We have seen an early OOM killer invocation on ppc64 systems with
crashkernel=4096M:
kthreadd invoked oom-killer: gfp_mask=0x16040c0(GFP_KERNEL|__GFP_COMP|__GFP_NOTRACK), nodemask=7, order=0, oom_score_adj=0
kthreadd cpuset=/ mems_allowed=7
CPU: 0 PID: 2 Comm: kthreadd Not tainted 4.4.68-1.gd7fe927-default #1
Call Trace:
dump_stack+0xb0/0xf0 (unreliable)
dump_header+0xb0/0x258
out_of_memory+0x5f0/0x640
__alloc_pages_nodemask+0xa8c/0xc80
kmem_getpages+0x84/0x1a0
fallback_alloc+0x2a4/0x320
kmem_cache_alloc_node+0xc0/0x2e0
copy_process.isra.25+0x260/0x1b30
_do_fork+0x94/0x470
kernel_thread+0x48/0x60
kthreadd+0x264/0x330
ret_from_kernel_thread+0x5c/0xa4
Mem-Info:
active_anon:0 inactive_anon:0 isolated_anon:0
active_file:0 inactive_file:0 isolated_file:0
unevictable:0 dirty:0 writeback:0 unstable:0
slab_reclaimable:5 slab_unreclaimable:73
mapped:0 shmem:0 pagetables:0 bounce:0
free:0 free_pcp:0 free_cma:0
Node 7 DMA free:0kB min:0kB low:0kB high:0kB active_anon:0kB inactive_anon:0kB active_file:0kB inactive_file:0kB unevictable:0kB isolated(anon):0kB isolated(file):0kB present:52428800kB managed:110016kB mlocked:0kB dirty:0kB writeback:0kB mapped:0kB shmem:0kB slab_reclaimable:320kB slab_unreclaimable:4672kB kernel_stack:1152kB pagetables:0kB unstable:0kB bounce:0kB free_pcp:0kB local_pcp:0kB free_cma:0kB writeback_tmp:0kB pages_scanned:0 all_unreclaimable? yes
lowmem_reserve[]: 0 0 0 0
Node 7 DMA: 0*64kB 0*128kB 0*256kB 0*512kB 0*1024kB 0*2048kB 0*4096kB 0*8192kB 0*16384kB = 0kB
0 total pagecache pages
0 pages in swap cache
Swap cache stats: add 0, delete 0, find 0/0
Free swap = 0kB
Total swap = 0kB
819200 pages RAM
0 pages HighMem/MovableOnly
817481 pages reserved
0 pages cma reserved
0 pages hwpoisoned
the reason is that the managed memory is too low (only 110MB) while the
rest of the the 50GB is still waiting for the deferred intialization to
be done. update_defer_init estimates the initial memoty to initialize
to 2GB at least but it doesn't consider any memory allocated in that
range. In this particular case we've had
Reserving 4096MB of memory at 128MB for crashkernel (System RAM: 51200MB)
so the low 2GB is mostly depleted.
Fix this by considering memblock allocations in the initial static
initialization estimation. Move the max_initialise to
reset_deferred_meminit and implement a simple memblock_reserved_memory
helper which iterates all reserved blocks and sums the size of all that
start below the given address. The cumulative size is than added on top
of the initial estimation. This is still not ideal because
reset_deferred_meminit doesn't consider holes and so reservation might
be above the initial estimation whihch we ignore but let's make the
logic simpler until we really need to handle more complicated cases.
Fixes: 3a80a7fa79 ("mm: meminit: initialise a subset of struct pages if CONFIG_DEFERRED_STRUCT_PAGE_INIT is set")
Link: http://lkml.kernel.org/r/20170531104010.GI27783@dhcp22.suse.cz
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Tested-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Cc: <stable@vger.kernel.org> [4.2+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Roman Gushchin has reported that the OOM killer can trivially selects
next OOM victim when a thread doing memory allocation from page fault
path was selected as first OOM victim.
allocate invoked oom-killer: gfp_mask=0x14280ca(GFP_HIGHUSER_MOVABLE|__GFP_ZERO), nodemask=(null), order=0, oom_score_adj=0
allocate cpuset=/ mems_allowed=0
CPU: 1 PID: 492 Comm: allocate Not tainted 4.12.0-rc1-mm1+ #181
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Ubuntu-1.8.2-1ubuntu1 04/01/2014
Call Trace:
oom_kill_process+0x219/0x3e0
out_of_memory+0x11d/0x480
__alloc_pages_slowpath+0xc84/0xd40
__alloc_pages_nodemask+0x245/0x260
alloc_pages_vma+0xa2/0x270
__handle_mm_fault+0xca9/0x10c0
handle_mm_fault+0xf3/0x210
__do_page_fault+0x240/0x4e0
trace_do_page_fault+0x37/0xe0
do_async_page_fault+0x19/0x70
async_page_fault+0x28/0x30
...
Out of memory: Kill process 492 (allocate) score 899 or sacrifice child
Killed process 492 (allocate) total-vm:2052368kB, anon-rss:1894576kB, file-rss:4kB, shmem-rss:0kB
allocate: page allocation failure: order:0, mode:0x14280ca(GFP_HIGHUSER_MOVABLE|__GFP_ZERO), nodemask=(null)
allocate cpuset=/ mems_allowed=0
CPU: 1 PID: 492 Comm: allocate Not tainted 4.12.0-rc1-mm1+ #181
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Ubuntu-1.8.2-1ubuntu1 04/01/2014
Call Trace:
__alloc_pages_slowpath+0xd32/0xd40
__alloc_pages_nodemask+0x245/0x260
alloc_pages_vma+0xa2/0x270
__handle_mm_fault+0xca9/0x10c0
handle_mm_fault+0xf3/0x210
__do_page_fault+0x240/0x4e0
trace_do_page_fault+0x37/0xe0
do_async_page_fault+0x19/0x70
async_page_fault+0x28/0x30
...
oom_reaper: reaped process 492 (allocate), now anon-rss:0kB, file-rss:0kB, shmem-rss:0kB
...
allocate invoked oom-killer: gfp_mask=0x0(), nodemask=(null), order=0, oom_score_adj=0
allocate cpuset=/ mems_allowed=0
CPU: 1 PID: 492 Comm: allocate Not tainted 4.12.0-rc1-mm1+ #181
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Ubuntu-1.8.2-1ubuntu1 04/01/2014
Call Trace:
oom_kill_process+0x219/0x3e0
out_of_memory+0x11d/0x480
pagefault_out_of_memory+0x68/0x80
mm_fault_error+0x8f/0x190
? handle_mm_fault+0xf3/0x210
__do_page_fault+0x4b2/0x4e0
trace_do_page_fault+0x37/0xe0
do_async_page_fault+0x19/0x70
async_page_fault+0x28/0x30
...
Out of memory: Kill process 233 (firewalld) score 10 or sacrifice child
Killed process 233 (firewalld) total-vm:246076kB, anon-rss:20956kB, file-rss:0kB, shmem-rss:0kB
There is a race window that the OOM reaper completes reclaiming the
first victim's memory while nothing but mutex_trylock() prevents the
first victim from calling out_of_memory() from pagefault_out_of_memory()
after memory allocation for page fault path failed due to being selected
as an OOM victim.
This is a side effect of commit 9a67f6488e ("mm: consolidate
GFP_NOFAIL checks in the allocator slowpath") because that commit
silently changed the behavior from
/* Avoid allocations with no watermarks from looping endlessly */
to
/*
* Give up allocations without trying memory reserves if selected
* as an OOM victim
*/
in __alloc_pages_slowpath() by moving the location to check TIF_MEMDIE
flag. I have noticed this change but I didn't post a patch because I
thought it is an acceptable change other than noise by warn_alloc()
because !__GFP_NOFAIL allocations are allowed to fail. But we
overlooked that failing memory allocation from page fault path makes
difference due to the race window explained above.
While it might be possible to add a check to pagefault_out_of_memory()
that prevents the first victim from calling out_of_memory() or remove
out_of_memory() from pagefault_out_of_memory(), changing
pagefault_out_of_memory() does not suppress noise by warn_alloc() when
allocating thread was selected as an OOM victim. There is little point
with printing similar backtraces and memory information from both
out_of_memory() and warn_alloc().
Instead, if we guarantee that current thread can try allocations with no
watermarks once when current thread looping inside
__alloc_pages_slowpath() was selected as an OOM victim, we can follow "who
can use memory reserves" rules and suppress noise by warn_alloc() and
prevent memory allocations from page fault path from calling
pagefault_out_of_memory().
If we take the comment literally, this patch would do
- if (test_thread_flag(TIF_MEMDIE))
- goto nopage;
+ if (alloc_flags == ALLOC_NO_WATERMARKS || (gfp_mask & __GFP_NOMEMALLOC))
+ goto nopage;
because gfp_pfmemalloc_allowed() returns false if __GFP_NOMEMALLOC is
given. But if I recall correctly (I couldn't find the message), the
condition is meant to apply to only OOM victims despite the comment.
Therefore, this patch preserves TIF_MEMDIE check.
Fixes: 9a67f6488e ("mm: consolidate GFP_NOFAIL checks in the allocator slowpath")
Link: http://lkml.kernel.org/r/201705192112.IAF69238.OQOHSJLFOFFMtV@I-love.SAKURA.ne.jp
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Reported-by: Roman Gushchin <guro@fb.com>
Tested-by: Roman Gushchin <guro@fb.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: <stable@vger.kernel.org> [4.11]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The previous patch ("mm: prevent potential recursive reclaim due to
clearing PF_MEMALLOC") has shown that simply setting and clearing
PF_MEMALLOC in current->flags can result in wrongly clearing a
pre-existing PF_MEMALLOC flag and potentially lead to recursive reclaim.
Let's introduce helpers that support proper nesting by saving the
previous stat of the flag, similar to the existing memalloc_noio_* and
memalloc_nofs_* helpers. Convert existing setting/clearing of
PF_MEMALLOC within mm to the new helpers.
There are no known issues with the converted code, but the change makes
it more robust.
Link: http://lkml.kernel.org/r/20170405074700.29871-3-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Suggested-by: Michal Hocko <mhocko@suse.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Boris Brezillon <boris.brezillon@free-electrons.com>
Cc: Chris Leech <cleech@redhat.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Josef Bacik <jbacik@fb.com>
Cc: Lee Duncan <lduncan@suse.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Richard Weinberger <richard@nod.at>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "more robust PF_MEMALLOC handling"
This series aims to unify the setting and clearing of PF_MEMALLOC, which
prevents recursive reclaim. There are some places that clear the flag
unconditionally from current->flags, which may result in clearing a
pre-existing flag. This already resulted in a bug report that Patch 1
fixes (without the new helpers, to make backporting easier). Patch 2
introduces the new helpers, modelled after existing memalloc_noio_* and
memalloc_nofs_* helpers, and converts mm core to use them. Patches 3
and 4 convert non-mm code.
This patch (of 4):
__alloc_pages_direct_compact() sets PF_MEMALLOC to prevent deadlock
during page migration by lock_page() (see the comment in
__unmap_and_move()). Then it unconditionally clears the flag, which can
clear a pre-existing PF_MEMALLOC flag and result in recursive reclaim.
This was not a problem until commit a8161d1ed6 ("mm, page_alloc:
restructure direct compaction handling in slowpath"), because direct
compation was called only after direct reclaim, which was skipped when
PF_MEMALLOC flag was set.
Even now it's only a theoretical issue, as the new callsite of
__alloc_pages_direct_compact() is reached only for costly orders and
when gfp_pfmemalloc_allowed() is true, which means either
__GFP_NOMEMALLOC is in gfp_flags or in_interrupt() is true. There is no
such known context, but let's play it safe and make
__alloc_pages_direct_compact() robust for cases where PF_MEMALLOC is
already set.
Fixes: a8161d1ed6 ("mm, page_alloc: restructure direct compaction handling in slowpath")
Link: http://lkml.kernel.org/r/20170405074700.29871-2-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reported-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Boris Brezillon <boris.brezillon@free-electrons.com>
Cc: Chris Leech <cleech@redhat.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Josef Bacik <jbacik@fb.com>
Cc: Lee Duncan <lduncan@suse.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The migrate scanner in async compaction is currently limited to
MIGRATE_MOVABLE pageblocks. This is a heuristic intended to reduce
latency, based on the assumption that non-MOVABLE pageblocks are
unlikely to contain movable pages.
However, with the exception of THP's, most high-order allocations are
not movable. Should the async compaction succeed, this increases the
chance that the non-MOVABLE allocations will fallback to a MOVABLE
pageblock, making the long-term fragmentation worse.
This patch attempts to help the situation by changing async direct
compaction so that the migrate scanner only scans the pageblocks of the
requested migratetype. If it's a non-MOVABLE type and there are such
pageblocks that do contain movable pages, chances are that the
allocation can succeed within one of such pageblocks, removing the need
for a fallback. If that fails, the subsequent sync attempt will ignore
this restriction.
In testing based on 4.9 kernel with stress-highalloc from mmtests
configured for order-4 GFP_KERNEL allocations, this patch has reduced
the number of unmovable allocations falling back to movable pageblocks
by 30%. The number of movable allocations falling back is reduced by
12%.
Link: http://lkml.kernel.org/r/20170307131545.28577-8-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When stealing pages from pageblock of a different migratetype, we count
how many free pages were stolen, and change the pageblock's migratetype
if more than half of the pageblock was free. This might be too
conservative, as there might be other pages that are not free, but were
allocated with the same migratetype as our allocation requested.
While we cannot determine the migratetype of allocated pages precisely
(at least without the page_owner functionality enabled), we can count
pages that compaction would try to isolate for migration - those are
either on LRU or __PageMovable(). The rest can be assumed to be
MIGRATE_RECLAIMABLE or MIGRATE_UNMOVABLE, which we cannot easily
distinguish. This counting can be done as part of free page stealing
with little additional overhead.
The page stealing code is changed so that it considers free pages plus
pages of the "good" migratetype for the decision whether to change
pageblock's migratetype.
The result should be more accurate migratetype of pageblocks wrt the
actual pages in the pageblocks, when stealing from semi-occupied
pageblocks. This should help the efficiency of page grouping by
mobility.
In testing based on 4.9 kernel with stress-highalloc from mmtests
configured for order-4 GFP_KERNEL allocations, this patch has reduced
the number of unmovable allocations falling back to movable pageblocks
by 47%. The number of movable allocations falling back to other
pageblocks are increased by 55%, but these events don't cause permanent
fragmentation, so the tradeoff should be positive. Later patches also
offset the movable fallback increase to some extent.
[akpm@linux-foundation.org: merge fix]
Link: http://lkml.kernel.org/r/20170307131545.28577-5-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The __rmqueue_fallback() function is called when there's no free page of
requested migratetype, and we need to steal from a different one.
There are various heuristics to make this event infrequent and reduce
permanent fragmentation. The main one is to try stealing from a
pageblock that has the most free pages, and possibly steal them all at
once and convert the whole pageblock. Precise searching for such
pageblock would be expensive, so instead the heuristics walks the free
lists from MAX_ORDER down to requested order and assumes that the block
with highest-order free page is likely to also have the most free pages
in total.
Chances are that together with the highest-order page, we steal also
pages of lower orders from the same block. But then we still split the
highest order page. This is wasteful and can contribute to
fragmentation instead of avoiding it.
This patch thus changes __rmqueue_fallback() to just steal the page(s)
and put them on the freelist of the requested migratetype, and only
report whether it was successful. Then we pick (and eventually split)
the smallest page with __rmqueue_smallest(). This all happens under
zone lock, so nobody can steal it from us in the process. This should
reduce fragmentation due to fallbacks. At worst we are only stealing a
single highest-order page and waste some cycles by moving it between
lists and then removing it, but fallback is not exactly hot path so that
should not be a concern. As a side benefit the patch removes some
duplicate code by reusing __rmqueue_smallest().
[vbabka@suse.cz: fix endless loop in the modified __rmqueue()]
Link: http://lkml.kernel.org/r/59d71b35-d556-4fc9-ee2e-1574259282fd@suse.cz
Link: http://lkml.kernel.org/r/20170307131545.28577-4-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
o Pretty much a full rewrite of the processing of function plugins.
i.e. echo do_IRQ:stacktrace > set_ftrace_filter
o The rewrite was needed to add plugins to be unique to tracing instances.
i.e. mkdir instance/foo; cd instances/foo; echo do_IRQ:stacktrace > set_ftrace_filter
The old way was written very hacky. This removes a lot of those hacks.
o New "function-fork" tracing option. When set, pids in the set_ftrace_pid
will have their children added when the processes with their pids
listed in the set_ftrace_pid file forks.
o Exposure of "maxactive" for kretprobe in kprobe_events
o Allow for builtin init functions to be traced by the function tracer
(via the kernel command line). Module init function tracing will come
in the next release.
o Added more selftests, and have selftests also test in an instance.
-----BEGIN PGP SIGNATURE-----
iQExBAABCAAbBQJZCRchFBxyb3N0ZWR0QGdvb2RtaXMub3JnAAoJEMm5BfJq2Y3L
zuIH/RsLUb8Hj6GmhAvn/tblUDzWyqlXX2h79VVlo/XrWayHYNHnKOmua1WwMZC6
xESXb/AffAc89VWTkKsrwaK7yfRPG6+w8zTZOcFuXSBpqSGG/oey9Fxj5Wqqpche
oJ2UY7ngxANAipkP5GxdYTafFSoWhGZGfUUtW+5tAHoFHzqO2lOjO8olbXP69sON
kVX/b461S20cVvRe5H/F0klXLSc37Tlp5YznXy4H4V4HcJSN1Fb6/uozOXALZ4se
SBpVMWmVVoGJorzj+ic7gVOeohvC8RnR400HbeMVwaI0Lj50noidDj/5Hv8F7T+D
h1B8vATNZLFAFUOSHINCBIu6Vj0=
=t8mg
-----END PGP SIGNATURE-----
Merge tag 'trace-v4.12' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace
Pull tracing updates from Steven Rostedt:
"New features for this release:
- Pretty much a full rewrite of the processing of function plugins.
i.e. echo do_IRQ:stacktrace > set_ftrace_filter
- The rewrite was needed to add plugins to be unique to tracing
instances. i.e. mkdir instance/foo; cd instances/foo; echo
do_IRQ:stacktrace > set_ftrace_filter The old way was written very
hacky. This removes a lot of those hacks.
- New "function-fork" tracing option. When set, pids in the
set_ftrace_pid will have their children added when the processes
with their pids listed in the set_ftrace_pid file forks.
- Exposure of "maxactive" for kretprobe in kprobe_events
- Allow for builtin init functions to be traced by the function
tracer (via the kernel command line). Module init function tracing
will come in the next release.
- Added more selftests, and have selftests also test in an instance"
* tag 'trace-v4.12' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace: (60 commits)
ring-buffer: Return reader page back into existing ring buffer
selftests: ftrace: Allow some event trigger tests to run in an instance
selftests: ftrace: Have some basic tests run in a tracing instance too
selftests: ftrace: Have event tests also run in an tracing instance
selftests: ftrace: Make func_event_triggers and func_traceonoff_triggers tests do instances
selftests: ftrace: Allow some tests to be run in a tracing instance
tracing/ftrace: Allow for instances to trigger their own stacktrace probes
tracing/ftrace: Allow for the traceonoff probe be unique to instances
tracing/ftrace: Enable snapshot function trigger to work with instances
tracing/ftrace: Allow instances to have their own function probes
tracing/ftrace: Add a better way to pass data via the probe functions
ftrace: Dynamically create the probe ftrace_ops for the trace_array
tracing: Pass the trace_array into ftrace_probe_ops functions
tracing: Have the trace_array hold the list of registered func probes
ftrace: If the hash for a probe fails to update then free what was initialized
ftrace: Have the function probes call their own function
ftrace: Have each function probe use its own ftrace_ops
ftrace: Have unregister_ftrace_function_probe_func() return a value
ftrace: Add helper function ftrace_hash_move_and_update_ops()
ftrace: Remove data field from ftrace_func_probe structure
...
Commit c0a32fc5a2 ("mm: more intensive memory corruption debugging")
changed to check debug_guardpage_minorder() > 0 when reporting
allocation failures. The reasoning was
When we use guard page to debug memory corruption, it shrinks
available pages to 1/2, 1/4, 1/8 and so on, depending on parameter
value. In such case memory allocation failures can be common and
printing errors can flood dmesg. If somebody debug corruption,
allocation failures are not the things he/she is interested about.
but this is misguided.
Allocation requests with __GFP_NOWARN flag by definition do not cause
flooding of allocation failure messages. Allocation requests with
__GFP_NORETRY flag likely also have __GFP_NOWARN flag. Costly
allocation requests likely also have __GFP_NOWARN flag.
Allocation requests without __GFP_DIRECT_RECLAIM flag likely also have
__GFP_NOWARN flag or __GFP_HIGH flag. Non-costly allocation requests
with __GFP_DIRECT_RECLAIM flag basically retry forever due to the "too
small to fail" memory-allocation rule.
Therefore, as a whole, shrinking available pages by
debug_guardpage_minorder= kernel boot parameter might cause flooding of
OOM killer messages but unlikely causes flooding of allocation failure
messages. Let's remove debug_guardpage_minorder() > 0 check which would
likely be pointless.
Link: http://lkml.kernel.org/r/1491910035-4231-1-git-send-email-penguin-kernel@I-love.SAKURA.ne.jp
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Stanislaw Gruszka <sgruszka@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Rafael J . Wysocki" <rafael.j.wysocki@intel.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
On SPARSEMEM systems page poisoning is enabled after buddy is up,
because of the dependency on page extension init. This causes the pages
released by free_all_bootmem not to be poisoned. This either delays or
misses the identification of some issues because the pages have to
undergo another cycle of alloc-free-alloc for any corruption to be
detected.
Enable page poisoning early by getting rid of the PAGE_EXT_DEBUG_POISON
flag. Since all the free pages will now be poisoned, the flag need not
be verified before checking the poison during an alloc.
[vinmenon@codeaurora.org: fix Kconfig]
Link: http://lkml.kernel.org/r/1490878002-14423-1-git-send-email-vinmenon@codeaurora.org
Link: http://lkml.kernel.org/r/1490358246-11001-1-git-send-email-vinmenon@codeaurora.org
Signed-off-by: Vinayak Menon <vinmenon@codeaurora.org>
Acked-by: Laura Abbott <labbott@redhat.com>
Tested-by: Laura Abbott <labbott@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Akinobu Mita <akinobu.mita@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__GFP_NOWARN, which is usually added to avoid warnings from callsites
that expect to fail and have fallbacks, currently also suppresses
allocation stall warnings. These trigger when an allocation is stuck
inside the allocator for 10 seconds or longer.
But there is no class of allocations that can get legitimately stuck in
the allocator for this long. This always indicates a problem.
Always emit stall warnings. Restrict __GFP_NOWARN to alloc failures.
Link: http://lkml.kernel.org/r/20170125181150.GA16398@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
GFP_NOFS context is used for the following 5 reasons currently:
- to prevent from deadlocks when the lock held by the allocation
context would be needed during the memory reclaim
- to prevent from stack overflows during the reclaim because the
allocation is performed from a deep context already
- to prevent lockups when the allocation context depends on other
reclaimers to make a forward progress indirectly
- just in case because this would be safe from the fs POV
- silence lockdep false positives
Unfortunately overuse of this allocation context brings some problems to
the MM. Memory reclaim is much weaker (especially during heavy FS
metadata workloads), OOM killer cannot be invoked because the MM layer
doesn't have enough information about how much memory is freeable by the
FS layer.
In many cases it is far from clear why the weaker context is even used
and so it might be used unnecessarily. We would like to get rid of
those as much as possible. One way to do that is to use the flag in
scopes rather than isolated cases. Such a scope is declared when really
necessary, tracked per task and all the allocation requests from within
the context will simply inherit the GFP_NOFS semantic.
Not only this is easier to understand and maintain because there are
much less problematic contexts than specific allocation requests, this
also helps code paths where FS layer interacts with other layers (e.g.
crypto, security modules, MM etc...) and there is no easy way to convey
the allocation context between the layers.
Introduce memalloc_nofs_{save,restore} API to control the scope of
GFP_NOFS allocation context. This is basically copying
memalloc_noio_{save,restore} API we have for other restricted allocation
context GFP_NOIO. The PF_MEMALLOC_NOFS flag already exists and it is
just an alias for PF_FSTRANS which has been xfs specific until recently.
There are no more PF_FSTRANS users anymore so let's just drop it.
PF_MEMALLOC_NOFS is now checked in the MM layer and drops __GFP_FS
implicitly same as PF_MEMALLOC_NOIO drops __GFP_IO. memalloc_noio_flags
is renamed to current_gfp_context because it now cares about both
PF_MEMALLOC_NOFS and PF_MEMALLOC_NOIO contexts. Xfs code paths preserve
their semantic. kmem_flags_convert() doesn't need to evaluate the flag
anymore.
This patch shouldn't introduce any functional changes.
Let's hope that filesystems will drop direct GFP_NOFS (resp. ~__GFP_FS)
usage as much as possible and only use a properly documented
memalloc_nofs_{save,restore} checkpoints where they are appropriate.
[akpm@linux-foundation.org: fix comment typo, reflow comment]
Link: http://lkml.kernel.org/r/20170306131408.9828-5-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Chris Mason <clm@fb.com>
Cc: David Sterba <dsterba@suse.cz>
Cc: Jan Kara <jack@suse.cz>
Cc: Brian Foster <bfoster@redhat.com>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: Nikolay Borisov <nborisov@suse.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Introduce two helpers, is_migrate_highatomic() and is_migrate_highatomic_page().
Simplify the code, no functional changes.
[akpm@linux-foundation.org: use static inlines rather than macros, per mhocko]
Link: http://lkml.kernel.org/r/58B94F15.6060606@huawei.com
Signed-off-by: Xishi Qiu <qiuxishi@huawei.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The backoff mechanism is not needed. If we have MAX_RECLAIM_RETRIES
loops without progress, we'll OOM anyway; backing off might cut one or
two iterations off that in the rare OOM case. If we have intermittent
success reclaiming a few pages, the backoff function gets reset also,
and so is of little help in these scenarios.
We might want a backoff function for when there IS progress, but not
enough to be satisfactory. But this isn't that. Remove it.
Link: http://lkml.kernel.org/r/20170228214007.5621-10-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Jia He <hejianet@gmail.com>
Cc: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
NR_PAGES_SCANNED counts number of pages scanned since the last page free
event in the allocator. This was used primarily to measure the
reclaimability of zones and nodes, and determine when reclaim should
give up on them. In that role, it has been replaced in the preceding
patches by a different mechanism.
Being implemented as an efficient vmstat counter, it was automatically
exported to userspace as well. It's however unlikely that anyone
outside the kernel is using this counter in any meaningful way.
Remove the counter and the unused pgdat_reclaimable().
Link: http://lkml.kernel.org/r/20170228214007.5621-8-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Jia He <hejianet@gmail.com>
Cc: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm: kswapd spinning on unreclaimable nodes - fixes and
cleanups".
Jia reported a scenario in which the kswapd of a node indefinitely spins
at 100% CPU usage. We have seen similar cases at Facebook.
The kernel's current method of judging its ability to reclaim a node (or
whether to back off and sleep) is based on the amount of scanned pages
in proportion to the amount of reclaimable pages. In Jia's and our
scenarios, there are no reclaimable pages in the node, however, and the
condition for backing off is never met. Kswapd busyloops in an attempt
to restore the watermarks while having nothing to work with.
This series reworks the definition of an unreclaimable node based not on
scanning but on whether kswapd is able to actually reclaim pages in
MAX_RECLAIM_RETRIES (16) consecutive runs. This is the same criteria
the page allocator uses for giving up on direct reclaim and invoking the
OOM killer. If it cannot free any pages, kswapd will go to sleep and
leave further attempts to direct reclaim invocations, which will either
make progress and re-enable kswapd, or invoke the OOM killer.
Patch #1 fixes the immediate problem Jia reported, the remainder are
smaller fixlets, cleanups, and overall phasing out of the old method.
Patch #6 is the odd one out. It's a nice cleanup to get_scan_count(),
and directly related to #5, but in itself not relevant to the series.
If the whole series is too ambitious for 4.11, I would consider the
first three patches fixes, the rest cleanups.
This patch (of 9):
Jia He reports a problem with kswapd spinning at 100% CPU when
requesting more hugepages than memory available in the system:
$ echo 4000 >/proc/sys/vm/nr_hugepages
top - 13:42:59 up 3:37, 1 user, load average: 1.09, 1.03, 1.01
Tasks: 1 total, 1 running, 0 sleeping, 0 stopped, 0 zombie
%Cpu(s): 0.0 us, 12.5 sy, 0.0 ni, 85.5 id, 2.0 wa, 0.0 hi, 0.0 si, 0.0 st
KiB Mem: 31371520 total, 30915136 used, 456384 free, 320 buffers
KiB Swap: 6284224 total, 115712 used, 6168512 free. 48192 cached Mem
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
76 root 20 0 0 0 0 R 100.0 0.000 217:17.29 kswapd3
At that time, there are no reclaimable pages left in the node, but as
kswapd fails to restore the high watermarks it refuses to go to sleep.
Kswapd needs to back away from nodes that fail to balance. Up until
commit 1d82de618d ("mm, vmscan: make kswapd reclaim in terms of
nodes") kswapd had such a mechanism. It considered zones whose
theoretically reclaimable pages it had reclaimed six times over as
unreclaimable and backed away from them. This guard was erroneously
removed as the patch changed the definition of a balanced node.
However, simply restoring this code wouldn't help in the case reported
here: there *are* no reclaimable pages that could be scanned until the
threshold is met. Kswapd would stay awake anyway.
Introduce a new and much simpler way of backing off. If kswapd runs
through MAX_RECLAIM_RETRIES (16) cycles without reclaiming a single
page, make it back off from the node. This is the same number of shots
direct reclaim takes before declaring OOM. Kswapd will go to sleep on
that node until a direct reclaimer manages to reclaim some pages, thus
proving the node reclaimable again.
[hannes@cmpxchg.org: check kswapd failure against the cumulative nr_reclaimed count]
Link: http://lkml.kernel.org/r/20170306162410.GB2090@cmpxchg.org
[shakeelb@google.com: fix condition for throttle_direct_reclaim]
Link: http://lkml.kernel.org/r/20170314183228.20152-1-shakeelb@google.com
Link: http://lkml.kernel.org/r/20170228214007.5621-2-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Reported-by: Jia He <hejianet@gmail.com>
Tested-by: Jia He <hejianet@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
guide for user-space API documents, rather sparsely populated at the
moment, but it's a start. Markus improved the infrastructure for
converting diagrams. Mauro has converted much of the USB documentation
over to RST. Plus the usual set of fixes, improvements, and tweaks.
There's a bit more than the usual amount of reaching out of Documentation/
to fix comments elsewhere in the tree; I have acks for those where I could
get them.
-----BEGIN PGP SIGNATURE-----
iQIcBAABAgAGBQJZB1elAAoJEI3ONVYwIuV6wUIQAJSM/4rNdj6z+GXeWhRfbsOo
vqqVYluvXQIJaaqdsy9dgcfThhOXWYsPyVF6Xd+bDJpwF3BMZYbX1CI1Mo3kRD+7
9+Pf68cYSHRoU3l/sFI8q0zfKbHtmFteIvnRQoFtRaExqgTR8glUfxNDyN9XuNAZ
3naS4qMZivM4gjMcSpIB/wFOQpV+6qVIs6VTFLdCC8wodT3W/Wmb+bqrCVJ0twbB
t8jJeYHt2wsiTdqrKU+VilAUAZ1Lby+DNfeWrO18rC1ohktPyUzOGg8JmTKUBpVO
qj1OJwD6abuaNh/J9bXsh8u0OrVrBKWjVrhq9IFYDlm92fu3Bgr6YeoaVPEpcklt
jdlgZnWs9/oXa6d32aMc9F7mP9a0Q1qikFTYINhaHQZCb4VDRuQ9hCSuqWm5jlVy
lmVAoxLa0zSdOoXaYuO3HC99ku1cIn814CXMDz/IwKXkqUCV+zl+H3AGkvxGyQ5M
eblw2TnQnc6e1LRcxt5bgpFR1JYMbCJhu0U5XrNFueQV8ReB15dvL7h4y21dWJKF
2Sr83rwfG1rpZQiSqCjOXxIzuXbEGH3+a+zCDV5IHhQRt/VNDOt2hgmcyucSSJ5h
5GRFYgTlGvoT/6LdIT39QooHB+4tSDRtEQ6lh0q2ZtVV2rfG/I6/PR5sUbWM65SN
vAfctRm2afHLhdonSX5O
=41m+
-----END PGP SIGNATURE-----
Merge tag 'docs-4.12' of git://git.lwn.net/linux
Pull documentation update from Jonathan Corbet:
"A reasonably busy cycle for documentation this time around. There is a
new guide for user-space API documents, rather sparsely populated at
the moment, but it's a start. Markus improved the infrastructure for
converting diagrams. Mauro has converted much of the USB documentation
over to RST. Plus the usual set of fixes, improvements, and tweaks.
There's a bit more than the usual amount of reaching out of
Documentation/ to fix comments elsewhere in the tree; I have acks for
those where I could get them"
* tag 'docs-4.12' of git://git.lwn.net/linux: (74 commits)
docs: Fix a couple typos
docs: Fix a spelling error in vfio-mediated-device.txt
docs: Fix a spelling error in ioctl-number.txt
MAINTAINERS: update file entry for HSI subsystem
Documentation: allow installing man pages to a user defined directory
Doc/PM: Sync with intel_powerclamp code behavior
zr364xx.rst: usb/devices is now at /sys/kernel/debug/
usb.rst: move documentation from proc_usb_info.txt to USB ReST book
convert philips.txt to ReST and add to media docs
docs-rst: usb: update old usbfs-related documentation
arm: Documentation: update a path name
docs: process/4.Coding.rst: Fix a couple of document refs
docs-rst: fix usb cross-references
usb: gadget.h: be consistent at kernel doc macros
usb: composite.h: fix two warnings when building docs
usb: get rid of some ReST doc build errors
usb.rst: get rid of some Sphinx errors
usb/URB.txt: convert to ReST and update it
usb/persist.txt: convert to ReST and add to driver-api book
usb/hotplug.txt: convert to ReST and add to driver-api book
...
This reverts commit 374ad05ab6.
While the patch worked great for userspace allocations, the fact that
softirq loses the per-cpu allocator caused problems. It needs to be
redone taking into account that a separate list is needed for hard/soft
IRQs or alternatively find a cheap way of detecting reentry due to an
interrupt. Both are possible but sufficiently tricky that it shouldn't
be rushed.
Jesper had one method for allowing softirqs but reported that the cost
was high enough that it performed similarly to a plain revert. His
figures for netperf TCP_STREAM were as follows
Baseline v4.10.0 : 60316 Mbit/s
Current 4.11.0-rc6: 47491 Mbit/s
Jesper's patch : 60662 Mbit/s
This patch : 60106 Mbit/s
As this is a regression, I wish to revert to noirq allocator for now and
go back to the drawing board.
Link: http://lkml.kernel.org/r/20170415145350.ixy7vtrzdzve57mh@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reported-by: Tariq Toukan <ttoukan.linux@gmail.com>
Acked-by: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We currently have 2 specific WQ_RECLAIM workqueues in the mm code.
vmstat_wq for updating pcp stats and lru_add_drain_wq dedicated to drain
per cpu lru caches. This seems more than necessary because both can run
on a single WQ. Both do not block on locks requiring a memory
allocation nor perform any allocations themselves. We will save one
rescuer thread this way.
On the other hand drain_all_pages() queues work on the system wq which
doesn't have rescuer and so this depend on memory allocation (when all
workers are stuck allocating and new ones cannot be created).
Initially we thought this would be more of a theoretical problem but
Hugh Dickins has reported:
: 4.11-rc has been giving me hangs after hours of swapping load. At
: first they looked like memory leaks ("fork: Cannot allocate memory");
: but for no good reason I happened to do "cat /proc/sys/vm/stat_refresh"
: before looking at /proc/meminfo one time, and the stat_refresh stuck
: in D state, waiting for completion of flush_work like many kworkers.
: kthreadd waiting for completion of flush_work in drain_all_pages().
This worker should be using WQ_RECLAIM as well in order to guarantee a
forward progress. We can reuse the same one as for lru draining and
vmstat.
Link: http://lkml.kernel.org/r/20170307131751.24936-1-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Suggested-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@suse.de>
Tested-by: Yang Li <pku.leo@gmail.com>
Tested-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Relying on free_reserved_area() to call ftrace to free init memory proved to
not be sufficient. The issue is that on x86, when debug_pagealloc is
enabled, the init memory is not freed, but simply set as not present. Since
ftrace was uninformed of this, starting function tracing still tries to
update pages that are not present according to the page tables, causing
ftrace to bug, as well as killing the kernel itself.
Instead of relying on free_reserved_area(), have init/main.c call ftrace
directly just before it frees the init memory. Then it needs to use
__init_begin and __init_end to know where the init memory location is.
Looking at all archs (and testing what I can), it appears that this should
work for each of them.
Reported-by: kernel test robot <xiaolong.ye@intel.com>
Reported-by: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Adding a hook into free_reserve_area() that informs ftrace that boot up init
text is being free, lets ftrace safely remove those init functions from its
records, which keeps ftrace from trying to modify text that no longer
exists.
Note, this still does not allow for tracing .init text of modules, as
modules require different work for freeing its init code.
Link: http://lkml.kernel.org/r/1488502497.7212.24.camel@linux.intel.com
Cc: linux-mm@kvack.org
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Peter Zijlstra <peterz@infradead.org>
Requested-by: Todd Brandt <todd.e.brandt@linux.intel.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Commit 13ad59df67 ("mm, page_alloc: avoid page_to_pfn() when merging
buddies") moved the check for memory holes out of page_is_buddy() and
had the callers do the check.
But this wasn't done correctly in one place which caused ia64 to crash
very early in boot.
Update to fix that and make ia64 boot again.
[ v2: Vlastimil pointed out we don't need to call page_to_pfn()
since we already have the result of that in "buddy_pfn" ]
Fixes: 13ad59df67 ("avoid page_to_pfn() when merging buddies")
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Update the .c files that depend on these APIs.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Fix typos and add the following to the scripts/spelling.txt:
algined||aligned
While we are here, fix the "appplication" in the touched line in
drivers/block/loop.c. Also, fix the "may not naturally ..." to
"may not be naturally ..." in the touched line in mm/page_alloc.
Link: http://lkml.kernel.org/r/1481573103-11329-9-git-send-email-yamada.masahiro@socionext.com
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
arch_zone_lowest/highest_possible_pfn[] is set to 0 and [ZONE_MOVABLE]
is skipped in the loop. No need to reset them to 0 again.
This patch just removes the redundant code.
Link: http://lkml.kernel.org/r/20170209141731.60208-1-richard.weiyang@gmail.com
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When @node_reclaim_node isn't 0, the page allocator tries to reclaim
pages if the amount of free memory in the zones are below the low
watermark. On Power platform, none of NUMA nodes are scanned for page
reclaim because no nodes match the condition in zone_allows_reclaim().
On Power platform, RECLAIM_DISTANCE is set to 10 which is the distance
of Node-A to Node-A. So the preferred node even won't be scanned for
page reclaim.
__alloc_pages_nodemask()
get_page_from_freelist()
zone_allows_reclaim()
Anton proposed the test code as below:
# cat alloc.c
:
int main(int argc, char *argv[])
{
void *p;
unsigned long size;
unsigned long start, end;
start = time(NULL);
size = strtoul(argv[1], NULL, 0);
printf("To allocate %ldGB memory\n", size);
size <<= 30;
p = malloc(size);
assert(p);
memset(p, 0, size);
end = time(NULL);
printf("Used time: %ld seconds\n", end - start);
sleep(3600);
return 0;
}
The system I use for testing has two NUMA nodes. Both have 128GB
memory. In below scnario, the page caches on node#0 should be reclaimed
when it encounters pressure to accommodate request of allocation.
# echo 2 > /proc/sys/vm/zone_reclaim_mode; \
sync; \
echo 3 > /proc/sys/vm/drop_caches; \
# taskset -c 0 cat file.32G > /dev/null; \
grep FilePages /sys/devices/system/node/node0/meminfo
Node 0 FilePages: 33619712 kB
# taskset -c 0 ./alloc 128
# grep FilePages /sys/devices/system/node/node0/meminfo
Node 0 FilePages: 33619840 kB
# grep MemFree /sys/devices/system/node/node0/meminfo
Node 0 MemFree: 186816 kB
With the patch applied, the pagecache on node-0 is reclaimed when its
free memory is running out. It's the expected behaviour.
# echo 2 > /proc/sys/vm/zone_reclaim_mode; \
sync; \
echo 3 > /proc/sys/vm/drop_caches
# taskset -c 0 cat file.32G > /dev/null; \
grep FilePages /sys/devices/system/node/node0/meminfo
Node 0 FilePages: 33605568 kB
# taskset -c 0 ./alloc 128
# grep FilePages /sys/devices/system/node/node0/meminfo
Node 0 FilePages: 1379520 kB
# grep MemFree /sys/devices/system/node/node0/meminfo
Node 0 MemFree: 317120 kB
Fixes: 5f7a75acdb ("mm: page_alloc: do not cache reclaim distances")
Link: http://lkml.kernel.org/r/1486532455-29613-1-git-send-email-gwshan@linux.vnet.ibm.com
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Anton Blanchard <anton@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: <stable@vger.kernel.org> [3.16+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently alloc_contig_range assumes that the compaction should be done
with the default GFP_KERNEL flags. This is probably right for all
current uses of this interface, but may change as CMA is used in more
use-cases (including being the default DMA memory allocator on some
platforms).
Change the function prototype, to allow for passing through the GFP mask
set by upper layers.
Also respect global restrictions by applying memalloc_noio_flags to the
passed in flags.
Link: http://lkml.kernel.org/r/20170127172328.18574-1-l.stach@pengutronix.de
Signed-off-by: Lucas Stach <l.stach@pengutronix.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Radim Krcmar <rkrcmar@redhat.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Alexander Graf <agraf@suse.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We had considered all of the non-lru pages as unmovable before commit
bda807d444 ("mm: migrate: support non-lru movable page migration").
But now some of non-lru pages like zsmalloc, virtio-balloon pages also
become movable. So we can offline such blocks by using non-lru page
migration.
This patch straightforwardly adds non-lru migration code, which means
adding non-lru related code to the functions which scan over pfn and
collect pages to be migrated and isolate them before migration.
Signed-off-by: Yisheng Xie <xieyisheng1@huawei.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Hanjun Guo <guohanjun@huawei.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Reza Arbab <arbab@linux.vnet.ibm.com>
Cc: Taku Izumi <izumi.taku@jp.fujitsu.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Yisheng Xie <xieyisheng1@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
As suggested by Vlastimil Babka and Tejun Heo, this patch uses a static
work_struct to co-ordinate the draining of per-cpu pages on the
workqueue. Only one task can drain at a time but this is better than
the previous scheme that allowed multiple tasks to send IPIs at a time.
One consideration is whether parallel requests should synchronise
against each other. This patch does not synchronise for a global drain
as the common case for such callers is expected to be multiple parallel
direct reclaimers competing for pages when the watermark is close to
min. Draining the per-cpu list is unlikely to make much progress and
serialising the drain is of dubious merit. Drains are synchonrised for
callers such as memory hotplug and CMA that care about the drain being
complete when the function returns.
Link: http://lkml.kernel.org/r/20170125083038.rzb5f43nptmk7aed@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Suggested-by: Tejun Heo <tj@kernel.org>
Suggested-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since commit 682a3385e7 ("mm, page_alloc: inline the fast path of the
zonelist iterator") we replace a NULL nodemask with
cpuset_current_mems_allowed in the fast path, so that
get_page_from_freelist() filters nodes allowed by the cpuset via
for_next_zone_zonelist_nodemask().
In that case it's pointless to additionaly check __cpuset_zone_allowed()
in each iteration, which we can avoid by not adding ALLOC_CPUSET to
alloc_flags in that scenario.
This saves some cycles in the allocator fast path on systems with one or
more non-root cpuset configured. In the slow path, ALLOC_CPUSET is
reset according to __alloc_pages_slowpath(). Without configured
cpusets, this code is disabled by a static key.
Link: http://lkml.kernel.org/r/20170124150511.5710-2-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The allocation fast path contains two similar checks for zoneref->zone
being NULL, where zoneref points either to the first zone in the
zonelist, or to the preferred zone. These can be NULL either due to
empty zonelist, or no zone being compatible with given nodemask or
task's cpuset.
These checks are unnecessary, because the zonelist walks in
first_zones_zonelist() and get_page_from_freelist() handle a NULL
starting zoneref->zone or preferred_zoneref->zone safely. It's safe to
fallback to __alloc_pages_slowpath() where we also have the check early
enough.
Link: http://lkml.kernel.org/r/20170124150511.5710-1-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Many workloads that allocate pages are not handling an interrupt at a
time. As allocation requests may be from IRQ context, it's necessary to
disable/enable IRQs for every page allocation. This cost is the bulk of
the free path but also a significant percentage of the allocation path.
This patch alters the locking and checks such that only irq-safe
allocation requests use the per-cpu allocator. All others acquire the
irq-safe zone->lock and allocate from the buddy allocator. It relies on
disabling preemption to safely access the per-cpu structures. It could
be slightly modified to avoid soft IRQs using it but it's not clear it's
worthwhile.
This modification may slow allocations from IRQ context slightly but the
main gain from the per-cpu allocator is that it scales better for
allocations from multiple contexts. There is an implicit assumption
that intensive allocations from IRQ contexts on multiple CPUs from a
single NUMA node are rare and that the fast majority of scaling issues
are encountered in !IRQ contexts such as page faulting. It's worth
noting that this patch is not required for a bulk page allocator but it
significantly reduces the overhead.
The following is results from a page allocator micro-benchmark. Only
order-0 is interesting as higher orders do not use the per-cpu allocator
4.10.0-rc2 4.10.0-rc2
vanilla irqsafe-v1r5
Amean alloc-odr0-1 287.15 ( 0.00%) 219.00 ( 23.73%)
Amean alloc-odr0-2 221.23 ( 0.00%) 183.23 ( 17.18%)
Amean alloc-odr0-4 187.00 ( 0.00%) 151.38 ( 19.05%)
Amean alloc-odr0-8 167.54 ( 0.00%) 132.77 ( 20.75%)
Amean alloc-odr0-16 156.00 ( 0.00%) 123.00 ( 21.15%)
Amean alloc-odr0-32 149.00 ( 0.00%) 118.31 ( 20.60%)
Amean alloc-odr0-64 138.77 ( 0.00%) 116.00 ( 16.41%)
Amean alloc-odr0-128 145.00 ( 0.00%) 118.00 ( 18.62%)
Amean alloc-odr0-256 136.15 ( 0.00%) 125.00 ( 8.19%)
Amean alloc-odr0-512 147.92 ( 0.00%) 121.77 ( 17.68%)
Amean alloc-odr0-1024 147.23 ( 0.00%) 126.15 ( 14.32%)
Amean alloc-odr0-2048 155.15 ( 0.00%) 129.92 ( 16.26%)
Amean alloc-odr0-4096 164.00 ( 0.00%) 136.77 ( 16.60%)
Amean alloc-odr0-8192 166.92 ( 0.00%) 138.08 ( 17.28%)
Amean alloc-odr0-16384 159.00 ( 0.00%) 138.00 ( 13.21%)
Amean free-odr0-1 165.00 ( 0.00%) 89.00 ( 46.06%)
Amean free-odr0-2 113.00 ( 0.00%) 63.00 ( 44.25%)
Amean free-odr0-4 99.00 ( 0.00%) 54.00 ( 45.45%)
Amean free-odr0-8 88.00 ( 0.00%) 47.38 ( 46.15%)
Amean free-odr0-16 83.00 ( 0.00%) 46.00 ( 44.58%)
Amean free-odr0-32 80.00 ( 0.00%) 44.38 ( 44.52%)
Amean free-odr0-64 72.62 ( 0.00%) 43.00 ( 40.78%)
Amean free-odr0-128 78.00 ( 0.00%) 42.00 ( 46.15%)
Amean free-odr0-256 80.46 ( 0.00%) 57.00 ( 29.16%)
Amean free-odr0-512 96.38 ( 0.00%) 64.69 ( 32.88%)
Amean free-odr0-1024 107.31 ( 0.00%) 72.54 ( 32.40%)
Amean free-odr0-2048 108.92 ( 0.00%) 78.08 ( 28.32%)
Amean free-odr0-4096 113.38 ( 0.00%) 82.23 ( 27.48%)
Amean free-odr0-8192 112.08 ( 0.00%) 82.85 ( 26.08%)
Amean free-odr0-16384 110.38 ( 0.00%) 81.92 ( 25.78%)
Amean total-odr0-1 452.15 ( 0.00%) 308.00 ( 31.88%)
Amean total-odr0-2 334.23 ( 0.00%) 246.23 ( 26.33%)
Amean total-odr0-4 286.00 ( 0.00%) 205.38 ( 28.19%)
Amean total-odr0-8 255.54 ( 0.00%) 180.15 ( 29.50%)
Amean total-odr0-16 239.00 ( 0.00%) 169.00 ( 29.29%)
Amean total-odr0-32 229.00 ( 0.00%) 162.69 ( 28.96%)
Amean total-odr0-64 211.38 ( 0.00%) 159.00 ( 24.78%)
Amean total-odr0-128 223.00 ( 0.00%) 160.00 ( 28.25%)
Amean total-odr0-256 216.62 ( 0.00%) 182.00 ( 15.98%)
Amean total-odr0-512 244.31 ( 0.00%) 186.46 ( 23.68%)
Amean total-odr0-1024 254.54 ( 0.00%) 198.69 ( 21.94%)
Amean total-odr0-2048 264.08 ( 0.00%) 208.00 ( 21.24%)
Amean total-odr0-4096 277.38 ( 0.00%) 219.00 ( 21.05%)
Amean total-odr0-8192 279.00 ( 0.00%) 220.92 ( 20.82%)
Amean total-odr0-16384 269.38 ( 0.00%) 219.92 ( 18.36%)
This is the alloc, free and total overhead of allocating order-0 pages
in batches of 1 page up to 16384 pages. Avoiding disabling/enabling
overhead massively reduces overhead. Alloc overhead is roughly reduced
by 14-20% in most cases. The free path is reduced by 26-46% and the
total reduction is significant.
Many users require zeroing of pages from the page allocator which is the
vast cost of allocation. Hence, the impact on a basic page faulting
benchmark is not that significant
4.10.0-rc2 4.10.0-rc2
vanilla irqsafe-v1r5
Hmean page_test 656632.98 ( 0.00%) 675536.13 ( 2.88%)
Hmean brk_test 3845502.67 ( 0.00%) 3867186.94 ( 0.56%)
Stddev page_test 10543.29 ( 0.00%) 4104.07 ( 61.07%)
Stddev brk_test 33472.36 ( 0.00%) 15538.39 ( 53.58%)
CoeffVar page_test 1.61 ( 0.00%) 0.61 ( 62.15%)
CoeffVar brk_test 0.87 ( 0.00%) 0.40 ( 53.84%)
Max page_test 666513.33 ( 0.00%) 678640.00 ( 1.82%)
Max brk_test 3882800.00 ( 0.00%) 3887008.66 ( 0.11%)
This is from aim9 and the most notable outcome is that fault variability
is reduced by the patch. The headline improvement is small as the
overall fault cost, zeroing, page table insertion etc dominate relative
to disabling/enabling IRQs in the per-cpu allocator.
Similarly, little benefit was seen on networking benchmarks both
localhost and between physical server/clients where other costs
dominate. It's possible that this will only be noticable on very high
speed networks.
Jesper Dangaard Brouer independently tested this with a separate
microbenchmark from
https://github.com/netoptimizer/prototype-kernel/tree/master/kernel/mm/bench
Micro-benchmarked with [1] page_bench02:
modprobe page_bench02 page_order=0 run_flags=$((2#010)) loops=$((10**8)); \
rmmod page_bench02 ; dmesg --notime | tail -n 4
Compared to baseline: 213 cycles(tsc) 53.417 ns
- against this : 184 cycles(tsc) 46.056 ns
- Saving : -29 cycles
- Very close to expected 27 cycles saving [see below [2]]
Micro benchmarking via time_bench_sample[3], we get the cost of these
operations:
time_bench: Type:for_loop Per elem: 0 cycles(tsc) 0.232 ns (step:0)
time_bench: Type:spin_lock_unlock Per elem: 33 cycles(tsc) 8.334 ns (step:0)
time_bench: Type:spin_lock_unlock_irqsave Per elem: 62 cycles(tsc) 15.607 ns (step:0)
time_bench: Type:irqsave_before_lock Per elem: 57 cycles(tsc) 14.344 ns (step:0)
time_bench: Type:spin_lock_unlock_irq Per elem: 34 cycles(tsc) 8.560 ns (step:0)
time_bench: Type:simple_irq_disable_before_lock Per elem: 37 cycles(tsc) 9.289 ns (step:0)
time_bench: Type:local_BH_disable_enable Per elem: 19 cycles(tsc) 4.920 ns (step:0)
time_bench: Type:local_IRQ_disable_enable Per elem: 7 cycles(tsc) 1.864 ns (step:0)
time_bench: Type:local_irq_save_restore Per elem: 38 cycles(tsc) 9.665 ns (step:0)
[Mel's patch removes a ^^^^^^^^^^^^^^^^] ^^^^^^^^^ expected saving - preempt cost
time_bench: Type:preempt_disable_enable Per elem: 11 cycles(tsc) 2.794 ns (step:0)
[adds a preempt ^^^^^^^^^^^^^^^^^^^^^^] ^^^^^^^^^ adds this cost
time_bench: Type:funcion_call_cost Per elem: 6 cycles(tsc) 1.689 ns (step:0)
time_bench: Type:func_ptr_call_cost Per elem: 11 cycles(tsc) 2.767 ns (step:0)
time_bench: Type:page_alloc_put Per elem: 211 cycles(tsc) 52.803 ns (step:0)
Thus, expected improvement is: 38-11 = 27 cycles.
[mgorman@techsingularity.net: s/preempt_enable_no_resched/preempt_enable/]
Link: http://lkml.kernel.org/r/20170208143128.25ahymqlyspjcixu@techsingularity.net
Link: http://lkml.kernel.org/r/20170123153906.3122-5-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Jesper Dangaard Brouer <brouer@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Dmitry has reported the following lockdep splat
lock_acquire+0x2a1/0x630 kernel/locking/lockdep.c:3753
__mutex_lock_common kernel/locking/mutex.c:521 [inline]
mutex_lock_nested+0x24e/0xff0 kernel/locking/mutex.c:621
pcpu_alloc+0xbda/0x1280 mm/percpu.c:896
__alloc_percpu+0x24/0x30 mm/percpu.c:1075
smpcfd_prepare_cpu+0x73/0xd0 kernel/smp.c:44
cpuhp_invoke_callback+0x254/0x1480 kernel/cpu.c:136
cpuhp_up_callbacks+0x81/0x2a0 kernel/cpu.c:493
_cpu_up+0x1e3/0x2a0 kernel/cpu.c:1057
do_cpu_up+0x73/0xa0 kernel/cpu.c:1087
cpu_up+0x18/0x20 kernel/cpu.c:1095
smp_init+0xe9/0xee kernel/smp.c:564
kernel_init_freeable+0x439/0x690 init/main.c:1010
kernel_init+0x13/0x180 init/main.c:941
ret_from_fork+0x2a/0x40 arch/x86/entry/entry_64.S:433
cpu_hotplug_begin
cpu_hotplug.lock
pcpu_alloc
pcpu_alloc_mutex
get_online_cpus+0x62/0x90 kernel/cpu.c:248
drain_all_pages+0xf8/0x710 mm/page_alloc.c:2385
__alloc_pages_direct_reclaim mm/page_alloc.c:3440 [inline]
__alloc_pages_slowpath+0x8fd/0x2370 mm/page_alloc.c:3778
__alloc_pages_nodemask+0x8f5/0xc60 mm/page_alloc.c:3980
__alloc_pages include/linux/gfp.h:426 [inline]
__alloc_pages_node include/linux/gfp.h:439 [inline]
alloc_pages_node include/linux/gfp.h:453 [inline]
pcpu_alloc_pages mm/percpu-vm.c:93 [inline]
pcpu_populate_chunk+0x1e1/0x900 mm/percpu-vm.c:282
pcpu_alloc+0xe01/0x1280 mm/percpu.c:998
__alloc_percpu_gfp+0x27/0x30 mm/percpu.c:1062
bpf_array_alloc_percpu kernel/bpf/arraymap.c:34 [inline]
array_map_alloc+0x532/0x710 kernel/bpf/arraymap.c:99
find_and_alloc_map kernel/bpf/syscall.c:34 [inline]
map_create kernel/bpf/syscall.c:188 [inline]
SYSC_bpf kernel/bpf/syscall.c:870 [inline]
SyS_bpf+0xd64/0x2500 kernel/bpf/syscall.c:827
entry_SYSCALL_64_fastpath+0x1f/0xc2
pcpu_alloc
pcpu_alloc_mutex
drain_all_pages
get_online_cpus
cpu_hotplug.lock
cpu_hotplug_begin+0x206/0x2e0 kernel/cpu.c:304
_cpu_up+0xca/0x2a0 kernel/cpu.c:1011
do_cpu_up+0x73/0xa0 kernel/cpu.c:1087
cpu_up+0x18/0x20 kernel/cpu.c:1095
smp_init+0xe9/0xee kernel/smp.c:564
kernel_init_freeable+0x439/0x690 init/main.c:1010
kernel_init+0x13/0x180 init/main.c:941
ret_from_fork+0x2a/0x40 arch/x86/entry/entry_64.S:433
cpu_hotplug_begin
cpu_hotplug.lock
Pulling cpu hotplug locks inside the page allocator is just too
dangerous. Let's remove the dependency by dropping get_online_cpus()
from drain_all_pages. This is not so simple though because now we do
not have a protection against cpu hotplug which means 2 things:
- the work item might be executed on a different cpu in worker from
unbound pool so it doesn't run on pinned on the cpu
- we have to make sure that we do not race with page_alloc_cpu_dead
calling drain_pages_zone
Disabling preemption in drain_local_pages_wq will solve the first
problem drain_local_pages will determine its local CPU from the WQ
context which will be stable after that point, page_alloc_cpu_dead is
pinned to the CPU already. The later condition is achieved by disabling
IRQs in drain_pages_zone.
Fixes: mm, page_alloc: drain per-cpu pages from workqueue context
Link: http://lkml.kernel.org/r/20170207201950.20482-1-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Acked-by: Tejun Heo <tj@kernel.org>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The per-cpu page allocator can be drained immediately via
drain_all_pages() which sends IPIs to every CPU. In the next patch, the
per-cpu allocator will only be used for interrupt-safe allocations which
prevents draining it from IPI context. This patch uses workqueues to
drain the per-cpu lists instead.
This is slower but no slowdown during intensive reclaim was measured and
the paths that use drain_all_pages() are not that sensitive to
performance. This is particularly true as the path would only be
triggered when reclaim is failing. It also makes a some sense to avoid
storming a machine with IPIs when it's under memory pressure. Arguably,
it should be further adjusted so that only one caller at a time is
draining pages but it's beyond the scope of the current patch.
Link: http://lkml.kernel.org/r/20170123153906.3122-4-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
alloc_pages_nodemask does a number of preperation steps that determine
what zones can be used for the allocation depending on a variety of
factors. This is fine but a hypothetical caller that wanted multiple
order-0 pages has to do the preparation steps multiple times. This
patch structures __alloc_pages_nodemask such that it's relatively easy
to build a bulk order-0 page allocator. There is no functional change.
Link: http://lkml.kernel.org/r/20170123153906.3122-3-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "Use per-cpu allocator for !irq requests and prepare for a
bulk allocator", v5.
This series is motivated by a conversation led by Jesper Dangaard Brouer
at the last LSF/MM proposing a generic page pool for DMA-coherent pages.
Part of his motivation was due to the overhead of allocating multiple
order-0 that led some drivers to use high-order allocations and
splitting them. This is very slow in some cases.
The first two patches in this series restructure the page allocator such
that it is relatively easy to introduce an order-0 bulk page allocator.
A patch exists to do that and has been handed over to Jesper until an
in-kernel users is created. The third patch prevents the per-cpu
allocator being drained from IPI context as that can potentially corrupt
the list after patch four is merged. The final patch alters the per-cpu
alloctor to make it exclusive to !irq requests. This cuts
allocation/free overhead by roughly 30%.
Performance tests from both Jesper and me are included in the patch.
This patch (of 4):
buffered_rmqueue removes a page from a given zone and uses the per-cpu
list for order-0. This is fine but a hypothetical caller that wanted
multiple order-0 pages has to disable/reenable interrupts multiple
times. This patch structures buffere_rmqueue such that it's relatively
easy to build a bulk order-0 page allocator. There is no functional
change.
[mgorman@techsingularity.net: failed per-cpu refill may blow up]
Link: http://lkml.kernel.org/r/20170124112723.mshmgwq2ihxku2um@techsingularity.net
Link: http://lkml.kernel.org/r/20170123153906.3122-2-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The patch "mm, page_alloc: warn_alloc print nodemask" implicitly sets
the allocation nodemask to cpuset_current_mems_allowed when there is no
effective mempolicy. cpuset_current_mems_allowed is only effective when
cpusets are enabled, which is also printed by warn_alloc(), so setting
the nodemask to cpuset_current_mems_allowed is redundant and prevents
debugging issues where ac->nodemask is not set properly in the page
allocator.
This provides better debugging output since
cpuset_print_current_mems_allowed() is already provided.
Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1701181347320.142399@chino.kir.corp.google.com
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now that __GFP_NOFAIL doesn't override decisions to skip the oom killer
we are left with requests which require to loop inside the allocator
without invoking the oom killer (e.g. GFP_NOFS|__GFP_NOFAIL used by fs
code) and so they might, in very unlikely situations, loop for ever -
e.g. other parallel request could starve them.
This patch tries to limit the likelihood of such a lockup by giving
these __GFP_NOFAIL requests a chance to move on by consuming a small
part of memory reserves. We are using ALLOC_HARDER which should be
enough to prevent from the starvation by regular allocation requests,
yet it shouldn't consume enough from the reserves to disrupt high
priority requests (ALLOC_HIGH).
While we are at it, let's introduce a helper __alloc_pages_cpuset_fallback
which enforces the cpusets but allows to fallback to ignore them if the
first attempt fails. __GFP_NOFAIL requests can be considered important
enough to allow cpuset runaway in order for the system to move on. It
is highly unlikely that any of these will be GFP_USER anyway.
Link: http://lkml.kernel.org/r/20161220134904.21023-4-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__alloc_pages_may_oom makes sure to skip the OOM killer depending on the
allocation request. This includes lowmem requests, costly high order
requests and others. For a long time __GFP_NOFAIL acted as an override
for all those rules. This is not documented and it can be quite
surprising as well. E.g. GFP_NOFS requests are not invoking the OOM
killer but GFP_NOFS|__GFP_NOFAIL does so if we try to convert some of
the existing open coded loops around allocator to nofail request (and we
have done that in the past) then such a change would have a non trivial
side effect which is far from obvious. Note that the primary motivation
for skipping the OOM killer is to prevent from pre-mature invocation.
The exception has been added by commit 82553a937f ("oom: invoke oom
killer for __GFP_NOFAIL"). The changelog points out that the oom killer
has to be invoked otherwise the request would be looping for ever. But
this argument is rather weak because the OOM killer doesn't really
guarantee a forward progress for those exceptional cases:
- it will hardly help to form costly order which in turn can result in
the system panic because of no oom killable task in the end - I believe
we certainly do not want to put the system down just because there is a
nasty driver asking for order-9 page with GFP_NOFAIL not realizing all
the consequences. It is much better this request would loop for ever
than the massive system disruption
- lowmem is also highly unlikely to be freed during OOM killer
- GFP_NOFS request could trigger while there is still a lot of memory
pinned by filesystems.
This patch simply removes the __GFP_NOFAIL special case in order to have a
more clear semantic without surprising side effects.
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Nils Holland <nholland@tisys.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Tetsuo Handa has pointed out that commit 0a0337e0d1 ("mm, oom: rework
oom detection") has subtly changed semantic for costly high order
requests with __GFP_NOFAIL and withtout __GFP_REPEAT and those can fail
right now. My code inspection didn't reveal any such users in the tree
but it is true that this might lead to unexpected allocation failures
and subsequent OOPs.
__alloc_pages_slowpath wrt. GFP_NOFAIL is hard to follow currently.
There are few special cases but we are lacking a catch all place to be
sure we will not miss any case where the non failing allocation might
fail. This patch reorganizes the code a bit and puts all those special
cases under nopage label which is the generic go-to-fail path. Non
failing allocations are retried or those that cannot retry like
non-sleeping allocation go to the failure point directly. This should
make the code flow much easier to follow and make it less error prone
for future changes.
While we are there we have to move the stall check up to catch
potentially looping non-failing allocations.
[akpm@linux-foundation.org: fix alloc_flags may-be-used-uninitalized]
Link: http://lkml.kernel.org/r/20161220134904.21023-2-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
show_mem() allows to filter out node specific data which is irrelevant
to the allocation request via SHOW_MEM_FILTER_NODES. The filtering is
done in skip_free_areas_node which skips all nodes which are not in the
mems_allowed of the current process. This works most of the time as
expected because the nodemask shouldn't be outside of the allocating
task but there are some exceptions. E.g. memory hotplug might want to
request allocations from outside of the allowed nodes (see
new_node_page).
Get rid of this hardcoded behavior and push the allocation mask down the
show_mem path and use it instead of cpuset_current_mems_allowed. NULL
nodemask is interpreted as cpuset_current_mems_allowed.
[akpm@linux-foundation.org: coding-style fixes]
Link: http://lkml.kernel.org/r/20170117091543.25850-5-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
warn_alloc is currently used for to report an allocation failure or an
allocation stall. We print some details of the allocation request like
the gfp mask and the request order. We do not print the allocation
nodemask which is important when debugging the reason for the allocation
failure as well. We alreaddy print the nodemask in the OOM report.
Add nodemask to warn_alloc and print it in warn_alloc as well.
Link: http://lkml.kernel.org/r/20170117091543.25850-3-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "show_mem updates", v2.
This is a mixture of one bug fix (patch 1), an enhancement (patch 2) and
cleanups (the rest of the series). First two patches should be really
straightforward. Patch 3 removes some arch specific show_mem
implementations because I think they are quite outdated and do not
really serve any useful purpose anymore. I think we should really
strive to have a consistent show_mem output regardless of the
architecture. If some architecture is really special and wants to dump
something additional we should do that via an arch specific hook.
The last patch adds nodemask parameter so that we do not rely on the
hardcoded mems_allowed of the current task when doing the node
filtering. I consider this more a cleanup than a fix because basically
all users use a nodemask which is a subset of mems_allowed. There is
only one call path in the memory hotplug which doesn't comply with this
but that is hardly something to worry about.
This patch (of 4):
Commit 599d0c954f ("mm, vmscan: move LRU lists to node") has added per
numa node statistics to show_mem but it forgot to add
skip_free_areas_node to filter out nodes which are outside of the
allocating task numa policy. Add this check to not pollute the output
with the pointless information.
Link: http://lkml.kernel.org/r/20170117091543.25850-2-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When using a sparse memory model memmap_init_zone() when invoked with
the MEMMAP_EARLY context will skip over pages which aren't valid - ie.
which aren't in a populated region of the sparse memory map. However if
the memory map is extremely sparse then it can spend a long time
linearly checking each PFN in a large non-populated region of the memory
map & skipping it in turn.
When CONFIG_HAVE_MEMBLOCK_NODE_MAP is enabled, we have sufficient
information to quickly discover the next valid PFN given an invalid one
by searching through the list of memory regions & skipping forwards to
the first PFN covered by the memory region to the right of the
non-populated region. Implement this in order to speed up
memmap_init_zone() for systems with extremely sparse memory maps.
James said "I have tested this patch on a virtual model of a Samurai CPU
with a sparse memory map. The kernel boot time drops from 109 to
62 seconds. "
Link: http://lkml.kernel.org/r/20161125185518.29885-1-paul.burton@imgtec.com
Signed-off-by: Paul Burton <paul.burton@imgtec.com>
Tested-by: James Hartley <james.hartley@imgtec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Higher order requests oom debugging is currently quite hard. We do have
some compaction points which can tell us how the compaction is operating
but there is no trace point to tell us about compaction retry logic.
This patch adds a one which will have the following format
bash-3126 [001] .... 1498.220001: compact_retry: order=9 priority=COMPACT_PRIO_SYNC_LIGHT compaction_result=withdrawn retries=0 max_retries=16 should_retry=0
we can see that the order 9 request is not retried even though we are in
the highest compaction priority mode becase the last compaction attempt
was withdrawn. This means that compaction_zonelist_suitable must have
returned false and there is no suitable zone to compact for this request
and so no need to retry further.
another example would be
<...>-3137 [001] .... 81.501689: compact_retry: order=9 priority=COMPACT_PRIO_SYNC_LIGHT compaction_result=failed retries=0 max_retries=16 should_retry=0
in this case the order-9 compaction failed to find any suitable block.
We do not retry anymore because this is a costly request and those do
not go below COMPACT_PRIO_SYNC_LIGHT priority.
Link: http://lkml.kernel.org/r/20161220130135.15719-4-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
should_reclaim_retry is the central decision point for declaring the
OOM. It might be really useful to expose data used for this decision
making when debugging an unexpected oom situations.
Say we have an OOM report:
[ 52.264001] mem_eater invoked oom-killer: gfp_mask=0x24280ca(GFP_HIGHUSER_MOVABLE|__GFP_ZERO), nodemask=0, order=0, oom_score_adj=0
[ 52.267549] CPU: 3 PID: 3148 Comm: mem_eater Tainted: G W 4.8.0-oomtrace3-00006-gb21338b386d2 #1024
Now we can check the tracepoint data to see how we have ended up in this
situation:
mem_eater-3148 [003] .... 52.432801: reclaim_retry_zone: node=0 zone=DMA32 order=0 reclaimable=51 available=11134 min_wmark=11084 no_progress_loops=1 wmark_check=1
mem_eater-3148 [003] .... 52.433269: reclaim_retry_zone: node=0 zone=DMA32 order=0 reclaimable=51 available=11103 min_wmark=11084 no_progress_loops=1 wmark_check=1
mem_eater-3148 [003] .... 52.433712: reclaim_retry_zone: node=0 zone=DMA32 order=0 reclaimable=51 available=11100 min_wmark=11084 no_progress_loops=2 wmark_check=1
mem_eater-3148 [003] .... 52.434067: reclaim_retry_zone: node=0 zone=DMA32 order=0 reclaimable=51 available=11097 min_wmark=11084 no_progress_loops=3 wmark_check=1
mem_eater-3148 [003] .... 52.434414: reclaim_retry_zone: node=0 zone=DMA32 order=0 reclaimable=51 available=11094 min_wmark=11084 no_progress_loops=4 wmark_check=1
mem_eater-3148 [003] .... 52.434761: reclaim_retry_zone: node=0 zone=DMA32 order=0 reclaimable=51 available=11091 min_wmark=11084 no_progress_loops=5 wmark_check=1
mem_eater-3148 [003] .... 52.435108: reclaim_retry_zone: node=0 zone=DMA32 order=0 reclaimable=51 available=11087 min_wmark=11084 no_progress_loops=6 wmark_check=1
mem_eater-3148 [003] .... 52.435478: reclaim_retry_zone: node=0 zone=DMA32 order=0 reclaimable=51 available=11084 min_wmark=11084 no_progress_loops=7 wmark_check=0
mem_eater-3148 [003] .... 52.435478: reclaim_retry_zone: node=0 zone=DMA order=0 reclaimable=0 available=1126 min_wmark=179 no_progress_loops=7 wmark_check=0
The above shows that we can quickly deduce that the reclaim stopped
making any progress (see no_progress_loops increased in each round) and
while there were still some 51 reclaimable pages they couldn't be
dropped for some reason (vmscan trace points would tell us more about
that part). available will represent reclaimable + free_pages scaled
down per no_progress_loops factor. This is essentially an optimistic
estimate of how much memory we would have when reclaiming everything.
This can be compared to min_wmark to get a rought idea but the
wmark_check tells the result of the watermark check which is more
precise (includes lowmem reserves, considers the order etc.). As we can
see no zone is eligible in the end and that is why we have triggered the
oom in this situation.
Please note that higher order requests might fail on the wmark_check
even when there is much more memory available than min_wmark - e.g.
when the memory is fragmented. A follow up tracepoint will help to
debug those situations.
Link: http://lkml.kernel.org/r/20161220130135.15719-3-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
On architectures that allow memory holes, page_is_buddy() has to perform
page_to_pfn() to check for the memory hole. After the previous patch,
we have the pfn already available in __free_one_page(), which is the
only caller of page_is_buddy(), so move the check there and avoid
page_to_pfn().
Link: http://lkml.kernel.org/r/20161216120009.20064-2-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>