Commit Graph

38894 Commits

Author SHA1 Message Date
Tejun Heo 944196278d cgroup: move ->subsys_mask from cgroupfs_root to cgroup
cgroupfs_root->subsys_mask represents the controllers attached to the
hierarchy.  This patch moves the field to cgroup.  Subsystem
initialization and rebinding updates the top cgroup's subsys_mask.
For !root cgroups, the subsys_mask bits are set from create_css() and
cleared from kill_css(), which effectively means that all cgroups will
have the same subsys_mask as the top cgroup.

While this doesn't make any difference now, this will help
implementation of the default unified hierarchy where !root cgroups
may have subsets of the top_cgroup's subsys_mask.

While at it, __kill_css() is split out of kill_css().  The former
doesn't care about the subsys_mask while the latter becomes noop if
the controller is already killed and clears the matching bit if not
before proceeding to killing the css.  This will be used later by the
default unified hierarchy implementation.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
2014-03-19 10:23:54 -04:00
Tejun Heo fdce6bf8c5 cgroup: remove NULL checks from [pr_cont_]cgroup_{name|path}()
The dummy hierarchy is now a fully functional one and dummy_top has a
kernfs_node associated with it.  Drop the NULL checks in
[pr_cont_]cont_{name|path}() which are no longer necessary.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
2014-03-19 10:23:54 -04:00
Tejun Heo 0e1d768f1b cgroup: drop task_lock() protection around task->cgroups
For optimization, task_lock() is additionally used to protect
task->cgroups.  The optimization is pretty dubious as either
css_set_rwsem is grabbed anyway or PF_EXITING already protects
task->cgroups.  It adds only overhead and confusion at this point.
Let's drop task_[un]lock() and update comments accordingly.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
2014-02-25 10:04:03 -05:00
Tejun Heo 1958d2d53d cgroup: split process / task migration into four steps
Currently, process / task migration is a single operation which may
fail depending on memory pressure or the involved controllers'
->can_attach() callbacks.  One problem with this approach is migration
of multiple targets.  It's impossible to tell whether a given target
will be successfully migrated beforehand and cgroup core can't keep
track of enough states to roll back after intermediate failure.

This is already an issue with cgroup_transfer_tasks().  Also, we're
gonna need multiple target migration for unified hierarchy.

This patch splits migration into four stages -
cgroup_migrate_add_src(), cgroup_migrate_prepare_dst(),
cgroup_migrate() and cgroup_migrate_finish(), where
cgroup_migrate_prepare_dst() performs all the operations which may
fail due to allocation failure without actually migrating the target.

The four separate stages mean that, disregarding ->can_attach()
failures, the success or failure of multi target migration can be
determined before performing any actual migration.  If preparations of
all targets succeed, the whole thing will succeed.  If not, the whole
operation can fail without any side-effect.

Since the previous patch to use css_set->mg_tasks to keep track of
migration targets, the only thing which may need memory allocation
during migration is the target css_sets.  cgroup_migrate_prepare()
pins all source and target css_sets and link them up.  Note that this
can be performed without holding threadgroup_lock even if the target
is a process.  As long as cgroup_mutex is held, no new css_set can be
put into play.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
2014-02-25 10:04:03 -05:00
Tejun Heo b3dc094e93 cgroup: use css_set->mg_tasks to track target tasks during migration
Currently, while migrating tasks from one cgroup to another,
cgroup_attach_task() builds a flex array of all target tasks;
unfortunately, this has a couple issues.

* Flex array has size limit.  On 64bit, struct task_and_cgroup is
  24bytes making the flex element limit around 87k.  It is a high
  number but not impossible to hit.  This means that the current
  cgroup implementation can't migrate a process with more than 87k
  threads.

* Process migration involves memory allocation whose size is dependent
  on the number of threads the process has.  This means that cgroup
  core can't guarantee success or failure of multi-process migrations
  as memory allocation failure can happen in the middle.  This is in
  part because cgroup can't grab threadgroup locks of multiple
  processes at the same time, so when there are multiple processes to
  migrate, it is imposible to tell how many tasks are to be migrated
  beforehand.

  Note that this already affects cgroup_transfer_tasks().  cgroup
  currently cannot guarantee atomic success or failure of the
  operation.  It may fail in the middle and after such failure cgroup
  doesn't have enough information to roll back properly.  It just
  aborts with some tasks migrated and others not.

To resolve the situation, this patch updates the migration path to use
task->cg_list to track target tasks.  The previous patch already added
css_set->mg_tasks and updated iterations in non-migration paths to
include them during task migration.  This patch updates migration path
to actually make use of it.

Instead of putting onto a flex_array, each target task is moved from
its css_set->tasks list to css_set->mg_tasks and the migration path
keeps trace of all the source css_sets and the associated cgroups.
Once all source css_sets are determined, the destination css_set for
each is determined, linked to the matching source css_set and put on a
separate list.

To iterate the target tasks, migration path just needs to iterat
through either the source or target css_sets, depending on whether
migration has been committed or not, and the tasks on their ->mg_tasks
lists.  cgroup_taskset is updated to contain the list_heads for source
and target css_sets and the iteration cursor.  cgroup_taskset_*() are
accordingly updated to walk through css_sets and their ->mg_tasks.

This resolves the above listed issues with moderate additional
complexity.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
2014-02-25 10:04:01 -05:00
Tejun Heo c75611282c cgroup: add css_set->mg_tasks
Currently, while migrating tasks from one cgroup to another,
cgroup_attach_task() builds a flex array of all target tasks;
unfortunately, this has a couple issues.

* Flex array has size limit.  On 64bit, struct task_and_cgroup is
  24bytes making the flex element limit around 87k.  It is a high
  number but not impossible to hit.  This means that the current
  cgroup implementation can't migrate a process with more than 87k
  threads.

* Process migration involves memory allocation whose size is dependent
  on the number of threads the process has.  This means that cgroup
  core can't guarantee success or failure of multi-process migrations
  as memory allocation failure can happen in the middle.  This is in
  part because cgroup can't grab threadgroup locks of multiple
  processes at the same time, so when there are multiple processes to
  migrate, it is imposible to tell how many tasks are to be migrated
  beforehand.

  Note that this already affects cgroup_transfer_tasks().  cgroup
  currently cannot guarantee atomic success or failure of the
  operation.  It may fail in the middle and after such failure cgroup
  doesn't have enough information to roll back properly.  It just
  aborts with some tasks migrated and others not.

To resolve the situation, we're going to use task->cg_list during
migration too.  Instead of building a separate array, target tasks
will be linked into a dedicated migration list_head on the owning
css_set.  Tasks on the migration list are treated the same as tasks on
the usual tasks list; however, being on a separate list allows cgroup
migration code path to keep track of the target tasks by simply
keeping the list of css_sets with tasks being migrated, making
unpredictable dynamic allocation unnecessary.

In prepartion of such migration path update, this patch introduces
css_set->mg_tasks list and updates css_set task iterations so that
they walk both css_set->tasks and ->mg_tasks.  Note that ->mg_tasks
isn't used yet.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
2014-02-25 10:04:01 -05:00
Li Zefan cc045e3952 cgroup: deal with dummp_top in cgroup_name() and cgroup_path()
My kernel fails to boot, because blkcg calls cgroup_path() while
cgroupfs is not mounted.

Fix both cgroup_name() and cgroup_path().

Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2014-02-14 10:52:40 -05:00
Tejun Heo bc668c7519 cgroup: remove cgroup_taskset_cur_css() and cgroup_taskset_size()
The two functions don't have any users left.  Remove them along with
cgroup_taskset->cur_cgrp.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
2014-02-13 06:58:43 -05:00
Tejun Heo 924f0d9a20 cgroup: drop @skip_css from cgroup_taskset_for_each()
If !NULL, @skip_css makes cgroup_taskset_for_each() skip the matching
css.  The intention of the interface is to make it easy to skip css's
(cgroup_subsys_states) which already match the migration target;
however, this is entirely unnecessary as migration taskset doesn't
include tasks which are already in the target cgroup.  Drop @skip_css
from cgroup_taskset_for_each().

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Arnaldo Carvalho de Melo <acme@ghostprotocols.net>
Cc: Daniel Borkmann <dborkman@redhat.com>
2014-02-13 06:58:41 -05:00
Tejun Heo 889ed9ceaa cgroup: remove css_scan_tasks()
css_scan_tasks() doesn't have any user left.  Remove it.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
2014-02-13 06:58:40 -05:00
Tejun Heo 07bc356ed2 cgroup: implement cgroup_has_tasks() and unexport cgroup_task_count()
cgroup_task_count() read-locks css_set_lock and walks all tasks to
count them and then returns the result.  The only thing all the users
want is determining whether the cgroup is empty or not.  This patch
implements cgroup_has_tasks() which tests whether cgroup->cset_links
is empty, replaces all cgroup_task_count() usages and unexports it.

Note that the test isn't synchronized.  This is the same as before.
The test has always been racy.

This will help planned css_set locking update.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
2014-02-13 06:58:39 -05:00
Tejun Heo 3558557305 cgroup: drop CGRP_ROOT_SUBSYS_BOUND
Before kernfs conversion, due to the way super_block lookup works,
cgroup roots were created and made visible before being fully
initialized.  This in turn required a special flag to mark that the
root hasn't been fully initialized so that the destruction path can
tell fully bound ones from half initialized.

That flag is CGRP_ROOT_SUBSYS_BOUND and no longer necessary after the
kernfs conversion as the lookup and creation of new root are atomic
w.r.t. cgroup_mutex.  This patch removes the flag and passes the
requests subsystem mask to cgroup_setup_root() so that it can set the
respective mask bits as subsystems are bound.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
2014-02-13 06:58:38 -05:00
Tejun Heo d3ba07c3aa cgroup: disallow xattr, release_agent and name if sane_behavior
Disallow more mount options if sane_behavior.  Note that xattr used to
generate warning.

While at it, simplify option check in cgroup_mount() and update
sane_behavior comment in cgroup.h.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
2014-02-13 06:58:38 -05:00
Tejun Heo 776f02fa4e cgroup: remove cgroupfs_root->refcnt
Currently, cgroupfs_root and its ->top_cgroup are separated reference
counted and the latter's is ignored.  There's no reason to do this
separately.  This patch removes cgroupfs_root->refcnt and destroys
cgroupfs_root when the top_cgroup is released.

* cgroup_put() updated to ignore cgroup_is_dead() test for top
  cgroups.  cgroup_free_fn() updated to handle root destruction when
  releasing a top cgroup.

* As root destruction is now bounced through cgroup destruction, it is
  asynchronous.  Update cgroup_mount() so that it waits for pending
  release which is currently implemented using msleep().  Converting
  this to proper wait_queue isn't hard but likely unnecessary.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
2014-02-12 09:29:50 -05:00
Tejun Heo 3c9c825b8b cgroup: rename cgroupfs_root->number_of_cgroups to ->nr_cgrps and make it atomic_t
root->number_of_cgroups is currently an integer protected with
cgroup_mutex.  Except for sanity checks and proc reporting, the only
place it's used is to check whether the root has any child during
remount; however, this is a bit flawed as the counter is not
decremented when the cgroup is unlinked but when it's released,
meaning that there could be an extended period where all cgroups are
removed but remount is still not allowed because some internal objects
are lingering.  While not perfect either, it'd be better to use
emptiness test on root->top_cgroup.children.

This patch updates cgroup_remount() to test top_cgroup's children
instead, which makes number_of_cgroups only actual usage statistics
printing in proc implemented in proc_cgroupstats_show().  Let's
shorten its name and make it an atomic_t so that we don't have to
worry about its synchronization.  It's purely auxiliary at this point.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
2014-02-12 09:29:50 -05:00
Tejun Heo e61734c55c cgroup: remove cgroup->name
cgroup->name handling became quite complicated over time involving
dedicated struct cgroup_name for RCU protection.  Now that cgroup is
on kernfs, we can drop all of it and simply use kernfs_name/path() and
friends.  Replace cgroup->name and all related code with kernfs
name/path constructs.

* Reimplement cgroup_name() and cgroup_path() as thin wrappers on top
  of kernfs counterparts, which involves semantic changes.
  pr_cont_cgroup_name() and pr_cont_cgroup_path() added.

* cgroup->name handling dropped from cgroup_rename().

* All users of cgroup_name/path() updated to the new semantics.  Users
  which were formatting the string just to printk them are converted
  to use pr_cont_cgroup_name/path() instead, which simplifies things
  quite a bit.  As cgroup_name() no longer requires RCU read lock
  around it, RCU lockings which were protecting only cgroup_name() are
  removed.

v2: Comment above oom_info_lock updated as suggested by Michal.

v3: dummy_top doesn't have a kn associated and
    pr_cont_cgroup_name/path() ended up calling the matching kernfs
    functions with NULL kn leading to oops.  Test for NULL kn and
    print "/" if so.  This issue was reported by Fengguang Wu.

v4: Rebased on top of 0ab02ca8f8 ("cgroup: protect modifications to
    cgroup_idr with cgroup_mutex").

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Li Zefan <lizefan@huawei.com>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
2014-02-12 09:29:50 -05:00
Tejun Heo 0adb070426 cgroup: remove cftype_set
cftype_set was added primarily to allow registering the same cftype
array more than once for different subsystems.  Nobody uses or needs
such thing and it's already broken because each cftype has ->ss
pointer which is initialized during registration.

Let's add list_head ->node to cftype and use the first cftype entry in
the array to link them instead of allocating separate cftype_set.
While at it, trigger WARN if cft seems previously initialized during
registration.

This simplifies cftype handling a bit.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
2014-02-12 09:29:48 -05:00
Tejun Heo 86bf4b6875 cgroup: warn if "xattr" is specified with "sane_behavior"
Mount option "xattr" is no longer necessary as it's enabled by default
on kernfs.  Warn if "xattr" is specified with "sane_behavior" so that
the option can be removed in the future.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
2014-02-12 09:29:48 -05:00
Tejun Heo 2bd59d48eb cgroup: convert to kernfs
cgroup filesystem code was derived from the original sysfs
implementation which was heavily intertwined with vfs objects and
locking with the goal of re-using the existing vfs infrastructure.
That experiment turned out rather disastrous and sysfs switched, a
long time ago, to distributed filesystem model where a separate
representation is maintained which is queried by vfs.  Unfortunately,
cgroup stuck with the failed experiment all these years and
accumulated even more problems over time.

Locking and object lifetime management being entangled with vfs is
probably the most egregious.  vfs is never designed to be misused like
this and cgroup ends up jumping through various convoluted dancing to
make things work.  Even then, operations across multiple cgroups can't
be done safely as it'll deadlock with rename locking.

Recently, kernfs is separated out from sysfs so that it can be used by
users other than sysfs.  This patch converts cgroup to use kernfs,
which will bring the following benefits.

* Separation from vfs internals.  Locking and object lifetime
  management is contained in cgroup proper making things a lot
  simpler.  This removes significant amount of locking convolutions,
  hairy object lifetime rules and the restriction on multi-cgroup
  operations.

* Can drop a lot of code to implement filesystem interface as most are
  provided by kernfs.

* Proper "severing" semantics, which allows controllers to not worry
  about lingering file accesses after offline.

While the preceding patches did as much as possible to make the
transition less painful, large part of the conversion has to be one
discrete step making this patch rather large.  The rest of the commit
message lists notable changes in different areas.

Overall
-------

* vfs constructs replaced with kernfs ones.  cgroup->dentry w/ ->kn,
  cgroupfs_root->sb w/ ->kf_root.

* All dentry accessors are removed.  Helpers to map from kernfs
  constructs are added.

* All vfs plumbing around dentry, inode and bdi removed.

* cgroup_mount() now directly looks for matching root and then
  proceeds to create a new one if not found.

Synchronization and object lifetime
-----------------------------------

* vfs inode locking removed.  Among other things, this removes the
  need for the convolution in cgroup_cfts_commit().  Future patches
  will further simplify it.

* vfs refcnting replaced with cgroup internal ones.  cgroup->refcnt,
  cgroupfs_root->refcnt added.  cgroup_put_root() now directly puts
  root->refcnt and when it reaches zero proceeds to destroy it thus
  merging cgroup_put_root() and the former cgroup_kill_sb().
  Simliarly, cgroup_put() now directly schedules cgroup_free_rcu()
  when refcnt reaches zero.

* Unlike before, kernfs objects don't hold onto cgroup objects.  When
  cgroup destroys a kernfs node, all existing operations are drained
  and the association is broken immediately.  The same for
  cgroupfs_roots and mounts.

* All operations which come through kernfs guarantee that the
  associated cgroup is and stays valid for the duration of operation;
  however, there are two paths which need to find out the associated
  cgroup from dentry without going through kernfs -
  css_tryget_from_dir() and cgroupstats_build().  For these two,
  kernfs_node->priv is RCU managed so that they can dereference it
  under RCU read lock.

File and directory handling
---------------------------

* File and directory operations converted to kernfs_ops and
  kernfs_syscall_ops.

* xattrs is implicitly supported by kernfs.  No need to worry about it
  from cgroup.  This means that "xattr" mount option is no longer
  necessary.  A future patch will add a deprecated warning message
  when sane_behavior.

* When cftype->max_write_len > PAGE_SIZE, it's necessary to make a
  private copy of one of the kernfs_ops to set its atomic_write_len.
  cftype->kf_ops is added and cgroup_init/exit_cftypes() are updated
  to handle it.

* cftype->lockdep_key added so that kernfs lockdep annotation can be
  per cftype.

* Inidividual file entries and open states are now managed by kernfs.
  No need to worry about them from cgroup.  cfent, cgroup_open_file
  and their friends are removed.

* kernfs_nodes are created deactivated and kernfs_activate()
  invocations added to places where creation of new nodes are
  committed.

* cgroup_rmdir() uses kernfs_[un]break_active_protection() for
  self-removal.

v2: - Li pointed out in an earlier patch that specifying "name="
      during mount without subsystem specification should succeed if
      there's an existing hierarchy with a matching name although it
      should fail with -EINVAL if a new hierarchy should be created.
      Prior to the conversion, this used by handled by deferring
      failure from NULL return from cgroup_root_from_opts(), which was
      necessary because root was being created before checking for
      existing ones.  Note that cgroup_root_from_opts() returned an
      ERR_PTR() value for error conditions which require immediate
      mount failure.

      As we now have separate search and creation steps, deferring
      failure from cgroup_root_from_opts() is no longer necessary.
      cgroup_root_from_opts() is updated to always return ERR_PTR()
      value on failure.

    - The logic to match existing roots is updated so that a mount
      attempt with a matching name but different subsys_mask are
      rejected.  This was handled by a separate matching loop under
      the comment "Check for name clashes with existing mounts" but
      got lost during conversion.  Merge the check into the main
      search loop.

    - Add __rcu __force casting in RCU_INIT_POINTER() in
      cgroup_destroy_locked() to avoid the sparse address space
      warning reported by kbuild test bot.  Maybe we want an explicit
      interface to use kn->priv as RCU protected pointer?

v3: Make CONFIG_CGROUPS select CONFIG_KERNFS.

v4: Rebased on top of 0ab02ca8f8 ("cgroup: protect modifications to
    cgroup_idr with cgroup_mutex").

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Cc: kbuild test robot fengguang.wu@intel.com>
2014-02-11 11:52:49 -05:00
Tejun Heo 59f5296b51 cgroup: misc preps for kernfs conversion
* Un-inline seq_css().  After kernfs conversion, the function will
  need to dereference internal data structures.

* Add cgroup_get/put_root() and replace direct super_block->s_active
  manipulatinos with them.  These will be converted to kernfs_root
  refcnting.

* Add cgroup_get/put() and replace dget/put() on cgrp->dentry with
  them.  These will be converted to kernfs refcnting.

* Update current_css_set_cg_links_read() to use cgroup_name() instead
  of reaching into the dentry name.  The end result is the same.

These changes don't make functional differences but will make
transition to kernfs easier.

v2: Rebased on top of 0ab02ca8f8 ("cgroup: protect modifications to
    cgroup_idr with cgroup_mutex").

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
2014-02-11 11:52:49 -05:00
Tejun Heo b166492406 cgroup: introduce cgroup_ino()
mm/memory-failure.c::hwpoison_filter_task() has been reaching into
cgroup to extract the associated ino to be used as a filtering
criterion.  This is an implementation detail which shouldn't be
depended upon from outside cgroup proper and is about to change with
the scheduled kernfs conversion.

This patch introduces a proper interface to determine the associated
ino, cgroup_ino(), and updates hwpoison_filter_task() to use it
instead of reaching directly into cgroup.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Wu Fengguang <fengguang.wu@intel.com>
2014-02-11 11:52:49 -05:00
Tejun Heo 5f46990787 cgroup: update the meaning of cftype->max_write_len
cftype->max_write_len is used to extend the maximum size of writes.
It's interpreted in such a way that the actual maximum size is one
less than the specified value.  The default size is defined by
CGROUP_LOCAL_BUFFER_SIZE.  Its interpretation is quite confusing - its
value is decremented by 1 and then compared for equality with max
size, which means that the actual default size is
CGROUP_LOCAL_BUFFER_SIZE - 2, which is 62 chars.

There's no point in having a limit that low.  Update its definition so
that it means the actual string length sans termination and anything
below PAGE_SIZE-1 is treated as PAGE_SIZE-1.

.max_write_len for "release_agent" is updated to PATH_MAX-1 and
cgroup_release_agent_write() is updated so that the redundant strlen()
check is removed and it uses strlcpy() instead of strcpy().
.max_write_len initializations in blk-throttle.c and cfq-iosched.c are
no longer necessary and removed.  The one in cpuset is kept unchanged
as it's an approximated value to begin with.

This will also make transition to kernfs smoother.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
2014-02-11 11:52:48 -05:00
Tejun Heo de00ffa56e cgroup: make cgroup_subsys->base_cftypes use cgroup_add_cftypes()
Currently, cgroup_subsys->base_cftypes registration is different from
dynamic cftypes registartion.  Instead of going through
cgroup_add_cftypes(), cgroup_init_subsys() invokes
cgroup_init_cftsets() which makes use of cgroup_subsys->base_cftset
which doesn't involve dynamic allocation.

While avoiding dynamic allocation is somewhat nice, having two
separate paths for cftypes registration is nasty, especially as we're
planning to add more operations during cftypes registration.

This patch drops cgroup_init_cftsets() and cgroup_subsys->base_cftset
and registers base_cftypes using cgroup_add_cftypes().  This is done
as a separate step in cgroup_init() instead of a part of
cgroup_init_subsys().  This is because cgroup_init_subsys() can be
called very early during boot when kmalloc() isn't available yet.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
2014-02-11 11:52:48 -05:00
Tejun Heo 5a17f543ed cgroup: improve css_from_dir() into css_tryget_from_dir()
css_from_dir() returns the matching css (cgroup_subsys_state) given a
dentry and subsystem.  The function doesn't pin the css before
returning and requires the caller to be holding RCU read lock or
cgroup_mutex and handling pinning on the caller side.

Given that users of the function are likely to want to pin the
returned css (both existing users do) and that getting and putting
css's are very cheap, there's no reason for the interface to be tricky
like this.

Rename css_from_dir() to css_tryget_from_dir() and make it try to pin
the found css and return it only if pinning succeeded.  The callers
are updated so that they no longer do RCU locking and pinning around
the function and just use the returned css.

This will also ease converting cgroup to kernfs.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Li Zefan <lizefan@huawei.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
2014-02-11 11:52:47 -05:00
Tejun Heo 398f878789 Merge branch 'cgroup/for-3.14-fixes' into cgroup/for-3.15
Pull for-3.14-fixes to receive 0ab02ca8f8 ("cgroup: protect
modifications to cgroup_idr with cgroup_mutex") prior to kernfs
conversion series to avoid non-trivial conflicts.

Signed-off-by: Tejun Heo <tj@kernel.org>
2014-02-11 11:02:59 -05:00
Li Zefan 0ab02ca8f8 cgroup: protect modifications to cgroup_idr with cgroup_mutex
Setup cgroupfs like this:
  # mount -t cgroup -o cpuacct xxx /cgroup
  # mkdir /cgroup/sub1
  # mkdir /cgroup/sub2

Then run these two commands:
  # for ((; ;)) { mkdir /cgroup/sub1/tmp && rmdir /mnt/sub1/tmp; } &
  # for ((; ;)) { mkdir /cgroup/sub2/tmp && rmdir /mnt/sub2/tmp; } &

After seconds you may see this warning:

------------[ cut here ]------------
WARNING: CPU: 1 PID: 25243 at lib/idr.c:527 sub_remove+0x87/0x1b0()
idr_remove called for id=6 which is not allocated.
...
Call Trace:
 [<ffffffff8156063c>] dump_stack+0x7a/0x96
 [<ffffffff810591ac>] warn_slowpath_common+0x8c/0xc0
 [<ffffffff81059296>] warn_slowpath_fmt+0x46/0x50
 [<ffffffff81300aa7>] sub_remove+0x87/0x1b0
 [<ffffffff810f3f02>] ? css_killed_work_fn+0x32/0x1b0
 [<ffffffff81300bf5>] idr_remove+0x25/0xd0
 [<ffffffff810f2bab>] cgroup_destroy_css_killed+0x5b/0xc0
 [<ffffffff810f4000>] css_killed_work_fn+0x130/0x1b0
 [<ffffffff8107cdbc>] process_one_work+0x26c/0x550
 [<ffffffff8107eefe>] worker_thread+0x12e/0x3b0
 [<ffffffff81085f96>] kthread+0xe6/0xf0
 [<ffffffff81570bac>] ret_from_fork+0x7c/0xb0
---[ end trace 2d1577ec10cf80d0 ]---

It's because allocating/removing cgroup ID is not properly synchronized.

The bug was introduced when we converted cgroup_ida to cgroup_idr.
While synchronization is already done inside ida_simple_{get,remove}(),
users are responsible for concurrent calls to idr_{alloc,remove}().

tj: Refreshed on top of b58c89986a ("cgroup: fix error return from
cgroup_create()").

Fixes: 4e96ee8e98 ("cgroup: convert cgroup_ida to cgroup_idr")
Cc: <stable@vger.kernel.org> #3.12+
Reported-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2014-02-11 10:38:30 -05:00
Tejun Heo f7cef064aa Merge branch 'driver-core-next' into cgroup/for-3.15
Pending kernfs conversion depends on kernfs improvements in
driver-core-next.  Pull it into for-3.15.

Signed-off-by: Tejun Heo <tj@kernel.org>
2014-02-08 10:37:44 -05:00
Tejun Heo aec25020f5 cgroup: rename cgroup_subsys->subsys_id to ->id
It's no longer referenced outside cgroup core, so renaming is easy.
Let's rename it for consistency & brevity.

This patch is pure rename.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
2014-02-08 10:36:58 -05:00
Tejun Heo 073219e995 cgroup: clean up cgroup_subsys names and initialization
cgroup_subsys is a bit messier than it needs to be.

* The name of a subsys can be different from its internal identifier
  defined in cgroup_subsys.h.  Most subsystems use the matching name
  but three - cpu, memory and perf_event - use different ones.

* cgroup_subsys_id enums are postfixed with _subsys_id and each
  cgroup_subsys is postfixed with _subsys.  cgroup.h is widely
  included throughout various subsystems, it doesn't and shouldn't
  have claim on such generic names which don't have any qualifier
  indicating that they belong to cgroup.

* cgroup_subsys->subsys_id should always equal the matching
  cgroup_subsys_id enum; however, we require each controller to
  initialize it and then BUG if they don't match, which is a bit
  silly.

This patch cleans up cgroup_subsys names and initialization by doing
the followings.

* cgroup_subsys_id enums are now postfixed with _cgrp_id, and each
  cgroup_subsys with _cgrp_subsys.

* With the above, renaming subsys identifiers to match the userland
  visible names doesn't cause any naming conflicts.  All non-matching
  identifiers are renamed to match the official names.

  cpu_cgroup -> cpu
  mem_cgroup -> memory
  perf -> perf_event

* controllers no longer need to initialize ->subsys_id and ->name.
  They're generated in cgroup core and set automatically during boot.

* Redundant cgroup_subsys declarations removed.

* While updating BUG_ON()s in cgroup_init_early(), convert them to
  WARN()s.  BUGging that early during boot is stupid - the kernel
  can't print anything, even through serial console and the trap
  handler doesn't even link stack frame properly for back-tracing.

This patch doesn't introduce any behavior changes.

v2: Rebased on top of fe1217c4f3 ("net: net_cls: move cgroupfs
    classid handling into core").

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Neil Horman <nhorman@tuxdriver.com>
Acked-by: "David S. Miller" <davem@davemloft.net>
Acked-by: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Aristeu Rozanski <aris@redhat.com>
Acked-by: Ingo Molnar <mingo@redhat.com>
Acked-by: Li Zefan <lizefan@huawei.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Serge E. Hallyn <serue@us.ibm.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Thomas Graf <tgraf@suug.ch>
2014-02-08 10:36:58 -05:00
Tejun Heo 3ed80a62bf cgroup: drop module support
With module supported dropped from net_prio, no controller is using
cgroup module support.  None of actual resource controllers can be
built as a module and we aren't gonna add new controllers which don't
control resources.  This patch drops module support from cgroup.

* cgroup_[un]load_subsys() and cgroup_subsys->module removed.

* As there's no point in distinguishing IS_BUILTIN() and IS_MODULE(),
  cgroup_subsys.h now uses IS_ENABLED() directly.

* enum cgroup_subsys_id now exactly matches the list of enabled
  controllers as ordered in cgroup_subsys.h.

* cgroup_subsys[] is now a contiguously occupied array.  Size
  specification is no longer necessary and dropped.

* for_each_builtin_subsys() is removed and for_each_subsys() is
  updated to not require any locking.

* module ref handling is removed from rebind_subsystems().

* Module related comments dropped.

v2: Rebased on top of fe1217c4f3 ("net: net_cls: move cgroupfs
    classid handling into core").

v3: Added {} around the if (need_forkexit_callback) block in
    cgroup_post_fork() for readability as suggested by Li.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
2014-02-08 10:36:58 -05:00
Tejun Heo ba341d55a4 kernfs: add CONFIG_KERNFS
As sysfs was kernfs's only user, kernfs has been piggybacking on
CONFIG_SYSFS; however, kernfs is scheduled to grow a new user very
soon.  Introduce a separate config option CONFIG_KERNFS which is to be
selected by kernfs users.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: linux-fsdevel@vger.kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-07 16:08:57 -08:00
Tejun Heo fa4cd451cc sysfs, kobject: add sysfs wrapper for kernfs_enable_ns()
Currently, kobject is invoking kernfs_enable_ns() directly.  This is
fine now as sysfs and kernfs are enabled and disabled together.  If
sysfs is disabled, kernfs_enable_ns() is switched to dummy
implementation too and everything is fine; however, kernfs will soon
have its own config option CONFIG_KERNFS and !SYSFS && KERNFS will be
possible, which can make kobject call into non-dummy
kernfs_enable_ns() with NULL kernfs_node pointers leading to an oops.

Introduce sysfs_enable_ns() which is a wrapper around
kernfs_enable_ns() so that it can be made a noop depending only on
CONFIG_SYSFS regardless of the planned CONFIG_KERNFS.

Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-07 16:08:57 -08:00
Tejun Heo 3eef34ad7d kernfs: implement kernfs_get_parent(), kernfs_name/path() and friends
kernfs_node->parent and ->name are currently marked as "published"
indicating that kernfs users may access them directly; however, those
fields may get updated by kernfs_rename[_ns]() and unrestricted access
may lead to erroneous values or oops.

Protect ->parent and ->name updates with a irq-safe spinlock
kernfs_rename_lock and implement the following accessors for these
fields.

* kernfs_name()		- format the node's name into the specified buffer
* kernfs_path()		- format the node's path into the specified buffer
* pr_cont_kernfs_name()	- pr_cont a node's name (doesn't need buffer)
* pr_cont_kernfs_path()	- pr_cont a node's path (doesn't need buffer)
* kernfs_get_parent()	- pin and return a node's parent

All can be called under any context.  The recursive sysfs_pathname()
in fs/sysfs/dir.c is replaced with kernfs_path() and
sysfs_rename_dir_ns() is updated to use kernfs_get_parent() instead of
dereferencing parent directly.

v2: Dummy definition of kernfs_path() for !CONFIG_KERNFS was missing
    static inline making it cause a lot of build warnings.  Add it.

Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-07 16:05:35 -08:00
Tejun Heo 0c23b2259a kernfs: implement kernfs_node_from_dentry(), kernfs_root_from_sb() and kernfs_rename()
Implement helpers to determine node from dentry and root from
super_block.  Also add a kernfs_rename_ns() wrapper which assumes NULL
namespace.  These generally make sense and will be used by cgroup.

v2: Some dummy implementations for !CONFIG_SYSFS was missing.  Fixed.
    Reported by kbuild test robot.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: kbuild test robot <fengguang.wu@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-07 16:00:41 -08:00
Tejun Heo 2536390da0 kernfs: add kernfs_open_file->priv
Add a private data field to be used by kernfs file operations.  This
generally makes sense and will be used by cgroup.

Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-07 16:00:40 -08:00
Tejun Heo 4d3773c4bb kernfs: implement kernfs_ops->atomic_write_len
A write to a kernfs_node is buffered through a kernel buffer.  Writes
<= PAGE_SIZE are performed atomically, while larger ones are executed
in PAGE_SIZE chunks.  While this is enough for sysfs, cgroup which is
scheduled to be converted to use kernfs needs a bit more control over
it.

This patch adds kernfs_ops->atomic_write_len.  If not set (zero), the
behavior stays the same.  If set, writes upto the size are executed
atomically and larger writes are rejected with -E2BIG.

A different implementation strategy would be allowing configuring
chunking size while making the original write size available to the
write method; however, such strategy, while being more complicated,
doesn't really buy anything.  If the write implementation has to
handle chunking, the specific chunk size shouldn't matter all that
much.

Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-07 15:52:48 -08:00
Tejun Heo d35258ef70 kernfs: allow nodes to be created in the deactivated state
Currently, kernfs_nodes are made visible to userland on creation,
which makes it difficult for kernfs users to atomically succeed or
fail creation of multiple nodes.  In addition, if something fails
after creating some nodes, the created nodes might already be in use
and their active refs need to be drained for removal, which has the
potential to introduce tricky reverse locking dependency on active_ref
depending on how the error path is synchronized.

This patch introduces per-root flag KERNFS_ROOT_CREATE_DEACTIVATED.
If set, all nodes under the root are created in the deactivated state
and stay invisible to userland until explicitly enabled by the new
kernfs_activate() API.  Also, nodes which have never been activated
are guaranteed to bypass draining on removal thus allowing error paths
to not worry about lockding dependency on active_ref draining.

Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-07 15:52:48 -08:00
Tejun Heo 6a7fed4eef kernfs: implement kernfs_syscall_ops->remount_fs() and ->show_options()
Add two super_block related syscall callbacks ->remount_fs() and
->show_options() to kernfs_syscall_ops.  These simply forward the
matching super_operations.

Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-07 15:52:48 -08:00
Tejun Heo 90c07c895c kernfs: rename kernfs_dir_ops to kernfs_syscall_ops
We're gonna need non-dir syscall callbacks, which will make dir_ops a
misnomer.  Let's rename kernfs_dir_ops to kernfs_syscall_ops.

This is pure rename.

Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-07 15:52:48 -08:00
Tejun Heo 07c7530dd4 kernfs: invoke dir_ops while holding active ref of the target node
kernfs_dir_ops are currently being invoked without any active
reference, which makes it tricky for the invoked operations to
determine whether the objects associated those nodes are safe to
access and will remain that way for the duration of such operations.

kernfs already has active_ref mechanism to deal with this which makes
the removal of a given node the synchronization point for gating the
file operations.  There's no reason for dir_ops to be any different.
Update the dir_ops handling so that active_ref is held while the
dir_ops are executing.  This guarantees that while a dir_ops is
executing the target nodes stay alive.

As kernfs_dir_ops doesn't have any in-kernel user at this point, this
doesn't affect anybody.

Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-07 15:52:48 -08:00
Tejun Heo ce8b04aa6c sysfs, driver-core: remove unused {sysfs|device}_schedule_callback_owner()
All device_schedule_callback_owner() users are converted to use
device_remove_file_self().  Remove now unused
{sysfs|device}_schedule_callback_owner().

Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-07 15:42:41 -08:00
Tejun Heo 6b0afc2a21 kernfs, sysfs, driver-core: implement kernfs_remove_self() and its wrappers
Sometimes it's necessary to implement a node which wants to delete
nodes including itself.  This isn't straightforward because of kernfs
active reference.  While a file operation is in progress, an active
reference is held and kernfs_remove() waits for all such references to
drain before completing.  For a self-deleting node, this is a deadlock
as kernfs_remove() ends up waiting for an active reference that itself
is sitting on top of.

This currently is worked around in the sysfs layer using
sysfs_schedule_callback() which makes such removals asynchronous.
While it works, it's rather cumbersome and inherently breaks
synchronicity of the operation - the file operation which triggered
the operation may complete before the removal is finished (or even
started) and the removal may fail asynchronously.  If a removal
operation is immmediately followed by another operation which expects
the specific name to be available (e.g. removal followed by rename
onto the same name), there's no way to make the latter operation
reliable.

The thing is there's no inherent reason for this to be asynchrnous.
All that's necessary to do this synchronous is a dedicated operation
which drops its own active ref and deactivates self.  This patch
implements kernfs_remove_self() and its wrappers in sysfs and driver
core.  kernfs_remove_self() is to be called from one of the file
operations, drops the active ref the task is holding, removes the self
node, and restores active ref to the dead node so that the ref is
balanced afterwards.  __kernfs_remove() is updated so that it takes an
early exit if the target node is already fully removed so that the
active ref restored by kernfs_remove_self() after removal doesn't
confuse the deactivation path.

This makes implementing self-deleting nodes very easy.  The normal
removal path doesn't even need to be changed to use
kernfs_remove_self() for the self-deleting node.  The method can
invoke kernfs_remove_self() on itself before proceeding the normal
removal path.  kernfs_remove() invoked on the node by the normal
deletion path will simply be ignored.

This will replace sysfs_schedule_callback().  A subtle feature of
sysfs_schedule_callback() is that it collapses multiple invocations -
even if multiple removals are triggered, the removal callback is run
only once.  An equivalent effect can be achieved by testing the return
value of kernfs_remove_self() - only the one which gets %true return
value should proceed with actual deletion.  All other instances of
kernfs_remove_self() will wait till the enclosing kernfs operation
which invoked the winning instance of kernfs_remove_self() finishes
and then return %false.  This trivially makes all users of
kernfs_remove_self() automatically show correct synchronous behavior
even when there are multiple concurrent operations - all "echo 1 >
delete" instances will finish only after the whole operation is
completed by one of the instances.

Note that manipulation of active ref is implemented in separate public
functions - kernfs_[un]break_active_protection().
kernfs_remove_self() is the only user at the moment but this will be
used to cater to more complex cases.

v2: For !CONFIG_SYSFS, dummy version kernfs_remove_self() was missing
    and sysfs_remove_file_self() had incorrect return type.  Fix it.
    Reported by kbuild test bot.

v3: kernfs_[un]break_active_protection() separated out from
    kernfs_remove_self() and exposed as public API.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: kbuild test robot <fengguang.wu@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-07 15:42:41 -08:00
Tejun Heo 81c173cb5e kernfs: remove KERNFS_REMOVED
KERNFS_REMOVED is used to mark half-initialized and dying nodes so
that they don't show up in lookups and deny adding new nodes under or
renaming it; however, its role overlaps that of deactivation.

It's necessary to deny addition of new children while removal is in
progress; however, this role considerably intersects with deactivation
- KERNFS_REMOVED prevents new children while deactivation prevents new
file operations.  There's no reason to have them separate making
things more complex than necessary.

This patch removes KERNFS_REMOVED.

* Instead of KERNFS_REMOVED, each node now starts its life
  deactivated.  This means that we now use both atomic_add() and
  atomic_sub() on KN_DEACTIVATED_BIAS, which is INT_MIN.  The compiler
  generates an overflow warnings when negating INT_MIN as the negation
  can't be represented as a positive number.  Nothing is actually
  broken but let's bump BIAS by one to avoid the warnings for archs
  which negates the subtrahend..

* A new helper kernfs_active() which tests whether kn->active >= 0 is
  added for convenience and lockdep annotation.  All KERNFS_REMOVED
  tests are replaced with negated kernfs_active() tests.

* __kernfs_remove() is updated to deactivate, but not drain, all nodes
  in the subtree instead of setting KERNFS_REMOVED.  This removes
  deactivation from kernfs_deactivate(), which is now renamed to
  kernfs_drain().

* Sanity check on KERNFS_REMOVED in kernfs_put() is replaced with
  checks on the active ref.

* Some comment style updates in the affected area.

v2: Reordered before removal path restructuring.  kernfs_active()
    dropped and kernfs_get/put_active() used instead.  RB_EMPTY_NODE()
    used in the lookup paths.

v3: Reverted most of v2 except for creating a new node with
    KN_DEACTIVATED_BIAS.

Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-07 15:42:41 -08:00
Tejun Heo 182fd64b66 kernfs: remove KERNFS_ACTIVE_REF and add kernfs_lockdep()
There currently are two mechanisms gating active ref lockdep
annotations - KERNFS_LOCKDEP flag and KERNFS_ACTIVE_REF type mask.
The former disables lockdep annotations in kernfs_get/put_active()
while the latter disables all of kernfs_deactivate().

While KERNFS_ACTIVE_REF also behaves as an optimization to skip the
deactivation step for non-file nodes, the benefit is marginal and it
needlessly diverges code paths.  Let's drop KERNFS_ACTIVE_REF.

While at it, add a test helper kernfs_lockdep() to test KERNFS_LOCKDEP
flag so that it's more convenient and the related code can be compiled
out when not enabled.

v2: Refreshed on top of ("kernfs: make kernfs_deactivate() honor
    KERNFS_LOCKDEP flag").  As the earlier patch already added
    KERNFS_LOCKDEP tests to kernfs_deactivate(), those additions are
    dropped from this patch and the existing ones are simply converted
    to kernfs_lockdep().

Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-07 15:42:40 -08:00
Tejun Heo 988cd7afb3 kernfs: remove kernfs_addrm_cxt
kernfs_addrm_cxt and the accompanying kernfs_addrm_start/finish() were
added because there were operations which should be performed outside
kernfs_mutex after adding and removing kernfs_nodes.  The necessary
operations were recorded in kernfs_addrm_cxt and performed by
kernfs_addrm_finish(); however, after the recent changes which
relocated deactivation and unmapping so that they're performed
directly during removal, the only operation kernfs_addrm_finish()
performs is kernfs_put(), which can be moved inside the removal path
too.

This patch moves the kernfs_put() of the base ref to __kernfs_remove()
and remove kernfs_addrm_cxt and kernfs_addrm_start/finish().

* kernfs_add_one() is updated to grab and release kernfs_mutex itself.
  sysfs_addrm_start/finish() invocations around it are removed from
  all users.

* __kernfs_remove() puts an unlinked node directly instead of chaining
  it to kernfs_addrm_cxt.  Its callers are updated to grab and release
  kernfs_mutex instead of calling kernfs_addrm_start/finish() around
  it.

v2: Rebased on top of "kernfs: associate a new kernfs_node with its
    parent on creation" which dropped @parent from kernfs_add_one().

Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-07 15:42:40 -08:00
Tejun Heo abd54f028e kernfs: replace kernfs_node->u.completion with kernfs_root->deactivate_waitq
kernfs_node->u.completion is used to notify deactivation completion
from kernfs_put_active() to kernfs_deactivate().  We now allow
multiple racing removals of the same node and the current removal
scheme is no longer correct - kernfs_remove() invocation may return
before the node is properly deactivated if it races against another
removal.  The removal path will be restructured to address the issue.

To help such restructure which requires supporting multiple waiters,
this patch replaces kernfs_node->u.completion with
kernfs_root->deactivate_waitq.  This makes deactivation event
notifications share a per-root waitqueue_head; however, the wait path
is quite cold and this will also allow shaving one pointer off
kernfs_node.

v2: Refreshed on top of ("kernfs: make kernfs_deactivate() honor
    KERNFS_LOCKDEP flag").

Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-07 15:42:40 -08:00
Linus Torvalds 7b383bef25 Merge branch 'slab/next' of git://git.kernel.org/pub/scm/linux/kernel/git/penberg/linux
Pull SLAB changes from Pekka Enberg:
 "Random bug fixes that have accumulated in my inbox over the past few
  months"

* 'slab/next' of git://git.kernel.org/pub/scm/linux/kernel/git/penberg/linux:
  mm: Fix warning on make htmldocs caused by slab.c
  mm: slub: work around unneeded lockdep warning
  mm: sl[uo]b: fix misleading comments
  slub: Fix possible format string bug.
  slub: use lockdep_assert_held
  slub: Fix calculation of cpu slabs
  slab.h: remove duplicate kmalloc declaration and fix kernel-doc warnings
2014-02-02 11:30:08 -08:00
Linus Torvalds efc518eb31 Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull vfs fixes from Al Viro:
 "Several obvious fixes"

* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
  Fix mountpoint reference leakage in linkat
  hfsplus: use xattr handlers for removexattr
  Typo in compat_sys_lseek() declaration
  fs/super.c: sync ro remount after blocking writers
  vfs: unexport the getname() symbol
2014-02-01 10:43:45 -08:00
Linus Torvalds 8a1f006ad3 NFS client bugfixes for Linux 3.14
Highlights:
 
 - Fix several races in nfs_revalidate_mapping
 - NFSv4.1 slot leakage in the pNFS files driver
 - Stable fix for a slot leak in nfs40_sequence_done
 - Don't reject NFSv4 servers that support ACLs with only ALLOW aces
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQIcBAABAgAGBQJS7Bb+AAoJEGcL54qWCgDyDuQP/17nKR5e6MLhixcAbvlcH+pN
 8CGolAM3HmRXDWUW/PkBH3UguG8Tzx1Ex26vIxipPeTSwZabf6194Twj6L97DEGZ
 2SouD158BW1TkAbhEN/alKB/4ZCPos05iXjZkrL7MRff+8FD0UvWR2pBT1F2jQdY
 ZftG76Q72qhZHfH07ZMxM/v4Oy2Ge98RDD35gfuuqMSjHpmN9tiB55PeheW33LVY
 fu6I/JEwmlJpgy2qUcDv7v0V4mDpjC7XbcjjHpMHL8zp/C5Rx/rdgt9OQPlwmjdV
 FD8MWNXLc5TWxIouLDFPVUv3WZPjyu449QHS9Wc95fSqsHcdl4j4SwLAoSvUIdHt
 vDI5PtWhw3WAezbtiuCQnT0xcoIOn5bLjOVP13taDcV9vlZLcFlyOpZ5gVE4/Yju
 zm4sCW2+imDc74ERGa4fukF6QhzzAVmD8RlCJwuNzwCfXiZ36+xSanMYiPoUiwLL
 OVNgymrm0fe7GVFQKWN2D+Vr68OQEmARO+KfA3UzP5rQV+9CU8zSHjbcoRWZ59QG
 VahOS5WDLQSrMp8W37yAHH9IiAWveAAKJJTHlOniRqH90QYPgyW18fTo7YcpW313
 AQGFgr/1n4t27MWRLu5rdoN5v8+kwNi0UV6oboNIPoP1v15NkEMvc7HKFj5M883R
 qEYfe5wqN/eRNj68NT/+
 =B7f0
 -----END PGP SIGNATURE-----

Merge tag 'nfs-for-3.14-2' of git://git.linux-nfs.org/projects/trondmy/linux-nfs

Pull NFS client bugfixes from Trond Myklebust:
 "Highlights:

   - Fix several races in nfs_revalidate_mapping
   - NFSv4.1 slot leakage in the pNFS files driver
   - Stable fix for a slot leak in nfs40_sequence_done
   - Don't reject NFSv4 servers that support ACLs with only ALLOW aces"

* tag 'nfs-for-3.14-2' of git://git.linux-nfs.org/projects/trondmy/linux-nfs:
  nfs: initialize the ACL support bits to zero.
  NFSv4.1: Cleanup
  NFSv4.1: Clean up nfs41_sequence_done
  NFSv4: Fix a slot leak in nfs40_sequence_done
  NFSv4.1 free slot before resending I/O to MDS
  nfs: add memory barriers around NFS_INO_INVALID_DATA and NFS_INO_INVALIDATING
  NFS: Fix races in nfs_revalidate_mapping
  sunrpc: turn warn_gssd() log message into a dprintk()
  NFS: fix the handling of NFS_INO_INVALID_DATA flag in nfs_revalidate_mapping
  nfs: handle servers that support only ALLOW ACE type.
2014-01-31 15:39:07 -08:00
Linus Torvalds 4e13c5d021 Merge branch 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/nab/target-pending
Pull SCSI target updates from Nicholas Bellinger:
 "The highlights this round include:

  - add support for SCSI Referrals (Hannes)
  - add support for T10 DIF into target core (nab + mkp)
  - add support for T10 DIF emulation in FILEIO + RAMDISK backends (Sagi + nab)
  - add support for T10 DIF -> bio_integrity passthrough in IBLOCK backend (nab)
  - prep changes to iser-target for >= v3.15 T10 DIF support (Sagi)
  - add support for qla2xxx N_Port ID Virtualization - NPIV (Saurav + Quinn)
  - allow percpu_ida_alloc() to receive task state bitmask (Kent)
  - fix >= v3.12 iscsi-target session reset hung task regression (nab)
  - fix >= v3.13 percpu_ref se_lun->lun_ref_active race (nab)
  - fix a long-standing network portal creation race (Andy)"

* 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/nab/target-pending: (51 commits)
  target: Fix percpu_ref_put race in transport_lun_remove_cmd
  target/iscsi: Fix network portal creation race
  target: Report bad sector in sense data for DIF errors
  iscsi-target: Convert gfp_t parameter to task state bitmask
  iscsi-target: Fix connection reset hang with percpu_ida_alloc
  percpu_ida: Make percpu_ida_alloc + callers accept task state bitmask
  iscsi-target: Pre-allocate more tags to avoid ack starvation
  qla2xxx: Configure NPIV fc_vport via tcm_qla2xxx_npiv_make_lport
  qla2xxx: Enhancements to enable NPIV support for QLOGIC ISPs with TCM/LIO.
  qla2xxx: Fix scsi_host leak on qlt_lport_register callback failure
  IB/isert: pass scatterlist instead of cmd to fast_reg_mr routine
  IB/isert: Move fastreg descriptor creation to a function
  IB/isert: Avoid frwr notation, user fastreg
  IB/isert: seperate connection protection domains and dma MRs
  tcm_loop: Enable DIF/DIX modes in SCSI host LLD
  target/rd: Add DIF protection into rd_execute_rw
  target/rd: Add support for protection SGL setup + release
  target/rd: Refactor rd_build_device_space + rd_release_device_space
  target/file: Add DIF protection support to fd_execute_rw
  target/file: Add DIF protection init/format support
  ...
2014-01-31 15:31:23 -08:00