This patch adds the list and mask fields needed to support vfsmount marks.
These are the same fields fsnotify needs on an inode. They are not used,
just declared and we note where the cleanup hook should be (the function is
not yet defined)
Signed-off-by: Andreas Gruenbacher <agruen@suse.de>
Signed-off-by: Eric Paris <eparis@redhat.com>
Some fsnotify operations send a struct file. This is more information than
we technically need. We instead send a struct path in all cases instead of
sometimes a path and sometimes a file.
Signed-off-by: Andreas Gruenbacher <agruen@suse.de>
Signed-off-by: Eric Paris <eparis@redhat.com>
To ensure that a group will not duplicate events when it receives it based
on the vfsmount and the inode should_send_event test we should distinguish
those two cases. We pass a vfsmount to this function so groups can make
their own determinations.
Signed-off-by: Eric Paris <eparis@redhat.com>
currently all of the notification systems implemented select which inodes
they care about and receive messages only about those inodes (or the
children of those inodes.) This patch begins to flesh out fsnotify support
for the concept of listeners that want to hear notification for an inode
accessed below a given monut point. This patch implements a second list
of fsnotify groups to hold these types of groups and a second global mask
to hold the events of interest for this type of group.
The reason we want a second group list and mask is because the inode based
notification should_send_event support which makes each group look for a mark
on the given inode. With one nfsmount listener that means that every group would
have to take the inode->i_lock, look for their mark, not find one, and return
for every operation. By seperating vfsmount from inode listeners only when
there is a inode listener will the inode groups have to look for their
mark and take the inode lock. vfsmount listeners will have to grab the lock and
look for a mark but there should be fewer of them, and one vfsmount listener
won't cause the i_lock to be grabbed and released for every fsnotify group
on every io operation.
Signed-off-by: Eric Paris <eparis@redhat.com>
Simple renaming patch. fsnotify is about to support mount point listeners
so I am renaming fsnotify_groups and fsnotify_mask to indicate these are lists
used only for groups which have watches on inodes.
Signed-off-by: Eric Paris <eparis@redhat.com>
fanotify needs a path in order to open an fd to the object which changed.
Currently notifications to inode's parents are done using only the inode.
For some parental notification we have the entire file, send that so
fanotify can use it.
Signed-off-by: Eric Paris <eparis@redhat.com>
fanotify is going to need to look at file->private_data to know if an event
should be sent or not. This passes the data (which might be a file,
dentry, inode, or none) to the should_send function calls so fanotify can
get that information when available
Signed-off-by: Eric Paris <eparis@redhat.com>
fanotify is only interested in event types which contain enough information
to open the original file in the context of the fanotify listener. Since
fanotify may not want to send events if that data isn't present we pass
the data type to the should_send_event function call so fanotify can express
its lack of interest.
Signed-off-by: Eric Paris <eparis@redhat.com>
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
inotify can have a watchs removed under filesystem reclaim.
=================================
[ INFO: inconsistent lock state ]
2.6.31-rc2 #16
---------------------------------
inconsistent {IN-RECLAIM_FS-W} -> {RECLAIM_FS-ON-W} usage.
khubd/217 [HC0[0]:SC0[0]:HE1:SE1] takes:
(iprune_mutex){+.+.?.}, at: [<c10ba899>] invalidate_inodes+0x20/0xe3
{IN-RECLAIM_FS-W} state was registered at:
[<c10536ab>] __lock_acquire+0x2c9/0xac4
[<c1053f45>] lock_acquire+0x9f/0xc2
[<c1308872>] __mutex_lock_common+0x2d/0x323
[<c1308c00>] mutex_lock_nested+0x2e/0x36
[<c10ba6ff>] shrink_icache_memory+0x38/0x1b2
[<c108bfb6>] shrink_slab+0xe2/0x13c
[<c108c3e1>] kswapd+0x3d1/0x55d
[<c10449b5>] kthread+0x66/0x6b
[<c1003fdf>] kernel_thread_helper+0x7/0x10
[<ffffffff>] 0xffffffff
Two things are needed to fix this. First we need a method to tell
fsnotify_create_event() to use GFP_NOFS and second we need to stop using
one global IN_IGNORED event and allocate them one at a time. This solves
current issues with multiple IN_IGNORED on a queue having tail drop
problems and simplifies the allocations since we don't have to worry about
two tasks opperating on the IGNORED event concurrently.
Signed-off-by: Eric Paris <eparis@redhat.com>
inotify and dnotify will both indicate that they want any event which came
from a child inode. The fix is to mask off FS_EVENT_ON_CHILD when deciding
if inotify or dnotify is interested in a given event.
Signed-off-by: Eric Paris <eparis@redhat.com>
As part of the standard inotify events it includes a correlation cookie
between two dentry move operations. This patch includes the same behaviour
in fsnotify events. It is needed so that inotify userspace can be
implemented on top of fsnotify.
Signed-off-by: Eric Paris <eparis@redhat.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Hellwig <hch@lst.de>
When inotify wants to send events to a directory about a child it includes
the name of the original file. This patch collects that filename and makes
it available for notification.
Signed-off-by: Eric Paris <eparis@redhat.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Hellwig <hch@lst.de>
inotify and dnotify both use a similar parent notification mechanism. We
add a generic parent notification mechanism to fsnotify for both of these
to use. This new machanism also adds the dentry flag optimization which
exists for inotify to dnotify.
Signed-off-by: Eric Paris <eparis@redhat.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Hellwig <hch@lst.de>
This patch creates a way for fsnotify groups to attach marks to inodes.
These marks have little meaning to the generic fsnotify infrastructure
and thus their meaning should be interpreted by the group that attached
them to the inode's list.
dnotify and inotify will make use of these markings to indicate which
inodes are of interest to their respective groups. But this implementation
has the useful property that in the future other listeners could actually
use the marks for the exact opposite reason, aka to indicate which inodes
it had NO interest in.
Signed-off-by: Eric Paris <eparis@redhat.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Hellwig <hch@lst.de>
fsnotify is a backend for filesystem notification. fsnotify does
not provide any userspace interface but does provide the basis
needed for other notification schemes such as dnotify. fsnotify
can be extended to be the backend for inotify or the upcoming
fanotify. fsnotify provides a mechanism for "groups" to register for
some set of filesystem events and to then deliver those events to
those groups for processing.
fsnotify has a number of benefits, the first being actually shrinking the size
of an inode. Before fsnotify to support both dnotify and inotify an inode had
unsigned long i_dnotify_mask; /* Directory notify events */
struct dnotify_struct *i_dnotify; /* for directory notifications */
struct list_head inotify_watches; /* watches on this inode */
struct mutex inotify_mutex; /* protects the watches list
But with fsnotify this same functionallity (and more) is done with just
__u32 i_fsnotify_mask; /* all events for this inode */
struct hlist_head i_fsnotify_mark_entries; /* marks on this inode */
That's right, inotify, dnotify, and fanotify all in 64 bits. We used that
much space just in inotify_watches alone, before this patch set.
fsnotify object lifetime and locking is MUCH better than what we have today.
inotify locking is incredibly complex. See 8f7b0ba1c8 as an example of
what's been busted since inception. inotify needs to know internal semantics
of superblock destruction and unmounting to function. The inode pinning and
vfs contortions are horrible.
no fsnotify implementers do allocation under locks. This means things like
f04b30de3 which (due to an overabundance of caution) changes GFP_KERNEL to
GFP_NOFS can be reverted. There are no longer any allocation rules when using
or implementing your own fsnotify listener.
fsnotify paves the way for fanotify. In brief fanotify is a notification
mechanism that delivers the lisener both an 'event' and an open file descriptor
to the object in question. This means that fanotify is pathname agnostic.
Some on lkml may not care for the original companies or users that pushed for
TALPA, but fanotify was designed with flexibility and input for other users in
mind. The readahead group expressed interest in fanotify as it could be used
to profile disk access on boot without breaking the audit system. The desktop
search groups have also expressed interest in fanotify as it solves a number
of the race conditions and problems present with managing inotify when more
than a limited number of specific files are of interest. fanotify can provide
for a userspace access control system which makes it a clean interface for AV
vendors to hook without trying to do binary patching on the syscall table,
LSM, and everywhere else they do their things today. With this patch series
fanotify can be implemented in less than 1200 lines of easy to review code.
Almost all of which is the socket based user interface.
This patch series builds fsnotify to the point that it can implement
dnotify and inotify_user. Patches exist and will be sent soon after
acceptance to finish the in kernel inotify conversion (audit) and implement
fanotify.
Signed-off-by: Eric Paris <eparis@redhat.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Hellwig <hch@lst.de>