cgroup is in the process of converting to css (cgroup_subsys_state)
from cgroup as the principal subsystem interface handle. This is
mostly to prepare for the unified hierarchy support where css's will
be created and destroyed dynamically but also helps cleaning up
subsystem implementations as css is usually what they are interested
in anyway.
This patch converts task iterators to deal with css instead of cgroup.
Note that under unified hierarchy, different sets of tasks will be
considered belonging to a given cgroup depending on the subsystem in
question and making the iterators deal with css instead cgroup
provides them with enough information about the iteration.
While at it, fix several function comment formats in cpuset.c.
This patch doesn't introduce any behavior differences.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Matt Helsley <matthltc@us.ibm.com>
cgroup_scan_tasks() takes a pointer to struct cgroup_scanner as its
sole argument and the only function of that struct is packing the
arguments of the function call which are consisted of five fields.
It's not too unusual to pack parameters into a struct when the number
of arguments gets excessive or the whole set needs to be passed around
a lot, but neither holds here making it just weird.
Drop struct cgroup_scanner and pass the params directly to
cgroup_scan_tasks(). Note that struct cpuset_change_nodemask_arg was
added to cpuset.c to pass both ->cs and ->newmems pointer to
cpuset_change_nodemask() using single data pointer.
This doesn't make any functional differences.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
cgroup is currently in the process of transitioning to using css
(cgroup_subsys_state) as the primary handle instead of cgroup in
subsystem API. For hierarchy iterators, this is beneficial because
* In most cases, css is the only thing subsystems care about anyway.
* On the planned unified hierarchy, iterations for different
subsystems will need to skip over different subtrees of the
hierarchy depending on which subsystems are enabled on each cgroup.
Passing around css makes it unnecessary to explicitly specify the
subsystem in question as css is intersection between cgroup and
subsystem
* For the planned unified hierarchy, css's would need to be created
and destroyed dynamically independent from cgroup hierarchy. Having
cgroup core manage css iteration makes enforcing deref rules a lot
easier.
Most subsystem conversions are straight-forward. Noteworthy changes
are
* blkio: cgroup_to_blkcg() is no longer used. Removed.
* freezer: cgroup_freezer() is no longer used. Removed.
* devices: cgroup_to_devcgroup() is no longer used. Removed.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Aristeu Rozanski <aris@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Matt Helsley <matthltc@us.ibm.com>
Cc: Jens Axboe <axboe@kernel.dk>
cgroup is currently in the process of transitioning to using struct
cgroup_subsys_state * as the primary handle instead of struct cgroup.
Please see the previous commit which converts the subsystem methods
for rationale.
This patch converts all cftype file operations to take @css instead of
@cgroup. cftypes for the cgroup core files don't have their subsytem
pointer set. These will automatically use the dummy_css added by the
previous patch and can be converted the same way.
Most subsystem conversions are straight forwards but there are some
interesting ones.
* freezer: update_if_frozen() is also converted to take @css instead
of @cgroup for consistency. This will make the code look simpler
too once iterators are converted to use css.
* memory/vmpressure: mem_cgroup_from_css() needs to be exported to
vmpressure while mem_cgroup_from_cont() can be made static.
Updated accordingly.
* cpu: cgroup_tg() doesn't have any user left. Removed.
* cpuacct: cgroup_ca() doesn't have any user left. Removed.
* hugetlb: hugetlb_cgroup_form_cgroup() doesn't have any user left.
Removed.
* net_cls: cgrp_cls_state() doesn't have any user left. Removed.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Aristeu Rozanski <aris@redhat.com>
Acked-by: Daniel Wagner <daniel.wagner@bmw-carit.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Matt Helsley <matthltc@us.ibm.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Steven Rostedt <rostedt@goodmis.org>
cgroup is currently in the process of transitioning to using struct
cgroup_subsys_state * as the primary handle instead of struct cgroup *
in subsystem implementations for the following reasons.
* With unified hierarchy, subsystems will be dynamically bound and
unbound from cgroups and thus css's (cgroup_subsys_state) may be
created and destroyed dynamically over the lifetime of a cgroup,
which is different from the current state where all css's are
allocated and destroyed together with the associated cgroup. This
in turn means that cgroup_css() should be synchronized and may
return NULL, making it more cumbersome to use.
* Differing levels of per-subsystem granularity in the unified
hierarchy means that the task and descendant iterators should behave
differently depending on the specific subsystem the iteration is
being performed for.
* In majority of the cases, subsystems only care about its part in the
cgroup hierarchy - ie. the hierarchy of css's. Subsystem methods
often obtain the matching css pointer from the cgroup and don't
bother with the cgroup pointer itself. Passing around css fits
much better.
This patch converts all cgroup_subsys methods to take @css instead of
@cgroup. The conversions are mostly straight-forward. A few
noteworthy changes are
* ->css_alloc() now takes css of the parent cgroup rather than the
pointer to the new cgroup as the css for the new cgroup doesn't
exist yet. Knowing the parent css is enough for all the existing
subsystems.
* In kernel/cgroup.c::offline_css(), unnecessary open coded css
dereference is replaced with local variable access.
This patch shouldn't cause any behavior differences.
v2: Unnecessary explicit cgrp->subsys[] deref in css_online() replaced
with local variable @css as suggested by Li Zefan.
Rebased on top of new for-3.12 which includes for-3.11-fixes so
that ->css_free() invocation added by da0a12caff ("cgroup: fix a
leak when percpu_ref_init() fails") is converted too. Suggested
by Li Zefan.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Aristeu Rozanski <aris@redhat.com>
Acked-by: Daniel Wagner <daniel.wagner@bmw-carit.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Matt Helsley <matthltc@us.ibm.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Steven Rostedt <rostedt@goodmis.org>
Currently, controllers have to explicitly follow the cgroup hierarchy
to find the parent of a given css. cgroup is moving towards using
cgroup_subsys_state as the main controller interface construct, so
let's provide a way to climb the hierarchy using just csses.
This patch implements css_parent() which, given a css, returns its
parent. The function is guarnateed to valid non-NULL parent css as
long as the target css is not at the top of the hierarchy.
freezer, cpuset, cpu, cpuacct, hugetlb, memory, net_cls and devices
are converted to use css_parent() instead of accessing cgroup->parent
directly.
* __parent_ca() is dropped from cpuacct and its usage is replaced with
parent_ca(). The only difference between the two was NULL test on
cgroup->parent which is now embedded in css_parent() making the
distinction moot. Note that eventually a css->parent field will be
added to css and the NULL check in css_parent() will go away.
This patch shouldn't cause any behavior differences.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
css (cgroup_subsys_state) is usually embedded in a subsys specific
data structure. Subsystems either use container_of() directly to cast
from css to such data structure or has an accessor function wrapping
such cast. As cgroup as whole is moving towards using css as the main
interface handle, add and update such accessors to ease dealing with
css's.
All accessors explicitly handle NULL input and return NULL in those
cases. While this looks like an extra branch in the code, as all
controllers specific data structures have css as the first field, the
casting doesn't involve any offsetting and the compiler can trivially
optimize out the branch.
* blkio, freezer, cpuset, cpu, cpuacct and net_cls didn't have such
accessor. Added.
* memory, hugetlb and devices already had one but didn't explicitly
handle NULL input. Updated.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
cpuset uses "const" qualifiers on struct cpuset in some functions;
however, it doesn't work well when a value derived from returned const
pointer has to be passed to an accessor. It's C after all.
Drop the "const" qualifiers except for the trivially leaf ones. This
patch doesn't make any functional changes.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
The names of the two struct cgroup_subsys_state accessors -
cgroup_subsys_state() and task_subsys_state() - are somewhat awkward.
The former clashes with the type name and the latter doesn't even
indicate it's somehow related to cgroup.
We're about to revamp large portion of cgroup API, so, let's rename
them so that they're less awkward. Most per-controller usages of the
accessors are localized in accessor wrappers and given the amount of
scheduled changes, this isn't gonna add any noticeable headache.
Rename cgroup_subsys_state() to cgroup_css() and task_subsys_state()
to task_css(). This patch is pure rename.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Constantly use @cset for css_set variables and use @cgrp as cgroup
variables.
Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Comment for cpuset_css_offline() was on top of cpuset_css_free().
Move it.
Signed-off-by: Zhao Hongjiang <zhaohongjiang@huawei.com>
Acked-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
get rid of the useless forward declaration of the struct cpuset cause the
below define it.
Signed-off-by: Zhao Hongjiang <zhaohongjiang@huawei.com>
Acked-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Pull cpuset changes from Tejun Heo:
"cpuset has always been rather odd about its configurations - a cgroup
right after creation didn't allow any task executions before
configuration, changing configuration in the parent modifies the
descendants irreversibly and so on. These behaviors are inherently
nasty and almost hostile against sharing the hierarchy with other
controllers making it very difficult to use in unified hierarchy.
Li is currently in the process of updating the behaviors for
__DEVEL__sane_behavior which is the bulk of changes in this pull
request. It isn't complete yet and the behaviors will change further
but all changes are gated behind sane_behavior. In the process, the
rather hairy work-item punting which was used to work around the
limitations of cgroup descendant iterator was simplified."
* 'for-3.11-cpuset' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
cpuset: rename @cont to @cgrp
cpuset: fix to migrate mm correctly in a corner case
cpuset: allow to move tasks to empty cpusets
cpuset: allow to keep tasks in empty cpusets
cpuset: introduce effective_{cpumask|nodemask}_cpuset()
cpuset: record old_mems_allowed in struct cpuset
cpuset: remove async hotplug propagation work
cpuset: let hotplug propagation work wait for task attaching
cpuset: re-structure update_cpumask() a bit
cpuset: remove cpuset_test_cpumask()
cpuset: remove unnecessary variable in cpuset_attach()
cpuset: cleanup guarantee_online_{cpus|mems}()
cpuset: remove redundant check in cpuset_cpus_allowed_fallback()
Most of the stuff from kernel/sched.c was moved to kernel/sched/core.c long time
back and the comments/Documentation never got updated.
I figured it out when I was going through sched-domains.txt and so thought of
fixing it globally.
I haven't crossed check if the stuff that is referenced in sched/core.c by all
these files is still present and hasn't changed as that wasn't the motive behind
this patch.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/cdff76a265326ab8d71922a1db5be599f20aad45.1370329560.git.viresh.kumar@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cont is short for container. control group was named process container
at first, but then people found container already has a meaning in
linux kernel.
Clean up the leftover variable name @cont.
Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Before moving tasks out of empty cpusets, update_tasks_nodemask()
is called, which calls do_migrate_pages(xx, from, to). Then those
tasks are moved to an ancestor, and do_migrate_pages() is called
again.
The first time: from = node_to_be_offlined, to = empty.
The second time: from = empty, to = ancestor's nodemask.
so looks like no pages will be migrated.
Fix this by:
- Don't call update_tasks_nodemask() on empty cpusets.
- Pass cs->old_mems_allowed to do_migrate_pages().
v4: added comment in cpuset_hotplug_update_tasks() and rephased comment
in cpuset_attach().
Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Currently some cpuset behaviors are not friendly when cpuset is co-mounted
with other cgroup controllers.
Now with this patchset if cpuset is mounted with sane_behavior option,
it behaves differently:
- Tasks will be kept in empty cpusets when hotplug happens and take
masks of ancestors with non-empty cpus/mems, instead of being moved to
an ancestor.
- A task can be moved into an empty cpuset, and again it takes masks of
ancestors, so the user can drop a task into a newly created cgroup without
having to do anything for it.
As tasks can reside in empy cpusets, here're some rules:
- They can be moved to another cpuset, regardless it's empty or not.
- Though it takes masks from ancestors, it takes other configs from the
empty cpuset.
- If the ancestors' masks are changed, those tasks will also be updated
to take new masks.
v2: add documentation in include/linux/cgroup.h
Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
To achieve this:
- We call update_tasks_cpumask/nodemask() for empty cpusets when
hotplug happens, instead of moving tasks out of them.
- When a cpuset's masks are changed by writing cpuset.cpus/mems,
we also update tasks in child cpusets which are empty.
v3:
- do propagation work in one place for both hotplug and unplug
v2:
- drop rcu_read_lock before calling update_task_nodemask() and
update_task_cpumask(), instead of using workqueue.
- add documentation in include/linux/cgroup.h
Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
effective_cpumask_cpuset() returns an ancestor cpuset which has
non-empty cpumask.
If a cpuset is empty and the tasks in it need to update their
cpus_allowed, they take on the ancestor cpuset's cpumask.
This currently won't change any behavior, but it will later allow us
to keep tasks in empty cpusets.
Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
When we update a cpuset's mems_allowed and thus update tasks'
mems_allowed, it's required to pass the old mems_allowed and new
mems_allowed to cpuset_migrate_mm().
Currently we save old mems_allowed in a temp local variable before
changing cpuset->mems_allowed. This patch changes it by saving
old mems_allowed in cpuset->old_mems_allowed.
This currently won't change any behavior, but it will later allow
us to keep tasks in empty cpusets.
v3: restored "cpuset_attach_nodemask_to = cs->mems_allowed"
Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
As we can drop rcu read lock while iterating cgroup hierarchy,
we don't have to do propagation asynchronously via workqueue.
Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Instead of triggering propagation work in cpuset_attach(), we make
hotplug propagation work wait until there's no task attaching in
progress.
IMO this is more robust. We won't see empty masks in cpuset_attach().
Also it's a preparation for removing propagation work. Without asynchronous
propagation we can't call move_tasks_in_empty_cpuset() in cpuset_attach(),
because otherwise we'll deadlock on cgroup_mutex.
tj: typo fixes.
Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Check if cpus_allowed is to be changed before calling validate_change().
This won't change any behavior, but later it will allow us to do this:
# mkdir /cpuset/child
# echo $$ > /cpuset/child/tasks /* empty cpuset */
# echo > /cpuset/child/cpuset.cpus /* do nothing, won't fail */
Without this patch, the last operation will fail.
Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
- We never pass a NULL @cs to these functions.
- The top cpuset always has some online cpus/mems.
Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Pull VFS updates from Al Viro,
Misc cleanups all over the place, mainly wrt /proc interfaces (switch
create_proc_entry to proc_create(), get rid of the deprecated
create_proc_read_entry() in favor of using proc_create_data() and
seq_file etc).
7kloc removed.
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (204 commits)
don't bother with deferred freeing of fdtables
proc: Move non-public stuff from linux/proc_fs.h to fs/proc/internal.h
proc: Make the PROC_I() and PDE() macros internal to procfs
proc: Supply a function to remove a proc entry by PDE
take cgroup_open() and cpuset_open() to fs/proc/base.c
ppc: Clean up scanlog
ppc: Clean up rtas_flash driver somewhat
hostap: proc: Use remove_proc_subtree()
drm: proc: Use remove_proc_subtree()
drm: proc: Use minor->index to label things, not PDE->name
drm: Constify drm_proc_list[]
zoran: Don't print proc_dir_entry data in debug
reiserfs: Don't access the proc_dir_entry in r_open(), r_start() r_show()
proc: Supply an accessor for getting the data from a PDE's parent
airo: Use remove_proc_subtree()
rtl8192u: Don't need to save device proc dir PDE
rtl8187se: Use a dir under /proc/net/r8180/
proc: Add proc_mkdir_data()
proc: Move some bits from linux/proc_fs.h to linux/{of.h,signal.h,tty.h}
proc: Move PDE_NET() to fs/proc/proc_net.c
...
Pull cgroup updates from Tejun Heo:
- Fixes and a lot of cleanups. Locking cleanup is finally complete.
cgroup_mutex is no longer exposed to individual controlelrs which
used to cause nasty deadlock issues. Li fixed and cleaned up quite a
bit including long standing ones like racy cgroup_path().
- device cgroup now supports proper hierarchy thanks to Aristeu.
- perf_event cgroup now supports proper hierarchy.
- A new mount option "__DEVEL__sane_behavior" is added. As indicated
by the name, this option is to be used for development only at this
point and generates a warning message when used. Unfortunately,
cgroup interface currently has too many brekages and inconsistencies
to implement a consistent and unified hierarchy on top. The new flag
is used to collect the behavior changes which are necessary to
implement consistent unified hierarchy. It's likely that this flag
won't be used verbatim when it becomes ready but will be enabled
implicitly along with unified hierarchy.
The option currently disables some of broken behaviors in cgroup core
and also .use_hierarchy switch in memcg (will be routed through -mm),
which can be used to make very unusual hierarchy where nesting is
partially honored. It will also be used to implement hierarchy
support for blk-throttle which would be impossible otherwise without
introducing a full separate set of control knobs.
This is essentially versioning of interface which isn't very nice but
at this point I can't see any other options which would allow keeping
the interface the same while moving towards hierarchy behavior which
is at least somewhat sane. The planned unified hierarchy is likely
to require some level of adaptation from userland anyway, so I think
it'd be best to take the chance and update the interface such that
it's supportable in the long term.
Maintaining the existing interface does complicate cgroup core but
shouldn't put too much strain on individual controllers and I think
it'd be manageable for the foreseeable future. Maybe we'll be able
to drop it in a decade.
Fix up conflicts (including a semantic one adding a new #include to ppc
that was uncovered by header the file changes) as per Tejun.
* 'for-3.10' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: (45 commits)
cpuset: fix compile warning when CONFIG_SMP=n
cpuset: fix cpu hotplug vs rebuild_sched_domains() race
cpuset: use rebuild_sched_domains() in cpuset_hotplug_workfn()
cgroup: restore the call to eventfd->poll()
cgroup: fix use-after-free when umounting cgroupfs
cgroup: fix broken file xattrs
devcg: remove parent_cgroup.
memcg: force use_hierarchy if sane_behavior
cgroup: remove cgrp->top_cgroup
cgroup: introduce sane_behavior mount option
move cgroupfs_root to include/linux/cgroup.h
cgroup: convert cgroupfs_root flag bits to masks and add CGRP_ prefix
cgroup: make cgroup_path() not print double slashes
Revert "cgroup: remove bind() method from cgroup_subsys."
perf: make perf_event cgroup hierarchical
cgroup: implement cgroup_is_descendant()
cgroup: make sure parent won't be destroyed before its children
cgroup: remove bind() method from cgroup_subsys.
devcg: remove broken_hierarchy tag
cgroup: remove cgroup_lock_is_held()
...
Pull workqueue updates from Tejun Heo:
"A lot of activities on workqueue side this time. The changes achieve
the followings.
- WQ_UNBOUND workqueues - the workqueues which are per-cpu - are
updated to be able to interface with multiple backend worker pools.
This involved a lot of churning but the end result seems actually
neater as unbound workqueues are now a lot closer to per-cpu ones.
- The ability to interface with multiple backend worker pools are
used to implement unbound workqueues with custom attributes.
Currently the supported attributes are the nice level and CPU
affinity. It may be expanded to include cgroup association in
future. The attributes can be specified either by calling
apply_workqueue_attrs() or through /sys/bus/workqueue/WQ_NAME/* if
the workqueue in question is exported through sysfs.
The backend worker pools are keyed by the actual attributes and
shared by any workqueues which share the same attributes. When
attributes of a workqueue are changed, the workqueue binds to the
worker pool with the specified attributes while leaving the work
items which are already executing in its previous worker pools
alone.
This allows converting custom worker pool implementations which
want worker attribute tuning to use workqueues. The writeback pool
is already converted in block tree and there are a couple others
are likely to follow including btrfs io workers.
- WQ_UNBOUND's ability to bind to multiple worker pools is also used
to make it NUMA-aware. Because there's no association between work
item issuer and the specific worker assigned to execute it, before
this change, using unbound workqueue led to unnecessary cross-node
bouncing and it couldn't be helped by autonuma as it requires tasks
to have implicit node affinity and workers are assigned randomly.
After these changes, an unbound workqueue now binds to multiple
NUMA-affine worker pools so that queued work items are executed in
the same node. This is turned on by default but can be disabled
system-wide or for individual workqueues.
Crypto was requesting NUMA affinity as encrypting data across
different nodes can contribute noticeable overhead and doing it
per-cpu was too limiting for certain cases and IO throughput could
be bottlenecked by one CPU being fully occupied while others have
idle cycles.
While the new features required a lot of changes including
restructuring locking, it didn't complicate the execution paths much.
The unbound workqueue handling is now closer to per-cpu ones and the
new features are implemented by simply associating a workqueue with
different sets of backend worker pools without changing queue,
execution or flush paths.
As such, even though the amount of change is very high, I feel
relatively safe in that it isn't likely to cause subtle issues with
basic correctness of work item execution and handling. If something
is wrong, it's likely to show up as being associated with worker pools
with the wrong attributes or OOPS while workqueue attributes are being
changed or during CPU hotplug.
While this creates more backend worker pools, it doesn't add too many
more workers unless, of course, there are many workqueues with unique
combinations of attributes. Assuming everything else is the same,
NUMA awareness costs an extra worker pool per NUMA node with online
CPUs.
There are also a couple things which are being routed outside the
workqueue tree.
- block tree pulled in workqueue for-3.10 so that writeback worker
pool can be converted to unbound workqueue with sysfs control
exposed. This simplifies the code, makes writeback workers
NUMA-aware and allows tuning nice level and CPU affinity via sysfs.
- The conversion to workqueue means that there's no 1:1 association
between a specific worker, which makes writeback folks unhappy as
they want to be able to tell which filesystem caused a problem from
backtrace on systems with many filesystems mounted. This is
resolved by allowing work items to set debug info string which is
printed when the task is dumped. As this change involves unifying
implementations of dump_stack() and friends in arch codes, it's
being routed through Andrew's -mm tree."
* 'for-3.10' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq: (84 commits)
workqueue: use kmem_cache_free() instead of kfree()
workqueue: avoid false negative WARN_ON() in destroy_workqueue()
workqueue: update sysfs interface to reflect NUMA awareness and a kernel param to disable NUMA affinity
workqueue: implement NUMA affinity for unbound workqueues
workqueue: introduce put_pwq_unlocked()
workqueue: introduce numa_pwq_tbl_install()
workqueue: use NUMA-aware allocation for pool_workqueues
workqueue: break init_and_link_pwq() into two functions and introduce alloc_unbound_pwq()
workqueue: map an unbound workqueues to multiple per-node pool_workqueues
workqueue: move hot fields of workqueue_struct to the end
workqueue: make workqueue->name[] fixed len
workqueue: add workqueue->unbound_attrs
workqueue: determine NUMA node of workers accourding to the allowed cpumask
workqueue: drop 'H' from kworker names of unbound worker pools
workqueue: add wq_numa_tbl_len and wq_numa_possible_cpumask[]
workqueue: move pwq_pool_locking outside of get/put_unbound_pool()
workqueue: fix memory leak in apply_workqueue_attrs()
workqueue: fix unbound workqueue attrs hashing / comparison
workqueue: fix race condition in unbound workqueue free path
workqueue: remove pwq_lock which is no longer used
...
Use the new interface, remove one ifdef. No code size changes.
We could/should have been using __meminit/__meminitdata here but there's
now no point in doing that because all this code is elided at compile time.
Cc: Li Zefan <lizefan@huawei.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Reported by Fengguang's kbuild test robot:
kernel/cpuset.c:787: warning: 'generate_sched_domains' defined but not used
Introduced by commit e0e80a02e5
("cpuset: use rebuild_sched_domains() in cpuset_hotplug_workfn()),
which removed generate_sched_domains() from cpuset_hotplug_workfn().
Reported-by: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
In cpuset_hotplug_workfn(), partition_sched_domains() is called without
hotplug lock held, which is actually needed (stated in the function
header of partition_sched_domains()).
This patch tries to use rebuild_sched_domains() to solve the above
issue, and makes the code looks a little simpler.
Signed-off-by: Li Zhong <zhong@linux.vnet.ibm.com>
Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
When a cpuset becomes empty (no CPU or memory), its tasks are
transferred with the nearest ancestor with execution resources. This
is implemented using cgroup_scan_tasks() with a callback which grabs
cgroup_mutex and invokes cgroup_attach_task() on each task.
Both cgroup_mutex and cgroup_attach_task() are scheduled to be
unexported. Implement cgroup_transfer_tasks() in cgroup proper which
is essentially the same as move_member_tasks_to_cpuset() except that
it takes cgroups instead of cpusets and @to comes before @from like
normal functions with those arguments, and replace
move_member_tasks_to_cpuset() with it.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
PF_THREAD_BOUND was originally used to mark kernel threads which were
bound to a specific CPU using kthread_bind() and a task with the flag
set allows cpus_allowed modifications only to itself. Workqueue is
currently abusing it to prevent userland from meddling with
cpus_allowed of workqueue workers.
What we need is a flag to prevent userland from messing with
cpus_allowed of certain kernel tasks. In kernel, anyone can
(incorrectly) squash the flag, and, for worker-type usages,
restricting cpus_allowed modification to the task itself doesn't
provide meaningful extra proection as other tasks can inject work
items to the task anyway.
This patch replaces PF_THREAD_BOUND with PF_NO_SETAFFINITY.
sched_setaffinity() checks the flag and return -EINVAL if set.
set_cpus_allowed_ptr() is no longer affected by the flag.
This will allow simplifying workqueue worker CPU affinity management.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Sasha reported a lockdep warning when OOM was triggered. The reason
is cgroup_name() should be called with rcu_read_lock() held.
Reported-by: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Use cgroup_name() instead of cgrp->dentry->name. This makes the code
a bit simpler.
While at it, remove cpuset_name and make cpuset_nodelist a local variable
to cpuset_print_task_mems_allowed().
Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Pull cpuset changes from Tejun Heo:
- Synchornization has seen a lot of changes with focus on decoupling
cpuset synchronization from cgroup internal locking.
After this change, there only remain a couple of mostly trivial
dependencies on cgroup_lock outside cgroup core proper. cgroup_lock
is scheduled to be unexported in this devel cycle.
This will finally remove the fragile locking order around cgroup
(cgroup locking wants to / should be one of the outermost but yet has
been acquired from deep inside individual controllers).
- At this point, Li is most knowlegeable with cpuset and taking over
the maintainership of cpuset.
* 'for-3.9-cpuset' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
cpuset: drop spurious retval assignment in proc_cpuset_show()
cpuset: fix RCU lockdep splat
cpuset: update MAINTAINERS
cpuset: remove cpuset->parent
cpuset: replace cpuset->stack_list with cpuset_for_each_descendant_pre()
cpuset: replace cgroup_mutex locking with cpuset internal locking
cpuset: schedule hotplug propagation from cpuset_attach() if the cpuset is empty
cpuset: pin down cpus and mems while a task is being attached
cpuset: make CPU / memory hotplug propagation asynchronous
cpuset: drop async_rebuild_sched_domains()
cpuset: don't nest cgroup_mutex inside get_online_cpus()
cpuset: reorganize CPU / memory hotplug handling
cpuset: cleanup cpuset[_can]_attach()
cpuset: introduce cpuset_for_each_child()
cpuset: introduce CS_ONLINE
cpuset: introduce ->css_on/offline()
cpuset: remove fast exit path from remove_tasks_in_empty_cpuset()
cpuset: remove unused cpuset_unlock()
rename() will change dentry->d_name. The result of this race can
be worse than seeing partially rewritten name, but we might access
a stale pointer because rename() will re-allocate memory to hold
a longer name.
It's safe in the protection of dentry->d_lock.
v2: check NULL dentry before acquiring dentry lock.
Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: stable@vger.kernel.org
proc_cpuset_show() has a spurious -EINVAL assignment which does
nothing. Remove it.
This patch doesn't make any functional difference.
tj: Rewrote patch description.
Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
cgroup already tracks the hierarchy. Follow cgroup->parent to find
the parent and drop cpuset->parent.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Li Zefan <lizefan@huawei.com>
Implement cpuset_for_each_descendant_pre() and replace the
cpuset-specific tree walking using cpuset->stack_list with it.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Li Zefan <lizefan@huawei.com>
Supposedly for historical reasons, cpuset depends on cgroup core for
locking. It depends on cgroup_mutex in cgroup callbacks and grabs
cgroup_mutex from other places where it wants to be synchronized.
This is majorly messy and highly prone to introducing circular locking
dependency especially because cgroup_mutex is supposed to be one of
the outermost locks.
As previous patches already plugged possible races which may happen by
decoupling from cgroup_mutex, replacing cgroup_mutex with cpuset
specific cpuset_mutex is mostly straight-forward. Introduce
cpuset_mutex, replace all occurrences of cgroup_mutex with it, and add
cpuset_mutex locking to places which inherited cgroup_mutex from
cgroup core.
The only complication is from cpuset wanting to initiate task
migration when a cpuset loses all cpus or memory nodes. Task
migration may go through full cgroup and all subsystem locking and
should be initiated without holding any cpuset specific lock; however,
a previous patch already made hotplug handled asynchronously and
moving the task migration part outside other locks is easy.
cpuset_propagate_hotplug_workfn() now invokes
remove_tasks_in_empty_cpuset() without holding any lock.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
cpuset is scheduled to be decoupled from cgroup_lock which will make
hotplug handling race with task migration. cpus or mems will be
allowed to go offline between ->can_attach() and ->attach(). If
hotplug takes down all cpus or mems of a cpuset while attach is in
progress, ->attach() may end up putting tasks into an empty cpuset.
This patchset makes ->attach() schedule hotplug propagation if the
cpuset is empty after attaching is complete. This will move the tasks
to the nearest ancestor which can execute and the end result would be
as if hotplug handling happened after the tasks finished attaching.
cpuset_write_resmask() now also flushes cpuset_propagate_hotplug_wq to
wait for propagations scheduled directly by cpuset_attach().
This currently doesn't make any functional difference as everything is
protected by cgroup_mutex but enables decoupling the locking.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
cpuset is scheduled to be decoupled from cgroup_lock which will make
configuration updates race with task migration. Any config update
will be allowed to happen between ->can_attach() and ->attach(). If
such config update removes either all cpus or mems, by the time
->attach() is called, the condition verified by ->can_attach(), that
the cpuset is capable of hosting the tasks, is no longer true.
This patch adds cpuset->attach_in_progress which is incremented from
->can_attach() and decremented when the attach operation finishes
either successfully or not. validate_change() treats cpusets w/
non-zero ->attach_in_progress like cpusets w/ tasks and refuses to
remove all cpus or mems from it.
This currently doesn't make any functional difference as everything is
protected by cgroup_mutex but enables decoupling the locking.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
cpuset_hotplug_workfn() has been invoking cpuset_propagate_hotplug()
directly to propagate hotplug updates to !root cpusets; however, this
has the following problems.
* cpuset locking is scheduled to be decoupled from cgroup_mutex,
cgroup_mutex will be unexported, and cgroup_attach_task() will do
cgroup locking internally, so propagation can't synchronously move
tasks to a parent cgroup while walking the hierarchy.
* We can't use cgroup generic tree iterator because propagation to
each cpuset may sleep. With propagation done asynchronously, we can
lose the rather ugly cpuset specific iteration.
Convert cpuset_propagate_hotplug() to
cpuset_propagate_hotplug_workfn() and execute it from newly added
cpuset->hotplug_work. The work items are run on an ordered workqueue,
so the propagation order is preserved. cpuset_hotplug_workfn()
schedules all propagations while holding cgroup_mutex and waits for
completion without cgroup_mutex. Each in-flight propagation holds a
reference to the cpuset->css.
This patch doesn't cause any functional difference.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
In general, we want to make cgroup_mutex one of the outermost locks
and be able to use get_online_cpus() and friends from cgroup methods.
With cpuset hotplug made async, get_online_cpus() can now be nested
inside cgroup_mutex.
Currently, cpuset avoids nesting get_online_cpus() inside cgroup_mutex
by bouncing sched_domain rebuilding to a work item. As such nesting
is allowed now, remove the workqueue bouncing code and always rebuild
sched_domains synchronously. This also nests sched_domains_mutex
inside cgroup_mutex, which is intended and should be okay.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
CPU / memory hotplug path currently grabs cgroup_mutex from hotplug
event notifications. We want to separate cpuset locking from cgroup
core and make cgroup_mutex outer to hotplug synchronization so that,
among other things, mechanisms which depend on get_online_cpus() can
be used from cgroup callbacks. In general, we want to keep
cgroup_mutex the outermost lock to minimize locking interactions among
different controllers.
Convert cpuset_handle_hotplug() to cpuset_hotplug_workfn() and
schedule it from the hotplug notifications. As the function can
already handle multiple mixed events without any input, converting it
to a work function is mostly trivial; however, one complication is
that cpuset_update_active_cpus() needs to update sched domains
synchronously to reflect an offlined cpu to avoid confusing the
scheduler. This is worked around by falling back to the the default
single sched domain synchronously before scheduling the actual hotplug
work. This makes sched domain rebuilt twice per CPU hotplug event but
the operation isn't that heavy and a lot of the second operation would
be noop for systems w/ single sched domain, which is the common case.
This decouples cpuset hotplug handling from the notification callbacks
and there can be an arbitrary delay between the actual event and
updates to cpusets. Scheduler and mm can handle it fine but moving
tasks out of an empty cpuset may race against writes to the cpuset
restoring execution resources which can lead to confusing behavior.
Flush hotplug work item from cpuset_write_resmask() to avoid such
confusions.
v2: Synchronous sched domain rebuilding using the fallback sched
domain added. This fixes various issues caused by confused
scheduler putting tasks on a dead CPU, including the one reported
by Li Zefan.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Reorganize hotplug path to prepare for async hotplug handling.
* Both CPU and memory hotplug handlings are collected into a single
function - cpuset_handle_hotplug(). It doesn't take any argument
but compares the current setttings of top_cpuset against what's
actually available to determine what happened. This function
directly updates top_cpuset. If there are CPUs or memory nodes
which are taken down, cpuset_propagate_hotplug() in invoked on all
!root cpusets.
* cpuset_propagate_hotplug() is responsible for updating the specified
cpuset so that it doesn't include any resource which isn't available
to top_cpuset. If no CPU or memory is left after update, all tasks
are moved to the nearest ancestor with both resources.
* update_tasks_cpumask() and update_tasks_nodemask() are now always
called after cpus or mems masks are updated even if the cpuset
doesn't have any task. This is for brevity and not expected to have
any measureable effect.
* cpu_active_mask and N_HIGH_MEMORY are read exactly once per
cpuset_handle_hotplug() invocation, all cpusets share the same view
of what resources are available, and cpuset_handle_hotplug() can
handle multiple resources going up and down. These properties will
allow async operation.
The reorganization, while drastic, is equivalent and shouldn't cause
any behavior difference. This will enable making hotplug handling
async and remove get_online_cpus() -> cgroup_mutex nesting.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
cpuset_can_attach() prepare global variables cpus_attach and
cpuset_attach_nodemask_{to|from} which are used by cpuset_attach().
There is no reason to prepare in cpuset_can_attach(). The same
information can be accessed from cpuset_attach().
Move the prepartion logic from cpuset_can_attach() to cpuset_attach()
and make the global variables static ones inside cpuset_attach().
With this change, there's no reason to keep
cpuset_attach_nodemask_{from|to} global. Move them inside
cpuset_attach(). Unfortunately, we need to keep cpus_attach global as
it can't be allocated from cpuset_attach().
v2: cpus_attach not converted to cpumask_t as per Li Zefan and Rusty
Russell.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Instead of iterating cgroup->children directly, introduce and use
cpuset_for_each_child() which wraps cgroup_for_each_child() and
performs online check. As it uses the generic iterator, it requires
RCU read locking too.
As cpuset is currently protected by cgroup_mutex, non-online cpusets
aren't visible to all the iterations and this patch currently doesn't
make any functional difference. This will be used to de-couple cpuset
locking from cgroup core.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Add CS_ONLINE which is set from css_online() and cleared from
css_offline(). This will enable using generic cgroup iterator while
allowing decoupling cpuset from cgroup internal locking.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Add cpuset_css_on/offline() and rearrange css init/exit such that,
* Allocation and clearing to the default values happen in css_alloc().
Allocation now uses kzalloc().
* Config inheritance and registration happen in css_online().
* css_offline() undoes what css_online() did.
* css_free() frees.
This doesn't introduce any visible behavior changes. This will help
cleaning up locking.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
The function isn't that hot, the overhead of missing the fast exit is
low, the test itself depends heavily on cgroup internals, and it's
gonna be a hindrance when trying to decouple cpuset locking from
cgroup core. Remove the fast exit path.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
N_HIGH_MEMORY stands for the nodes that has normal or high memory.
N_MEMORY stands for the nodes that has any memory.
The code here need to handle with the nodes which have memory, we should
use N_MEMORY instead.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Acked-by: Hillf Danton <dhillf@gmail.com>
Signed-off-by: Wen Congyang <wency@cn.fujitsu.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Lin Feng <linfeng@cn.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently CGRP_CPUSET_CLONE_CHILDREN triggers ->post_clone(). Now
that clone_children is cpuset specific, there's no reason to have this
rather odd option activation mechanism in cgroup core. cpuset can
check the flag from its ->css_allocate() and take the necessary
action.
Move cpuset_post_clone() logic to the end of cpuset_css_alloc() and
remove cgroup_subsys->post_clone().
Loosely based on Glauber's "generalize post_clone into post_create"
patch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Original-patch-by: Glauber Costa <glommer@parallels.com>
Original-patch: <1351686554-22592-2-git-send-email-glommer@parallels.com>
Acked-by: Serge E. Hallyn <serge.hallyn@ubuntu.com>
Acked-by: Li Zefan <lizefan@huawei.com>
Cc: Glauber Costa <glommer@parallels.com>
Rename cgroup_subsys css lifetime related callbacks to better describe
what their roles are. Also, update documentation.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
cpuset_track_online_cpus() is no longer present. So remove the
outdated comment and replace it with reference to cpuset_update_active_cpus()
which is its equivalent.
Also, we don't lack memory hot-unplug anymore. And David Rientjes pointed
out how it is dealt with. So update that comment as well.
Signed-off-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20120524141700.3692.98192.stgit@srivatsabhat.in.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Separate out the cpuset related handling for CPU/Memory online/offline.
This also helps us exploit the most obvious and basic level of optimization
that any notification mechanism (CPU/Mem online/offline) has to offer us:
"We *know* why we have been invoked. So stop pretending that we are lost,
and do only the necessary amount of processing!".
And while at it, rename scan_for_empty_cpusets() to
scan_cpusets_upon_hotplug(), which is more appropriate considering how
it is restructured.
Signed-off-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20120524141650.3692.48637.stgit@srivatsabhat.in.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
At present, the functions that deal with cpusets during CPU/Mem hotplug
are quite messy, since a lot of the functionality is mixed up without clear
separation. And this takes a toll on optimization as well. For example,
the function cpuset_update_active_cpus() is called on both CPU offline and CPU
online events; and it invokes scan_for_empty_cpusets(), which makes sense
only for CPU offline events. And hence, the current code ends up unnecessarily
traversing the cpuset tree during CPU online also.
As a first step towards cleaning up those functions, encapsulate the cpuset
tree traversal in a helper function, so as to facilitate upcoming changes.
Signed-off-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20120524141635.3692.893.stgit@srivatsabhat.in.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In the event of CPU hotplug, the kernel modifies the cpusets' cpus_allowed
masks as and when necessary to ensure that the tasks belonging to the cpusets
have some place (online CPUs) to run on. And regular CPU hotplug is
destructive in the sense that the kernel doesn't remember the original cpuset
configurations set by the user, across hotplug operations.
However, suspend/resume (which uses CPU hotplug) is a special case in which
the kernel has the responsibility to restore the system (during resume), to
exactly the same state it was in before suspend.
In order to achieve that, do the following:
1. Don't modify cpusets during suspend/resume. At all.
In particular, don't move the tasks from one cpuset to another, and
don't modify any cpuset's cpus_allowed mask. So, simply ignore cpusets
during the CPU hotplug operations that are carried out in the
suspend/resume path.
2. However, cpusets and sched domains are related. We just want to avoid
altering cpusets alone. So, to keep the sched domains updated, build
a single sched domain (containing all active cpus) during each of the
CPU hotplug operations carried out in s/r path, effectively ignoring
the cpusets' cpus_allowed masks.
(Since userspace is frozen while doing all this, it will go unnoticed.)
3. During the last CPU online operation during resume, build the sched
domains by looking up the (unaltered) cpusets' cpus_allowed masks.
That will bring back the system to the same original state as it was in
before suspend.
Ultimately, this will not only solve the cpuset problem related to suspend
resume (ie., restores the cpusets to exactly what it was before suspend, by
not touching it at all) but also speeds up suspend/resume because we avoid
running cpuset update code for every CPU being offlined/onlined.
Signed-off-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20120524141611.3692.20155.stgit@srivatsabhat.in.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull cgroup updates from Tejun Heo:
"cgroup file type addition / removal is updated so that file types are
added and removed instead of individual files so that dynamic file
type addition / removal can be implemented by cgroup and used by
controllers. blkio controller changes which will come through block
tree are dependent on this. Other changes include res_counter cleanup
and disallowing kthread / PF_THREAD_BOUND threads to be attached to
non-root cgroups.
There's a reported bug with the file type addition / removal handling
which can lead to oops on cgroup umount. The issue is being looked
into. It shouldn't cause problems for most setups and isn't a
security concern."
Fix up trivial conflict in Documentation/feature-removal-schedule.txt
* 'for-3.5' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: (21 commits)
res_counter: Account max_usage when calling res_counter_charge_nofail()
res_counter: Merge res_counter_charge and res_counter_charge_nofail
cgroups: disallow attaching kthreadd or PF_THREAD_BOUND threads
cgroup: remove cgroup_subsys->populate()
cgroup: get rid of populate for memcg
cgroup: pass struct mem_cgroup instead of struct cgroup to socket memcg
cgroup: make css->refcnt clearing on cgroup removal optional
cgroup: use negative bias on css->refcnt to block css_tryget()
cgroup: implement cgroup_rm_cftypes()
cgroup: introduce struct cfent
cgroup: relocate __d_cgrp() and __d_cft()
cgroup: remove cgroup_add_file[s]()
cgroup: convert memcg controller to the new cftype interface
memcg: always create memsw files if CONFIG_CGROUP_MEM_RES_CTLR_SWAP
cgroup: convert all non-memcg controllers to the new cftype interface
cgroup: relocate cftype and cgroup_subsys definitions in controllers
cgroup: merge cft_release_agent cftype array into the base files array
cgroup: implement cgroup_add_cftypes() and friends
cgroup: build list of all cgroups under a given cgroupfs_root
cgroup: move cgroup_clear_directory() call out of cgroup_populate_dir()
...
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.11 (GNU/Linux)
iQIcBAABAgAGBQJPc+5PAAoJENkgDmzRrbjx8qwQAIRGDWGAJ7fiu8QBVbjycXJG
7828enxrbBQodNmc+uAkYvTv3KEoi8tlweMsk/lWDv8WovZV4IlQDEFCX/f4hWVY
S+2PmqJkN/alsG3dXd00zotK9mOJD+mQPAdjUBaNnRdp3QoV3YrjgihkWiL23DyT
dZTgqXdbUJkHk/d9YD1qcDvWdSr1EufSLYa52PhLJqYiYVk8zCdX82deJX1MWh64
v9I6htA73ORoX4JBGsFAOHO8fmLaq1yhBUMHOL4+gfEJVv4kSTU05GgepBHQP1fm
BbG2hN6G4vqqiqhV5A59+h271o/2d/KBGKx8/twRGk8tNJIwTIVnr/qcGuUfytC3
vA1fmq3vul0bzbqRgph8bGJyoVIg8CHjq24BFJQOXiQ1/6HOvjxnKBYs+3sVA829
ZYQYuEoRKmTsD3vv3nmcqAdZZDzehBQ499bEqDNsnQRLOjOVNag/pJSaENkeVC4T
CKYXt9BEabYnermPLdrjiabPE27GaEznX11SzCSXiWJsKX2kJnvz5RxVo8nlh1fc
/KQWJyWi/QVmAdy4eCJFp48513BqncHvKtPZ6zN9+Y6NHKmnmAqieZhh4yV/SCqi
EcK2oHQXmioKldn5DANQjeUCWlmEYXHbR08ahGRLNc7GZ1qKCgDr8+WEC0XYB/gQ
XLH3KKLM+VmvtonqjDV7
=W59/
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://github.com/rustyrussell/linux
Pull cpumask cleanups from Rusty Russell:
"(Somehow forgot to send this out; it's been sitting in linux-next, and
if you don't want it, it can sit there another cycle)"
I'm a sucker for things that actually delete lines of code.
Fix up trivial conflict in arch/arm/kernel/kprobes.c, where Rusty fixed
a user of &cpu_online_map to be cpu_online_mask, but that code got
deleted by commit b21d55e98a ("ARM: 7332/1: extract out code patch
function from kprobes").
* tag 'for-linus' of git://github.com/rustyrussell/linux:
cpumask: remove old cpu_*_map.
documentation: remove references to cpu_*_map.
drivers/cpufreq/db8500-cpufreq: remove references to cpu_*_map.
remove references to cpu_*_map in arch/
Convert debug, freezer, cpuset, cpu_cgroup, cpuacct, net_prio, blkio,
net_cls and device controllers to use the new cftype based interface.
Termination entry is added to cftype arrays and populate callbacks are
replaced with cgroup_subsys->base_cftypes initializations.
This is functionally identical transformation. There shouldn't be any
visible behavior change.
memcg is rather special and will be converted separately.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizf@cn.fujitsu.com>
Cc: Paul Menage <paul@paulmenage.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Vivek Goyal <vgoyal@redhat.com>
Pull scheduler fixes from Ingo Molnar.
* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
cpusets: Remove an unused variable
sched/rt: Improve pick_next_highest_task_rt()
sched: Fix select_fallback_rq() vs cpu_active/cpu_online
sched/x86/smp: Do not enable IRQs over calibrate_delay()
sched: Fix compiler warning about declared inline after use
MAINTAINERS: Update email address for SCHEDULER and PERF EVENTS
We don't use "cpu" any more after 2baab4e904 "sched: Fix
select_fallback_rq() vs cpu_active/cpu_online".
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Paul Menage <paul@paulmenage.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20120328104608.GD29022@elgon.mountain
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commit 5fbd036b55 ("sched: Cleanup cpu_active madness"), which was
supposed to finally sort the cpu_active mess, instead uncovered more.
Since CPU_STARTING is ran before setting the cpu online, there's a
(small) window where the cpu has active,!online.
If during this time there's a wakeup of a task that used to reside on
that cpu select_task_rq() will use select_fallback_rq() to compute an
alternative cpu to run on since we find !online.
select_fallback_rq() however will compute the new cpu against
cpu_active, this means that it can return the same cpu it started out
with, the !online one, since that cpu is in fact marked active.
This results in us trying to scheduling a task on an offline cpu and
triggering a WARN in the IPI code.
The solution proposed by Chuansheng Liu of setting cpu_active in
set_cpu_online() is buggy, firstly not all archs actually use
set_cpu_online(), secondly, not all archs call set_cpu_online() with
IRQs disabled, this means we would introduce either the same race or
the race from fd8a7de17 ("x86: cpu-hotplug: Prevent softirq wakeup on
wrong CPU") -- albeit much narrower.
[ By setting online first and active later we have a window of
online,!active, fresh and bound kthreads have task_cpu() of 0 and
since cpu0 isn't in tsk_cpus_allowed() we end up in
select_fallback_rq() which excludes !active, resulting in a reset
of ->cpus_allowed and the thread running all over the place. ]
The solution is to re-work select_fallback_rq() to require active
_and_ online. This makes the active,!online case work as expected,
OTOH archs running CPU_STARTING after setting online are now
vulnerable to the issue from fd8a7de17 -- these are alpha and
blackfin.
Reported-by: Chuansheng Liu <chuansheng.liu@intel.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Mike Frysinger <vapier@gentoo.org>
Cc: linux-alpha@vger.kernel.org
Link: http://lkml.kernel.org/n/tip-hubqk1i10o4dpvlm06gq7v6j@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commit c0ff7453bb ("cpuset,mm: fix no node to alloc memory when
changing cpuset's mems") wins a super prize for the largest number of
memory barriers entered into fast paths for one commit.
[get|put]_mems_allowed is incredibly heavy with pairs of full memory
barriers inserted into a number of hot paths. This was detected while
investigating at large page allocator slowdown introduced some time
after 2.6.32. The largest portion of this overhead was shown by
oprofile to be at an mfence introduced by this commit into the page
allocator hot path.
For extra style points, the commit introduced the use of yield() in an
implementation of what looks like a spinning mutex.
This patch replaces the full memory barriers on both read and write
sides with a sequence counter with just read barriers on the fast path
side. This is much cheaper on some architectures, including x86. The
main bulk of the patch is the retry logic if the nodemask changes in a
manner that can cause a false failure.
While updating the nodemask, a check is made to see if a false failure
is a risk. If it is, the sequence number gets bumped and parallel
allocators will briefly stall while the nodemask update takes place.
In a page fault test microbenchmark, oprofile samples from
__alloc_pages_nodemask went from 4.53% of all samples to 1.15%. The
actual results were
3.3.0-rc3 3.3.0-rc3
rc3-vanilla nobarrier-v2r1
Clients 1 UserTime 0.07 ( 0.00%) 0.08 (-14.19%)
Clients 2 UserTime 0.07 ( 0.00%) 0.07 ( 2.72%)
Clients 4 UserTime 0.08 ( 0.00%) 0.07 ( 3.29%)
Clients 1 SysTime 0.70 ( 0.00%) 0.65 ( 6.65%)
Clients 2 SysTime 0.85 ( 0.00%) 0.82 ( 3.65%)
Clients 4 SysTime 1.41 ( 0.00%) 1.41 ( 0.32%)
Clients 1 WallTime 0.77 ( 0.00%) 0.74 ( 4.19%)
Clients 2 WallTime 0.47 ( 0.00%) 0.45 ( 3.73%)
Clients 4 WallTime 0.38 ( 0.00%) 0.37 ( 1.58%)
Clients 1 Flt/sec/cpu 497620.28 ( 0.00%) 520294.53 ( 4.56%)
Clients 2 Flt/sec/cpu 414639.05 ( 0.00%) 429882.01 ( 3.68%)
Clients 4 Flt/sec/cpu 257959.16 ( 0.00%) 258761.48 ( 0.31%)
Clients 1 Flt/sec 495161.39 ( 0.00%) 517292.87 ( 4.47%)
Clients 2 Flt/sec 820325.95 ( 0.00%) 850289.77 ( 3.65%)
Clients 4 Flt/sec 1020068.93 ( 0.00%) 1022674.06 ( 0.26%)
MMTests Statistics: duration
Sys Time Running Test (seconds) 135.68 132.17
User+Sys Time Running Test (seconds) 164.2 160.13
Total Elapsed Time (seconds) 123.46 120.87
The overall improvement is small but the System CPU time is much
improved and roughly in correlation to what oprofile reported (these
performance figures are without profiling so skew is expected). The
actual number of page faults is noticeably improved.
For benchmarks like kernel builds, the overall benefit is marginal but
the system CPU time is slightly reduced.
To test the actual bug the commit fixed I opened two terminals. The
first ran within a cpuset and continually ran a small program that
faulted 100M of anonymous data. In a second window, the nodemask of the
cpuset was continually randomised in a loop.
Without the commit, the program would fail every so often (usually
within 10 seconds) and obviously with the commit everything worked fine.
With this patch applied, it also worked fine so the fix should be
functionally equivalent.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Miao Xie <miaox@cn.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The argument is not used at all, and it's not necessary, because
a specific callback handler of course knows which subsys it
belongs to.
Now only ->pupulate() takes this argument, because the handlers of
this callback always call cgroup_add_file()/cgroup_add_files().
So we reduce a few lines of code, though the shrinking of object size
is minimal.
16 files changed, 113 insertions(+), 162 deletions(-)
text data bss dec hex filename
5486240 656987 7039960 13183187 c928d3 vmlinux.o.orig
5486170 656987 7039960 13183117 c9288d vmlinux.o
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
* 'for-3.3' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: (21 commits)
cgroup: fix to allow mounting a hierarchy by name
cgroup: move assignement out of condition in cgroup_attach_proc()
cgroup: Remove task_lock() from cgroup_post_fork()
cgroup: add sparse annotation to cgroup_iter_start() and cgroup_iter_end()
cgroup: mark cgroup_rmdir_waitq and cgroup_attach_proc() as static
cgroup: only need to check oldcgrp==newgrp once
cgroup: remove redundant get/put of task struct
cgroup: remove redundant get/put of old css_set from migrate
cgroup: Remove unnecessary task_lock before fetching css_set on migration
cgroup: Drop task_lock(parent) on cgroup_fork()
cgroups: remove redundant get/put of css_set from css_set_check_fetched()
resource cgroups: remove bogus cast
cgroup: kill subsys->can_attach_task(), pre_attach() and attach_task()
cgroup, cpuset: don't use ss->pre_attach()
cgroup: don't use subsys->can_attach_task() or ->attach_task()
cgroup: introduce cgroup_taskset and use it in subsys->can_attach(), cancel_attach() and attach()
cgroup: improve old cgroup handling in cgroup_attach_proc()
cgroup: always lock threadgroup during migration
threadgroup: extend threadgroup_lock() to cover exit and exec
threadgroup: rename signal->threadgroup_fork_lock to ->group_rwsem
...
Fix up conflict in kernel/cgroup.c due to commit e0197aae59e5: "cgroups:
fix a css_set not found bug in cgroup_attach_proc" that already
mentioned that the bug is fixed (differently) in Tejun's cgroup
patchset. This one, in other words.
Kernels where MAX_NUMNODES > BITS_PER_LONG may temporarily see an empty
nodemask in a tsk's mempolicy if its previous nodemask is remapped onto a
new set of allowed cpuset nodes where the two nodemasks, as a result of
the remap, are now disjoint.
c0ff7453bb ("cpuset,mm: fix no node to alloc memory when changing
cpuset's mems") adds get_mems_allowed() to prevent the set of allowed
nodes from changing for a thread. This causes any update to a set of
allowed nodes to stall until put_mems_allowed() is called.
This stall is unncessary, however, if at least one node remains unchanged
in the update to the set of allowed nodes. This was addressed by
89e8a244b9 ("cpusets: avoid looping when storing to mems_allowed if one
node remains set"), but it's still possible that an empty nodemask may be
read from a mempolicy because the old nodemask may be remapped to the new
nodemask during rebind. To prevent this, only avoid the stall if there is
no mempolicy for the thread being changed.
This is a temporary solution until all reads from mempolicy nodemasks can
be guaranteed to not be empty without the get_mems_allowed()
synchronization.
Also moves the check for nodemask intersection inside task_lock() so that
tsk->mems_allowed cannot change. This ensures that nothing can set this
tsk's mems_allowed out from under us and also protects tsk->mempolicy.
Reported-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Paul Menage <paul@paulmenage.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
->pre_attach() is supposed to be called before migration, which is
observed during process migration but task migration does it the other
way around. The only ->pre_attach() user is cpuset which can do the
same operaitons in ->can_attach(). Collapse cpuset_pre_attach() into
cpuset_can_attach().
-v2: Patch contamination from later patch removed. Spotted by Paul
Menage.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Frederic Weisbecker <fweisbec@gmail.com>
Acked-by: Paul Menage <paul@paulmenage.org>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Now that subsys->can_attach() and attach() take @tset instead of
@task, they can handle per-task operations. Convert
->can_attach_task() and ->attach_task() users to use ->can_attach()
and attach() instead. Most converions are straight-forward.
Noteworthy changes are,
* In cgroup_freezer, remove unnecessary NULL assignments to unused
methods. It's useless and very prone to get out of sync, which
already happened.
* In cpuset, PF_THREAD_BOUND test is checked for each task. This
doesn't make any practical difference but is conceptually cleaner.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Frederic Weisbecker <fweisbec@gmail.com>
Acked-by: Li Zefan <lizf@cn.fujitsu.com>
Cc: Paul Menage <paul@paulmenage.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: James Morris <jmorris@namei.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Peter Zijlstra <peterz@infradead.org>
Currently, there's no way to pass multiple tasks to cgroup_subsys
methods necessitating the need for separate per-process and per-task
methods. This patch introduces cgroup_taskset which can be used to
pass multiple tasks and their associated cgroups to cgroup_subsys
methods.
Three methods - can_attach(), cancel_attach() and attach() - are
converted to use cgroup_taskset. This unifies passed parameters so
that all methods have access to all information. Conversions in this
patchset are identical and don't introduce any behavior change.
-v2: documentation updated as per Paul Menage's suggestion.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Frederic Weisbecker <fweisbec@gmail.com>
Acked-by: Paul Menage <paul@paulmenage.org>
Acked-by: Li Zefan <lizf@cn.fujitsu.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: James Morris <jmorris@namei.org>
* 'modsplit-Oct31_2011' of git://git.kernel.org/pub/scm/linux/kernel/git/paulg/linux: (230 commits)
Revert "tracing: Include module.h in define_trace.h"
irq: don't put module.h into irq.h for tracking irqgen modules.
bluetooth: macroize two small inlines to avoid module.h
ip_vs.h: fix implicit use of module_get/module_put from module.h
nf_conntrack.h: fix up fallout from implicit moduleparam.h presence
include: replace linux/module.h with "struct module" wherever possible
include: convert various register fcns to macros to avoid include chaining
crypto.h: remove unused crypto_tfm_alg_modname() inline
uwb.h: fix implicit use of asm/page.h for PAGE_SIZE
pm_runtime.h: explicitly requires notifier.h
linux/dmaengine.h: fix implicit use of bitmap.h and asm/page.h
miscdevice.h: fix up implicit use of lists and types
stop_machine.h: fix implicit use of smp.h for smp_processor_id
of: fix implicit use of errno.h in include/linux/of.h
of_platform.h: delete needless include <linux/module.h>
acpi: remove module.h include from platform/aclinux.h
miscdevice.h: delete unnecessary inclusion of module.h
device_cgroup.h: delete needless include <linux/module.h>
net: sch_generic remove redundant use of <linux/module.h>
net: inet_timewait_sock doesnt need <linux/module.h>
...
Fix up trivial conflicts (other header files, and removal of the ab3550 mfd driver) in
- drivers/media/dvb/frontends/dibx000_common.c
- drivers/media/video/{mt9m111.c,ov6650.c}
- drivers/mfd/ab3550-core.c
- include/linux/dmaengine.h
{get,put}_mems_allowed() exist so that general kernel code may locklessly
access a task's set of allowable nodes without having the chance that a
concurrent write will cause the nodemask to be empty on configurations
where MAX_NUMNODES > BITS_PER_LONG.
This could incur a significant delay, however, especially in low memory
conditions because the page allocator is blocking and reclaim requires
get_mems_allowed() itself. It is not atypical to see writes to
cpuset.mems take over 2 seconds to complete, for example. In low memory
conditions, this is problematic because it's one of the most imporant
times to change cpuset.mems in the first place!
The only way a task's set of allowable nodes may change is through cpusets
by writing to cpuset.mems and when attaching a task to a generic code is
not reading the nodemask with get_mems_allowed() at the same time, and
then clearing all the old nodes. This prevents the possibility that a
reader will see an empty nodemask at the same time the writer is storing a
new nodemask.
If at least one node remains unchanged, though, it's possible to simply
set all new nodes and then clear all the old nodes. Changing a task's
nodemask is protected by cgroup_mutex so it's guaranteed that two threads
are not changing the same task's nodemask at the same time, so the
nodemask is guaranteed to be stored before another thread changes it and
determines whether a node remains set or not.
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Miao Xie <miaox@cn.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: Paul Menage <paul@paulmenage.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The changed files were only including linux/module.h for the
EXPORT_SYMBOL infrastructure, and nothing else. Revector them
onto the isolated export header for faster compile times.
Nothing to see here but a whole lot of instances of:
-#include <linux/module.h>
+#include <linux/export.h>
This commit is only changing the kernel dir; next targets
will probably be mm, fs, the arch dirs, etc.
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
This allows us to move duplicated code in <asm/atomic.h>
(atomic_inc_not_zero() for now) to <linux/atomic.h>
Signed-off-by: Arun Sharma <asharma@fb.com>
Reviewed-by: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: David Miller <davem@davemloft.net>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Acked-by: Mike Frysinger <vapier@gentoo.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
[ This patch has already been accepted as commit 0ac0c0d0f8 but later
reverted (commit 35926ff5fb) because it itroduced arch specific
__node_random which was defined only for x86 code so it broke other
archs. This is a followup without any arch specific code. Other than
that there are no functional changes.]
Some workloads that create a large number of small files tend to assign
too many pages to node 0 (multi-node systems). Part of the reason is
that the rotor (in cpuset_mem_spread_node()) used to assign nodes starts
at node 0 for newly created tasks.
This patch changes the rotor to be initialized to a random node number
of the cpuset.
[akpm@linux-foundation.org: fix layout]
[Lee.Schermerhorn@hp.com: Define stub numa_random() for !NUMA configuration]
[mhocko@suse.cz: Make it arch independent]
[akpm@linux-foundation.org: fix CONFIG_NUMA=y, MAX_NUMNODES>1 build]
Signed-off-by: Jack Steiner <steiner@sgi.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Paul Menage <menage@google.com>
Cc: Jack Steiner <steiner@sgi.com>
Cc: Robin Holt <holt@sgi.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Jack Steiner <steiner@sgi.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Paul Menage <menage@google.com>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Robin Holt <holt@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The rule is, we have to update tsk->rt.nr_cpus_allowed if we change
tsk->cpus_allowed. Otherwise RT scheduler may confuse.
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/4DD4B3FA.5060901@jp.fujitsu.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The ns_cgroup is an annoying cgroup at the namespace / cgroup frontier and
leads to some problems:
* cgroup creation is out-of-control
* cgroup name can conflict when pids are looping
* it is not possible to have a single process handling a lot of
namespaces without falling in a exponential creation time
* we may want to create a namespace without creating a cgroup
The ns_cgroup was replaced by a compatibility flag 'clone_children',
where a newly created cgroup will copy the parent cgroup values.
The userspace has to manually create a cgroup and add a task to
the 'tasks' file.
This patch removes the ns_cgroup as suggested in the following thread:
https://lists.linux-foundation.org/pipermail/containers/2009-June/018616.html
The 'cgroup_clone' function is removed because it is no longer used.
This is a userspace-visible change. Commit 45531757b4 ("cgroup: notify
ns_cgroup deprecated") (merged into 2.6.27) caused the kernel to emit a
printk warning users that the feature is planned for removal. Since that
time we have heard from XXX users who were affected by this.
Signed-off-by: Daniel Lezcano <daniel.lezcano@free.fr>
Signed-off-by: Serge E. Hallyn <serge.hallyn@canonical.com>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Jamal Hadi Salim <hadi@cyberus.ca>
Reviewed-by: Li Zefan <lizf@cn.fujitsu.com>
Acked-by: Paul Menage <menage@google.com>
Acked-by: Matt Helsley <matthltc@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add cgroup subsystem callbacks for per-thread attachment in atomic contexts
Add can_attach_task(), pre_attach(), and attach_task() as new callbacks
for cgroups's subsystem interface. Unlike can_attach and attach, these
are for per-thread operations, to be called potentially many times when
attaching an entire threadgroup.
Also, the old "bool threadgroup" interface is removed, as replaced by
this. All subsystems are modified for the new interface - of note is
cpuset, which requires from/to nodemasks for attach to be globally scoped
(though per-cpuset would work too) to persist from its pre_attach to
attach_task and attach.
This is a pre-patch for cgroup-procs-writable.patch.
Signed-off-by: Ben Blum <bblum@andrew.cmu.edu>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Matt Helsley <matthltc@us.ibm.com>
Reviewed-by: Paul Menage <menage@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Remove the SD_LV_ enum and use dynamic level assignments.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/20110407122942.969433965@chello.nl
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Chaning cpuset->mems/cpuset->cpus should be protected under
callback_mutex.
cpuset_clone() doesn't follow this rule. It's ok because it's
called when creating and initializing a cgroup, but we'd better
hold the lock to avoid subtil break in the future.
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Acked-by: Paul Menage <menage@google.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Those functions that use NODEMASK_ALLOC() can't propagate errno
to users, but will fail silently.
Fix it by using a static nodemask_t variable for each function, and
those variables are protected by cgroup_mutex;
[akpm@linux-foundation.org: fix comment spelling, strengthen cgroup_lock comment]
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Cc: Paul Menage <menage@google.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
oldcs->mems_allowed is not modified during cpuset_attach(), so we don't
have to copy it to a buffer allocated by NODEMASK_ALLOC(). Just pass it
to cpuset_migrate_mm().
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Cc: Paul Menage <menage@google.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It's not necessary to copy cpuset->mems_allowed to a buffer allocated by
NODEMASK_ALLOC(). Just pass it to nodelist_scnprintf().
As spotted by Paul, a side effect is we fix a bug that the function can
return -ENOMEM but the caller doesn't expect negative return value.
Therefore change the return value of cpuset_sprintf_cpulist() and
cpuset_sprintf_memlist() from int to size_t.
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Acked-by: Paul Menage <menage@google.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
All security modules shouldn't change sched_param parameter of
security_task_setscheduler(). This is not only meaningless, but also
make a harmful result if caller pass a static variable.
This patch remove policy and sched_param parameter from
security_task_setscheduler() becuase none of security module is
using it.
Cc: James Morris <jmorris@namei.org>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: James Morris <jmorris@namei.org>
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (27 commits)
sched: Use correct macro to display sched_child_runs_first in /proc/sched_debug
sched: No need for bootmem special cases
sched: Revert nohz_ratelimit() for now
sched: Reduce update_group_power() calls
sched: Update rq->clock for nohz balanced cpus
sched: Fix spelling of sibling
sched, cpuset: Drop __cpuexit from cpu hotplug callbacks
sched: Fix the racy usage of thread_group_cputimer() in fastpath_timer_check()
sched: run_posix_cpu_timers: Don't check ->exit_state, use lock_task_sighand()
sched: thread_group_cputime: Simplify, document the "alive" check
sched: Remove the obsolete exit_state/signal hacks
sched: task_tick_rt: Remove the obsolete ->signal != NULL check
sched: __sched_setscheduler: Read the RLIMIT_RTPRIO value lockless
sched: Fix comments to make them DocBook happy
sched: Fix fix_small_capacity
powerpc: Exclude arch_sd_sibiling_asym_packing() on UP
powerpc: Enable asymmetric SMT scheduling on POWER7
sched: Add asymmetric group packing option for sibling domain
sched: Fix capacity calculations for SMT4
sched: Change nohz idle load balancing logic to push model
...
Commit 3a101d05 (sched: adjust when cpu_active and cpuset
configurations are updated during cpu on/offlining) added
hotplug notifiers marked with __cpuexit; however, ia64 drops
text in __cpuexit during link unlike x86.
This means that functions which are referenced during init but used
only for cpu hot unplugging afterwards shouldn't be marked with
__cpuexit. Drop __cpuexit from those functions.
Reported-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Tony Luck <tony.luck@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
LKML-Reference: <4C1FDF5B.1040301@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>