Commit Graph

40 Commits

Author SHA1 Message Date
Linus Torvalds 7c0f6ba682 Replace <asm/uaccess.h> with <linux/uaccess.h> globally
This was entirely automated, using the script by Al:

  PATT='^[[:blank:]]*#[[:blank:]]*include[[:blank:]]*<asm/uaccess.h>'
  sed -i -e "s!$PATT!#include <linux/uaccess.h>!" \
        $(git grep -l "$PATT"|grep -v ^include/linux/uaccess.h)

to do the replacement at the end of the merge window.

Requested-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-24 11:46:01 -08:00
Gang He 01a36b6758 ocfs2: ensure that dlm lockspace is created by kernel module
We encountered a bug from the customer, the user did a fsck.ocfs2 on the
file system and exited unusually, the lockspace (with LVB size = 32) was
left in the kernel space, next, the user mounted this file system, the
kernel module did not create a new lockspace (LVB size = 64) via calling
dlm_new_lockspace() function in mounting stage, just used the existing
lockspace, created by the user space tool, this would lead the user was
not able to mount this file system from the other nodes, with the error
message like:

  dlm: 032F5......: config mismatch: 64,0 nodeid 177127961: 32,0
  (mount.ocfs2,26981,46):ocfs2_dlm_init:2995 ERROR: status = -71
  ocfs2_mount_volume:1881 ERROR: status = -71
  ocfs2_fill_super:1236 ERROR: status = -71

The user found it very difficult to find the root cause, then, we
brought out this patch to relieve such problem.

First, we add one more flag in calling dlm_new_lockspace() function, to
make sure the lockspace is created by kernel module itself, and this
change will not affect the backward compatibility.

Second, the obvious error message is reported in the kernel log, let the
user be more easy to find the root cause.

This patch will be used to insure the dlm lockspace is created by kernel
module when mounting a ocfs2 file system.  There are two ways to create
a lockspace, from user space and kernel space, but the same name
lockspaces probably have different lvblen lengths/flags.

To avoid this mix using, we add one more flag DLM_LSFL_NEWEXCL, it will
make sure the dlm lockspace is created by kernel module when mounting.
Secondly, if a user space program (ocfs2-tools) is running on a file
system, the user tries to mount this file system in the cluster, DLM
module will return a -EEXIST or -EPROTO errno, we should give the user a
obvious error message, then, the user can let that user space tool exit
before mounting the file system again.

Link: http://lkml.kernel.org/r/1463731940-13044-2-git-send-email-ghe@suse.com
Signed-off-by: Gang He <ghe@suse.com>
Reviewed-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Reviewed-by: Mark Fasheh <mfasheh@suse.de>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Junxiao Bi <junxiao.bi@oracle.com>
Cc: Joseph Qi <joseph.qi@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-08-02 17:31:41 -04:00
Greg Kroah-Hartman f368ed6088 char: make misc_deregister a void function
With well over 200+ users of this api, there are a mere 12 users that
actually checked the return value of this function.  And all of them
really didn't do anything with that information as the system or module
was shutting down no matter what.

So stop pretending like it matters, and just return void from
misc_deregister().  If something goes wrong in the call, you will get a
WARNING splat in the syslog so you know how to fix up your driver.
Other than that, there's nothing that can go wrong.

Cc: Alasdair Kergon <agk@redhat.com>
Cc: Neil Brown <neilb@suse.com>
Cc: Oleg Drokin <oleg.drokin@intel.com>
Cc: Andreas Dilger <andreas.dilger@intel.com>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Wim Van Sebroeck <wim@iguana.be>
Cc: Christine Caulfield <ccaulfie@redhat.com>
Cc: David Teigland <teigland@redhat.com>
Cc: Mark Fasheh <mfasheh@suse.com>
Acked-by: Joel Becker <jlbec@evilplan.org>
Acked-by: Alexandre Belloni <alexandre.belloni@free-electrons.com>
Acked-by: Alessandro Zummo <a.zummo@towertech.it>
Acked-by: Mike Snitzer <snitzer@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-08-05 10:35:49 -07:00
Markus Elfring 43ee9cad8a ocfs2: one function call less in user_cluster_connect() after error detection
kfree() was called by user_cluster_connect() even if a previous call of
the kzalloc() function failed.

Return from this implementation directly after failure detection.

Signed-off-by: Markus Elfring <elfring@users.sourceforge.net>
Cc: Mark Fasheh <mfasheh@suse.com>
Cc: Joel Becker <jlbec@evilplan.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-14 16:48:57 -07:00
Markus Elfring fd90d4dfb9 ocfs2: delete unnecessary checks before three function calls
kfree(), ocfs2_free_path() and __ocfs2_free_slot_info() test whether their
argument is NULL and then return immediately.  Thus the test around their
calls is not needed.

This issue was detected by using the Coccinelle software.

Signed-off-by: Markus Elfring <elfring@users.sourceforge.net>
Cc: Mark Fasheh <mfasheh@suse.com>
Cc: Joel Becker <jlbec@evilplan.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-14 16:48:56 -07:00
Andrew Morton 98acbf63d6 fs/ocfs2/stack_user.c: fix typo in ocfs2_control_release()
It is supposed to zero pv_minor.

Reported-by: Himangi Saraogi <himangi774@gmail.com>
Cc: Mark Fasheh <mfasheh@suse.com>
Cc: Joel Becker <jlbec@evilplan.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-10-09 22:25:46 -04:00
Wei Yongjun 16eac4be46 ocfs2: fix sparse non static symbol warning
Fixes the following sparse warning:

  fs/ocfs2/stack_user.c:930:32: warning:
   symbol 'ocfs2_ls_ops' was not declared. Should it be static?

Signed-off-by: Wei Yongjun <yongjun_wei@trendmicro.com.cn>
Cc: Mark Fasheh <mfasheh@suse.com>
Cc: Joel Becker <jlbec@evilplan.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 16:19:42 -08:00
Goldwyn Rodrigues c994c2ebdb ocfs2: use the new DLM operation callbacks while requesting new lockspace
Attempt to use the new DLM operations.  If it is not supported, use the
traditional ocfs2_controld.

To exchange ocfs2 versioning, we use the LVB of the version dlm lock.
It first attempts to take the lock in EX mode (non-blocking).  If
successful (which means it is the first mount), it writes the version
number and downconverts to PR lock.  If it is unsuccessful, it reads the
version from the lock.

If this becomes the standard (with o2cb as well), it could simplify
userspace tools to check if the filesystem is mounted on other nodes.

Dan: Since ocfs2_protocol_version are two u8 values, the additional
checks with LONG* don't make sense.

Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Reviewed-by: Mark Fasheh <mfasheh@suse.de>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 16:19:42 -08:00
Goldwyn Rodrigues 4150363033 ocfs2: framework for version LVB
Use the native DLM locks for version control negotiation.  Most of the
framework is taken from gfs2/lock_dlm.c

Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Reviewed-by: Mark Fasheh <mfasheh@suse.de>
Cc: Joel Becker <jlbec@evilplan.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 16:19:41 -08:00
Goldwyn Rodrigues 3e83415164 ocfs2: pass ocfs2_cluster_connection to ocfs2_this_node
This is done to differentiate between using and not using controld and
use the connection information accordingly.

We need to be backward compatible.  So, we use a new enum
ocfs2_connection_type to identify when controld is used and when it is
not.

Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Reviewed-by: Mark Fasheh <mfasheh@suse.de>
Cc: Joel Becker <jlbec@evilplan.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 16:19:41 -08:00
Goldwyn Rodrigues 24aa338611 ocfs2: shift allocation ocfs2_live_connection to user_connect()
We perform this because the DLM recovery callbacks will require the
ocfs2_live_connection structure to record the node information when
dlm_new_lockspace() is updated (in the last patch of the series).

Before calling dlm_new_lockspace(), we need the structure ready for the
.recover_done() callback, which would set oc_this_node.  This is the
reason we allocate ocfs2_live_connection beforehand in user_connect().

[AKPM] rc initialization is not required because it assigned in case of
errors.  It will be cleared by compiler anyways.

Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Reveiwed-by: Mark Fasheh <mfasheh@suse.de>
Cc: Joel Becker <jlbec@evilplan.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 16:19:41 -08:00
Goldwyn Rodrigues 66e188fc31 ocfs2: add DLM recovery callbacks
These are the callbacks called by the fs/dlm code in case the membership
changes.  If there is a failure while/during calling any of these, the
DLM creates a new membership and relays to the rest of the nodes.

 - recover_prep() is called when DLM understands a node is down.
 - recover_slot() is called once all nodes have acknowledged
   recover_prep and recovery can begin.
 - recover_done() is called once the recovery is complete.  It returns
   the new membership.

Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Reviewed-by: Mark Fasheh <mfasheh@suse.de>
Cc: Joel Becker <jlbec@evilplan.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 16:19:41 -08:00
David Teigland 60f98d1839 dlm: add recovery callbacks
These new callbacks notify the dlm user about lock recovery.
GFS2, and possibly others, need to be aware of when the dlm
will be doing lock recovery for a failed lockspace member.

In the past, this coordination has been done between dlm and
file system daemons in userspace, which then direct their
kernel counterparts.  These callbacks allow the same
coordination directly, and more simply.

Signed-off-by: David Teigland <teigland@redhat.com>
2012-01-04 08:56:31 -06:00
dann frazier 226291aa46 ocfs2_connection_find() returns pointer to bad structure
If ocfs2_live_connection_list is empty, ocfs2_connection_find() will return
a pointer to the LIST_HEAD, cast as a ocfs2_live_connection. This can cause
an oops when ocfs2_control_send_down() dereferences c->oc_conn:

Call Trace:
  [<ffffffffa00c2a3c>] ocfs2_control_message+0x28c/0x2b0 [ocfs2_stack_user]
  [<ffffffffa00c2a95>] ocfs2_control_write+0x35/0xb0 [ocfs2_stack_user]
  [<ffffffff81143a88>] vfs_write+0xb8/0x1a0
  [<ffffffff8155cc13>] ? do_page_fault+0x153/0x3b0
  [<ffffffff811442f1>] sys_write+0x51/0x80
  [<ffffffff810121b2>] system_call_fastpath+0x16/0x1b

Fix by explicitly returning NULL if no match is found.

Signed-off-by: dann frazier <dann.frazier@canonical.com>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
2010-11-18 15:41:41 -08:00
Linus Torvalds 092e0e7e52 Merge branch 'llseek' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/bkl
* 'llseek' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/bkl:
  vfs: make no_llseek the default
  vfs: don't use BKL in default_llseek
  llseek: automatically add .llseek fop
  libfs: use generic_file_llseek for simple_attr
  mac80211: disallow seeks in minstrel debug code
  lirc: make chardev nonseekable
  viotape: use noop_llseek
  raw: use explicit llseek file operations
  ibmasmfs: use generic_file_llseek
  spufs: use llseek in all file operations
  arm/omap: use generic_file_llseek in iommu_debug
  lkdtm: use generic_file_llseek in debugfs
  net/wireless: use generic_file_llseek in debugfs
  drm: use noop_llseek
2010-10-22 10:52:56 -07:00
Arnd Bergmann 6038f373a3 llseek: automatically add .llseek fop
All file_operations should get a .llseek operation so we can make
nonseekable_open the default for future file operations without a
.llseek pointer.

The three cases that we can automatically detect are no_llseek, seq_lseek
and default_llseek. For cases where we can we can automatically prove that
the file offset is always ignored, we use noop_llseek, which maintains
the current behavior of not returning an error from a seek.

New drivers should normally not use noop_llseek but instead use no_llseek
and call nonseekable_open at open time.  Existing drivers can be converted
to do the same when the maintainer knows for certain that no user code
relies on calling seek on the device file.

The generated code is often incorrectly indented and right now contains
comments that clarify for each added line why a specific variant was
chosen. In the version that gets submitted upstream, the comments will
be gone and I will manually fix the indentation, because there does not
seem to be a way to do that using coccinelle.

Some amount of new code is currently sitting in linux-next that should get
the same modifications, which I will do at the end of the merge window.

Many thanks to Julia Lawall for helping me learn to write a semantic
patch that does all this.

===== begin semantic patch =====
// This adds an llseek= method to all file operations,
// as a preparation for making no_llseek the default.
//
// The rules are
// - use no_llseek explicitly if we do nonseekable_open
// - use seq_lseek for sequential files
// - use default_llseek if we know we access f_pos
// - use noop_llseek if we know we don't access f_pos,
//   but we still want to allow users to call lseek
//
@ open1 exists @
identifier nested_open;
@@
nested_open(...)
{
<+...
nonseekable_open(...)
...+>
}

@ open exists@
identifier open_f;
identifier i, f;
identifier open1.nested_open;
@@
int open_f(struct inode *i, struct file *f)
{
<+...
(
nonseekable_open(...)
|
nested_open(...)
)
...+>
}

@ read disable optional_qualifier exists @
identifier read_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
expression E;
identifier func;
@@
ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off)
{
<+...
(
   *off = E
|
   *off += E
|
   func(..., off, ...)
|
   E = *off
)
...+>
}

@ read_no_fpos disable optional_qualifier exists @
identifier read_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
@@
ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off)
{
... when != off
}

@ write @
identifier write_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
expression E;
identifier func;
@@
ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off)
{
<+...
(
  *off = E
|
  *off += E
|
  func(..., off, ...)
|
  E = *off
)
...+>
}

@ write_no_fpos @
identifier write_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
@@
ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off)
{
... when != off
}

@ fops0 @
identifier fops;
@@
struct file_operations fops = {
 ...
};

@ has_llseek depends on fops0 @
identifier fops0.fops;
identifier llseek_f;
@@
struct file_operations fops = {
...
 .llseek = llseek_f,
...
};

@ has_read depends on fops0 @
identifier fops0.fops;
identifier read_f;
@@
struct file_operations fops = {
...
 .read = read_f,
...
};

@ has_write depends on fops0 @
identifier fops0.fops;
identifier write_f;
@@
struct file_operations fops = {
...
 .write = write_f,
...
};

@ has_open depends on fops0 @
identifier fops0.fops;
identifier open_f;
@@
struct file_operations fops = {
...
 .open = open_f,
...
};

// use no_llseek if we call nonseekable_open
////////////////////////////////////////////
@ nonseekable1 depends on !has_llseek && has_open @
identifier fops0.fops;
identifier nso ~= "nonseekable_open";
@@
struct file_operations fops = {
...  .open = nso, ...
+.llseek = no_llseek, /* nonseekable */
};

@ nonseekable2 depends on !has_llseek @
identifier fops0.fops;
identifier open.open_f;
@@
struct file_operations fops = {
...  .open = open_f, ...
+.llseek = no_llseek, /* open uses nonseekable */
};

// use seq_lseek for sequential files
/////////////////////////////////////
@ seq depends on !has_llseek @
identifier fops0.fops;
identifier sr ~= "seq_read";
@@
struct file_operations fops = {
...  .read = sr, ...
+.llseek = seq_lseek, /* we have seq_read */
};

// use default_llseek if there is a readdir
///////////////////////////////////////////
@ fops1 depends on !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier readdir_e;
@@
// any other fop is used that changes pos
struct file_operations fops = {
... .readdir = readdir_e, ...
+.llseek = default_llseek, /* readdir is present */
};

// use default_llseek if at least one of read/write touches f_pos
/////////////////////////////////////////////////////////////////
@ fops2 depends on !fops1 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier read.read_f;
@@
// read fops use offset
struct file_operations fops = {
... .read = read_f, ...
+.llseek = default_llseek, /* read accesses f_pos */
};

@ fops3 depends on !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier write.write_f;
@@
// write fops use offset
struct file_operations fops = {
... .write = write_f, ...
+	.llseek = default_llseek, /* write accesses f_pos */
};

// Use noop_llseek if neither read nor write accesses f_pos
///////////////////////////////////////////////////////////

@ fops4 depends on !fops1 && !fops2 && !fops3 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier read_no_fpos.read_f;
identifier write_no_fpos.write_f;
@@
// write fops use offset
struct file_operations fops = {
...
 .write = write_f,
 .read = read_f,
...
+.llseek = noop_llseek, /* read and write both use no f_pos */
};

@ depends on has_write && !has_read && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier write_no_fpos.write_f;
@@
struct file_operations fops = {
... .write = write_f, ...
+.llseek = noop_llseek, /* write uses no f_pos */
};

@ depends on has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier read_no_fpos.read_f;
@@
struct file_operations fops = {
... .read = read_f, ...
+.llseek = noop_llseek, /* read uses no f_pos */
};

@ depends on !has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
@@
struct file_operations fops = {
...
+.llseek = noop_llseek, /* no read or write fn */
};
===== End semantic patch =====

Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Cc: Julia Lawall <julia@diku.dk>
Cc: Christoph Hellwig <hch@infradead.org>
2010-10-15 15:53:27 +02:00
Arnd Bergmann 6005679412 BKL: Remove BKL from OCFS2
The BKL in ocfs2/dlmfs is used in put_super, fill_super and remount_fs
that are all three protected by the superblocks s_umount rw_semaphore.

The use in ocfs2_control_open is evidently unrelated and the function
is protected by ocfs2_control_lock.

Therefore it is safe to remove the BKL entirely.

Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Cc: Mark Fasheh <mfasheh@suse.com>
Cc: Joel Becker <joel.becker@oracle.com>
2010-10-04 21:10:51 +02:00
Tejun Heo 5a0e3ad6af include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files.  percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.

percpu.h -> slab.h dependency is about to be removed.  Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability.  As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.

  http://userweb.kernel.org/~tj/misc/slabh-sweep.py

The script does the followings.

* Scan files for gfp and slab usages and update includes such that
  only the necessary includes are there.  ie. if only gfp is used,
  gfp.h, if slab is used, slab.h.

* When the script inserts a new include, it looks at the include
  blocks and try to put the new include such that its order conforms
  to its surrounding.  It's put in the include block which contains
  core kernel includes, in the same order that the rest are ordered -
  alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
  doesn't seem to be any matching order.

* If the script can't find a place to put a new include (mostly
  because the file doesn't have fitting include block), it prints out
  an error message indicating which .h file needs to be added to the
  file.

The conversion was done in the following steps.

1. The initial automatic conversion of all .c files updated slightly
   over 4000 files, deleting around 700 includes and adding ~480 gfp.h
   and ~3000 slab.h inclusions.  The script emitted errors for ~400
   files.

2. Each error was manually checked.  Some didn't need the inclusion,
   some needed manual addition while adding it to implementation .h or
   embedding .c file was more appropriate for others.  This step added
   inclusions to around 150 files.

3. The script was run again and the output was compared to the edits
   from #2 to make sure no file was left behind.

4. Several build tests were done and a couple of problems were fixed.
   e.g. lib/decompress_*.c used malloc/free() wrappers around slab
   APIs requiring slab.h to be added manually.

5. The script was run on all .h files but without automatically
   editing them as sprinkling gfp.h and slab.h inclusions around .h
   files could easily lead to inclusion dependency hell.  Most gfp.h
   inclusion directives were ignored as stuff from gfp.h was usually
   wildly available and often used in preprocessor macros.  Each
   slab.h inclusion directive was examined and added manually as
   necessary.

6. percpu.h was updated not to include slab.h.

7. Build test were done on the following configurations and failures
   were fixed.  CONFIG_GCOV_KERNEL was turned off for all tests (as my
   distributed build env didn't work with gcov compiles) and a few
   more options had to be turned off depending on archs to make things
   build (like ipr on powerpc/64 which failed due to missing writeq).

   * x86 and x86_64 UP and SMP allmodconfig and a custom test config.
   * powerpc and powerpc64 SMP allmodconfig
   * sparc and sparc64 SMP allmodconfig
   * ia64 SMP allmodconfig
   * s390 SMP allmodconfig
   * alpha SMP allmodconfig
   * um on x86_64 SMP allmodconfig

8. percpu.h modifications were reverted so that it could be applied as
   a separate patch and serve as bisection point.

Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.

Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-30 22:02:32 +09:00
Joel Becker e603cfb074 ocfs2: Remove the ast pointers from ocfs2_stack_plugins
With the full ocfs2_locking_protocol hanging off of the
ocfs2_cluster_connection, ast wrappers can get the ast/bast pointers
there.  They don't need to get them from their plugin structure.

The user plugin still needs the maximum locking protocol version,
though.  This changes the plugin structure so that it only holds the max
version, not the entire ocfs2_locking_protocol pointer.

Signed-off-by: Joel Becker <joel.becker@oracle.com>
2010-02-26 15:41:16 -08:00
Joel Becker 110946c8fb ocfs2: Hang the locking proto on the cluster conn and use it in asts.
With the ocfs2_cluster_connection hanging off of the ocfs2_dlm_lksb, we
have access to it in the ast and bast wrapper functions.  Attach the
ocfs2_locking_protocol to the conn.

Now, instead of refering to a static variable for ast/bast pointers, the
wrappers can look at the connection.  This means different connections
can have different ast/bast pointers, and it reduces the need for the
static pointer.

Signed-off-by: Joel Becker <joel.becker@oracle.com>
2010-02-26 15:41:16 -08:00
Joel Becker c0e4133851 ocfs2: Attach the connection to the lksb
We're going to want it in the ast functions, so we convert union
ocfs2_dlm_lksb to struct ocfs2_dlm_lksb and let it carry the connection.

Signed-off-by: Joel Becker <joel.becker@oracle.com>
2010-02-26 15:41:14 -08:00
Joel Becker a796d2862a ocfs2: Pass lksbs back from stackglue ast/bast functions.
The stackglue ast and bast functions tried to maintain the fiction that
their arguments were void pointers.  In reality, stack_user.c had to
know that the argument was an ocfs2_lock_res in order to get the status
off of the lksb.  That's ugly.

This changes stackglue to always pass the lksb as the argument to ast
and bast functions.  The caller can always use container_of() to get the
ocfs2_lock_res or user_dlm_lock_res.  The net effect to the caller is
zero.  They still get back the lockres in their ast.  stackglue gets
cleaner, and now can use the lksb itself.

Signed-off-by: Joel Becker <joel.becker@oracle.com>
2010-02-26 15:41:14 -08:00
Coly Li 3a05d7961e ocfs2: explicit declare uninitialized var in user_cluster_connect()
This patch explicitly declares an uninitialized local variable in user_cluster_connect(), to remove a compiling warning.

Signed-off-by: Coly Li <coly.li@suse.de>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
2009-12-17 20:55:52 -08:00
Joel Becker 1c520dfbf3 ocfs2: Provide the ocfs2_dlm_lvb_valid() stack API.
The Lock Value Block (LVB) of a DLM lock can be lost when nodes die and
the DLM cannot reconstruct its state.  Clients of the DLM need to know
this.

ocfs2's internal DLM, o2dlm, explicitly zeroes out the LVB when it loses
track of the state.  This is not a standard behavior, but ocfs2 has
always relied on it.  Thus, an o2dlm LVB is always "valid".

ocfs2 now supports both o2dlm and fs/dlm via the stack glue.  When
fs/dlm loses track of an LVBs state, it sets a flag
(DLM_SBF_VALNOTVALID) on the Lock Status Block (LKSB).  The contents of
the LVB may be garbage or merely stale.

ocfs2 doesn't want to try to guess at the validity of the stale LVB.
Instead, it should be checking the VALNOTVALID flag.  As this is the
'standard' way of treating LVBs, we will promote this behavior.

We add a stack glue API ocfs2_dlm_lvb_valid().  It returns non-zero when
the LVB is valid.  o2dlm will always return valid, while fs/dlm will
check VALNOTVALID.

Signed-off-by: Joel Becker <joel.becker@oracle.com>
Acked-by: Mark Fasheh <mfasheh@suse.com>
2009-06-22 14:24:30 -07:00
David Teigland 66f502a416 ocfs2: initialize stack_user lvbptr
The locking_state dump, ocfs2_dlm_seq_show, reads the lvb on locks where it
has not yet been initialized by a lock call.

Signed-off-by: David Teigland <teigland@redhat.com>
Acked-by: Joel Becker <joel.becker@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
2008-12-01 14:46:39 -08:00
Mark Fasheh 53da4939f3 ocfs2: POSIX file locks support
This is actually pretty easy since fs/dlm already handles the bulk of the
work. The Ocfs2 userspace cluster stack module already uses fs/dlm as the
underlying lock manager, so I only had to add the right calls.

Cluster-aware POSIX locks ("plocks") can be turned off by the same means at
UNIX locks - mount with 'noflocks', or create a local-only Ocfs2 volume.
Internally, the file system uses two sets of file_operations, depending on
whether cluster aware plocks is required. This turns out to be easier than
implementing local-only versions of ->lock.

Signed-off-by: Mark Fasheh <mfasheh@suse.com>
2008-10-13 13:57:57 -07:00
Linus Torvalds 5b664cb235 Merge branch 'upstream-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mfasheh/ocfs2
* 'upstream-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mfasheh/ocfs2:
  [PATCH] ocfs2: fix oops in mmap_truncate testing
  configfs: call drop_link() to cleanup after create_link() failure
  configfs: Allow ->make_item() and ->make_group() to return detailed errors.
  configfs: Fix failing mkdir() making racing rmdir() fail
  configfs: Fix deadlock with racing rmdir() and rename()
  configfs: Make configfs_new_dirent() return error code instead of NULL
  configfs: Protect configfs_dirent s_links list mutations
  configfs: Introduce configfs_dirent_lock
  ocfs2: Don't snprintf() without a format.
  ocfs2: Fix CONFIG_OCFS2_DEBUG_FS #ifdefs
  ocfs2/net: Silence build warnings on sparc64
  ocfs2: Handle error during journal load
  ocfs2: Silence an error message in ocfs2_file_aio_read()
  ocfs2: use simple_read_from_buffer()
  ocfs2: fix printk format warnings with OCFS2_FS_STATS=n
  [PATCH 2/2] ocfs2: Instrument fs cluster locks
  [PATCH 1/2] ocfs2: Add CONFIG_OCFS2_FS_STATS config option
2008-07-17 10:55:51 -07:00
Jonathan Corbet 2fceef397f Merge commit 'v2.6.26' into bkl-removal 2008-07-14 15:29:34 -06:00
Akinobu Mita 7600c72b75 ocfs2: use simple_read_from_buffer()
Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Acked-by: Joel Becker <joel.becker@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
2008-07-14 13:57:15 -07:00
Arnd Bergmann b7fdf9fdd6 ocfs2-stack_user: BKL pushdown
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2008-07-02 15:06:23 -06:00
Joel Becker 2c39450b39 ocfs2: Remove ->hangup() from stack glue operations.
The ->hangup() call was only used to execute ocfs2_hb_ctl.  Now that
the generic stack glue code handles this, the underlying stack drivers
don't need to know about it.

Signed-off-by: Joel Becker <joel.becker@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
2008-06-16 10:46:52 -07:00
Joel Becker a12630b186 ocfs2: Rename 'user_stack' plugin structure to 'ocfs2_user_plugin'
The static structure describing the userspace cluster plugin for ocfs2
was named 'user_stack', which is a real pain when people are grep(1)ing
the tree for the program stack object 'user_stack'.  Change the name to
something distinct and namespaced.

Signed-off-by: Joel Becker <joel.becker@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
2008-05-30 15:14:08 -07:00
Adrian Bunk 4d8755b5e6 ocfs2: make struct ocfs2_control_device static
This patch makes the needlessly global struct ocfs2_control_device
static.

Signed-off-by: Adrian Bunk <bunk@kernel.org>
Acked-by: Joel Becker <joel.becker@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
2008-04-30 17:09:08 -07:00
David Teigland cf4d8d75d8 ocfs2: add fsdlm to stackglue
Add code to use fs/dlm.

[ Modified to be part of the stack_user module -- Joel ]

Signed-off-by: David Teigland <teigland@redhat.com>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
2008-04-18 08:56:07 -07:00
Joel Becker d4b95eef4d ocfs2: Add the 'set version' message to the ocfs2_control device.
The "SETV" message sets the filesystem locking protocol version as
negotiated by the client.  The client negotiates based on the maximum
version advertised in /sys/fs/ocfs2/max_locking_protocol.

Signed-off-by: Joel Becker <joel.becker@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
2008-04-18 08:56:07 -07:00
Joel Becker 3cfd4ab6b6 ocfs2: Add the local node id to the handshake.
This is the second part of the ocfs2_control handshake.  After
negotiating the ocfs2_control protocol, the daemon tells the filesystem
what the local node id is via the SETN message.

Signed-off-by: Joel Becker <joel.becker@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
2008-04-18 08:56:06 -07:00
Joel Becker de870ef022 ocfs2: Introduce the DOWN message to ocfs2_control
When the control daemon sees a node go down, it sends a DOWN message
through the ocfs2_control device.

Signed-off-by: Joel Becker <joel.becker@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
2008-04-18 08:56:06 -07:00
Joel Becker 462c7e6a25 ocfs2: Start the ocfs2_control handshake.
When a control daemon opens the ocfs2_control device, it must perform a
handshake to tell the filesystem it is something capable of monitoring
cluster status.  Only after the handshake is complete will the filesystem
allow mounts.

This is the first part of the handshake.  The daemon reads all supported
ocfs2_control protocols, then writes in the protocol it will use.

Signed-off-by: Joel Becker <joel.becker@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
2008-04-18 08:56:06 -07:00
Joel Becker 6427a72755 ocfs2: Add the ocfs2_control misc device.
The ocfs2_control misc device is how a userspace control daemon (controld)
talks to the filesystem.  Introduce the bare-bones filesystem ops.

Signed-off-by: Joel Becker <joel.becker@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
2008-04-18 08:56:06 -07:00
Joel Becker 8adf0536c9 ocfs2: Add the user stack module.
Add a skeleton for the stack_user module.  It's just the barebones module
code.

Signed-off-by: Joel Becker <joel.becker@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
2008-04-18 08:56:06 -07:00