Commit Graph

27 Commits

Author SHA1 Message Date
Tejun Heo 073219e995 cgroup: clean up cgroup_subsys names and initialization
cgroup_subsys is a bit messier than it needs to be.

* The name of a subsys can be different from its internal identifier
  defined in cgroup_subsys.h.  Most subsystems use the matching name
  but three - cpu, memory and perf_event - use different ones.

* cgroup_subsys_id enums are postfixed with _subsys_id and each
  cgroup_subsys is postfixed with _subsys.  cgroup.h is widely
  included throughout various subsystems, it doesn't and shouldn't
  have claim on such generic names which don't have any qualifier
  indicating that they belong to cgroup.

* cgroup_subsys->subsys_id should always equal the matching
  cgroup_subsys_id enum; however, we require each controller to
  initialize it and then BUG if they don't match, which is a bit
  silly.

This patch cleans up cgroup_subsys names and initialization by doing
the followings.

* cgroup_subsys_id enums are now postfixed with _cgrp_id, and each
  cgroup_subsys with _cgrp_subsys.

* With the above, renaming subsys identifiers to match the userland
  visible names doesn't cause any naming conflicts.  All non-matching
  identifiers are renamed to match the official names.

  cpu_cgroup -> cpu
  mem_cgroup -> memory
  perf -> perf_event

* controllers no longer need to initialize ->subsys_id and ->name.
  They're generated in cgroup core and set automatically during boot.

* Redundant cgroup_subsys declarations removed.

* While updating BUG_ON()s in cgroup_init_early(), convert them to
  WARN()s.  BUGging that early during boot is stupid - the kernel
  can't print anything, even through serial console and the trap
  handler doesn't even link stack frame properly for back-tracing.

This patch doesn't introduce any behavior changes.

v2: Rebased on top of fe1217c4f3 ("net: net_cls: move cgroupfs
    classid handling into core").

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Neil Horman <nhorman@tuxdriver.com>
Acked-by: "David S. Miller" <davem@davemloft.net>
Acked-by: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Aristeu Rozanski <aris@redhat.com>
Acked-by: Ingo Molnar <mingo@redhat.com>
Acked-by: Li Zefan <lizefan@huawei.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Serge E. Hallyn <serue@us.ibm.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Thomas Graf <tgraf@suug.ch>
2014-02-08 10:36:58 -05:00
Tejun Heo 3ed80a62bf cgroup: drop module support
With module supported dropped from net_prio, no controller is using
cgroup module support.  None of actual resource controllers can be
built as a module and we aren't gonna add new controllers which don't
control resources.  This patch drops module support from cgroup.

* cgroup_[un]load_subsys() and cgroup_subsys->module removed.

* As there's no point in distinguishing IS_BUILTIN() and IS_MODULE(),
  cgroup_subsys.h now uses IS_ENABLED() directly.

* enum cgroup_subsys_id now exactly matches the list of enabled
  controllers as ordered in cgroup_subsys.h.

* cgroup_subsys[] is now a contiguously occupied array.  Size
  specification is no longer necessary and dropped.

* for_each_builtin_subsys() is removed and for_each_subsys() is
  updated to not require any locking.

* module ref handling is removed from rebind_subsystems().

* Module related comments dropped.

v2: Rebased on top of fe1217c4f3 ("net: net_cls: move cgroupfs
    classid handling into core").

v3: Added {} around the if (need_forkexit_callback) block in
    cgroup_post_fork() for readability as suggested by Li.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
2014-02-08 10:36:58 -05:00
Daniel Borkmann 86f8515f97 net: netprio: rename config to be more consistent with cgroup configs
While we're at it and introduced CGROUP_NET_CLASSID, lets also make
NETPRIO_CGROUP more consistent with the rest of cgroups and rename it
into CONFIG_CGROUP_NET_PRIO so that for networking, we now have
CONFIG_CGROUP_NET_{PRIO,CLASSID}. This not only makes the CONFIG
option consistent among networking cgroups, but also among cgroups
CONFIG conventions in general as the vast majority has a prefix of
CONFIG_CGROUP_<SUBSYS>.

Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Cc: Zefan Li <lizefan@huawei.com>
Cc: cgroups@vger.kernel.org
Acked-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2014-01-03 23:41:42 +01:00
Daniel Borkmann fe1217c4f3 net: net_cls: move cgroupfs classid handling into core
Zefan Li requested [1] to perform the following cleanup/refactoring:

- Split cgroupfs classid handling into net core to better express a
  possible more generic use.

- Disable module support for cgroupfs bits as the majority of other
  cgroupfs subsystems do not have that, and seems to be not wished
  from cgroup side. Zefan probably might want to follow-up for netprio
  later on.

- By this, code can be further reduced which previously took care of
  functionality built when compiled as module.

cgroupfs bits are being placed under net/core/netclassid_cgroup.c, so
that we are consistent with {netclassid,netprio}_cgroup naming that is
under net/core/ as suggested by Zefan.

No change in functionality, but only code refactoring that is being
done here.

 [1] http://patchwork.ozlabs.org/patch/304825/

Suggested-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Cc: Zefan Li <lizefan@huawei.com>
Cc: Thomas Graf <tgraf@suug.ch>
Cc: cgroups@vger.kernel.org
Acked-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2014-01-03 23:41:41 +01:00
Tejun Heo add0c59d80 cgroup: remove bcache_subsys_id which got added stealthily
cafe563591 ("bcache: A block layer cache") added a new cgroup
subsystem bcache_subsys without proper review and ack.  bcache_subsys
seems to use cgroup for group stats and per-group cache_mode
configuration.  This is very much the type of usage that we don't want
to allow.

Fortunately, CONFIG_CGROUP_BCACHE which enables bcache_subsys is
currently commented out, so this shouldn't have any upstream users.
Let's nip in the bud.  While at it, clarify in cgroup_subsys.h that no
new subsystem should be added without explicit acks from cgroup
maintainers.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Li Zefan <lizefan@huawei.com>
Cc: cgroups@vger.kernel.org
Cc: Kent Overstreet <kent.overstreet@gmail.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: linux-bcache@vger.kernel.org
2013-07-09 16:30:35 -07:00
Kent Overstreet cafe563591 bcache: A block layer cache
Does writethrough and writeback caching, handles unclean shutdown, and
has a bunch of other nifty features motivated by real world usage.

See the wiki at http://bcache.evilpiepirate.org for more.

Signed-off-by: Kent Overstreet <koverstreet@google.com>
2013-03-23 16:11:31 -07:00
Daniel Wagner 5fc0b02544 cgroup: Wrap subsystem selection macro
Before we are able to define all subsystem ids at compile time we need
a more fine grained control what gets defined when we include
cgroup_subsys.h. For example we define the enums for the subsystems or
to declare for struct cgroup_subsys (builtin subsystem) by including
cgroup_subsys.h and defining SUBSYS accordingly.

Currently, the decision if a subsys is used is defined inside the
header by testing if CONFIG_*=y is true. By moving this test outside
of cgroup_subsys.h we are able to control it on the include level.

This is done by introducing IS_SUBSYS_ENABLED which then is defined
according the task, e.g. is CONFIG_*=y or CONFIG_*=m.

Signed-off-by: Daniel Wagner <daniel.wagner@bmw-carit.de>
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Acked-by: Neil Horman <nhorman@tuxdriver.com>
Cc: Gao feng <gaofeng@cn.fujitsu.com>
Cc: Jamal Hadi Salim <jhs@mojatatu.com>
Cc: John Fastabend <john.r.fastabend@intel.com>
Cc: netdev@vger.kernel.org
Cc: cgroups@vger.kernel.org
2012-09-14 09:57:37 -07:00
Andrew Morton c255a45805 memcg: rename config variables
Sanity:

CONFIG_CGROUP_MEM_RES_CTLR -> CONFIG_MEMCG
CONFIG_CGROUP_MEM_RES_CTLR_SWAP -> CONFIG_MEMCG_SWAP
CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED -> CONFIG_MEMCG_SWAP_ENABLED
CONFIG_CGROUP_MEM_RES_CTLR_KMEM -> CONFIG_MEMCG_KMEM

[mhocko@suse.cz: fix missed bits]
Cc: Glauber Costa <glommer@parallels.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: David Rientjes <rientjes@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-07-31 18:42:43 -07:00
Aneesh Kumar K.V 2bc64a2046 mm/hugetlb: add new HugeTLB cgroup
Implement a new controller that allows us to control HugeTLB allocations.
The extension allows to limit the HugeTLB usage per control group and
enforces the controller limit during page fault.  Since HugeTLB doesn't
support page reclaim, enforcing the limit at page fault time implies that,
the application will get SIGBUS signal if it tries to access HugeTLB pages
beyond its limit.  This requires the application to know beforehand how
much HugeTLB pages it would require for its use.

The charge/uncharge calls will be added to HugeTLB code in later patch.
Support for cgroup removal will be added in later patches.

[akpm@linux-foundation.org: s/CONFIG_CGROUP_HUGETLB_RES_CTLR/CONFIG_MEMCG_HUGETLB/g]
[akpm@linux-foundation.org: s/CONFIG_MEMCG_HUGETLB/CONFIG_CGROUP_HUGETLB/g]
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hillf Danton <dhillf@gmail.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-07-31 18:42:40 -07:00
Neil Horman 5bc1421e34 net: add network priority cgroup infrastructure (v4)
This patch adds in the infrastructure code to create the network priority
cgroup.  The cgroup, in addition to the standard processes file creates two
control files:

1) prioidx - This is a read-only file that exports the index of this cgroup.
This is a value that is both arbitrary and unique to a cgroup in this subsystem,
and is used to index the per-device priority map

2) priomap - This is a writeable file.  On read it reports a table of 2-tuples
<name:priority> where name is the name of a network interface and priority is
indicates the priority assigned to frames egresessing on the named interface and
originating from a pid in this cgroup

This cgroup allows for skb priority to be set prior to a root qdisc getting
selected. This is benenficial for DCB enabled systems, in that it allows for any
application to use dcb configured priorities so without application modification

Signed-off-by: Neil Horman <nhorman@tuxdriver.com>
Signed-off-by: John Fastabend <john.r.fastabend@intel.com>
CC: Robert Love <robert.w.love@intel.com>
CC: "David S. Miller" <davem@davemloft.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
2011-11-22 15:22:23 -05:00
Daniel Lezcano a77aea9201 cgroup: remove the ns_cgroup
The ns_cgroup is an annoying cgroup at the namespace / cgroup frontier and
leads to some problems:

  * cgroup creation is out-of-control
  * cgroup name can conflict when pids are looping
  * it is not possible to have a single process handling a lot of
    namespaces without falling in a exponential creation time
  * we may want to create a namespace without creating a cgroup

  The ns_cgroup was replaced by a compatibility flag 'clone_children',
  where a newly created cgroup will copy the parent cgroup values.
  The userspace has to manually create a cgroup and add a task to
  the 'tasks' file.

This patch removes the ns_cgroup as suggested in the following thread:

https://lists.linux-foundation.org/pipermail/containers/2009-June/018616.html

The 'cgroup_clone' function is removed because it is no longer used.

This is a userspace-visible change.  Commit 45531757b4 ("cgroup: notify
ns_cgroup deprecated") (merged into 2.6.27) caused the kernel to emit a
printk warning users that the feature is planned for removal.  Since that
time we have heard from XXX users who were affected by this.

Signed-off-by: Daniel Lezcano <daniel.lezcano@free.fr>
Signed-off-by: Serge E. Hallyn <serge.hallyn@canonical.com>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Jamal Hadi Salim <hadi@cyberus.ca>
Reviewed-by: Li Zefan <lizf@cn.fujitsu.com>
Acked-by: Paul Menage <menage@google.com>
Acked-by: Matt Helsley <matthltc@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-05-26 17:12:34 -07:00
Stephane Eranian e5d1367f17 perf: Add cgroup support
This kernel patch adds the ability to filter monitoring based on
container groups (cgroups). This is for use in per-cpu mode only.

The cgroup to monitor is passed as a file descriptor in the pid
argument to the syscall. The file descriptor must be opened to
the cgroup name in the cgroup filesystem. For instance, if the
cgroup name is foo and cgroupfs is mounted in /cgroup, then the
file descriptor is opened to /cgroup/foo. Cgroup mode is
activated by passing PERF_FLAG_PID_CGROUP in the flags argument
to the syscall.

For instance to measure in cgroup foo on CPU1 assuming
cgroupfs is mounted under /cgroup:

struct perf_event_attr attr;
int cgroup_fd, fd;

cgroup_fd = open("/cgroup/foo", O_RDONLY);
fd = perf_event_open(&attr, cgroup_fd, 1, -1, PERF_FLAG_PID_CGROUP);
close(cgroup_fd);

Signed-off-by: Stephane Eranian <eranian@google.com>
[ added perf_cgroup_{exit,attach} ]
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <4d590250.114ddf0a.689e.4482@mx.google.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-02-16 13:30:48 +01:00
Vivek Goyal 31e4c28d95 blkio: Introduce blkio controller cgroup interface
o This is basic implementation of blkio controller cgroup interface. This is
  the common interface visible to user space and should be used by different
  IO control policies as we implement those.

Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2009-12-03 19:28:51 +01:00
Thomas Graf f400923735 pkt_sched: Control group classifier
The classifier should cover the most common use case and will work
without any special configuration.

The principle of the classifier is to directly access the
task_struct via get_current(). In order for this to work,
classification requests from softirqs must be ignored. This is
not a problem because the vast majority of packets in softirq
context are not assigned to a task anyway. For this to work, a
mechanism is needed to trace softirq context. 

This repost goes back to the method of relying on the number of
nested bh disable calls for the sake of not adding too much
complexity and the option to come up with something more reliable
if actually needed.

Signed-off-by: Thomas Graf <tgraf@suug.ch>
Signed-off-by: David S. Miller <davem@davemloft.net>
2008-11-07 22:56:00 -08:00
Matt Helsley dc52ddc0e6 container freezer: implement freezer cgroup subsystem
This patch implements a new freezer subsystem in the control groups
framework.  It provides a way to stop and resume execution of all tasks in
a cgroup by writing in the cgroup filesystem.

The freezer subsystem in the container filesystem defines a file named
freezer.state.  Writing "FROZEN" to the state file will freeze all tasks
in the cgroup.  Subsequently writing "RUNNING" will unfreeze the tasks in
the cgroup.  Reading will return the current state.

* Examples of usage :

   # mkdir /containers/freezer
   # mount -t cgroup -ofreezer freezer  /containers
   # mkdir /containers/0
   # echo $some_pid > /containers/0/tasks

to get status of the freezer subsystem :

   # cat /containers/0/freezer.state
   RUNNING

to freeze all tasks in the container :

   # echo FROZEN > /containers/0/freezer.state
   # cat /containers/0/freezer.state
   FREEZING
   # cat /containers/0/freezer.state
   FROZEN

to unfreeze all tasks in the container :

   # echo RUNNING > /containers/0/freezer.state
   # cat /containers/0/freezer.state
   RUNNING

This is the basic mechanism which should do the right thing for user space
task in a simple scenario.

It's important to note that freezing can be incomplete.  In that case we
return EBUSY.  This means that some tasks in the cgroup are busy doing
something that prevents us from completely freezing the cgroup at this
time.  After EBUSY, the cgroup will remain partially frozen -- reflected
by freezer.state reporting "FREEZING" when read.  The state will remain
"FREEZING" until one of these things happens:

	1) Userspace cancels the freezing operation by writing "RUNNING" to
		the freezer.state file
	2) Userspace retries the freezing operation by writing "FROZEN" to
		the freezer.state file (writing "FREEZING" is not legal
		and returns EIO)
	3) The tasks that blocked the cgroup from entering the "FROZEN"
		state disappear from the cgroup's set of tasks.

[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: export thaw_process]
Signed-off-by: Cedric Le Goater <clg@fr.ibm.com>
Signed-off-by: Matt Helsley <matthltc@us.ibm.com>
Acked-by: Serge E. Hallyn <serue@us.ibm.com>
Tested-by: Matt Helsley <matthltc@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-20 08:52:34 -07:00
Serge E. Hallyn 08ce5f16ee cgroups: implement device whitelist
Implement a cgroup to track and enforce open and mknod restrictions on device
files.  A device cgroup associates a device access whitelist with each cgroup.
 A whitelist entry has 4 fields.  'type' is a (all), c (char), or b (block).
'all' means it applies to all types and all major and minor numbers.  Major
and minor are either an integer or * for all.  Access is a composition of r
(read), w (write), and m (mknod).

The root device cgroup starts with rwm to 'all'.  A child devcg gets a copy of
the parent.  Admins can then remove devices from the whitelist or add new
entries.  A child cgroup can never receive a device access which is denied its
parent.  However when a device access is removed from a parent it will not
also be removed from the child(ren).

An entry is added using devices.allow, and removed using
devices.deny.  For instance

	echo 'c 1:3 mr' > /cgroups/1/devices.allow

allows cgroup 1 to read and mknod the device usually known as
/dev/null.  Doing

	echo a > /cgroups/1/devices.deny

will remove the default 'a *:* mrw' entry.

CAP_SYS_ADMIN is needed to change permissions or move another task to a new
cgroup.  A cgroup may not be granted more permissions than the cgroup's parent
has.  Any task can move itself between cgroups.  This won't be sufficient, but
we can decide the best way to adequately restrict movement later.

[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: fix may-be-used-uninitialized warning]
Signed-off-by: Serge E. Hallyn <serue@us.ibm.com>
Acked-by: James Morris <jmorris@namei.org>
Looks-good-to: Pavel Emelyanov <xemul@openvz.org>
Cc: Daniel Hokka Zakrisson <daniel@hozac.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Paul Menage <menage@google.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-29 08:06:09 -07:00
Balbir Singh 00f0b8259e Memory controller: rename to Memory Resource Controller
Rename Memory Controller to Memory Resource Controller.  Reflect the same
changes in the CONFIG definition for the Memory Resource Controller.  Group
together the config options for Resource Counters and Memory Resource
Controller.

Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Paul Menage <menage@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-03-04 16:35:12 -08:00
Peter Zijlstra 052f1dc7eb sched: rt-group: make rt groups scheduling configurable
Make the rt group scheduler compile time configurable.
Keep it experimental for now.

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-02-13 15:45:40 +01:00
Balbir Singh 8cdea7c054 Memory controller: cgroups setup
Setup the memory cgroup and add basic hooks and controls to integrate
and work with the cgroup.

Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Pavel Emelianov <xemul@openvz.org>
Cc: Paul Menage <menage@google.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Kirill Korotaev <dev@sw.ru>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: David Rientjes <rientjes@google.com>
Cc: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-07 08:42:18 -08:00
Srivatsa Vaddagiri d842de871c sched: cpu accounting controller (V2)
Commit cfb5285660 removed a useful feature for
us, which provided a cpu accounting resource controller.  This feature would be
useful if someone wants to group tasks only for accounting purpose and doesnt
really want to exercise any control over their cpu consumption.

The patch below reintroduces the feature. It is based on Paul Menage's
original patch (Commit 62d0df6406), with
these differences:

        - Removed load average information. I felt it needs more thought (esp
	  to deal with SMP and virtualized platforms) and can be added for
	  2.6.25 after more discussions.
        - Convert group cpu usage to be nanosecond accurate (as rest of the cfs
	  stats are) and invoke cpuacct_charge() from the respective scheduler
	  classes
	- Make accounting scalable on SMP systems by splitting the usage
	  counter to be per-cpu
	- Move the code from kernel/cpu_acct.c to kernel/sched.c (since the
	  code is not big enough to warrant a new file and also this rightly
	  needs to live inside the scheduler. Also things like accessing
	  rq->lock while reading cpu usage becomes easier if the code lived in
	  kernel/sched.c)

The patch also modifies the cpu controller not to provide the same accounting
information.

Tested-by: Balbir Singh <balbir@linux.vnet.ibm.com>

 Tested the patches on top of 2.6.24-rc3. The patches work fine. Ran
 some simple tests like cpuspin (spin on the cpu), ran several tasks in
 the same group and timed them. Compared their time stamps with
 cpuacct.usage.

Signed-off-by: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-12-02 20:04:49 +01:00
Andrew Morton cfb5285660 revert "Task Control Groups: example CPU accounting subsystem"
Revert 62d0df6406.

This was originally intended as a simple initial example of how to create a
control groups subsystem; it wasn't intended for mainline, but I didn't make
this clear enough to Andrew.

The CFS cgroup subsystem now has better functionality for the per-cgroup usage
accounting (based directly on CFS stats) than the "usage" status file in this
patch, and the "load" status file is rather simplistic - although having a
per-cgroup load average report would be a useful feature, I don't believe this
patch actually provides it.  If it gets into the final 2.6.24 we'd probably
have to support this interface for ever.

Cc: Paul Menage <menage@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-11-14 18:45:40 -08:00
Srivatsa Vaddagiri 68318b8e0b Hook up group scheduler with control groups
Enable "cgroup" (formerly containers) based fair group scheduling.  This
will let administrator create arbitrary groups of tasks (using "cgroup"
pseudo filesystem) and control their cpu bandwidth usage.

[akpm@linux-foundation.org: fix cpp condition]
Signed-off-by: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Signed-off-by: Dhaval Giani <dhaval@linux.vnet.ibm.com>
Cc: Randy Dunlap <randy.dunlap@oracle.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Paul Menage <menage@google.com>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 11:53:51 -07:00
Serge E. Hallyn 858d72ead4 cgroups: implement namespace tracking subsystem
When a task enters a new namespace via a clone() or unshare(), a new cgroup
is created and the task moves into it.

This version names cgroups which are automatically created using
cgroup_clone() as "node_<pid>" where pid is the pid of the unsharing or
cloned process.  (Thanks Pavel for the idea) This is safe because if the
process unshares again, it will create

	/cgroups/(...)/node_<pid>/node_<pid>

The only possibilities (AFAICT) for a -EEXIST on unshare are

	1. pid wraparound
	2. a process fails an unshare, then tries again.

Case 1 is unlikely enough that I ignore it (at least for now).  In case 2, the
node_<pid> will be empty and can be rmdir'ed to make the subsequent unshare()
succeed.

Changelog:
	Name cloned cgroups as "node_<pid>".

[clg@fr.ibm.com: fix order of cgroup subsystems in init/Kconfig]
Signed-off-by: Serge E. Hallyn <serue@us.ibm.com>
Cc: Paul Menage <menage@google.com>
Signed-off-by: Cedric Le Goater <clg@fr.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 11:53:37 -07:00
Paul Menage 006cb99200 Task Control Groups: simple task cgroup debug info subsystem
This example subsystem exports debugging information as an aid to diagnosing
refcount leaks, etc, in the cgroup framework.

Signed-off-by: Paul Menage <menage@google.com>
Cc: Serge E. Hallyn <serue@us.ibm.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Paul Jackson <pj@sgi.com>
Cc: Kirill Korotaev <dev@openvz.org>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: Srivatsa Vaddagiri <vatsa@in.ibm.com>
Cc: Cedric Le Goater <clg@fr.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 11:53:36 -07:00
Paul Menage 62d0df6406 Task Control Groups: example CPU accounting subsystem
This example demonstrates how to use the generic cgroup subsystem for a
simple resource tracker that counts, for the processes in a cgroup, the
total CPU time used and the %CPU used in the last complete 10 second interval.

Portions contributed by Balbir Singh <balbir@in.ibm.com>

Signed-off-by: Paul Menage <menage@google.com>
Cc: Serge E. Hallyn <serue@us.ibm.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Paul Jackson <pj@sgi.com>
Cc: Kirill Korotaev <dev@openvz.org>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: Srivatsa Vaddagiri <vatsa@in.ibm.com>
Cc: Cedric Le Goater <clg@fr.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 11:53:36 -07:00
Paul Menage 8793d854ed Task Control Groups: make cpusets a client of cgroups
Remove the filesystem support logic from the cpusets system and makes cpusets
a cgroup subsystem

The "cpuset" filesystem becomes a dummy filesystem; attempts to mount it get
passed through to the cgroup filesystem with the appropriate options to
emulate the old cpuset filesystem behaviour.

Signed-off-by: Paul Menage <menage@google.com>
Cc: Serge E. Hallyn <serue@us.ibm.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Paul Jackson <pj@sgi.com>
Cc: Kirill Korotaev <dev@openvz.org>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: Srivatsa Vaddagiri <vatsa@in.ibm.com>
Cc: Cedric Le Goater <clg@fr.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 11:53:36 -07:00
Paul Menage ddbcc7e8e5 Task Control Groups: basic task cgroup framework
Generic Process Control Groups
--------------------------

There have recently been various proposals floating around for
resource management/accounting and other task grouping subsystems in
the kernel, including ResGroups, User BeanCounters, NSProxy
cgroups, and others.  These all need the basic abstraction of being
able to group together multiple processes in an aggregate, in order to
track/limit the resources permitted to those processes, or control
other behaviour of the processes, and all implement this grouping in
different ways.

This patchset provides a framework for tracking and grouping processes
into arbitrary "cgroups" and assigning arbitrary state to those
groupings, in order to control the behaviour of the cgroup as an
aggregate.

The intention is that the various resource management and
virtualization/cgroup efforts can also become task cgroup
clients, with the result that:

- the userspace APIs are (somewhat) normalised

- it's easier to test e.g. the ResGroups CPU controller in
 conjunction with the BeanCounters memory controller, or use either of
them as the resource-control portion of a virtual server system.

- the additional kernel footprint of any of the competing resource
 management systems is substantially reduced, since it doesn't need
 to provide process grouping/containment, hence improving their
 chances of getting into the kernel

This patch:

Add the main task cgroups framework - the cgroup filesystem, and the
basic structures for tracking membership and associating subsystem state
objects to tasks.

Signed-off-by: Paul Menage <menage@google.com>
Cc: Serge E. Hallyn <serue@us.ibm.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Paul Jackson <pj@sgi.com>
Cc: Kirill Korotaev <dev@openvz.org>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: Srivatsa Vaddagiri <vatsa@in.ibm.com>
Cc: Cedric Le Goater <clg@fr.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 11:53:36 -07:00