Commit Graph

4 Commits

Author SHA1 Message Date
Christoffer Dall 94f8e6418d KVM: ARM: Handle guest faults in KVM
Handles the guest faults in KVM by mapping in corresponding user pages
in the 2nd stage page tables.

We invalidate the instruction cache by MVA whenever we map a page to the
guest (no, we cannot only do it when we have an iabt because the guest
may happily read/write a page before hitting the icache) if the hardware
uses VIPT or PIPT.  In the latter case, we can invalidate only that
physical page.  In the first case, all bets are off and we simply must
invalidate the whole affair.  Not that VIVT icaches are tagged with
vmids, and we are out of the woods on that one.  Alexander Graf was nice
enough to remind us of this massive pain.

Reviewed-by: Will Deacon <will.deacon@arm.com>
Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com>
2013-01-23 13:29:16 -05:00
Christoffer Dall d5d8184d35 KVM: ARM: Memory virtualization setup
This commit introduces the framework for guest memory management
through the use of 2nd stage translation. Each VM has a pointer
to a level-1 table (the pgd field in struct kvm_arch) which is
used for the 2nd stage translations. Entries are added when handling
guest faults (later patch) and the table itself can be allocated and
freed through the following functions implemented in
arch/arm/kvm/arm_mmu.c:
 - kvm_alloc_stage2_pgd(struct kvm *kvm);
 - kvm_free_stage2_pgd(struct kvm *kvm);

Each entry in TLBs and caches are tagged with a VMID identifier in
addition to ASIDs. The VMIDs are assigned consecutively to VMs in the
order that VMs are executed, and caches and tlbs are invalidated when
the VMID space has been used to allow for more than 255 simultaenously
running guests.

The 2nd stage pgd is allocated in kvm_arch_init_vm(). The table is
freed in kvm_arch_destroy_vm(). Both functions are called from the main
KVM code.

We pre-allocate page table memory to be able to synchronize using a
spinlock and be called under rcu_read_lock from the MMU notifiers.  We
steal the mmu_memory_cache implementation from x86 and adapt for our
specific usage.

We support MMU notifiers (thanks to Marc Zyngier) through
kvm_unmap_hva and kvm_set_spte_hva.

Finally, define kvm_phys_addr_ioremap() to map a device at a guest IPA,
which is used by VGIC support to map the virtual CPU interface registers
to the guest. This support is added by Marc Zyngier.

Reviewed-by: Will Deacon <will.deacon@arm.com>
Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com>
2013-01-23 13:29:11 -05:00
Christoffer Dall 342cd0ab0e KVM: ARM: Hypervisor initialization
Sets up KVM code to handle all exceptions taken to Hyp mode.

When the kernel is booted in Hyp mode, calling an hvc instruction with r0
pointing to the new vectors, the HVBAR is changed to the the vector pointers.
This allows subsystems (like KVM here) to execute code in Hyp-mode with the
MMU disabled.

We initialize other Hyp-mode registers and enables the MMU for Hyp-mode from
the id-mapped hyp initialization code. Afterwards, the HVBAR is changed to
point to KVM Hyp vectors used to catch guest faults and to switch to Hyp mode
to perform a world-switch into a KVM guest.

Also provides memory mapping code to map required code pages, data structures,
and I/O regions  accessed in Hyp mode at the same virtual address as the host
kernel virtual addresses, but which conforms to the architectural requirements
for translations in Hyp mode. This interface is added in arch/arm/kvm/arm_mmu.c
and comprises:
 - create_hyp_mappings(from, to);
 - create_hyp_io_mappings(from, to, phys_addr);
 - free_hyp_pmds();

Reviewed-by: Will Deacon <will.deacon@arm.com>
Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com>
2013-01-23 13:29:10 -05:00
Christoffer Dall 749cf76c5a KVM: ARM: Initial skeleton to compile KVM support
Targets KVM support for Cortex A-15 processors.

Contains all the framework components, make files, header files, some
tracing functionality, and basic user space API.

Only supported core is Cortex-A15 for now.

Most functionality is in arch/arm/kvm/* or arch/arm/include/asm/kvm_*.h.

Reviewed-by: Will Deacon <will.deacon@arm.com>
Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com>
2013-01-23 13:29:10 -05:00