The Gekko has some SPR values that differ from other PPC core values and
also some additional ones.
Let's add support for them in our mfspr/mtspr emulator.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
Commit 7d01b4c3ed2bb33ceaf2d270cb4831a67a76b51b introduced PACA backed vcpu
values. With this patch, when a userspace app was setting GPRs before it was
actually first loaded, the set values get discarded.
This is because vcpu_load loads them from the vcpu backing store that we use
whenever we're not owning the PACA.
That behavior is not really a major problem, because we don't need it for
qemu. Other users (like kvmctl) do have problems with it though, so let's
better do it right.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
Linux contains quite some bits of code to load FPU, Altivec and VSX lazily for
a task. It calls those bits in real mode, coming from an interrupt handler.
For KVM we better reuse those, so let's wrap a bit of trampoline magic around
them and then we can call them from normal module code.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
An SLB entry contains two pieces of information related to size:
1) PTE size
2) SLB size
The L bit defines the PTE be "large" (usually means 16MB),
SLB_VSID_B_1T defines that the SLB should span 1 GB instead of the
default 256MB.
Apparently I messed things up and just put those two in one box,
shaked it heavily and came up with the current code which handles
large pages incorrectly, because it also treats large page SLB entries
as "1TB" segment entries.
This patch splits those two features apart, making Linux guests boot
even when they have > 256MB.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
Book3S needs some flags in SRR1 to get to know details about an interrupt.
One such example is the trap instruction. It tells the guest kernel that
a program interrupt is due to a trap using a bit in SRR1.
This patch implements above behavior, making WARN_ON behave like WARN_ON.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
Currently we're racy when doing the transition from IR=1 to IR=0, from
the module memory entry code to the real mode SLB switching code.
To work around that I took a look at the RTAS entry code which is faced
with a similar problem and did the same thing:
A small helper in linear mapped memory that does mtmsr with IR=0 and
then RFIs info the actual handler.
Thanks to that trick we can safely take page faults in the entry code
and only need to be really wary of what to do as of the SLB switching
part.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
We're being horribly racy right now. All the entry and exit code hijacks
random fields from the PACA that could easily be used by different code in
case we get interrupted, for example by a #MC or even page fault.
After discussing this with Ben, we figured it's best to reserve some more
space in the PACA and just shove off some vcpu state to there.
That way we can drastically improve the readability of the code, make it
less racy and less complex.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
Currently userspace has no chance to find out which virtual address space we're
in and resolve addresses. While that is a big problem for migration, it's also
unpleasent when debugging, as gdb and the monitor don't work on virtual
addresses.
This patch exports enough of the MMU segment state to userspace to make
debugging work and thus also includes the groundwork for migration.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This adds the book3s specific header file that contains structs that
are only valid on book3s specific code.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>