Commit Graph

126 Commits

Author SHA1 Message Date
Mike Rapoport 57c8a661d9 mm: remove include/linux/bootmem.h
Move remaining definitions and declarations from include/linux/bootmem.h
into include/linux/memblock.h and remove the redundant header.

The includes were replaced with the semantic patch below and then
semi-automated removal of duplicated '#include <linux/memblock.h>

@@
@@
- #include <linux/bootmem.h>
+ #include <linux/memblock.h>

[sfr@canb.auug.org.au: dma-direct: fix up for the removal of linux/bootmem.h]
  Link: http://lkml.kernel.org/r/20181002185342.133d1680@canb.auug.org.au
[sfr@canb.auug.org.au: powerpc: fix up for removal of linux/bootmem.h]
  Link: http://lkml.kernel.org/r/20181005161406.73ef8727@canb.auug.org.au
[sfr@canb.auug.org.au: x86/kaslr, ACPI/NUMA: fix for linux/bootmem.h removal]
  Link: http://lkml.kernel.org/r/20181008190341.5e396491@canb.auug.org.au
Link: http://lkml.kernel.org/r/1536927045-23536-30-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Ley Foon Tan <lftan@altera.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Palmer Dabbelt <palmer@sifive.com>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Richard Kuo <rkuo@codeaurora.org>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Serge Semin <fancer.lancer@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-31 08:54:16 -07:00
Mike Rapoport 97ad1087ef memblock: replace BOOTMEM_ALLOC_* with MEMBLOCK variants
Drop BOOTMEM_ALLOC_ACCESSIBLE and BOOTMEM_ALLOC_ANYWHERE in favor of
identical MEMBLOCK definitions.

Link: http://lkml.kernel.org/r/1536927045-23536-29-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Ley Foon Tan <lftan@altera.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Palmer Dabbelt <palmer@sifive.com>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Richard Kuo <rkuo@codeaurora.org>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Serge Semin <fancer.lancer@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-31 08:54:16 -07:00
Mike Rapoport 2013288f72 memblock: replace free_bootmem{_node} with memblock_free
The free_bootmem and free_bootmem_node are merely wrappers for
memblock_free. Replace their usage with a call to memblock_free using the
following semantic patch:

@@
expression e1, e2, e3;
@@
(
- free_bootmem(e1, e2)
+ memblock_free(e1, e2)
|
- free_bootmem_node(e1, e2, e3)
+ memblock_free(e2, e3)
)

Link: http://lkml.kernel.org/r/1536927045-23536-24-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Ley Foon Tan <lftan@altera.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Palmer Dabbelt <palmer@sifive.com>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Richard Kuo <rkuo@codeaurora.org>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Serge Semin <fancer.lancer@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-31 08:54:16 -07:00
Mike Rapoport a5159e84da memblock: replace __alloc_bootmem_nopanic with memblock_alloc_from_nopanic
When __alloc_bootmem_nopanic() is used with explicit lower limit for the
allocation it attempts to allocate memory at or above that limit and falls
back to allocation with no limit set.

The memblock_alloc_from_nopanic() does exactly the same thing and can be
used as a replacement for __alloc_bootmem_nopanic() is such cases.

Link: http://lkml.kernel.org/r/1536927045-23536-14-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Ley Foon Tan <lftan@altera.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Palmer Dabbelt <palmer@sifive.com>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Richard Kuo <rkuo@codeaurora.org>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Serge Semin <fancer.lancer@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-31 08:54:15 -07:00
Mike Rapoport bf2886efdc memblock: replace __alloc_bootmem_node_nopanic with memblock_alloc_try_nid_nopanic
The __alloc_bootmem_node_nopanic() attempts to allocate memory for a
specified node. If the allocation fails it then retries to allocate memory
from any node. Upon success, the allocated memory is set to 0.

The memblock_alloc_try_nid_nopanic() does exactly the same thing and can be
used instead.

Link: http://lkml.kernel.org/r/1536927045-23536-11-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Ley Foon Tan <lftan@altera.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Palmer Dabbelt <palmer@sifive.com>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Richard Kuo <rkuo@codeaurora.org>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Serge Semin <fancer.lancer@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-31 08:54:15 -07:00
Thomas Gleixner 945fd17ab6 x86/cpu_entry_area: Sync cpu_entry_area to initial_page_table
The separation of the cpu_entry_area from the fixmap missed the fact that
on 32bit non-PAE kernels the cpu_entry_area mapping might not be covered in
initial_page_table by the previous synchronizations.

This results in suspend/resume failures because 32bit utilizes initial page
table for resume. The absence of the cpu_entry_area mapping results in a
triple fault, aka. insta reboot.

With PAE enabled this works by chance because the PGD entry which covers
the fixmap and other parts incindentally provides the cpu_entry_area
mapping as well.

Synchronize the initial page table after setting up the cpu entry
area. Instead of adding yet another copy of the same code, move it to a
function and invoke it from the various places.

It needs to be investigated if the existing calls in setup_arch() and
setup_per_cpu_areas() can be replaced by the later invocation from
setup_cpu_entry_areas(), but that's beyond the scope of this fix.

Fixes: 92a0f81d89 ("x86/cpu_entry_area: Move it out of the fixmap")
Reported-by: Woody Suwalski <terraluna977@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Woody Suwalski <terraluna977@gmail.com>
Cc: William Grant <william.grant@canonical.com>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/alpine.DEB.2.21.1802282137290.1392@nanos.tec.linutronix.de
2018-03-01 09:48:27 +01:00
Greg Kroah-Hartman b24413180f License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.

By default all files without license information are under the default
license of the kernel, which is GPL version 2.

Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier.  The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.

This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.

How this work was done:

Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
 - file had no licensing information it it.
 - file was a */uapi/* one with no licensing information in it,
 - file was a */uapi/* one with existing licensing information,

Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.

The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne.  Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.

The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed.  Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.

Criteria used to select files for SPDX license identifier tagging was:
 - Files considered eligible had to be source code files.
 - Make and config files were included as candidates if they contained >5
   lines of source
 - File already had some variant of a license header in it (even if <5
   lines).

All documentation files were explicitly excluded.

The following heuristics were used to determine which SPDX license
identifiers to apply.

 - when both scanners couldn't find any license traces, file was
   considered to have no license information in it, and the top level
   COPYING file license applied.

   For non */uapi/* files that summary was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0                                              11139

   and resulted in the first patch in this series.

   If that file was a */uapi/* path one, it was "GPL-2.0 WITH
   Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0 WITH Linux-syscall-note                        930

   and resulted in the second patch in this series.

 - if a file had some form of licensing information in it, and was one
   of the */uapi/* ones, it was denoted with the Linux-syscall-note if
   any GPL family license was found in the file or had no licensing in
   it (per prior point).  Results summary:

   SPDX license identifier                            # files
   ---------------------------------------------------|------
   GPL-2.0 WITH Linux-syscall-note                       270
   GPL-2.0+ WITH Linux-syscall-note                      169
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
   LGPL-2.1+ WITH Linux-syscall-note                      15
   GPL-1.0+ WITH Linux-syscall-note                       14
   ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
   LGPL-2.0+ WITH Linux-syscall-note                       4
   LGPL-2.1 WITH Linux-syscall-note                        3
   ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
   ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1

   and that resulted in the third patch in this series.

 - when the two scanners agreed on the detected license(s), that became
   the concluded license(s).

 - when there was disagreement between the two scanners (one detected a
   license but the other didn't, or they both detected different
   licenses) a manual inspection of the file occurred.

 - In most cases a manual inspection of the information in the file
   resulted in a clear resolution of the license that should apply (and
   which scanner probably needed to revisit its heuristics).

 - When it was not immediately clear, the license identifier was
   confirmed with lawyers working with the Linux Foundation.

 - If there was any question as to the appropriate license identifier,
   the file was flagged for further research and to be revisited later
   in time.

In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.

Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.  The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.

Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.

In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.

Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
 - a full scancode scan run, collecting the matched texts, detected
   license ids and scores
 - reviewing anything where there was a license detected (about 500+
   files) to ensure that the applied SPDX license was correct
 - reviewing anything where there was no detection but the patch license
   was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
   SPDX license was correct

This produced a worksheet with 20 files needing minor correction.  This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.

These .csv files were then reviewed by Greg.  Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected.  This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.)  Finally Greg ran the script using the .csv files to
generate the patches.

Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-02 11:10:55 +01:00
Alexey Dobriyan 9b130ad5bb treewide: make "nr_cpu_ids" unsigned
First, number of CPUs can't be negative number.

Second, different signnnedness leads to suboptimal code in the following
cases:

1)
	kmalloc(nr_cpu_ids * sizeof(X));

"int" has to be sign extended to size_t.

2)
	while (loff_t *pos < nr_cpu_ids)

MOVSXD is 1 byte longed than the same MOV.

Other cases exist as well. Basically compiler is told that nr_cpu_ids
can't be negative which can't be deduced if it is "int".

Code savings on allyesconfig kernel: -3KB

	add/remove: 0/0 grow/shrink: 25/264 up/down: 261/-3631 (-3370)
	function                                     old     new   delta
	coretemp_cpu_online                          450     512     +62
	rcu_init_one                                1234    1272     +38
	pci_device_probe                             374     399     +25

				...

	pgdat_reclaimable_pages                      628     556     -72
	select_fallback_rq                           446     369     -77
	task_numa_find_cpu                          1923    1807    -116

Link: http://lkml.kernel.org/r/20170819114959.GA30580@avx2
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-08 18:26:48 -07:00
Thomas Gleixner 1dd439fe97 x86/percpu: Use static initializer for GDT entry
The IDT cleanup is about to remove pack_descriptor(). The GDT setup for the
per-cpu storage can be achieved with the static initializer as well. Replace
it.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/20170828064957.954214927@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-08-29 12:07:24 +02:00
Andy Lutomirski d2b6dc61a8 x86/boot/32: Fix UP boot on Quark and possibly other platforms
This partially reverts commit:

  23b2a4ddeb ("x86/boot/32: Defer resyncing initial_page_table until per-cpu is set up")

That commit had one definite bug and one potential bug.  The
definite bug is that setup_per_cpu_areas() uses a differnet generic
implementation on UP kernels, so initial_page_table never got
resynced.  This was fine for access to percpu data (it's in the
identity map on UP), but it breaks other users of
initial_page_table.  The potential bug is that helpers like
efi_init() would be called before the tables were synced.

Avoid both problems by just syncing the page tables in setup_arch()
*and* setup_per_cpu_areas().

Reported-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Andy Shevchenko <andy.shevchenko@gmail.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Garnier <thgarnie@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-05-09 08:14:24 +02:00
Andy Lutomirski 23b2a4ddeb x86/boot/32: Defer resyncing initial_page_table until per-cpu is set up
The x86 smpboot trampoline expects initial_page_table to have the
GDT mapped.  If the GDT ends up in a virtually mapped per-cpu page,
then it won't be in the page tables at all until perc-pu areas are
set up.  The result will be a triple fault the first time that the
CPU attempts to access the GDT after LGDT loads the perc-pu GDT.

This appears to be an old bug, but somehow the GDT fixmap rework
is triggering it.  This seems to have something to do with the
memory layout.

Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Garnier <thgarnie@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Link: http://lkml.kernel.org/r/a553264a5972c6a86f9b5caac237470a0c74a720.1490218061.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-03-23 08:25:08 +01:00
Thomas Garnier 69218e4799 x86: Remap GDT tables in the fixmap section
Each processor holds a GDT in its per-cpu structure. The sgdt
instruction gives the base address of the current GDT. This address can
be used to bypass KASLR memory randomization. With another bug, an
attacker could target other per-cpu structures or deduce the base of
the main memory section (PAGE_OFFSET).

This patch relocates the GDT table for each processor inside the
fixmap section. The space is reserved based on number of supported
processors.

For consistency, the remapping is done by default on 32 and 64-bit.

Each processor switches to its remapped GDT at the end of
initialization. For hibernation, the main processor returns with the
original GDT and switches back to the remapping at completion.

This patch was tested on both architectures. Hibernation and KVM were
both tested specially for their usage of the GDT.

Thanks to Boris Ostrovsky <boris.ostrovsky@oracle.com> for testing and
recommending changes for Xen support.

Signed-off-by: Thomas Garnier <thgarnie@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Jiri Kosina <jikos@kernel.org>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Len Brown <len.brown@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Luis R . Rodriguez <mcgrof@kernel.org>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rafael J . Wysocki <rjw@rjwysocki.net>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Stanislaw Gruszka <sgruszka@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: kasan-dev@googlegroups.com
Cc: kernel-hardening@lists.openwall.com
Cc: kvm@vger.kernel.org
Cc: lguest@lists.ozlabs.org
Cc: linux-doc@vger.kernel.org
Cc: linux-efi@vger.kernel.org
Cc: linux-mm@kvack.org
Cc: linux-pm@vger.kernel.org
Cc: xen-devel@lists.xenproject.org
Cc: zijun_hu <zijun_hu@htc.com>
Link: http://lkml.kernel.org/r/20170314170508.100882-2-thgarnie@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-03-16 09:06:35 +01:00
Paul Gortmaker 523d0fb4f0 x86/percpu: Remove unnecessary include of module.h, add asm/desc.h
This was originally a part of commit 186f43608a5c:

    ("x86/kernel: Audit and remove any unnecessary uses of module.h")

...but without the asm/desc.h addition.  As such, Ingo reported a
build failure on i386 allnoconfig with SMP=y during his pre-merge
testing.   For expediency the chunk was just dropped at that time.

The failure was as follows:

  arch/x86/kernel/setup_percpu.c: In function ‘setup_percpu_segment’:
  arch/x86/kernel/setup_percpu.c:159:2: error: implicit declaration of function ‘pack_descriptor’ [-Werror=implicit-function-declaration]
  arch/x86/kernel/setup_percpu.c:162:2: error: implicit declaration of function ‘write_gdt_entry’ [-Werror=implicit-function-declaration]
  arch/x86/kernel/setup_percpu.c:162:18: error: implicit declaration of function ‘get_cpu_gdt_table’ [-Werror=implicit-function-declaration]

As pack_descriptor(), write_gdt_entry() and get_cpu_gdt_table() all
live in the file arch/x86/include/asm/desc.h -- calling that header
out explicitly should fix things.

Reported-by: Ingo Molnar <mingo@redhat.com>
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20161114190443.10873-1-paul.gortmaker@windriver.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-11-15 07:26:37 +01:00
Ingo Molnar 2b3061c77c Merge branch 'x86/mm' into x86/asm, to unify the two branches for simplicity
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-09-08 08:41:52 +02:00
Josh Poimboeuf 4950d6d48a x86/dumpstack: Remove 64-byte gap at end of irq stack
There has been a 64-byte gap at the end of the irq stack for at least 12
years.  It predates git history, and I can't find any good reason for
it.  Remove it.  What's the worst that could happen?

Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Byungchul Park <byungchul.park@lge.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Nilay Vaish <nilayvaish@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/14f9281c5475cc44af95945ea7546bff2e3836db.1471535549.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-08-18 18:41:33 +02:00
Kees Cook 404f6aac9b x86: Apply more __ro_after_init and const
Guided by grsecurity's analogous __read_only markings in arch/x86,
this applies several uses of __ro_after_init to structures that are
only updated during __init, and const for some structures that are
never updated.  Additionally extends __init markings to some functions
that are only used during __init, and cleans up some missing C99 style
static initializers.

Signed-off-by: Kees Cook <keescook@chromium.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brad Spengler <spender@grsecurity.net>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: David Brown <david.brown@linaro.org>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Emese Revfy <re.emese@gmail.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mathias Krause <minipli@googlemail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: PaX Team <pageexec@freemail.hu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: kernel-hardening@lists.openwall.com
Link: http://lkml.kernel.org/r/20160808232906.GA29731@www.outflux.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-08-10 14:55:05 +02:00
Vitaly Kuznetsov 3e9e57fad3 x86/acpi: store ACPI ids from MADT for future usage
Currently we don't save ACPI ids (unlike LAPIC ids which go to
x86_cpu_to_apicid) from MADT and we may need this information later.
Particularly, ACPI ids is the only existent way for a PVHVM Xen guest
to figure out Xen's idea of its vCPUs ids before these CPUs boot and
in some cases these ids diverge from Linux's cpu ids.

Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
2016-07-25 13:30:53 +01:00
Jan Beulich 2c773dd31f x86: Convert a few more per-CPU items to read-mostly ones
Both this_cpu_off and cpu_info aren't getting modified post boot, yet
are being accessed on enough code paths that grouping them with other
frequently read items seems desirable. For cpu_info this at the same
time implies removing the cache line alignment (which afaict became
pointless when it got converted to per-CPU data years ago).

Signed-off-by: Jan Beulich <jbeulich@suse.com>
Link: http://lkml.kernel.org/r/54589BD20200007800044A84@mail.emea.novell.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2014-11-04 20:13:28 +01:00
Vlad Zolotarov 0816b0f036 x86: Add read_mostly declaration/definition to variables from smp.h
Add "read-mostly" qualifier to the following variables in
smp.h:

 - cpu_sibling_map
 - cpu_core_map
 - cpu_llc_shared_map
 - cpu_llc_id
 - cpu_number
 - x86_cpu_to_apicid
 - x86_bios_cpu_apicid
 - x86_cpu_to_logical_apicid

As long as all the variables above are only written during the
initialization, this change is meant to prevent the false
sharing. More specifically, on vSMP Foundation platform
x86_cpu_to_apicid shared the same internode_cache_line with
frequently written lapic_events.

From the analysis of the first 33 per_cpu variables out of 219
(memories they describe, to be more specific) the 8 have read_mostly
nature (tlb_vector_offset, cpu_loops_per_jiffy, xen_debug_irq, etc.)
and 25 are frequently written (irq_stack_union, gdt_page,
exception_stacks, idt_desc, etc.).

Assuming that the spread of the rest of the per_cpu variables is
similar, identifying the read mostly memories will make more sense
in terms of long-term code maintenance comparing to identifying
frequently written memories.

Signed-off-by: Vlad Zolotarov <vlad@scalemp.com>
Acked-by: Shai Fultheim <shai@scalemp.com>
Cc: Shai Fultheim (Shai@ScaleMP.com) <Shai@scalemp.com>
Cc: ido@wizery.com
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1719258.EYKzE4Zbq5@vlad
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2012-06-14 12:42:11 +02:00
Tejun Heo d5e28005a1 percpu, x86: don't use PMD_SIZE as embedded atom_size on 32bit
With the embed percpu first chunk allocator, x86 uses either PAGE_SIZE
or PMD_SIZE for atom_size.  PMD_SIZE is used when CPU supports PSE so
that percpu areas are aligned to PMD mappings and possibly allow using
PMD mappings in vmalloc areas in the future.  Using larger atom_size
doesn't waste actual memory; however, it does require larger vmalloc
space allocation later on for !first chunks.

With reasonably sized vmalloc area, PMD_SIZE shouldn't be a problem
but x86_32 at this point is anything but reasonable in terms of
address space and using larger atom_size reportedly leads to frequent
percpu allocation failures on certain setups.

As there is no reason to not use PMD_SIZE on x86_64 as vmalloc space
is aplenty and most x86_64 configurations support PSE, fix the issue
by always using PMD_SIZE on x86_64 and PAGE_SIZE on x86_32.

v2: drop cpu_has_pse test and make x86_64 always use PMD_SIZE and
    x86_32 PAGE_SIZE as suggested by hpa.

Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Yanmin Zhang <yanmin.zhang@intel.com>
Reported-by: ShuoX Liu <shuox.liu@intel.com>
Acked-by: H. Peter Anvin <hpa@zytor.com>
LKML-Reference: <4F97BA98.6010001@intel.com>
Cc: stable@vger.kernel.org
2012-05-08 09:42:18 -07:00
Tejun Heo 645a79195f x86: Unify CPU -> NUMA node mapping between 32 and 64bit
Unlike 64bit, 32bit has been using its own cpu_to_node_map[] for
CPU -> NUMA node mapping.  Replace it with early_percpu variable
x86_cpu_to_node_map and share the mapping code with 64bit.

* USE_PERCPU_NUMA_NODE_ID is now enabled for 32bit too.

* x86_cpu_to_node_map and numa_set/clear_node() are moved from
  numa_64 to numa.  For now, on 32bit, x86_cpu_to_node_map is initialized
  with 0 instead of NUMA_NO_NODE.  This is to avoid introducing unexpected
  behavior change and will be updated once init path is unified.

* srat_detect_node() is now enabled for x86_32 too.  It calls
  numa_set_node() and initializes the mapping making explicit
  cpu_to_node_map[] updates from map/unmap_cpu_to_node() unnecessary.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: eric.dumazet@gmail.com
Cc: yinghai@kernel.org
Cc: brgerst@gmail.com
Cc: gorcunov@gmail.com
Cc: penberg@kernel.org
Cc: shaohui.zheng@intel.com
Cc: rientjes@google.com
LKML-Reference: <1295789862-25482-15-git-send-email-tj@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Cc: David Rientjes <rientjes@google.com>
2011-01-28 14:54:09 +01:00
Tejun Heo 4c321ff8a0 x86: Replace cpu_2_logical_apicid[] with early percpu variable
Unlike x86_64, on x86_32, the mapping from cpu to logical apicid
may vary depending on apic in use.  cpu_2_logical_apicid[] array
is used for this mapping.  Replace it with early percpu variable
x86_cpu_to_logical_apicid to make it better aligned with other
mappings.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: eric.dumazet@gmail.com
Cc: yinghai@kernel.org
Cc: brgerst@gmail.com
Cc: gorcunov@gmail.com
Cc: penberg@kernel.org
Cc: shaohui.zheng@intel.com
Cc: rientjes@google.com
LKML-Reference: <1295789862-25482-5-git-send-email-tj@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-01-28 14:54:05 +01:00
Linus Torvalds 3044100e58 Merge branch 'core-memblock-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip
* 'core-memblock-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (74 commits)
  x86-64: Only set max_pfn_mapped to 512 MiB if we enter via head_64.S
  xen: Cope with unmapped pages when initializing kernel pagetable
  memblock, bootmem: Round pfn properly for memory and reserved regions
  memblock: Annotate memblock functions with __init_memblock
  memblock: Allow memblock_init to be called early
  memblock/arm: Fix memblock_region_is_memory() typo
  x86, memblock: Remove __memblock_x86_find_in_range_size()
  memblock: Fix wraparound in find_region()
  x86-32, memblock: Make add_highpages honor early reserved ranges
  x86, memblock: Fix crashkernel allocation
  arm, memblock: Fix the sparsemem build
  memblock: Fix section mismatch warnings
  powerpc, memblock: Fix memblock API change fallout
  memblock, microblaze: Fix memblock API change fallout
  x86: Remove old bootmem code
  x86, memblock: Use memblock_memory_size()/memblock_free_memory_size() to get correct dma_reserve
  x86: Remove not used early_res code
  x86, memblock: Replace e820_/_early string with memblock_
  x86: Use memblock to replace early_res
  x86, memblock: Use memblock_debug to control debug message print out
  ...

Fix up trivial conflicts in arch/x86/kernel/setup.c and kernel/Makefile
2010-10-21 18:52:11 -07:00
Yinghai Lu 72d7c3b33c x86: Use memblock to replace early_res
1. replace find_e820_area with memblock_find_in_range
2. replace reserve_early with memblock_x86_reserve_range
3. replace free_early with memblock_x86_free_range.
4. NO_BOOTMEM will switch to use memblock too.
5. use _e820, _early wrap in the patch, in following patch, will
   replace them all
6. because memblock_x86_free_range support partial free, we can remove some special care
7. Need to make sure that memblock_find_in_range() is called after memblock_x86_fill()
   so adjust some calling later in setup.c::setup_arch()
   -- corruption_check and mptable_update

-v2: Move reserve_brk() early
    Before fill_memblock_area, to avoid overlap between brk and memblock_find_in_range()
    that could happen We have more then 128 RAM entry in E820 tables, and
    memblock_x86_fill() could use memblock_find_in_range() to find a new place for
    memblock.memory.region array.
    and We don't need to use extend_brk() after fill_memblock_area()
    So move reserve_brk() early before fill_memblock_area().
-v3: Move find_smp_config early
    To make sure memblock_find_in_range not find wrong place, if BIOS doesn't put mptable
    in right place.
-v4: Treat RESERVED_KERN as RAM in memblock.memory. and they are already in
    memblock.reserved already..
    use __NOT_KEEP_MEMBLOCK to make sure memblock related code could be freed later.
-v5: Generic version __memblock_find_in_range() is going from high to low, and for 32bit
    active_region for 32bit does include high pages
    need to replace the limit with memblock.default_alloc_limit, aka get_max_mapped()
-v6: Use current_limit instead
-v7: check with MEMBLOCK_ERROR instead of -1ULL or -1L
-v8: Set memblock_can_resize early to handle EFI with more RAM entries
-v9: update after kmemleak changes in mainline

Suggested-by: David S. Miller <davem@davemloft.net>
Suggested-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
2010-08-27 11:12:29 -07:00
Robert Richter f6e9456c92 x86, cleanup: Remove obsolete boot_cpu_id variable
boot_cpu_id is there for historical reasons and was renamed to
boot_cpu_physical_apicid in patch:

 c70dcb7 x86: change boot_cpu_id to boot_cpu_physical_apicid

However, there are some remaining occurrences of boot_cpu_id that are
never touched in the kernel and thus its value is always 0.

This patch removes boot_cpu_id completely.

Signed-off-by: Robert Richter <robert.richter@amd.com>
LKML-Reference: <1279731838-1522-8-git-send-email-robert.richter@amd.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2010-08-12 14:01:38 -07:00
Linus Torvalds a4ce96ac35 Fix up trivial spelling errors ('taht' -> 'that')
Pointed out by Lucas who found the new one in a comment in
setup_percpu.c. And then I fixed the others that I grepped
for.

Reported-by: Lucas <canolucas@gmail.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-07-21 09:25:42 -07:00
Yinghai Lu 9aebbdb637 x86, numa: fix boot without RAM on node0 again
Commit e534c7c5f8 ("numa: x86_64: use generic percpu var
numa_node_id() implementation") broke numa systems that don't have ram
on node0 when MEMORY_HOTPLUG is enabled, because cpu_up() will call
cpu_to_node() before per_cpu(numa_node) is setup for APs.

When Node0 doesn't have RAM, on x86, cpus already round it to nearest
node with RAM in x86_cpu_to_node_map.  and per_cpu(numa_node) is not set
up until in c_init for APs.

When later cpu_up() calling cpu_to_node() will get 0 again, and make it
online even there is no RAM on node0.  so later all APs can not booted up,
and later will have panic.

[    1.611101] On node 0 totalpages: 0
.........
[    2.608558] On node 0 totalpages: 0
[    2.612065] Brought up 1 CPUs
[    2.615199] Total of 1 processors activated (3990.31 BogoMIPS).
...
   93.225341] calling  loop_init+0x0/0x1a4 @ 1
[   93.229314] PERCPU: allocation failed, size=80 align=8, failed to populate
[   93.246539] Pid: 1, comm: swapper Tainted: G        W   2.6.35-rc4-tip-yh-04371-gd64e6c4-dirty #354
[   93.264621] Call Trace:
[   93.266533]  [<ffffffff81125e43>] pcpu_alloc+0x83a/0x8e7
[   93.270710]  [<ffffffff81125f15>] __alloc_percpu+0x10/0x12
[   93.285849]  [<ffffffff8140786c>] alloc_disk_node+0x94/0x16d
[   93.291811]  [<ffffffff81407956>] alloc_disk+0x11/0x13
[   93.306157]  [<ffffffff81503e51>] loop_alloc+0xa7/0x180
[   93.310538]  [<ffffffff8277ef48>] loop_init+0x9b/0x1a4
[   93.324909]  [<ffffffff8277eead>] ? loop_init+0x0/0x1a4
[   93.329650]  [<ffffffff810001f2>] do_one_initcall+0x57/0x136
[   93.345197]  [<ffffffff827486d0>] kernel_init+0x184/0x20e
[   93.348146]  [<ffffffff81034954>] kernel_thread_helper+0x4/0x10
[   93.365194]  [<ffffffff81c7cc3c>] ? restore_args+0x0/0x30
[   93.369305]  [<ffffffff8274854c>] ? kernel_init+0x0/0x20e
[   93.386011]  [<ffffffff81034950>] ? kernel_thread_helper+0x0/0x10
[   93.392047] loop: out of memory
...

Try to assign per_cpu(numa_node) early

[akpm@linux-foundation.org: tidy up code comment]
Signed-off-by: Yinghai <yinghai@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Denys Vlasenko <vda.linux@googlemail.com>
Acked-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-07-20 16:25:40 -07:00
Linus Torvalds 167b712904 Merge branch 'x86-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip
* 'x86-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
  x86, smpboot: Fix cores per node printing on boot
  x86/amd-iommu: Fall back to GART if initialization fails
  x86/amd-iommu: Fix crash when request_mem_region fails
  x86/mm: Remove unused DBG() macro
  arch/x86/kernel: Add missing spin_unlock
2010-06-03 15:47:22 -07:00
Linus Torvalds 1f73897861 Merge branch 'for-35' of git://repo.or.cz/linux-kbuild
* 'for-35' of git://repo.or.cz/linux-kbuild: (81 commits)
  kbuild: Revert part of e8d400a to resolve a conflict
  kbuild: Fix checking of scm-identifier variable
  gconfig: add support to show hidden options that have prompts
  menuconfig: add support to show hidden options which have prompts
  gconfig: remove show_debug option
  gconfig: remove dbg_print_ptype() and dbg_print_stype()
  kconfig: fix zconfdump()
  kconfig: some small fixes
  add random binaries to .gitignore
  kbuild: Include gen_initramfs_list.sh and the file list in the .d file
  kconfig: recalc symbol value before showing search results
  .gitignore: ignore *.lzo files
  headerdep: perlcritic warning
  scripts/Makefile.lib: Align the output of LZO
  kbuild: Generate modules.builtin in make modules_install
  Revert "kbuild: specify absolute paths for cscope"
  kbuild: Do not unnecessarily regenerate modules.builtin
  headers_install: use local file handles
  headers_check: fix perl warnings
  export_report: fix perl warnings
  ...
2010-06-01 08:55:52 -07:00
Akinobu Mita e565813ab9 x86/mm: Remove unused DBG() macro
DBG() macro for CONFIG_DEBUG_PER_CPU_MAPS is unused.

Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
LKML-Reference: <1274706291-13554-1-git-send-email-akinobu.mita@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-05-31 10:01:53 +02:00
Lee Schermerhorn e534c7c5f8 numa: x86_64: use generic percpu var numa_node_id() implementation
x86 arch specific changes to use generic numa_node_id() based on generic
percpu variable infrastructure.  Back out x86's custom version of
numa_node_id()

Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Nick Piggin <npiggin@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Eric Whitney <eric.whitney@hp.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: <linux-arch@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-27 09:12:57 -07:00
Denys Vlasenko c273fb3b5d Rename .data.init to .data..init.
Signed-off-by: Denys Vlasenko <vda.linux@googlemail.com>
Signed-off-by: Michal Marek <mmarek@suse.cz>
2010-03-03 11:26:01 +01:00
Yinghai Lu fb90ef93df early_res: Add free_early_partial()
To free partial areas in pcpu_setup...

Reported-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Jesse Barnes <jbarnes@virtuousgeek.org>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
LKML-Reference: <4B85E245.5030001@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-02-26 08:25:35 +01:00
Joe Perches 40685236b3 x86: setup_percpu.c: Use pr_<level> and add pr_fmt(fmt)
- Added #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 - Stripped PERCPU: from a pr_warning

Signed-off-by: Joe Perches <joe@perches.com>
LKML-Reference: <7ead24eccbea8f2b11795abad3e2893a98e1e111.1260383912.git.joe@perches.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-12-10 08:57:50 +01:00
Tejun Heo 4518e6a0c0 x86,percpu: use embedding for 64bit NUMA and page for 32bit NUMA
Embedding percpu first chunk allocator can now handle very sparse unit
mapping.  Use embedding allocator instead of lpage for 64bit NUMA.
This removes extra TLB pressure and the need to do complex and fragile
dancing when changing page attributes.

For 32bit, using very sparse unit mapping isn't a good idea because
the vmalloc space is very constrained.  32bit NUMA machines aren't
exactly the focus of optimization and it isn't very clear whether
lpage performs better than page.  Use page first chunk allocator for
32bit NUMAs.

As this leaves setup_pcpu_*() functions pretty much empty, fold them
into setup_per_cpu_areas().

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Andi Kleen <andi@firstfloor.org>
2009-08-14 15:00:52 +09:00
Tejun Heo c8826dd538 percpu: update embedding first chunk allocator to handle sparse units
Now that percpu core can handle very sparse units, given that vmalloc
space is large enough, embedding first chunk allocator can use any
memory to build the first chunk.  This patch teaches
pcpu_embed_first_chunk() about distances between cpus and to use
alloc/free callbacks to allocate node specific areas for each group
and use them for the first chunk.

This brings the benefits of embedding allocator to NUMA configurations
- no extra TLB pressure with the flexibility of unified dynamic
allocator and no need to restructure arch code to build memory layout
suitable for percpu.  With units put into atom_size aligned groups
according to cpu distances, using large page for dynamic chunks is
also easily possible with falling back to reuglar pages if large
allocation fails.

Embedding allocator users are converted to specify NULL
cpu_distance_fn, so this patch doesn't cause any visible behavior
difference.  Following patches will convert them.

Signed-off-by: Tejun Heo <tj@kernel.org>
2009-08-14 15:00:52 +09:00
Tejun Heo fb435d5233 percpu: add pcpu_unit_offsets[]
Currently units are mapped sequentially into address space.  This
patch adds pcpu_unit_offsets[] which allows units to be mapped to
arbitrary offsets from the chunk base address.  This is necessary to
allow sparse embedding which might would need to allocate address
ranges and memory areas which aren't aligned to unit size but
allocation atom size (page or large page size).  This also simplifies
things a bit by removing the need to calculate offset from unit
number.

With this change, there's no need for the arch code to know
pcpu_unit_size.  Update pcpu_setup_first_chunk() and first chunk
allocators to return regular 0 or -errno return code instead of unit
size or -errno.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: David S. Miller <davem@davemloft.net>
2009-08-14 15:00:51 +09:00
Tejun Heo fd1e8a1fe2 percpu: introduce pcpu_alloc_info and pcpu_group_info
Till now, non-linear cpu->unit map was expressed using an integer
array which maps each cpu to a unit and used only by lpage allocator.
Although how many units have been placed in a single contiguos area
(group) is known while building unit_map, the information is lost when
the result is recorded into the unit_map array.  For lpage allocator,
as all allocations are done by lpages and whether two adjacent lpages
are in the same group or not is irrelevant, this didn't cause any
problem.  Non-linear cpu->unit mapping will be used for sparse
embedding and this grouping information is necessary for that.

This patch introduces pcpu_alloc_info which contains all the
information necessary for initializing percpu allocator.
pcpu_alloc_info contains array of pcpu_group_info which describes how
units are grouped and mapped to cpus.  pcpu_group_info also has
base_offset field to specify its offset from the chunk's base address.
pcpu_build_alloc_info() initializes this field as if all groups are
allocated back-to-back as is currently done but this will be used to
sparsely place groups.

pcpu_alloc_info is a rather complex data structure which contains a
flexible array which in turn points to nested cpu_map arrays.

* pcpu_alloc_alloc_info() and pcpu_free_alloc_info() are provided to
  help dealing with pcpu_alloc_info.

* pcpu_lpage_build_unit_map() is updated to build pcpu_alloc_info,
  generalized and renamed to pcpu_build_alloc_info().
  @cpu_distance_fn may be NULL indicating that all cpus are of
  LOCAL_DISTANCE.

* pcpul_lpage_dump_cfg() is updated to process pcpu_alloc_info,
  generalized and renamed to pcpu_dump_alloc_info().  It now also
  prints which group each alloc unit belongs to.

* pcpu_setup_first_chunk() now takes pcpu_alloc_info instead of the
  separate parameters.  All first chunk allocators are updated to use
  pcpu_build_alloc_info() to build alloc_info and call
  pcpu_setup_first_chunk() with it.  This has the side effect of
  packing units for sparse possible cpus.  ie. if cpus 0, 2 and 4 are
  possible, they'll be assigned unit 0, 1 and 2 instead of 0, 2 and 4.

* x86 setup_pcpu_lpage() is updated to deal with alloc_info.

* sparc64 setup_per_cpu_areas() is updated to build alloc_info.

Although the changes made by this patch are pretty pervasive, it
doesn't cause any behavior difference other than packing of sparse
cpus.  It mostly changes how information is passed among
initialization functions and makes room for more flexibility.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: David Miller <davem@davemloft.net>
2009-08-14 15:00:51 +09:00
Tejun Heo 3cbc856527 percpu: add @align to pcpu_fc_alloc_fn_t
pcpu_fc_alloc_fn_t is about to see more interesting usage, add @align
parameter.

Signed-off-by: Tejun Heo <tj@kernel.org>
2009-08-14 15:00:50 +09:00
Tejun Heo 9a7737691e percpu: drop @static_size from first chunk allocators
First chunk allocators assume percpu areas have been linked using one
of PERCPU_*() macros and depend on __per_cpu_load symbol defined by
those macros, so there isn't much point in passing in static area size
explicitly when it can be easily calculated from __per_cpu_start and
__per_cpu_end.  Drop @static_size from all percpu first chunk
allocators and helpers.

Signed-off-by: Tejun Heo <tj@kernel.org>
2009-08-14 15:00:50 +09:00
Tejun Heo f58dc01ba2 percpu: generalize first chunk allocator selection
Now that all first chunk allocators are in mm/percpu.c, it makes sense
to make generalize percpu_alloc kernel parameter.  Define PCPU_FC_*
and set pcpu_chosen_fc using early_param() in mm/percpu.c.  Arch code
can use the set value to determine which first chunk allocator to use.

Signed-off-by: Tejun Heo <tj@kernel.org>
2009-08-14 15:00:50 +09:00
Tejun Heo 00ae4064b1 percpu: rename 4k first chunk allocator to page
Page size isn't always 4k depending on arch and configuration.  Rename
4k first chunk allocator to page.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: David Howells <dhowells@redhat.com>
2009-08-14 15:00:49 +09:00
Tejun Heo 384be2b18a Merge branch 'percpu-for-linus' into percpu-for-next
Conflicts:
	arch/sparc/kernel/smp_64.c
	arch/x86/kernel/cpu/perf_counter.c
	arch/x86/kernel/setup_percpu.c
	drivers/cpufreq/cpufreq_ondemand.c
	mm/percpu.c

Conflicts in core and arch percpu codes are mostly from commit
ed78e1e078dd44249f88b1dd8c76dafb39567161 which substituted many
num_possible_cpus() with nr_cpu_ids.  As for-next branch has moved all
the first chunk allocators into mm/percpu.c, the changes are moved
from arch code to mm/percpu.c.

Signed-off-by: Tejun Heo <tj@kernel.org>
2009-08-14 14:45:31 +09:00
Tejun Heo 74d46d6b2d percpu, sparc64: fix sparse possible cpu map handling
percpu code has been assuming num_possible_cpus() == nr_cpu_ids which
is incorrect if cpu_possible_map contains holes.  This causes percpu
code to access beyond allocated memories and vmalloc areas.  On a
sparc64 machine with cpus 0 and 2 (u60), this triggers the following
warning or fails boot.

 WARNING: at /devel/tj/os/work/mm/vmalloc.c:106 vmap_page_range_noflush+0x1f0/0x240()
 Modules linked in:
 Call Trace:
  [00000000004b17d0] vmap_page_range_noflush+0x1f0/0x240
  [00000000004b1840] map_vm_area+0x20/0x60
  [00000000004b1950] __vmalloc_area_node+0xd0/0x160
  [0000000000593434] deflate_init+0x14/0xe0
  [0000000000583b94] __crypto_alloc_tfm+0xd4/0x1e0
  [00000000005844f0] crypto_alloc_base+0x50/0xa0
  [000000000058b898] alg_test_comp+0x18/0x80
  [000000000058dad4] alg_test+0x54/0x180
  [000000000058af00] cryptomgr_test+0x40/0x60
  [0000000000473098] kthread+0x58/0x80
  [000000000042b590] kernel_thread+0x30/0x60
  [0000000000472fd0] kthreadd+0xf0/0x160
 ---[ end trace 429b268a213317ba ]---

This patch fixes generic percpu functions and sparc64
setup_per_cpu_areas() so that they handle sparse cpu_possible_map
properly.

Please note that on x86, cpu_possible_map() doesn't contain holes and
thus num_possible_cpus() == nr_cpu_ids and this patch doesn't cause
any behavior difference.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: David S. Miller <davem@davemloft.net>
Cc: Ingo Molnar <mingo@elte.hu>
2009-08-14 13:20:53 +09:00
Tejun Heo a530b79586 percpu: teach large page allocator about NUMA
Large page first chunk allocator is primarily used for NUMA machines;
however, its NUMA handling is extremely simplistic.  Regardless of
their proximity, each cpu is put into separate large page just to
return most of the allocated space back wasting large amount of
vmalloc space and increasing cache footprint.

This patch teachs NUMA details to large page allocator.  Given
processor proximity information, pcpu_lpage_build_unit_map() will find
fitting cpu -> unit mapping in which cpus in LOCAL_DISTANCE share the
same large page and not too much virtual address space is wasted.

This greatly reduces the unit and thus chunk size and wastes much less
address space for the first chunk.  For example, on 4/4 NUMA machine,
the original code occupied 16MB of virtual space for the first chunk
while the new code only uses 4MB - one 2MB page for each node.

[ Impact: much better space efficiency on NUMA machines ]

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Jan Beulich <JBeulich@novell.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: David Miller <davem@davemloft.net>
2009-07-04 08:11:00 +09:00
Tejun Heo 8c4bfc6e88 x86,percpu: generalize lpage first chunk allocator
Generalize and move x86 setup_pcpu_lpage() into
pcpu_lpage_first_chunk().  setup_pcpu_lpage() now is a simple wrapper
around the generalized version.  Other than taking size parameters and
using arch supplied callbacks to allocate/free/map memory,
pcpu_lpage_first_chunk() is identical to the original implementation.

This simplifies arch code and will help converting more archs to
dynamic percpu allocator.

While at it, factor out pcpu_calc_fc_sizes() which is common to
pcpu_embed_first_chunk() and pcpu_lpage_first_chunk().

[ Impact: code reorganization and generalization ]

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Ingo Molnar <mingo@elte.hu>
2009-07-04 08:10:59 +09:00
Tejun Heo d4b95f8039 x86,percpu: generalize 4k first chunk allocator
Generalize and move x86 setup_pcpu_4k() into pcpu_4k_first_chunk().
setup_pcpu_4k() now is a simple wrapper around the generalized
version.  Other than taking size parameters and using arch supplied
callbacks to allocate/free memory, pcpu_4k_first_chunk() is identical
to the original implementation.

This simplifies arch code and will help converting more archs to
dynamic percpu allocator.

While at it, s/pcpu_populate_pte_fn_t/pcpu_fc_populate_pte_fn_t/ for
consistency.

[ Impact: code reorganization and generalization ]

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Ingo Molnar <mingo@elte.hu>
2009-07-04 08:10:59 +09:00
Tejun Heo 788e5abc54 percpu: drop @unit_size from embed first chunk allocator
The only extra feature @unit_size provides is making dead space at the
end of the first chunk which doesn't have any valid usecase.  Drop the
parameter.  This will increase consistency with generalized 4k
allocator.

James Bottomley spotted missing conversion for the default
setup_per_cpu_areas() which caused build breakage on all arcsh which
use it.

[ Impact: drop unused code path ]

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: James Bottomley <James.Bottomley@HansenPartnership.com>
Cc: Ingo Molnar <mingo@elte.hu>
2009-07-04 08:10:58 +09:00
Tejun Heo 0017c869dd x86: ensure percpu lpage doesn't consume too much vmalloc space
On extreme configuration (e.g. 32bit 32-way NUMA machine), lpage
percpu first chunk allocator can consume too much of vmalloc space.
Make it fall back to 4k allocator if the consumption goes over 20%.

[ Impact: add sanity check for lpage percpu first chunk allocator ]

Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Jan Beulich <JBeulich@novell.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Ingo Molnar <mingo@elte.hu>
2009-06-22 11:56:24 +09:00
Tejun Heo fa8a7094ba x86: implement percpu_alloc kernel parameter
According to Andi, it isn't clear whether lpage allocator is worth the
trouble as there are many processors where PMD TLB is far scarcer than
PTE TLB.  The advantage or disadvantage probably depends on the actual
size of percpu area and specific processor.  As performance
degradation due to TLB pressure tends to be highly workload specific
and subtle, it is difficult to decide which way to go without more
data.

This patch implements percpu_alloc kernel parameter to allow selecting
which first chunk allocator to use to ease debugging and testing.

While at it, make sure all the failure paths report why something
failed to help determining why certain allocator isn't working.  Also,
kill the "Great future plan" comment which had already been realized
quite some time ago.

[ Impact: allow explicit percpu first chunk allocator selection ]

Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Jan Beulich <JBeulich@novell.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Ingo Molnar <mingo@elte.hu>
2009-06-22 11:56:24 +09:00