As the generic rwsem-xadd code is using the appropriate acquire and
release versions of the atomic operations, the arch specific rwsem.h
files will not be that much faster than the generic code as long as the
atomic functions are properly implemented. So we can remove those arch
specific rwsem.h and stop building asm/rwsem.h to reduce maintenance
effort.
Currently, only x86, alpha and ia64 have implemented architecture
specific fast paths. I don't have access to alpha and ia64 systems for
testing, but they are legacy systems that are not likely to be updated
to the latest kernel anyway.
By using a rwsem microbenchmark, the total locking rates on a 4-socket
56-core 112-thread x86-64 system before and after the patch were as
follows (mixed means equal # of read and write locks):
Before Patch After Patch
# of Threads wlock rlock mixed wlock rlock mixed
------------ ----- ----- ----- ----- ----- -----
1 29,201 30,143 29,458 28,615 30,172 29,201
2 6,807 13,299 1,171 7,725 15,025 1,804
4 6,504 12,755 1,520 7,127 14,286 1,345
8 6,762 13,412 764 6,826 13,652 726
16 6,693 15,408 662 6,599 15,938 626
32 6,145 15,286 496 5,549 15,487 511
64 5,812 15,495 60 5,858 15,572 60
There were some run-to-run variations for the multi-thread tests. For
x86-64, using the generic C code fast path seems to be a little bit
faster than the assembly version with low lock contention. Looking at
the assembly version of the fast paths, there are assembly to/from C
code wrappers that save and restore all the callee-clobbered registers
(7 registers on x86-64). The assembly generated from the generic C
code doesn't need to do that. That may explain the slight performance
gain here.
The generic asm rwsem.h can also be merged into kernel/locking/rwsem.h
with no code change as no other code other than those under
kernel/locking needs to access the internal rwsem macros and functions.
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-c6x-dev@linux-c6x.org
Cc: linux-m68k@lists.linux-m68k.org
Cc: linux-riscv@lists.infradead.org
Cc: linux-um@lists.infradead.org
Cc: linux-xtensa@linux-xtensa.org
Cc: linuxppc-dev@lists.ozlabs.org
Cc: nios2-dev@lists.rocketboards.org
Cc: openrisc@lists.librecores.org
Cc: uclinux-h8-devel@lists.sourceforge.jp
Link: https://lkml.kernel.org/r/20190322143008.21313-2-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The use of any kind of wait queue is an overkill for pcpu-rwsems.
While one option would be to use the less heavy simple (swait)
flavor, this is still too much for what pcpu-rwsems needs. For one,
we do not care about any sort of queuing in that the only (rare) time
writers (and readers, for that matter) are queued is when trying to
acquire the regular contended rw_sem. There cannot be any further
queuing as writers are serialized by the rw_sem in the first place.
Given that percpu_down_write() must not be called after exit_notify(),
we can replace the bulky waitqueue with rcuwait such that a writer
can wait for its turn to take the lock. As such, we can avoid the
queue handling and locking overhead.
Signed-off-by: Davidlohr Bueso <dbueso@suse.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Oleg Nesterov <oleg@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dave@stgolabs.net
Link: http://lkml.kernel.org/r/1484148146-14210-3-git-send-email-dave@stgolabs.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently the percpu-rwsem switches to (global) atomic ops while a
writer is waiting; which could be quite a while and slows down
releasing the readers.
This patch cures this problem by ordering the reader-state vs
reader-count (see the comments in __percpu_down_read() and
percpu_down_write()). This changes a global atomic op into a full
memory barrier, which doesn't have the global cacheline contention.
This also enables using the percpu-rwsem with rcu_sync disabled in order
to bias the implementation differently, reducing the writer latency by
adding some cost to readers.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Oleg Nesterov <oleg@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
[ Fixed modular build. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In ext4, there is a race condition between changing inode journal mode
and ext4_writepages(). While ext4_writepages() is executed on a
non-journalled mode inode, the inode's journal mode could be enabled
by ioctl() and then, some pages dirtied after switching the journal
mode will be still exposed to ext4_writepages() in non-journaled mode.
To resolve this problem, we use fs-wide per-cpu rw semaphore by Jan
Kara's suggestion because we don't want to waste ext4_inode_info's
space for this extra rare case.
Signed-off-by: Daeho Jeong <daeho.jeong@samsung.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Reviewed-by: Jan Kara <jack@suse.cz>
Based on Peter Zijlstra's earlier patch.
Change percpu_down_read() to use __down_read(), this way we can
do rwsem_acquire_read() unconditionally at the start to make this
code more symmetric and clean.
Originally-From: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
Update the comments broken by the previous change.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
Currently down_write/up_write calls synchronize_sched_expedited()
twice, which is evil. Change this code to rely on rcu-sync primitives.
This avoids the _expedited "big hammer", and this can be faster in
the contended case or even in the case when a single thread does
down_write/up_write in a loop.
Of course, a single down_write() will take more time, but otoh it
will be much more friendly to the whole system.
To simplify the review this patch doesn't update the comments, fixed
by the next change.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
This is the temporary ugly hack which will be reverted later. We only
need it to ensure that the next patch will not break "change sb_writers
to use percpu_rw_semaphore" patches routed via the VFS tree.
The alloc_super()->destroy_super() error path assumes that it is safe
to call percpu_free_rwsem() after kzalloc() without percpu_init_rwsem(),
so let's not disappoint it.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
This commit exports percpu_down_read(), percpu_down_write(),
__percpu_init_rwsem(), percpu_up_read(), and percpu_up_write() to allow
locktorture to test them when built as a module.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>