btrfs_std_error() handles errors, puts FS into readonly mode
(as of now). So its good idea to rename it to btrfs_handle_fs_error().
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ edit changelog ]
Signed-off-by: David Sterba <dsterba@suse.com>
The allocation of node could fail if the memory is too fragmented for a
given node size, practically observed with 64k.
http://article.gmane.org/gmane.comp.file-systems.btrfs/54689
Reported-and-tested-by: Jean-Denis Girard <jd.girard@sysnux.pf>
Signed-off-by: David Sterba <dsterba@suse.com>
The send operation is not on the critical writeback path we don't need
to use GFP_NOFS for allocations. All error paths are handled and the
whole operation is restartable.
Signed-off-by: David Sterba <dsterba@suse.com>
In subpagesize-blocksize a page can map multiple extent buffers and hence
using (page index, seq) as the search key is incorrect. For example, searching
through tree modification log tree can return an entry associated with the
first extent buffer mapped by the page (if such an entry exists), when we are
actually searching for entries associated with extent buffers that are mapped
at position 2 or more in the page.
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chandan Rajendra <chandan@linux.vnet.ibm.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Replace the integers by enums for better readability. The value 2 does
not have any meaning since a717531942
"Btrfs: do less aggressive btree readahead" (2009-01-22).
Signed-off-by: David Sterba <dsterba@suse.com>
We use many constants to represent size and offset value. And to make
code readable we use '256 * 1024 * 1024' instead of '268435456' to
represent '256MB'. However we can make far more readable with 'SZ_256MB'
which is defined in the 'linux/sizes.h'.
So this patch replaces 'xxx * 1024 * 1024' kind of expression with
single 'SZ_xxxMB' if 'xxx' is a power of 2 then 'xxx * SZ_1M' if 'xxx' is
not a power of 2. And I haven't touched to '4096' & '8192' because it's
more intuitive than 'SZ_4KB' & 'SZ_8KB'.
Signed-off-by: Byongho Lee <bhlee.kernel@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The return values of btrfs_item_offset_nr and btrfs_item_size_nr are of
type u32. To avoid mixing signed and unsigned integers we should also
declare dsize and last_off to be of type u32.
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: Alexandru Moise <00moses.alexander00@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_error() and btrfs_std_error() does the same thing
and calls _btrfs_std_error(), so consolidate them together.
And the main motivation is that btrfs_error() is closely
named with btrfs_err(), one handles error action the other
is to log the error, so don't closely name them.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Suggested-by: David Sterba <dsterba@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When btrfs_reloc_cow_block() failed in __btrfs_cow_block(), current
code just return a err-value to caller, but leave new_created extent
buffer exist and locked.
Then subsequent code (in relocate) try to lock above eb again,
and caused deadlock without any dmesg.
(eb lock use wait_event(), so no lockdep message)
It is hard to do recover work in __btrfs_cow_block() at this error
point, but we can abort transaction to avoid deadlock and operate on
unstable state.a
It also helps developer to find wrong place quickly.
(better than a frozen fs without any dmesg before patch)
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
The return value of read_tree_block() can confuse callers as it always
returns NULL for either -ENOMEM or -EIO, so it's likely that callers
parse it to a wrong error, for instance, in btrfs_read_tree_root().
This fixes the above issue.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
Convert kmalloc(nr * size, ..) to kmalloc_array that does additional
overflow checks, the zeroing variant is kcalloc.
Signed-off-by: David Sterba <dsterba@suse.cz>
The end_slot variable actually matches the number of pointers in the
node and not the last slot (which is 'nritems - 1'). Therefore in order
to check that the current slot in the for loop doesn't match the last
one, the correct logic is to check if 'i' is less than 'end_slot - 1'
and not 'end_slot - 2'.
Fix this and set end_slot to be 'nritems - 1', as it's less confusing
since the variable name implies it's inclusive rather then exclusive.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
This is the 3rd independent patch of a larger project to cleanup btrfs's
internal usage of btrfs_root. Many functions take btrfs_root only to
grab the fs_info struct.
By requiring a root these functions cause programmer overhead. That
these functions can accept any valid root is not obvious until
inspection.
This patch reduces the specificity of such functions to accept the
fs_info directly.
These patches can be applied independently and thus are not being
submitted as a patch series. There should be about 26 patches by the
project's completion. Each patch will cleanup between 1 and 34 functions
apiece. Each patch covers a single file's functions.
This patch affects the following function(s):
1) csum_tree_block
2) csum_dirty_buffer
3) check_tree_block_fsid
4) btrfs_find_tree_block
5) clean_tree_block
Signed-off-by: Daniel Dressler <danieru.dressler@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.cz>
This patch is part of a larger project to cleanup btrfs's internal usage
of struct btrfs_root. Many functions take btrfs_root only to grab a
pointer to fs_info.
This causes programmers to ponder which root can be passed. Since only
the fs_info is read affected functions can accept any root, except this
is only obvious upon inspection.
This patch reduces the specificty of such functions to accept the
fs_info directly.
This patch does not address the two functions in ctree.c (insert_ptr,
and split_item) which only use root for BUG_ONs in ctree.c
This patch affects the following functions:
1) fixup_low_keys
2) btrfs_set_item_key_safe
Signed-off-by: Daniel Dressler <danieru.dressler@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.cz>
btrfs_alloc_tree_block() returns an extent buffer on which a blocked lock has
been taken. Hence assign the appropriate value to path->locks[level].
Signed-off-by: Chandan Rajendra <chandan@linux.vnet.ibm.com>
Signed-off-by: Chris Mason <clm@fb.com>
We were incorrectly detecting when the target key didn't exist anymore
after releasing the path and re-searching the tree. This could make
us split or duplicate (btrfs_split_item() and btrfs_duplicate_item()
are its only callers at the moment) an item when we should not.
For the case of duplicating an item, we currently only duplicate
checksum items (csum tree) and file extent items (fs/subvol trees).
For the checksum items we end up overriding the item completely,
but for file extent items we update only some of their fields in
the copy (done in __btrfs_drop_extents), which means we can end up
having a logical corruption for some values.
Also for the case where we duplicate a file extent item it will make
us produce a leaf with a wrong key order, as btrfs_duplicate_item()
advances us to the next slot and then its caller sets a smaller key
on the new item at that slot (like in __btrfs_drop_extents() e.g.).
Alternatively if the tree search in setup_leaf_for_split() leaves
with path->slots[0] == btrfs_header_nritems(path->nodes[0]), we end
up accessing beyond the leaf's end (when we check if the item's size
has changed) and make our caller insert an item at the invalid slot
btrfs_header_nritems(path->nodes[0]) + 1, causing an invalid memory
access if the leaf is full or nearly full.
This issue has been present since the introduction of this function
in 2009:
Btrfs: Add btrfs_duplicate_item
commit ad48fd7546
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
I've been overloading root->dirty_list to keep track of dirty roots and which
roots need to have their commit roots switched at transaction commit time. This
could cause us to lose an update to the root which could corrupt the file
system. To fix this use a state bit to know if the root is dirty, and if it
isn't set we go ahead and move the root to the dirty list. This way if we
re-dirty the root after adding it to the switch_commit list we make sure to
update it. This also makes it so that the extent root is always the last root
on the dirty list to try and keep the amount of churn down at this point in the
commit. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
If the found_key is NULL, then btrfs_find_item becomes a verbose wrapper
for simple btrfs_search_slot.
After we've removed all such callers, passing a NULL key is not valid
anymore.
Signed-off-by: David Sterba <dsterba@suse.cz>
If btrfs_find_item is called with NULL path it allocates one locally but
does not free it. Affected paths are inserting an orphan item for a file
and for a subvol root.
Move the path allocation to the callers.
CC: <stable@vger.kernel.org> # 3.14+
Fixes: 3f870c2899 ("btrfs: expand btrfs_find_item() to include find_orphan_item functionality")
Signed-off-by: David Sterba <dsterba@suse.cz>
Make the extent buffer allocation interface consistent. Cloned eb will
set a valid fs_info. For dummy eb, we can drop the length parameter and
set it from fs_info.
The built-in sanity checks may pass a NULL fs_info that's queried for
nodesize, but we know it's 4096.
Signed-off-by: David Sterba <dsterba@suse.cz>
Replacing a xattr consists of doing a lookup for its existing value, delete
the current value from the respective leaf, release the search path and then
finally insert the new value. This leaves a time window where readers (getxattr,
listxattrs) won't see any value for the xattr. Xattrs are used to store ACLs,
so this has security implications.
This change also fixes 2 other existing issues which were:
*) Deleting the old xattr value without verifying first if the new xattr will
fit in the existing leaf item (in case multiple xattrs are packed in the
same item due to name hash collision);
*) Returning -EEXIST when the flag XATTR_CREATE is given and the xattr doesn't
exist but we have have an existing item that packs muliple xattrs with
the same name hash as the input xattr. In this case we should return ENOSPC.
A test case for xfstests follows soon.
Thanks to Alexandre Oliva for reporting the non-atomicity of the xattr replace
implementation.
Reported-by: Alexandre Oliva <oliva@gnu.org>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
The fair reader/writer locks mean that btrfs_clear_path_blocking needs
to strictly follow lock ordering rules even when we already have
blocking locks on a given path.
Before we can clear a blocking lock on the path, we need to make sure
all of the locks have been converted to blocking. This will remove lock
inversions against anyone spinning in write_lock() against the buffers
we're trying to get read locks on. These inversions didn't exist before
the fair read/writer locks, but now we need to be more careful.
We papered over this deadlock in the past by changing
btrfs_try_read_lock() to be a true trylock against both the spinlock and
the blocking lock. This was slower, and not sufficient to fix all the
deadlocks. This patch adds a btrfs_tree_read_lock_atomic(), which
basically means get the spinlock but trylock on the blocking lock.
Signed-off-by: Chris Mason <clm@fb.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Reported-by: Patrick Schmid <schmid@phys.ethz.ch>
cc: stable@vger.kernel.org #v3.15+
cmp was declared twice in btrfs_compare_trees resulting in a shadow
warning. This patch renames second internal variable.
Signed-off-by: Fabian Frederick <fabf@skynet.be>
Signed-off-by: Chris Mason <clm@fb.com>
Use a common definition for the inline data start so we don't have to
open-code it and introduce bugs like "Btrfs: fix wrong max inline data
size limit" fixed.
Signed-off-by: David Sterba <dsterba@suse.cz>
Rename to btrfs_alloc_tree_block as it fits to the alloc/find/free +
_tree_block family. The parameter blocksize was set to the metadata
block size, directly or indirectly.
Signed-off-by: David Sterba <dsterba@suse.cz>
The parent_transid parameter has been unused since its introduction in
ca7a79ad8d ("Pass down the expected generation number when reading
tree blocks"). In reada_tree_block, it was even wrongly set to leafsize.
Transid check is done in the proper read and readahead ignores errors.
Signed-off-by: David Sterba <dsterba@suse.cz>
None of the uses of btrfs_search_forward() need to have the path
nodes (level >= 1) read locked, only the leaf needs to be locked
while the caller processes it. Therefore make it return a path
with all nodes unlocked, except for the leaf.
This change is motivated by the observation that during a file
fsync we repeatdly call btrfs_search_forward() and process the
returned leaf while upper nodes of the returned path (level >= 1)
are read locked, which unnecessarily blocks other tasks that want
to write to the same fs/subvol btree.
Therefore instead of modifying the fsync code to unlock all nodes
with level >= 1 immediately after calling btrfs_search_forward(),
change btrfs_search_forward() to do it, so that it benefits all
callers.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
If we need to cow a node, increase the write lock level and retry the
tree search, there's no point of changing the node locks in our path
to blocking mode, as we only waste time and unnecessarily wake up other
tasks waiting on the spinning locks (just to block them again shortly
after) because we release our path before repeating the tree search.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
In ctree.c:setup_items_for_insert(), we can unlock all nodes in our
path before we process the leaf (shift items and data, adjust data
offsets, etc). This allows for better btree concurrency, as we're
often holding a write lock on at least the node at level 1.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
The nodesize and leafsize were never of different values. Unify the
usage and make nodesize the one. Cleanup the redundant checks and
helpers.
Shaves a few bytes from .text:
text data bss dec hex filename
852418 24560 23112 900090 dbbfa btrfs.ko.before
851074 24584 23112 898770 db6d2 btrfs.ko.after
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
Before I extended the no_quota arg to btrfs_dec/inc_ref because I didn't
understand how snapshot delete was using it and assumed that we needed the
quota operations there. With Mark's work this has turned out to be not the
case, we _always_ need to use no_quota for btrfs_dec/inc_ref, so just drop the
argument and make __btrfs_mod_ref call it's process function with no_quota set
always. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Several reports about leaf corruption has been floating on the list, one of them
points to __btrfs_drop_extents(), and we find that the leaf becomes corrupted
after __btrfs_drop_extents(), it's really a rare case but it does exist.
The problem turns out to be btrfs_next_leaf() called in __btrfs_drop_extents().
So in btrfs_next_leaf(), we release the current path to re-search the last key of
the leaf for locating next leaf, and we've taken it into account that there might
be balance operations between leafs during this 'unlock and re-lock' dance, so
we check the path again and advance it if there are now more items available.
But things are a bit different if that last key happens to be removed and balance
gets a bigger key as the last one, and btrfs_search_slot will return it with
ret > 0, IOW, nothing change in this leaf except the new last key, then we think
we're okay because there is no more item balanced in, fine, we thinks we can
go to the next leaf.
However, we should return that bigger key, otherwise we deserve leaf corruption,
for example, in endio, skipping that key means that __btrfs_drop_extents() thinks
it has dropped all extent matched the required range and finish_ordered_io can
safely insert a new extent, but it actually doesn't and ends up a leaf
corruption.
One may be asking that why our locking on extent io tree doesn't work as
expected, ie. it should avoid this kind of race situation. But in
__btrfs_drop_extents(), we don't always find extents which are included within
our locking range, IOW, extents can start before our searching start, in this
case locking on extent io tree doesn't protect us from the race.
This takes the special case into account.
Reviewed-by: Filipe Manana <fdmanana@gmail.com>
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
We might have had an item with the previous key in the tree right
before we released our path. And after we released our path, that
item might have been pushed to the first slot (0) of the leaf we
were holding due to a tree balance. Alternatively, an item with the
previous key can exist as the only element of a leaf (big fat item).
Therefore account for these 2 cases, so that our callers (like
btrfs_previous_item) don't miss an existing item with a key matching
the previous key we computed above.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Chris Mason <clm@fb.com>
This exercises the various parts of the new qgroup accounting code. We do some
basic stuff and do some things with the shared refs to make sure all that code
works. I had to add a bunch of infrastructure because I needed to be able to
insert items into a fake tree without having to do all the hard work myself,
hopefully this will be usefull in the future. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>