domain thereby destroying domains created
by the cpusets (partition_sched_domains).
The solution is simple, when cpusets are enabled scheduler should not
create default domain and instead let cpusets do that. Which is
exactly what the patch does.
Signed-off-by: Max Krasnyansky <maxk@qualcomm.com>
Cc: pj@sgi.com
Cc: menage@google.com
Cc: rostedt@goodmis.org
Cc: mingo@elte.hu
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The RT folks over at RedHat found an issue w.r.t. hotplug support which
was traced to problems with the cpupri infrastructure in the scheduler:
https://bugzilla.redhat.com/show_bug.cgi?id=449676
This bug affects 23-rt12+, 24-rtX, 25-rtX, and sched-devel. This patch
applies to 25.4-rt4, though it should trivially apply to most cpupri enabled
kernels mentioned above.
It turned out that the issue was that offline cpus could get inadvertently
registered with cpupri so that they were erroneously selected during
migration decisions. The end result would be an OOPS as the offline cpu
had tasks routed to it.
This patch generalizes the old join/leave domain interface into an
online/offline interface, and adjusts the root-domain/hotplug code to
utilize it.
I was able to easily reproduce the issue prior to this patch, and am no
longer able to reproduce it after this patch. I can offline cpus
indefinately and everything seems to be in working order.
Thanks to Arnaldo (acme), Thomas, and Peter for doing the legwork to point
me in the right direction. Also thank you to Peter for reviewing the
early iterations of this patch.
Signed-off-by: Gregory Haskins <ghaskins@novell.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
While printing out the visual representation of the sched-domains, print
the level (MC, SMT, CPU, NODE, ... ) of each of the sched_domains.
Credit: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Gautham R Shenoy <ego@in.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
For the normal WARN_ON() etc we added a print-the-modules-list already,
which is very useful to figure out candidates for certain types of bugs.
This patch adds the same print to the "scheduling while atomic" BUG warning,
for the same reason: when we get here it's very useful to see which modules
are loaded, to narrow down the candidate code list.
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Cc: mingo@elte.hu
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Fix this warning, which appears with !CONFIG_SMP:
kernel/sched.c:1216: warning: `init_hrtick' defined but not used
Signed-off-by: Rabin Vincent <rabin@rab.in>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Nothing really serious here, mainly just a matter of nit-picking :-/
From: Dmitry Adamushko <dmitry.adamushko@gmail.com>
For CONFIG_SCHED_DEBUG && CONFIG_SYSCT configs, sd->flags can be altered
while being manipulated in rebalance_domains(). Let's do an atomic check.
We rely here on the atomicity of read/write accesses for aligned words.
Signed-off-by: Dmitry Adamushko <dmitry.adamushko@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The current code use a linear algorithm which causes scaling issues
on larger SMP machines. This patch replaces that algorithm with a
2-dimensional bitmap to reduce latencies in the wake-up path.
Signed-off-by: Gregory Haskins <ghaskins@novell.com>
Acked-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
it is safe to ignore timers and flags when the feature is disabled.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Dmitry Adamushko pointed out a known flaw in the rt-balancing algorithm
that could allow suboptimal balancing if a non-migratable task gets
queued behind a running migratable one. It is discussed in this thread:
http://lkml.org/lkml/2008/4/22/296
This issue has been further exacerbated by a recent checkin to
sched-devel (git-id 5eee63a5ebc19a870ac40055c0be49457f3a89a3).
>From a pure priority standpoint, the run-queue is doing the "right"
thing. Using Dmitry's nomenclature, if T0 is on cpu1 first, and T1
wakes up at equal or lower priority (affined only to cpu1) later, it
*should* wait for T0 to finish. However, in reality that is likely
suboptimal from a system perspective if there are other cores that
could allow T0 and T1 to run concurrently. Since T1 can not migrate,
the only choice for higher concurrency is to try to move T0. This is
not something we addessed in the recent rt-balancing re-work.
This patch tries to enhance the balancing algorithm by accomodating this
scenario. It accomplishes this by incorporating the migratability of a
task into its priority calculation. Within a numerical tsk->prio, a
non-migratable task is logically higher than a migratable one. We
maintain this by introducing a new per-priority queue (xqueue, or
exclusive-queue) for holding non-migratable tasks. The scheduler will
draw from the xqueue over the standard shared-queue (squeue) when
available.
There are several details for utilizing this properly.
1) During task-wake-up, we not only need to check if the priority
preempts the current task, but we also need to check for this
non-migratable condition. Therefore, if a non-migratable task wakes
up and sees an equal priority migratable task already running, it
will attempt to preempt it *if* there is a likelyhood that the
current task will find an immediate home.
2) Tasks only get this non-migratable "priority boost" on wake-up. Any
requeuing will result in the non-migratable task being queued to the
end of the shared queue. This is an attempt to prevent the system
from being completely unfair to migratable tasks during things like
SCHED_RR timeslicing.
I am sure this patch introduces potentially "odd" behavior if you
concoct a scenario where a bunch of non-migratable threads could starve
migratable ones given the right pattern. I am not yet convinced that
this is a problem since we are talking about tasks of equal RT priority
anyway, and there never is much in the way of guarantees against
starvation under that scenario anyway. (e.g. you could come up with a
similar scenario with a specific timing environment verses an affinity
environment). I can be convinced otherwise, but for now I think this is
"ok".
Signed-off-by: Gregory Haskins <ghaskins@novell.com>
CC: Dmitry Adamushko <dmitry.adamushko@gmail.com>
CC: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Yanmin Zhang reported:
Comparing with 2.6.25, volanoMark has big regression with kernel 2.6.26-rc1.
It's about 50% on my 8-core stoakley, 16-core tigerton, and Itanium Montecito.
With bisect, I located the following patch:
| 18d95a2832 is first bad commit
| commit 18d95a2832
| Author: Peter Zijlstra <a.p.zijlstra@chello.nl>
| Date: Sat Apr 19 19:45:00 2008 +0200
|
| sched: fair-group: SMP-nice for group scheduling
Revert it so that we get v2.6.25 behavior.
Bisected-by: Yanmin Zhang <yanmin_zhang@linux.intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
As git-grep shows, open_softirq() is always called with the last argument
being NULL
block/blk-core.c: open_softirq(BLOCK_SOFTIRQ, blk_done_softirq, NULL);
kernel/hrtimer.c: open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq, NULL);
kernel/rcuclassic.c: open_softirq(RCU_SOFTIRQ, rcu_process_callbacks, NULL);
kernel/rcupreempt.c: open_softirq(RCU_SOFTIRQ, rcu_process_callbacks, NULL);
kernel/sched.c: open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
kernel/softirq.c: open_softirq(TASKLET_SOFTIRQ, tasklet_action, NULL);
kernel/softirq.c: open_softirq(HI_SOFTIRQ, tasklet_hi_action, NULL);
kernel/timer.c: open_softirq(TIMER_SOFTIRQ, run_timer_softirq, NULL);
net/core/dev.c: open_softirq(NET_TX_SOFTIRQ, net_tx_action, NULL);
net/core/dev.c: open_softirq(NET_RX_SOFTIRQ, net_rx_action, NULL);
This observation has already been made by Matthew Wilcox in June 2002
(http://www.cs.helsinki.fi/linux/linux-kernel/2002-25/0687.html)
"I notice that none of the current softirq routines use the data element
passed to them."
and the situation hasn't changed since them. So it appears we can safely
remove that extra argument to save 128 (54) bytes of kernel data (text).
Signed-off-by: Carlos R. Mafra <crmafra@ift.unesp.br>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Porting ftrace to the marker infrastructure.
Don't need to chain to the wakeup tracer from the sched tracer, because markers
support multiple probes connected.
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@polymtl.ca>
CC: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Add preempt off timings. A lot of kernel core code is taken from the RT patch
latency trace that was written by Ingo Molnar.
This adds "preemptoff" and "preemptirqsoff" to /debugfs/tracing/available_tracers
Now instead of just tracing irqs off, preemption off can be selected
to be recorded.
When this is selected, it shares the same files as irqs off timings.
One can either trace preemption off, irqs off, or one or the other off.
By echoing "preemptoff" into /debugfs/tracing/current_tracer, recording
of preempt off only is performed. "irqsoff" will only record the time
irqs are disabled, but "preemptirqsoff" will take the total time irqs
or preemption are disabled. Runtime switching of these options is now
supported by simpling echoing in the appropriate trace name into
/debugfs/tracing/current_tracer.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The tracer wants to be able to convert the state number
into a user visible character. This patch pulls that conversion
string out the scheduler into the header. This way if it were to
ever change, other parts of the kernel will know.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
add 3 lightweight callbacks to the tracer backend.
zero impact if tracing is turned off.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Change references from for_each_cpu_mask to for_each_cpu_mask_nr
where appropriate
Reviewed-by: Paul Jackson <pj@sgi.com>
Reviewed-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Mike Travis <travis@sgi.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
* Replace usages of MAX_NUMNODES with nr_node_ids in kernel/sched.c,
where appropriate. This saves some allocated space as well as many
wasted cycles going through node entries that are non-existent.
For inclusion into sched-devel/latest tree.
Based on:
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6.git
+ sched-devel/latest .../mingo/linux-2.6-sched-devel.git
Signed-off-by: Mike Travis <travis@sgi.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Return type of cpu_rt_runtime_write() should be int instead of ssize_t.
Signed-off-by: Mirco Tischler <mt-ml@gmx.de>
Acked-by: Paul Menage <menage@google.com>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It acts exactly like a regular 'cond_resched()', but will not get
optimized away when CONFIG_PREEMPT is set.
Normal kernel code is already preemptable in the presense of
CONFIG_PREEMPT, so cond_resched() is optimized away (see commit
02b67cc3ba "sched: do not do
cond_resched() when CONFIG_PREEMPT").
But when wanting to conditionally reschedule while holding a lock, you
need to use "cond_sched_lock(lock)", and the new function is the BKL
equivalent of that.
Also make fs/locks.c use it.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The generic semaphore rewrite had a huge performance regression on AIM7
(and potentially other BKL-heavy benchmarks) because the generic
semaphores had been rewritten to be simple to understand and fair. The
latter, in particular, turns a semaphore-based BKL implementation into a
mess of scheduling.
The attempt to fix the performance regression failed miserably (see the
previous commit 00b41ec261 'Revert
"semaphore: fix"'), and so for now the simple and sane approach is to
instead just go back to the old spinlock-based BKL implementation that
never had any issues like this.
This patch also has the advantage of being reported to fix the
regression completely according to Yanmin Zhang, unlike the semaphore
hack which still left a couple percentage point regression.
As a spinlock, the BKL obviously has the potential to be a latency
issue, but it's not really any different from any other spinlock in that
respect. We do want to get rid of the BKL asap, but that has been the
plan for several years.
These days, the biggest users are in the tty layer (open/release in
particular) and Alan holds out some hope:
"tty release is probably a few months away from getting cured - I'm
afraid it will almost certainly be the very last user of the BKL in
tty to get fixed as it depends on everything else being sanely locked."
so while we're not there yet, we do have a plan of action.
Tested-by: Yanmin Zhang <yanmin_zhang@linux.intel.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Matthew Wilcox <matthew@wil.cx>
Cc: Alexander Viro <viro@ftp.linux.org.uk>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
this replaces the rq->clock stuff (and possibly cpu_clock()).
- architectures that have an 'imperfect' hardware clock can set
CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
- the 'jiffie' window might be superfulous when we update tick_gtod
before the __update_sched_clock() call in sched_clock_tick()
- cpu_clock() might be implemented as:
sched_clock_cpu(smp_processor_id())
if the accuracy proves good enough - how far can TSC drift in a
single jiffie when considering the filtering and idle hooks?
[ mingo@elte.hu: various fixes and cleanups ]
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
David Miller pointed it out that nothing in cpu_clock() sets
prev_cpu_time. This caused __sync_cpu_clock() to be called
all the time - against the intention of this code.
The result was that in practice we hit a global spinlock every
time cpu_clock() is called - which - even though cpu_clock()
is used for tracing and debugging, is suboptimal.
While at it, also:
- move the irq disabling to the outest layer,
this should make cpu_clock() warp-free when called with irqs
enabled.
- use long long instead of cycles_t - for platforms where cycles_t
is 32-bit.
Reported-by: David Miller <davem@davemloft.net>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
When I echoed 0 into the "cpu.shares" file, a Div0 error occured.
We found it is caused by the following calling.
sched_group_set_shares(tg, shares)
set_se_shares(tg->se[i], shares/nr_cpu_ids)
__set_se_shares(se, shares)
div64_64((1ULL<<32), shares)
When the echoed value was less than the number of processores, the result of the
sentence "shares/nr_cpu_ids" was 0, and then the system called div64() to divide
the result, the Div0 error occured.
It is unnecessary that the shares value is divided by nr_cpu_ids, I think.
Because in the function __update_group_shares_cpu() and init_tg_cfs_entry(),
the shares value isn't divided by nr_cpu_ids when setting shares of the sched
entity.
This patch fixes this bug. And echoing ULONG_MAX value into cpu.shares also
causes Div0 error, so we set a macro MAX_SHARES to limit the max value of
shares.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Concurrent calls to detach_destroy_domains and arch_init_sched_domains
were prevented by the old scheduler subsystem cpu hotplug mutex. When
this got converted to get_online_cpus() the locking got broken.
Unlike before now several processes can concurrently enter the critical
sections that were protected by the old lock.
So use the already present doms_cur_mutex to protect these sections again.
Cc: Gautham R Shenoy <ego@in.ibm.com>
Cc: Paul Jackson <pj@sgi.com>
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
http://bugzilla.kernel.org/show_bug.cgi?id=10545
sched_stats.h says that __sched_info_switch is "called when prev !=
next" in the comment. sched.c should therefore do that.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Gautham R Shenoy reported:
> While running the usual CPU-Hotplug stress tests on linux-2.6.25,
> I noticed the following in the console logs.
>
> This is a wee bit difficult to reproduce. In the past 10 runs I hit this
> only once.
>
> ------------[ cut here ]------------
>
> WARNING: at kernel/sched.c:962 hrtick+0x2e/0x65()
>
> Just wondering if we are doing a good job at handling the cancellation
> of any per-cpu scheduler timers during CPU-Hotplug.
This looks like its indeed not cancelled at all and migrates the it to
another cpu. Fix it via a proper hotplug notifier mechanism.
Reported-by: Gautham R Shenoy <ego@in.ibm.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: stable@kernel.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Noticed by sparse:
kernel/sched.c:760:20: warning: symbol 'sched_feat_names' was not declared. Should it be static?
kernel/sched.c:767:5: warning: symbol 'sched_feat_open' was not declared. Should it be static?
kernel/sched_fair.c:845:3: warning: returning void-valued expression
kernel/sched.c:4386:3: warning: returning void-valued expression
Signed-off-by: Harvey Harrison <harvey.harrison@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Joel noticed that the !lw->inv_weight contition isn't unlikely anymore so
remove the unlikely annotation. Also, remove the two div64_u64() inv_weight
calculations, which makes them rely on the calc_delta_mine() path as well.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
CC: Joel Schopp <jschopp@austin.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Rename div64_64 to div64_u64 to make it consistent with the other divide
functions, so it clearly includes the type of the divide. Move its definition
to math64.h as currently no architecture overrides the generic implementation.
They can still override it of course, but the duplicated declarations are
avoided.
Signed-off-by: Roman Zippel <zippel@linux-m68k.org>
Cc: Avi Kivity <avi@qumranet.com>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: David Howells <dhowells@redhat.com>
Cc: Jeff Dike <jdike@addtoit.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Patrick McHardy <kaber@trash.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This removes some filesystem boilerplate from the CFS cgroup subsystem.
Signed-off-by: Paul Menage <menage@google.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Several people have justifiably complained that the "_uint" suffix is
inappropriate for functions that handle u64 values, so this patch just renames
all these functions and their users to have the suffic _u64.
[peterz@infradead.org: build fix]
Signed-off-by: Paul Menage <menage@google.com>
Cc: "Li Zefan" <lizf@cn.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Paul Jackson <pj@sgi.com>
Cc: Pavel Emelyanov <xemul@openvz.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: "YAMAMOTO Takashi" <yamamoto@valinux.co.jp>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is no guarantee that there is physical ram below 4GB, and in
fact many boxes don't have exactly that.
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
fix __aggregate_redistribute_shares() related lockup reported by
David S. Miller.
The problem this code tries to solve is 'accurately' calculating the 'fair'
share of the group weight for each cpu. The current code falls back to a global
group rebalance in case the sched_domain's span it looks at has no shares, but
does have tasks.
The reason it gets stuck here, is because its inherently racy - if someone
steals the last task after we compute the agg->rq_weight, but before we
rebalance, we'll never get out of the loop.
We could of course go fix that, but while looking at this issue I found that
this 'fallback' wasn't nearly as rare as I'd hoped it to be. In fact its quite
common - and given it walks the whole machine, thats very bad.
The new approach is simple (why didn't I think of it before?), we set the
aggregate shares to the full task group weight, and each larger sched domain
that encounters an aggregate shares larger than the weight, clips it (it
already re-distributes anyway).
This nicely converges to the desired global picture where the sum of all
shares equals the task group weight.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
A recent change prevents SGI Altix from booting.
This patch fixes the problem.
The regresson was introduced in commit 434d53b00d
Signed-off-by: Russ Anderson <rja@sgi.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Add missing kernel-doc in kernel/sched.c:
Warning(linux-2.6.25-git3//kernel/sched.c:7044): No description found for parameter 'span'
Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
provide a text based interface to the scheduler features; this saves the
'user' from setting bits using decimal arithmetic.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
In order to level the hierarchy, we need to calculate load based on the
root view. That is, each task's load is in the same unit.
A
/ \
B 1
/ \
2 3
To compute 1's load we do:
weight(1)
--------------
rq_weight(A)
To compute 2's load we do:
weight(2) weight(B)
------------ * -----------
rq_weight(B) rw_weight(A)
This yields load fractions in comparable units.
The consequence is that it changes virtual time. We used to have:
time_{i}
vtime_{i} = ------------
weight_{i}
vtime = \Sum vtime_{i} = time / rq_weight.
But with the new way of load calculation we get that vtime equals time.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
De-couple load-balancing from the rb-trees, so that I can change their
organization.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Implement SMP nice support for the full group hierarchy.
On each load-balance action, compile a sched_domain wide view of the full
task_group tree. We compute the domain wide view when walking down the
hierarchy, and readjust the weights when walking back up.
After collecting and readjusting the domain wide view, we try to balance the
tasks within the task_groups. The current approach is a naively balance each
task group until we've moved the targeted amount of load.
Inspired by Srivatsa Vaddsgiri's previous code and Abhishek Chandra's H-SMP
paper.
XXX: there will be some numerical issues due to the limited nature of
SCHED_LOAD_SCALE wrt to representing a task_groups influence on the
total weight. When the tree is deep enough, or the task weight small
enough, we'll run out of bits.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
CC: Abhishek Chandra <chandra@cs.umn.edu>
CC: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
[rebased for sched-devel/latest]
- Add a new cpuset file, having levels:
sched_relax_domain_level
- Modify partition_sched_domains() and build_sched_domains()
to take attributes parameter passed from cpuset.
- Fill newidle_idx for node domains which currently unused but
might be required if sched_relax_domain_level become higher.
- We can change the default level by boot option 'relax_domain_level='.
Signed-off-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Add the full parent<->child relation thing into task_groups as well.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
UID grouping doesn't actually have a task_group representing the root of
the task_group tree. Add one.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This patch makes the group scheduler multi hierarchy aware.
[a.p.zijlstra@chello.nl: rt-parts and assorted fixes]
Signed-off-by: Dhaval Giani <dhaval@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This patch allows tasks and groups to exist in the same cfs_rq. With this
change the CFS group scheduling follows a 1/(M+N) model from a 1/(1+N)
fairness model where M tasks and N groups exist at the cfs_rq level.
[a.p.zijlstra@chello.nl: rt bits and assorted fixes]
Signed-off-by: Dhaval Giani <dhaval@linux.vnet.ibm.com>
Signed-off-by: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Add a new function that accepts a pointer to the "newly allowed cpus"
cpumask argument.
int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
The current set_cpus_allowed() function is modified to use the above
but this does not result in an ABI change. And with some compiler
optimization help, it may not introduce any additional overhead.
Additionally, to enforce the read only nature of the new_mask arg, the
"const" property is migrated to sub-functions called by set_cpus_allowed.
This silences compiler warnings.
Signed-off-by: Mike Travis <travis@sgi.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Move the setting of nr_cpu_ids from sched_init() to start_kernel()
so that it's available as early as possible.
Note that an arch has the option of setting it even earlier if need be,
but it should not result in a different value than the setup_nr_cpu_ids()
function.
Signed-off-by: Mike Travis <travis@sgi.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* Remove another cpumask_t variable from stack that was missed in the
last kernel_sched_c updates.
Signed-off-by: Mike Travis <travis@sgi.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* Remove empty cpumask_t (and all non-zero/non-null) variables
in SD_*_INIT macros. Use memset(0) to clear. Also, don't
inline the initializer functions to save on stack space in
build_sched_domains().
* Merge change to include/linux/topology.h that uses the new
node_to_cpumask_ptr function in the nr_cpus_node macro into
this patch.
Depends on:
[mm-patch]: asm-generic-add-node_to_cpumask_ptr-macro.patch
[sched-devel]: sched: add new set_cpus_allowed_ptr function
Cc: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: Mike Travis <travis@sgi.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* Use new node_to_cpumask_ptr. This creates a pointer to the
cpumask for a given node. This definition is in mm patch:
asm-generic-add-node_to_cpumask_ptr-macro.patch
* Use new set_cpus_allowed_ptr function.
Depends on:
[mm-patch]: asm-generic-add-node_to_cpumask_ptr-macro.patch
[sched-devel]: sched: add new set_cpus_allowed_ptr function
[x86/latest]: x86: add cpus_scnprintf function
Cc: Greg Kroah-Hartman <gregkh@suse.de>
Cc: Greg Banks <gnb@melbourne.sgi.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: Mike Travis <travis@sgi.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* Modify sched_affinity functions to pass cpumask_t variables by reference
instead of by value.
* Use new set_cpus_allowed_ptr function.
Depends on:
[sched-devel]: sched: add new set_cpus_allowed_ptr function
Cc: Paul Jackson <pj@sgi.com>
Cc: Cliff Wickman <cpw@sgi.com>
Signed-off-by: Mike Travis <travis@sgi.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* Modify cpuset_cpus_allowed to return the currently allowed cpuset
via a pointer argument instead of as the function return value.
* Use new set_cpus_allowed_ptr function.
* Cleanup CPU_MASK_ALL and NODE_MASK_ALL uses.
Depends on:
[sched-devel]: sched: add new set_cpus_allowed_ptr function
Signed-off-by: Mike Travis <travis@sgi.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* Change fixed size arrays to per_cpu variables or dynamically allocated
arrays in sched_init() and sched_init_smp().
(1) static struct sched_entity *init_sched_entity_p[NR_CPUS];
(1) static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
(1) static struct sched_rt_entity *init_sched_rt_entity_p[NR_CPUS];
(1) static struct rt_rq *init_rt_rq_p[NR_CPUS];
static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
(1) - these arrays are allocated via alloc_bootmem_low()
* Change sched_domain_debug_one() to use cpulist_scnprintf instead of
cpumask_scnprintf. This reduces the output buffer required and improves
readability when large NR_CPU count machines arrive.
* In sched_create_group() we allocate new arrays based on nr_cpu_ids.
Signed-off-by: Mike Travis <travis@sgi.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Currently the schedstats implementation does not allow the statistics
to be reset. This patch aims to allow that.
echo 0 > cpuacct.usage
resets the usage. Any other value is not allowed and returns -EINVAL.
Signed-off-by: Dhaval Giani <dhaval@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Change the variable names to the common convention for the cpuacct
subsystem.
Signed-off-by: Dhaval Giani <dhaval@linux.vnet.ibm.com>
Acked-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Currently the rt group scheduling does a per cpu runtime limit, however
the rt load balancer makes no guarantees about an equal spread of real-
time tasks, just that at any one time, the highest priority tasks run.
Solve this by making the runtime limit a global property by borrowing
excessive runtime from the other cpus once the local limit runs out.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Various SMP balancing algorithms require that the bandwidth period
run in sync.
Possible improvements are moving the rt_bandwidth thing into root_domain
and keeping a span per rt_bandwidth which marks throttled cpus.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>