Merge page ref overflow branch.
Jann Horn reported that he can overflow the page ref count with
sufficient memory (and a filesystem that is intentionally extremely
slow).
Admittedly it's not exactly easy. To have more than four billion
references to a page requires a minimum of 32GB of kernel memory just
for the pointers to the pages, much less any metadata to keep track of
those pointers. Jann needed a total of 140GB of memory and a specially
crafted filesystem that leaves all reads pending (in order to not ever
free the page references and just keep adding more).
Still, we have a fairly straightforward way to limit the two obvious
user-controllable sources of page references: direct-IO like page
references gotten through get_user_pages(), and the splice pipe page
duplication. So let's just do that.
* branch page-refs:
fs: prevent page refcount overflow in pipe_buf_get
mm: prevent get_user_pages() from overflowing page refcount
mm: add 'try_get_page()' helper function
mm: make page ref count overflow check tighter and more explicit
If the page refcount wraps around past zero, it will be freed while
there are still four billion references to it. One of the possible
avenues for an attacker to try to make this happen is by doing direct IO
on a page multiple times. This patch makes get_user_pages() refuse to
take a new page reference if there are already more than two billion
references to the page.
Reported-by: Jann Horn <jannh@google.com>
Acked-by: Matthew Wilcox <willy@infradead.org>
Cc: stable@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The commit 510ded33e0 ("slab: implement slab_root_caches list")
changes the name of the list node within "struct kmem_cache" from "list"
to "root_caches_node", but leaks_show() still use the "list" which
causes a crash when reading /proc/slab_allocators.
You need to have CONFIG_SLAB=y and CONFIG_MEMCG=y to see the problem,
because without MEMCG all slab caches are root caches, and the "list"
node happens to be the right one.
Fixes: 510ded33e0 ("slab: implement slab_root_caches list")
Signed-off-by: Qian Cai <cai@lca.pw>
Reviewed-by: Tobin C. Harding <tobin@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The kerneldoc misdescribes strndup_user()'s return value.
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Timur Tabi <timur@freescale.com>
Cc: Mihai Caraman <mihai.caraman@freescale.com>
Cc: Kumar Gala <galak@kernel.crashing.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since commit a983b5ebee ("mm: memcontrol: fix excessive complexity in
memory.stat reporting") memcg dirty and writeback counters are managed
as:
1) per-memcg per-cpu values in range of [-32..32]
2) per-memcg atomic counter
When a per-cpu counter cannot fit in [-32..32] it's flushed to the
atomic. Stat readers only check the atomic. Thus readers such as
balance_dirty_pages() may see a nontrivial error margin: 32 pages per
cpu.
Assuming 100 cpus:
4k x86 page_size: 13 MiB error per memcg
64k ppc page_size: 200 MiB error per memcg
Considering that dirty+writeback are used together for some decisions the
errors double.
This inaccuracy can lead to undeserved oom kills. One nasty case is
when all per-cpu counters hold positive values offsetting an atomic
negative value (i.e. per_cpu[*]=32, atomic=n_cpu*-32).
balance_dirty_pages() only consults the atomic and does not consider
throttling the next n_cpu*32 dirty pages. If the file_lru is in the
13..200 MiB range then there's absolutely no dirty throttling, which
burdens vmscan with only dirty+writeback pages thus resorting to oom
kill.
It could be argued that tiny containers are not supported, but it's more
subtle. It's the amount the space available for file lru that matters.
If a container has memory.max-200MiB of non reclaimable memory, then it
will also suffer such oom kills on a 100 cpu machine.
The following test reliably ooms without this patch. This patch avoids
oom kills.
$ cat test
mount -t cgroup2 none /dev/cgroup
cd /dev/cgroup
echo +io +memory > cgroup.subtree_control
mkdir test
cd test
echo 10M > memory.max
(echo $BASHPID > cgroup.procs && exec /memcg-writeback-stress /foo)
(echo $BASHPID > cgroup.procs && exec dd if=/dev/zero of=/foo bs=2M count=100)
$ cat memcg-writeback-stress.c
/*
* Dirty pages from all but one cpu.
* Clean pages from the non dirtying cpu.
* This is to stress per cpu counter imbalance.
* On a 100 cpu machine:
* - per memcg per cpu dirty count is 32 pages for each of 99 cpus
* - per memcg atomic is -99*32 pages
* - thus the complete dirty limit: sum of all counters 0
* - balance_dirty_pages() only sees atomic count -99*32 pages, which
* it max()s to 0.
* - So a workload can dirty -99*32 pages before balance_dirty_pages()
* cares.
*/
#define _GNU_SOURCE
#include <err.h>
#include <fcntl.h>
#include <sched.h>
#include <stdlib.h>
#include <stdio.h>
#include <sys/stat.h>
#include <sys/sysinfo.h>
#include <sys/types.h>
#include <unistd.h>
static char *buf;
static int bufSize;
static void set_affinity(int cpu)
{
cpu_set_t affinity;
CPU_ZERO(&affinity);
CPU_SET(cpu, &affinity);
if (sched_setaffinity(0, sizeof(affinity), &affinity))
err(1, "sched_setaffinity");
}
static void dirty_on(int output_fd, int cpu)
{
int i, wrote;
set_affinity(cpu);
for (i = 0; i < 32; i++) {
for (wrote = 0; wrote < bufSize; ) {
int ret = write(output_fd, buf+wrote, bufSize-wrote);
if (ret == -1)
err(1, "write");
wrote += ret;
}
}
}
int main(int argc, char **argv)
{
int cpu, flush_cpu = 1, output_fd;
const char *output;
if (argc != 2)
errx(1, "usage: output_file");
output = argv[1];
bufSize = getpagesize();
buf = malloc(getpagesize());
if (buf == NULL)
errx(1, "malloc failed");
output_fd = open(output, O_CREAT|O_RDWR);
if (output_fd == -1)
err(1, "open(%s)", output);
for (cpu = 0; cpu < get_nprocs(); cpu++) {
if (cpu != flush_cpu)
dirty_on(output_fd, cpu);
}
set_affinity(flush_cpu);
if (fsync(output_fd))
err(1, "fsync(%s)", output);
if (close(output_fd))
err(1, "close(%s)", output);
free(buf);
}
Make balance_dirty_pages() and wb_over_bg_thresh() work harder to
collect exact per memcg counters. This avoids the aforementioned oom
kills.
This does not affect the overhead of memory.stat, which still reads the
single atomic counter.
Why not use percpu_counter? memcg already handles cpus going offline, so
no need for that overhead from percpu_counter. And the percpu_counter
spinlocks are more heavyweight than is required.
It probably also makes sense to use exact dirty and writeback counters
in memcg oom reports. But that is saved for later.
Link: http://lkml.kernel.org/r/20190329174609.164344-1-gthelen@google.com
Signed-off-by: Greg Thelen <gthelen@google.com>
Reviewed-by: Roman Gushchin <guro@fb.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: <stable@vger.kernel.org> [4.16+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With some architectures like ppc64, set_pmd_at() cannot cope with a
situation where there is already some (different) valid entry present.
Use pmdp_set_access_flags() instead to modify the pfn which is built to
deal with modifying existing PMD entries.
This is similar to commit cae85cb8ad ("mm/memory.c: fix modifying of
page protection by insert_pfn()")
We also do similar update w.r.t insert_pfn_pud eventhough ppc64 don't
support pud pfn entries now.
Without this patch we also see the below message in kernel log "BUG:
non-zero pgtables_bytes on freeing mm:"
Link: http://lkml.kernel.org/r/20190402115125.18803-1-aneesh.kumar@linux.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Reported-by: Chandan Rajendra <chandan@linux.ibm.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 2d4f567103 ("KVM: PPC: Introduce kvm_tmp framework") adds
kvm_tmp[] into the .bss section and then free the rest of unused spaces
back to the page allocator.
kernel_init
kvm_guest_init
kvm_free_tmp
free_reserved_area
free_unref_page
free_unref_page_prepare
With DEBUG_PAGEALLOC=y, it will unmap those pages from kernel. As the
result, kmemleak scan will trigger a panic when it scans the .bss
section with unmapped pages.
This patch creates dedicated kmemleak objects for the .data, .bss and
potentially .data..ro_after_init sections to allow partial freeing via
the kmemleak_free_part() in the powerpc kvm_free_tmp() function.
Link: http://lkml.kernel.org/r/20190321171917.62049-1-catalin.marinas@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Reported-by: Qian Cai <cai@lca.pw>
Acked-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc)
Tested-by: Qian Cai <cai@lca.pw>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Avi Kivity <avi@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krcmar <rkrcmar@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Mikhail Gavrilo reported the following bug being triggered in a Fedora
kernel based on 5.1-rc1 but it is relevant to a vanilla kernel.
kernel: page dumped because: VM_BUG_ON_PAGE(PagePoisoned(p))
kernel: ------------[ cut here ]------------
kernel: kernel BUG at include/linux/mm.h:1021!
kernel: invalid opcode: 0000 [#1] SMP NOPTI
kernel: CPU: 6 PID: 116 Comm: kswapd0 Tainted: G C 5.1.0-0.rc1.git1.3.fc31.x86_64 #1
kernel: Hardware name: System manufacturer System Product Name/ROG STRIX X470-I GAMING, BIOS 1201 12/07/2018
kernel: RIP: 0010:__reset_isolation_pfn+0x244/0x2b0
kernel: Code: fe 06 e8 0f 8e fc ff 44 0f b6 4c 24 04 48 85 c0 0f 85 dc fe ff ff e9 68 fe ff ff 48 c7 c6 58 b7 2e 8c 4c 89 ff e8 0c 75 00 00 <0f> 0b 48 c7 c6 58 b7 2e 8c e8 fe 74 00 00 0f 0b 48 89 fa 41 b8 01
kernel: RSP: 0018:ffff9e2d03f0fde8 EFLAGS: 00010246
kernel: RAX: 0000000000000034 RBX: 000000000081f380 RCX: ffff8cffbddd6c20
kernel: RDX: 0000000000000000 RSI: 0000000000000006 RDI: ffff8cffbddd6c20
kernel: RBP: 0000000000000001 R08: 0000009898b94613 R09: 0000000000000000
kernel: R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000100000
kernel: R13: 0000000000100000 R14: 0000000000000001 R15: ffffca7de07ce000
kernel: FS: 0000000000000000(0000) GS:ffff8cffbdc00000(0000) knlGS:0000000000000000
kernel: CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
kernel: CR2: 00007fc1670e9000 CR3: 00000007f5276000 CR4: 00000000003406e0
kernel: Call Trace:
kernel: __reset_isolation_suitable+0x62/0x120
kernel: reset_isolation_suitable+0x3b/0x40
kernel: kswapd+0x147/0x540
kernel: ? finish_wait+0x90/0x90
kernel: kthread+0x108/0x140
kernel: ? balance_pgdat+0x560/0x560
kernel: ? kthread_park+0x90/0x90
kernel: ret_from_fork+0x27/0x50
He bisected it down to e332f741a8 ("mm, compaction: be selective about
what pageblocks to clear skip hints"). The problem is that the patch in
question was sloppy with respect to the handling of zone boundaries. In
some instances, it was possible for PFNs outside of a zone to be examined
and if those were not properly initialised or poisoned then it would
trigger the VM_BUG_ON. This patch corrects the zone boundary issues when
resetting pageblock skip hints and Mikhail reported that the bug did not
trigger after 30 hours of testing.
Link: http://lkml.kernel.org/r/20190327085424.GL3189@techsingularity.net
Fixes: e332f741a8 ("mm, compaction: be selective about what pageblocks to clear skip hints")
Reported-by: Mikhail Gavrilov <mikhail.v.gavrilov@gmail.com>
Tested-by: Mikhail Gavrilov <mikhail.v.gavrilov@gmail.com>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Qian Cai <cai@lca.pw>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Our MIPS 1004Kc SoCs were seeing random userspace crashes with SIGILL
and SIGSEGV that could not be traced back to a userspace code bug. They
had all the magic signs of an I/D cache coherency issue.
Now recently we noticed that the /proc/sys/vm/compact_memory interface
was quite efficient at provoking this class of userspace crashes.
Studying the code in mm/migrate.c there is a distinction made between
migrating a page that is mapped at the instant of migration and one that
is not mapped. Our problem turned out to be the non-mapped pages.
For the non-mapped page the code performs a copy of the page content and
all relevant meta-data of the page without doing the required D-cache
maintenance. This leaves dirty data in the D-cache of the CPU and on
the 1004K cores this data is not visible to the I-cache. A subsequent
page-fault that triggers a mapping of the page will happily serve the
process with potentially stale code.
What about ARM then, this bug should have seen greater exposure? Well
ARM became immune to this flaw back in 2010, see commit c01778001a
("ARM: 6379/1: Assume new page cache pages have dirty D-cache").
My proposed fix moves the D-cache maintenance inside move_to_new_page to
make it common for both cases.
Link: http://lkml.kernel.org/r/20190315083502.11849-1-larper@axis.com
Fixes: 97ee052461 ("flush cache before installing new page at migraton")
Signed-off-by: Lars Persson <larper@axis.com>
Reviewed-by: Paul Burton <paul.burton@mips.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Due to has_unmovable_pages() taking an incorrect irqsave flag instead of
the isolation flag in set_migratetype_isolate(), there are issues with
HWPOSION and error reporting where dump_page() is not called when there
is an unmovable page.
Link: http://lkml.kernel.org/r/20190320204941.53731-1-cai@lca.pw
Fixes: d381c54760 ("mm: only report isolation failures when offlining memory")
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Signed-off-by: Qian Cai <cai@lca.pw>
Cc: <stable@vger.kernel.org> [5.0.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
While debugging something, I added a dump_page() into do_swap_page(),
and I got the splat from below. The issue happens when dereferencing
mapping->host in __dump_page():
...
else if (mapping) {
pr_warn("%ps ", mapping->a_ops);
if (mapping->host->i_dentry.first) {
struct dentry *dentry;
dentry = container_of(mapping->host->i_dentry.first, struct dentry, d_u.d_alias);
pr_warn("name:\"%pd\" ", dentry);
}
}
...
Swap address space does not contain an inode information, and so
mapping->host equals NULL.
Although the dump_page() call was added artificially into
do_swap_page(), I am not sure if we can hit this from any other path, so
it looks worth fixing it. We can easily do that by checking
mapping->host first.
Link: http://lkml.kernel.org/r/20190318072931.29094-1-osalvador@suse.de
Fixes: 1c6fb1d89e ("mm: print more information about mapping in __dump_page")
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When MPOL_MF_STRICT was specified and an existing page was already on a
node that does not follow the policy, mbind() should return -EIO. But
commit 6f4576e368 ("mempolicy: apply page table walker on
queue_pages_range()") broke the rule.
And commit c863379849 ("mm: mempolicy: mbind and migrate_pages support
thp migration") didn't return the correct value for THP mbind() too.
If MPOL_MF_STRICT is set, ignore vma_migratable() to make sure it
reaches queue_pages_to_pte_range() or queue_pages_pmd() to check if an
existing page was already on a node that does not follow the policy.
And, non-migratable vma may be used, return -EIO too if MPOL_MF_MOVE or
MPOL_MF_MOVE_ALL was specified.
Tested with https://github.com/metan-ucw/ltp/blob/master/testcases/kernel/syscalls/mbind/mbind02.c
[akpm@linux-foundation.org: tweak code comment]
Link: http://lkml.kernel.org/r/1553020556-38583-1-git-send-email-yang.shi@linux.alibaba.com
Fixes: 6f4576e368 ("mempolicy: apply page table walker on queue_pages_range()")
Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com>
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Reported-by: Cyril Hrubis <chrubis@suse.cz>
Suggested-by: Kirill A. Shutemov <kirill@shutemov.name>
Acked-by: Rafael Aquini <aquini@redhat.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "iommu/io-pgtable-arm-v7s: Use DMA32 zone for page tables",
v6.
This is a followup to the discussion in [1], [2].
IOMMUs using ARMv7 short-descriptor format require page tables (level 1
and 2) to be allocated within the first 4GB of RAM, even on 64-bit
systems.
For L1 tables that are bigger than a page, we can just use
__get_free_pages with GFP_DMA32 (on arm64 systems only, arm would still
use GFP_DMA).
For L2 tables that only take 1KB, it would be a waste to allocate a full
page, so we considered 3 approaches:
1. This series, adding support for GFP_DMA32 slab caches.
2. genalloc, which requires pre-allocating the maximum number of L2 page
tables (4096, so 4MB of memory).
3. page_frag, which is not very memory-efficient as it is unable to reuse
freed fragments until the whole page is freed. [3]
This series is the most memory-efficient approach.
stable@ note:
We confirmed that this is a regression, and IOMMU errors happen on 4.19
and linux-next/master on MT8173 (elm, Acer Chromebook R13). The issue
most likely starts from commit ad67f5a654 ("arm64: replace ZONE_DMA
with ZONE_DMA32"), i.e. 4.15, and presumably breaks a number of Mediatek
platforms (and maybe others?).
[1] https://lists.linuxfoundation.org/pipermail/iommu/2018-November/030876.html
[2] https://lists.linuxfoundation.org/pipermail/iommu/2018-December/031696.html
[3] https://patchwork.codeaurora.org/patch/671639/
This patch (of 3):
IOMMUs using ARMv7 short-descriptor format require page tables to be
allocated within the first 4GB of RAM, even on 64-bit systems. On arm64,
this is done by passing GFP_DMA32 flag to memory allocation functions.
For IOMMU L2 tables that only take 1KB, it would be a waste to allocate
a full page using get_free_pages, so we considered 3 approaches:
1. This patch, adding support for GFP_DMA32 slab caches.
2. genalloc, which requires pre-allocating the maximum number of L2
page tables (4096, so 4MB of memory).
3. page_frag, which is not very memory-efficient as it is unable
to reuse freed fragments until the whole page is freed.
This change makes it possible to create a custom cache in DMA32 zone using
kmem_cache_create, then allocate memory using kmem_cache_alloc.
We do not create a DMA32 kmalloc cache array, as there are currently no
users of kmalloc(..., GFP_DMA32). These calls will continue to trigger a
warning, as we keep GFP_DMA32 in GFP_SLAB_BUG_MASK.
This implies that calls to kmem_cache_*alloc on a SLAB_CACHE_DMA32
kmem_cache must _not_ use GFP_DMA32 (it is anyway redundant and
unnecessary).
Link: http://lkml.kernel.org/r/20181210011504.122604-2-drinkcat@chromium.org
Signed-off-by: Nicolas Boichat <drinkcat@chromium.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Will Deacon <will.deacon@arm.com>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Sasha Levin <Alexander.Levin@microsoft.com>
Cc: Huaisheng Ye <yehs1@lenovo.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Yong Wu <yong.wu@mediatek.com>
Cc: Matthias Brugger <matthias.bgg@gmail.com>
Cc: Tomasz Figa <tfiga@google.com>
Cc: Yingjoe Chen <yingjoe.chen@mediatek.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Hsin-Yi Wang <hsinyi@chromium.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit f1dd2cd13c ("mm, memory_hotplug: do not associate hotadded
memory to zones until online") introduced move_pfn_range_to_zone() which
calls memmap_init_zone() during onlining a memory block.
memmap_init_zone() will reset pagetype flags and makes migrate type to
be MOVABLE.
However, in __offline_pages(), it also call undo_isolate_page_range()
after offline_isolated_pages() to do the same thing. Due to commit
2ce13640b3 ("mm: __first_valid_page skip over offline pages") changed
__first_valid_page() to skip offline pages, undo_isolate_page_range()
here just waste CPU cycles looping around the offlining PFN range while
doing nothing, because __first_valid_page() will return NULL as
offline_isolated_pages() has already marked all memory sections within
the pfn range as offline via offline_mem_sections().
Also, after calling the "useless" undo_isolate_page_range() here, it
reaches the point of no returning by notifying MEM_OFFLINE. Those pages
will be marked as MIGRATE_MOVABLE again once onlining. The only thing
left to do is to decrease the number of isolated pageblocks zone counter
which would make some paths of the page allocation slower that the above
commit introduced.
Even if alloc_contig_range() can be used to isolate 16GB-hugetlb pages
on ppc64, an "int" should still be enough to represent the number of
pageblocks there. Fix an incorrect comment along the way.
[cai@lca.pw: v4]
Link: http://lkml.kernel.org/r/20190314150641.59358-1-cai@lca.pw
Link: http://lkml.kernel.org/r/20190313143133.46200-1-cai@lca.pw
Fixes: 2ce13640b3 ("mm: __first_valid_page skip over offline pages")
Signed-off-by: Qian Cai <cai@lca.pw>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: <stable@vger.kernel.org> [4.13+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
atomic64_read() on ppc64le returns "long int", so fix the same way as
commit d549f545e6 ("drm/virtio: use %llu format string form
atomic64_t") by adding a cast to u64, which makes it work on all arches.
In file included from ./include/linux/printk.h:7,
from ./include/linux/kernel.h:15,
from mm/debug.c:9:
mm/debug.c: In function 'dump_mm':
./include/linux/kern_levels.h:5:18: warning: format '%llx' expects argument of type 'long long unsigned int', but argument 19 has type 'long int' [-Wformat=]
#define KERN_SOH "A" /* ASCII Start Of Header */
^~~~~~
./include/linux/kern_levels.h:8:20: note: in expansion of macro
'KERN_SOH'
#define KERN_EMERG KERN_SOH "0" /* system is unusable */
^~~~~~~~
./include/linux/printk.h:297:9: note: in expansion of macro 'KERN_EMERG'
printk(KERN_EMERG pr_fmt(fmt), ##__VA_ARGS__)
^~~~~~~~~~
mm/debug.c:133:2: note: in expansion of macro 'pr_emerg'
pr_emerg("mm %px mmap %px seqnum %llu task_size %lu"
^~~~~~~~
mm/debug.c:140:17: note: format string is defined here
"pinned_vm %llx data_vm %lx exec_vm %lx stack_vm %lx"
~~~^
%lx
Link: http://lkml.kernel.org/r/20190310183051.87303-1-cai@lca.pw
Fixes: 70f8a3ca68 ("mm: make mm->pinned_vm an atomic64 counter")
Signed-off-by: Qian Cai <cai@lca.pw>
Acked-by: Davidlohr Bueso <dbueso@suse.de>
Cc: Jason Gunthorpe <jgg@mellanox.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Aneesh has reported that PPC triggers the following warning when
excercising DAX code:
IP set_pte_at+0x3c/0x190
LR insert_pfn+0x208/0x280
Call Trace:
insert_pfn+0x68/0x280
dax_iomap_pte_fault.isra.7+0x734/0xa40
__xfs_filemap_fault+0x280/0x2d0
do_wp_page+0x48c/0xa40
__handle_mm_fault+0x8d0/0x1fd0
handle_mm_fault+0x140/0x250
__do_page_fault+0x300/0xd60
handle_page_fault+0x18
Now that is WARN_ON in set_pte_at which is
VM_WARN_ON(pte_hw_valid(*ptep) && !pte_protnone(*ptep));
The problem is that on some architectures set_pte_at() cannot cope with
a situation where there is already some (different) valid entry present.
Use ptep_set_access_flags() instead to modify the pfn which is built to
deal with modifying existing PTE.
Link: http://lkml.kernel.org/r/20190311084537.16029-1-jack@suse.cz
Fixes: b2770da642 "mm: add vm_insert_mixed_mkwrite()"
Signed-off-by: Jan Kara <jack@suse.cz>
Reported-by: "Aneesh Kumar K.V" <aneesh.kumar@linux.ibm.com>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Acked-by: Dan Williams <dan.j.williams@intel.com>
Cc: Chandan Rajendra <chandan@linux.ibm.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
set_tag() compiles away when CONFIG_KASAN_SW_TAGS=n, so make
arch_kasan_set_tag() a static inline function to fix warnings below.
mm/kasan/common.c: In function '__kasan_kmalloc':
mm/kasan/common.c:475:5: warning: variable 'tag' set but not used [-Wunused-but-set-variable]
u8 tag;
^~~
Link: http://lkml.kernel.org/r/20190307185244.54648-1-cai@lca.pw
Signed-off-by: Qian Cai <cai@lca.pw>
Reviewed-by: Andrey Konovalov <andreyknvl@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Replace the /sys/class/dax device model with /sys/bus/dax, and include
a compat driver so distributions can opt-in to the new ABI.
* Allow for an alternative driver for the device-dax address-range
* Introduce the 'kmem' driver to hotplug / assign a device-dax
address-range to the core-mm.
* Arrange for the device-dax target-node to be onlined so that the newly
added memory range can be uniquely referenced by numa apis.
-----BEGIN PGP SIGNATURE-----
iQIcBAABAgAGBQJchWpGAAoJEB7SkWpmfYgCJk8P/0Q1DINszUDO/vKjJ09cDs9P
Jw3it6GBIL50rDOu9QdcprSpwYDD0h1mLAV/m6oa3bVO+p4uWGvnxaxRx2HN2c/v
vhZFtUDpHlqR63vzWMNVKRprYixCRJDUr6xQhhCcE3ak/ELN6w7LWfikKVWv15UL
MfR96IQU38f+xRda/zSXnL9606Dvkvu/inEHj84lRcHIwj3sQAUalrE8bR3O32gZ
bDg/l5kzT49o8ZXUo/TegvRSSSZpJmOl2DD0RW+ax5q3NI2bOXFrVDUKBKxf/hcQ
E/V9i57TrqQx0GqRhnU7rN/v53cFZGGs31TEEIB/xs3bzCnADxwXcjL5b5K005J6
vJjBA2ODBewHFK3uVx46Hy1iV4eCtZWj4QrMnrjdSrjXOfbF5GTbWOhPFgoq7TWf
S7VqFEf3I2gDPaMq4o8Ej1kLH4HMYeor2NSOZjyvGn87rSZ3ZIQguwbaNIVl+itz
gdDt0ZOU0BgOBkV+rZIeZDaGdloWCHcDPL15CkZaOZyzdWhfEZ7dod6ad+9udilU
EUPH62RgzXZtfm5zpebYyjNVLbb9pLZ0nT+UypyGR6zqWx1SqU3mXi63NFXPco+x
XA9j//edPeI6NHg2CXLEh8DLuCg3dG1zWRJANkiF+niBwyCR8CHtGWAoY6soXbKe
2UrXGcIfXxyJ8V9v8v4q
=hfa3
-----END PGP SIGNATURE-----
Merge tag 'devdax-for-5.1' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm
Pull device-dax updates from Dan Williams:
"New device-dax infrastructure to allow persistent memory and other
"reserved" / performance differentiated memories, to be assigned to
the core-mm as "System RAM".
Some users want to use persistent memory as additional volatile
memory. They are willing to cope with potential performance
differences, for example between DRAM and 3D Xpoint, and want to use
typical Linux memory management apis rather than a userspace memory
allocator layered over an mmap() of a dax file. The administration
model is to decide how much Persistent Memory (pmem) to use as System
RAM, create a device-dax-mode namespace of that size, and then assign
it to the core-mm. The rationale for device-dax is that it is a
generic memory-mapping driver that can be layered over any "special
purpose" memory, not just pmem. On subsequent boots udev rules can be
used to restore the memory assignment.
One implication of using pmem as RAM is that mlock() no longer keeps
data off persistent media. For this reason it is recommended to enable
NVDIMM Security (previously merged for 5.0) to encrypt pmem contents
at rest. We considered making this recommendation an actively enforced
requirement, but in the end decided to leave it as a distribution /
administrator policy to allow for emulation and test environments that
lack security capable NVDIMMs.
Summary:
- Replace the /sys/class/dax device model with /sys/bus/dax, and
include a compat driver so distributions can opt-in to the new ABI.
- Allow for an alternative driver for the device-dax address-range
- Introduce the 'kmem' driver to hotplug / assign a device-dax
address-range to the core-mm.
- Arrange for the device-dax target-node to be onlined so that the
newly added memory range can be uniquely referenced by numa apis"
NOTE! I'm not entirely happy with the whole "PMEM as RAM" model because
we currently have special - and very annoying rules in the kernel about
accessing PMEM only with the "MC safe" accessors, because machine checks
inside the regular repeat string copy functions can be fatal in some
(not described) circumstances.
And apparently the PMEM modules can cause that a lot more than regular
RAM. The argument is that this happens because PMEM doesn't necessarily
get scrubbed at boot like RAM does, but that is planned to be added for
the user space tooling.
Quoting Dan from another email:
"The exposure can be reduced in the volatile-RAM case by scanning for
and clearing errors before it is onlined as RAM. The userspace tooling
for that can be in place before v5.1-final. There's also runtime
notifications of errors via acpi_nfit_uc_error_notify() from
background scrubbers on the DIMM devices. With that mechanism the
kernel could proactively clear newly discovered poison in the volatile
case, but that would be additional development more suitable for v5.2.
I understand the concern, and the need to highlight this issue by
tapping the brakes on feature development, but I don't see PMEM as RAM
making the situation worse when the exposure is also there via DAX in
the PMEM case. Volatile-RAM is arguably a safer use case since it's
possible to repair pages where the persistent case needs active
application coordination"
* tag 'devdax-for-5.1' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm:
device-dax: "Hotplug" persistent memory for use like normal RAM
mm/resource: Let walk_system_ram_range() search child resources
mm/memory-hotplug: Allow memory resources to be children
mm/resource: Move HMM pr_debug() deeper into resource code
mm/resource: Return real error codes from walk failures
device-dax: Add a 'modalias' attribute to DAX 'bus' devices
device-dax: Add a 'target_node' attribute
device-dax: Auto-bind device after successful new_id
acpi/nfit, device-dax: Identify differentiated memory with a unique numa-node
device-dax: Add /sys/class/dax backwards compatibility
device-dax: Add support for a dax override driver
device-dax: Move resource pinning+mapping into the common driver
device-dax: Introduce bus + driver model
device-dax: Start defining a dax bus model
device-dax: Remove multi-resource infrastructure
device-dax: Kill dax_region base
device-dax: Kill dax_region ida
I thought Josef Bacik's patch to drop the mmap_sem was buggy, because
when looking at the error cases, there was one case where we returned
VM_FAULT_RETRY without actually dropping the mmap_sem.
Josef had to explain to me (using small words) that yes, that's actually
what we're supposed to do, and his patch was correct. Which not only
convinced me he knew what he was doing and I should stop arguing with
him, but also that I should add a comment to the case I was confused
about.
Patiently-pointed-out-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently we only drop the mmap_sem if there is contention on the page
lock. The idea is that we issue readahead and then go to lock the page
while it is under IO and we want to not hold the mmap_sem during the IO.
The problem with this is the assumption that the readahead does anything.
In the case that the box is under extreme memory or IO pressure we may end
up not reading anything at all for readahead, which means we will end up
reading in the page under the mmap_sem.
Even if the readahead does something, it could get throttled because of io
pressure on the system and the process is in a lower priority cgroup.
Holding the mmap_sem while doing IO is problematic because it can cause
system-wide priority inversions. Consider some large company that does a
lot of web traffic. This large company has load balancing logic in it's
core web server, cause some engineer thought this was a brilliant plan.
This load balancing logic gets statistics from /proc about the system,
which trip over processes mmap_sem for various reasons. Now the web
server application is in a protected cgroup, but these other processes may
not be, and if they are being throttled while their mmap_sem is held we'll
stall, and cause this nice death spiral.
Instead rework filemap fault path to drop the mmap sem at any point that
we may do IO or block for an extended period of time. This includes while
issuing readahead, locking the page, or needing to call ->readpage because
readahead did not occur. Then once we have a fully uptodate page we can
return with VM_FAULT_RETRY and come back again to find our nicely in-cache
page that was gotten outside of the mmap_sem.
This patch also adds a new helper for locking the page with the mmap_sem
dropped. This doesn't make sense currently as generally speaking if the
page is already locked it'll have been read in (unless there was an error)
before it was unlocked. However a forthcoming patchset will change this
with the ability to abort read-ahead bio's if necessary, making it more
likely that we could contend for a page lock and still have a not uptodate
page. This allows us to deal with this case by grabbing the lock and
issuing the IO without the mmap_sem held, and then returning
VM_FAULT_RETRY to come back around.
[josef@toxicpanda.com: v6]
Link: http://lkml.kernel.org/r/20181212152757.10017-1-josef@toxicpanda.com
[kirill@shutemov.name: fix race in filemap_fault()]
Link: http://lkml.kernel.org/r/20181228235106.okk3oastsnpxusxs@kshutemo-mobl1
[akpm@linux-foundation.org: coding style fixes]
Link: http://lkml.kernel.org/r/20181211173801.29535-4-josef@toxicpanda.com
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Tested-by: syzbot+b437b5a429d680cf2217@syzkaller.appspotmail.com
Cc: Dave Chinner <david@fromorbit.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "drop the mmap_sem when doing IO in the fault path", v6.
Now that we have proper isolation in place with cgroups2 we have started
going through and fixing the various priority inversions. Most are all
gone now, but this one is sort of weird since it's not necessarily a
priority inversion that happens within the kernel, but rather because of
something userspace does.
We have giant applications that we want to protect, and parts of these
giant applications do things like watch the system state to determine how
healthy the box is for load balancing and such. This involves running
'ps' or other such utilities. These utilities will often walk
/proc/<pid>/whatever, and these files can sometimes need to
down_read(&task->mmap_sem). Not usually a big deal, but we noticed when
we are stress testing that sometimes our protected application has latency
spikes trying to get the mmap_sem for tasks that are in lower priority
cgroups.
This is because any down_write() on a semaphore essentially turns it into
a mutex, so even if we currently have it held for reading, any new readers
will not be allowed on to keep from starving the writer. This is fine,
except a lower priority task could be stuck doing IO because it has been
throttled to the point that its IO is taking much longer than normal. But
because a higher priority group depends on this completing it is now stuck
behind lower priority work.
In order to avoid this particular priority inversion we want to use the
existing retry mechanism to stop from holding the mmap_sem at all if we
are going to do IO. This already exists in the read case sort of, but
needed to be extended for more than just grabbing the page lock. With
io.latency we throttle at submit_bio() time, so the readahead stuff can
block and even page_cache_read can block, so all these paths need to have
the mmap_sem dropped.
The other big thing is ->page_mkwrite. btrfs is particularly shitty here
because we have to reserve space for the dirty page, which can be a very
expensive operation. We use the same retry method as the read path, and
simply cache the page and verify the page is still setup properly the next
pass through ->page_mkwrite().
I've tested these patches with xfstests and there are no regressions.
This patch (of 3):
If we do not have a page at filemap_fault time we'll do this weird forced
page_cache_read thing to populate the page, and then drop it again and
loop around and find it. This makes for 2 ways we can read a page in
filemap_fault, and it's not really needed. Instead add a FGP_FOR_MMAP
flag so that pagecache_get_page() will return a unlocked page that's in
pagecache. Then use the normal page locking and readpage logic already in
filemap_fault. This simplifies the no page in page cache case
significantly.
[akpm@linux-foundation.org: fix comment text]
[josef@toxicpanda.com: don't unlock null page in FGP_FOR_MMAP case]
Link: http://lkml.kernel.org/r/20190312201742.22935-1-josef@toxicpanda.com
Link: http://lkml.kernel.org/r/20181211173801.29535-2-josef@toxicpanda.com
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
All of the arguments to these functions come from the vmf.
Cut down on the amount of arguments passed by simply passing in the vmf
to these two helpers.
Link: http://lkml.kernel.org/r/20181211173801.29535-3-josef@toxicpanda.com
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Merge misc updates from Andrew Morton:
- a few misc things
- the rest of MM
- remove flex_arrays, replace with new simple radix-tree implementation
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (38 commits)
Drop flex_arrays
sctp: convert to genradix
proc: commit to genradix
generic radix trees
selinux: convert to kvmalloc
md: convert to kvmalloc
openvswitch: convert to kvmalloc
of: fix kmemleak crash caused by imbalance in early memory reservation
mm: memblock: update comments and kernel-doc
memblock: split checks whether a region should be skipped to a helper function
memblock: remove memblock_{set,clear}_region_flags
memblock: drop memblock_alloc_*_nopanic() variants
memblock: memblock_alloc_try_nid: don't panic
treewide: add checks for the return value of memblock_alloc*()
swiotlb: add checks for the return value of memblock_alloc*()
init/main: add checks for the return value of memblock_alloc*()
mm/percpu: add checks for the return value of memblock_alloc*()
sparc: add checks for the return value of memblock_alloc*()
ia64: add checks for the return value of memblock_alloc*()
arch: don't memset(0) memory returned by memblock_alloc()
...
__next_mem_range() and __next_mem_range_rev() duplicate the code that
checks whether a region should be skipped because of node or flags
incompatibility.
Split this code into a helper function.
Link: http://lkml.kernel.org/r/1549455025-17706-3-git-send-email-rppt@linux.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The memblock API provides dedicated helpers to set or clear a flag on a
memory region, e.g. memblock_{mark,clear}_hotplug().
The memblock_{set,clear}_region_flags() functions are used only by the
memblock internal function that adjusts the region flags. Drop these
functions and use open-coded implementation instead.
Link: http://lkml.kernel.org/r/1549455025-17706-2-git-send-email-rppt@linux.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
As all the memblock allocation functions return NULL in case of error
rather than panic(), the duplicates with _nopanic suffix can be removed.
Link: http://lkml.kernel.org/r/1548057848-15136-22-git-send-email-rppt@linux.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Petr Mladek <pmladek@suse.com> [printk]
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Christoph Hellwig <hch@lst.de>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Guo Ren <guoren@kernel.org>
Cc: Guo Ren <ren_guo@c-sky.com> [c-sky]
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Juergen Gross <jgross@suse.com> [Xen]
Cc: Mark Salter <msalter@redhat.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Rob Herring <robh+dt@kernel.org>
Cc: Rob Herring <robh@kernel.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
As all the memblock_alloc*() users are now checking the return value and
panic() in case of error, the panic() call can be removed from the core
memblock allocator, namely memblock_alloc_try_nid().
Link: http://lkml.kernel.org/r/1548057848-15136-21-git-send-email-rppt@linux.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Christoph Hellwig <hch@lst.de>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Guo Ren <guoren@kernel.org>
Cc: Guo Ren <ren_guo@c-sky.com> [c-sky]
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Juergen Gross <jgross@suse.com> [Xen]
Cc: Mark Salter <msalter@redhat.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Rob Herring <robh+dt@kernel.org>
Cc: Rob Herring <robh@kernel.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add check for the return value of memblock_alloc*() functions and call
panic() in case of error. The panic message repeats the one used by
panicing memblock allocators with adjustment of parameters to include
only relevant ones.
The replacement was mostly automated with semantic patches like the one
below with manual massaging of format strings.
@@
expression ptr, size, align;
@@
ptr = memblock_alloc(size, align);
+ if (!ptr)
+ panic("%s: Failed to allocate %lu bytes align=0x%lx\n", __func__, size, align);
[anders.roxell@linaro.org: use '%pa' with 'phys_addr_t' type]
Link: http://lkml.kernel.org/r/20190131161046.21886-1-anders.roxell@linaro.org
[rppt@linux.ibm.com: fix format strings for panics after memblock_alloc]
Link: http://lkml.kernel.org/r/1548950940-15145-1-git-send-email-rppt@linux.ibm.com
[rppt@linux.ibm.com: don't panic if the allocation in sparse_buffer_init fails]
Link: http://lkml.kernel.org/r/20190131074018.GD28876@rapoport-lnx
[akpm@linux-foundation.org: fix xtensa printk warning]
Link: http://lkml.kernel.org/r/1548057848-15136-20-git-send-email-rppt@linux.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Anders Roxell <anders.roxell@linaro.org>
Reviewed-by: Guo Ren <ren_guo@c-sky.com> [c-sky]
Acked-by: Paul Burton <paul.burton@mips.com> [MIPS]
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com> [s390]
Reviewed-by: Juergen Gross <jgross@suse.com> [Xen]
Reviewed-by: Geert Uytterhoeven <geert@linux-m68k.org> [m68k]
Acked-by: Max Filippov <jcmvbkbc@gmail.com> [xtensa]
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Christoph Hellwig <hch@lst.de>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Guo Ren <guoren@kernel.org>
Cc: Mark Salter <msalter@redhat.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Rob Herring <robh+dt@kernel.org>
Cc: Rob Herring <robh@kernel.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add panic() calls if memblock_alloc() returns NULL.
The panic() format duplicates the one used by memblock itself and in
order to avoid explosion with long parameters list replace open coded
allocation size calculations with a local variable.
Link: http://lkml.kernel.org/r/1548057848-15136-17-git-send-email-rppt@linux.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Christoph Hellwig <hch@lst.de>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Guo Ren <guoren@kernel.org>
Cc: Guo Ren <ren_guo@c-sky.com> [c-sky]
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Juergen Gross <jgross@suse.com> [Xen]
Cc: Mark Salter <msalter@redhat.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Rob Herring <robh+dt@kernel.org>
Cc: Rob Herring <robh@kernel.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, memblock has several internal functions with overlapping
functionality. They all call memblock_find_in_range_node() to find free
memory and then reserve the allocated range and mark it with kmemleak.
However, there is difference in the allocation constraints and in
fallback strategies.
The allocations returning physical address first attempt to find free
memory on the specified node within mirrored memory regions, then retry
on the same node without the requirement for memory mirroring and
finally fall back to all available memory.
The allocations returning virtual address start with clamping the
allowed range to memblock.current_limit, attempt to allocate from the
specified node from regions with mirroring and with user defined minimal
address. If such allocation fails, next attempt is done with node
restriction lifted. Next, the allocation is retried with minimal
address reset to zero and at last without the requirement for mirrored
regions.
Let's consolidate various fallbacks handling and make them more
consistent for physical and virtual variants. Most of the fallback
handling is moved to memblock_alloc_range_nid() and it now handles node
and mirror fallbacks.
The memblock_alloc_internal() uses memblock_alloc_range_nid() to get a
physical address of the allocated range and converts it to virtual
address.
The fallback for allocation below the specified minimal address remains
in memblock_alloc_internal() because memblock_alloc_range_nid() is used
by CMA with exact requirement for lower bounds.
The memblock_phys_alloc_nid() function is completely dropped as it is not
used anywhere outside memblock and its only usage can be replaced by a
call to memblock_alloc_range_nid().
[rppt@linux.ibm.com: fix parameter order in memblock_phys_alloc_try_nid()]
Link: http://lkml.kernel.org/r/20190203113915.GC8620@rapoport-lnx
Link: http://lkml.kernel.org/r/1548057848-15136-11-git-send-email-rppt@linux.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Tested-by: Michael Ellerman <mpe@ellerman.id.au>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Christoph Hellwig <hch@lst.de>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Guo Ren <guoren@kernel.org>
Cc: Guo Ren <ren_guo@c-sky.com> [c-sky]
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Juergen Gross <jgross@suse.com> [Xen]
Cc: Mark Salter <msalter@redhat.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Rob Herring <robh+dt@kernel.org>
Cc: Rob Herring <robh@kernel.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The memblock_alloc_base() function tries to allocate a memory up to the
limit specified by its max_addr parameter and panics if the allocation
fails. Replace its usage with memblock_phys_alloc_range() and make the
callers check the return value and panic in case of error.
Link: http://lkml.kernel.org/r/1548057848-15136-10-git-send-email-rppt@linux.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Acked-by: Michael Ellerman <mpe@ellerman.id.au> [powerpc]
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Christoph Hellwig <hch@lst.de>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Guo Ren <guoren@kernel.org>
Cc: Guo Ren <ren_guo@c-sky.com> [c-sky]
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Juergen Gross <jgross@suse.com> [Xen]
Cc: Mark Salter <msalter@redhat.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Rob Herring <robh+dt@kernel.org>
Cc: Rob Herring <robh@kernel.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The __memblock_alloc_base() function tries to allocate a memory up to
the limit specified by its max_addr parameter. Depending on the value
of this parameter, the __memblock_alloc_base() can is replaced with the
appropriate memblock_phys_alloc*() variant.
Link: http://lkml.kernel.org/r/1548057848-15136-9-git-send-email-rppt@linux.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Acked-by: Rob Herring <robh@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Christoph Hellwig <hch@lst.de>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Guo Ren <guoren@kernel.org>
Cc: Guo Ren <ren_guo@c-sky.com> [c-sky]
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Juergen Gross <jgross@suse.com> [Xen]
Cc: Mark Salter <msalter@redhat.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Rob Herring <robh+dt@kernel.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Make the memblock_phys_alloc() function an inline wrapper for
memblock_phys_alloc_range() and update the memblock_phys_alloc() callers
to check the returned value and panic in case of error.
Link: http://lkml.kernel.org/r/1548057848-15136-8-git-send-email-rppt@linux.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Christoph Hellwig <hch@lst.de>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Guo Ren <guoren@kernel.org>
Cc: Guo Ren <ren_guo@c-sky.com> [c-sky]
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Juergen Gross <jgross@suse.com> [Xen]
Cc: Mark Salter <msalter@redhat.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Rob Herring <robh+dt@kernel.org>
Cc: Rob Herring <robh@kernel.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The memblock_phys_alloc_try_nid() function tries to allocate memory from
the requested node and then falls back to allocation from any node in
the system. The memblock_alloc_base() fallback used by this function
panics if the allocation fails.
Replace the memblock_alloc_base() fallback with the direct call to
memblock_alloc_range_nid() and update the memblock_phys_alloc_try_nid()
callers to check the returned value and panic in case of error.
Link: http://lkml.kernel.org/r/1548057848-15136-7-git-send-email-rppt@linux.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Acked-by: Michael Ellerman <mpe@ellerman.id.au> [powerpc]
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Christoph Hellwig <hch@lst.de>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Guo Ren <guoren@kernel.org>
Cc: Guo Ren <ren_guo@c-sky.com> [c-sky]
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Juergen Gross <jgross@suse.com> [Xen]
Cc: Mark Salter <msalter@redhat.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Rob Herring <robh+dt@kernel.org>
Cc: Rob Herring <robh@kernel.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Rename memblock_alloc_range() to memblock_phys_alloc_range() to
emphasize that it returns a physical address.
While on it, remove the 'enum memblock_flags' parameter from this
function as its only user anyway sets it to MEMBLOCK_NONE, which is the
default for the most of memblock allocations.
Link: http://lkml.kernel.org/r/1548057848-15136-6-git-send-email-rppt@linux.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Christoph Hellwig <hch@lst.de>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Guo Ren <guoren@kernel.org>
Cc: Guo Ren <ren_guo@c-sky.com> [c-sky]
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Juergen Gross <jgross@suse.com> [Xen]
Cc: Mark Salter <msalter@redhat.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Rob Herring <robh+dt@kernel.org>
Cc: Rob Herring <robh@kernel.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Convert to use vm_fault_t type as return type for fault handler.
kbuild reported warning during testing of
*mm-create-the-new-vm_fault_t-type.patch* available in below link -
https://patchwork.kernel.org/patch/10752741/
kernel/memremap.c:46:34: warning: incorrect type in return expression
(different base types)
kernel/memremap.c:46:34: expected restricted vm_fault_t
kernel/memremap.c:46:34: got int
This patch has fixed the warnings and also hmm_devmem_fault() is
converted to return vm_fault_t to avoid further warnings.
[sfr@canb.auug.org.au: drm/nouveau/dmem: update for struct hmm_devmem_ops member change]
Link: http://lkml.kernel.org/r/20190220174407.753d94e5@canb.auug.org.au
Link: http://lkml.kernel.org/r/20190110145900.GA1317@jordon-HP-15-Notebook-PC
Signed-off-by: Souptick Joarder <jrdr.linux@gmail.com>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Reviewed-by: Jérôme Glisse <jglisse@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQRTLbB6QfY48x44uB6AXGG7T9hjvgUCXIYrgwAKCRCAXGG7T9hj
viyuAP4/bKpQ8QUp2V6ddkyEG4NTkA7H87pqQQsxJe9sdoyRRwD5AReS7oitoRS/
cm6SBpwdaPRX/hfVvT2/h1GWxkvDFgA=
=8Zfa
-----END PGP SIGNATURE-----
Merge tag 'for-linus-5.1a-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip
Pull xen updates from Juergen Gross:
"xen fixes and features:
- remove fallback code for very old Xen hypervisors
- three patches for fixing Xen dom0 boot regressions
- an old patch for Xen PCI passthrough which was never applied for
unknown reasons
- some more minor fixes and cleanup patches"
* tag 'for-linus-5.1a-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip:
xen: fix dom0 boot on huge systems
xen, cpu_hotplug: Prevent an out of bounds access
xen: remove pre-xen3 fallback handlers
xen/ACPI: Switch to bitmap_zalloc()
x86/xen: dont add memory above max allowed allocation
x86: respect memory size limiting via mem= parameter
xen/gntdev: Check and release imported dma-bufs on close
xen/gntdev: Do not destroy context while dma-bufs are in use
xen/pciback: Don't disable PCI_COMMAND on PCI device reset.
xen-scsiback: mark expected switch fall-through
xen: mark expected switch fall-through
This has been a slightly more active cycle than normal with ongoing core
changes and quite a lot of collected driver updates.
- Various driver fixes for bnxt_re, cxgb4, hns, mlx5, pvrdma, rxe
- A new data transfer mode for HFI1 giving higher performance
- Significant functional and bug fix update to the mlx5 On-Demand-Paging MR
feature
- A chip hang reset recovery system for hns
- Change mm->pinned_vm to an atomic64
- Update bnxt_re to support a new 57500 chip
- A sane netlink 'rdma link add' method for creating rxe devices and fixing
the various unregistration race conditions in rxe's unregister flow
- Allow lookup up objects by an ID over netlink
- Various reworking of the core to driver interface:
* Drivers should not assume umem SGLs are in PAGE_SIZE chunks
* ucontext is accessed via udata not other means
* Start to make the core code responsible for object memory
allocation
* Drivers should convert struct device to struct ib_device
via a helper
* Drivers have more tools to avoid use after unregister problems
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEfB7FMLh+8QxL+6i3OG33FX4gmxoFAlyAJYYACgkQOG33FX4g
mxrWwQ/+OyAx4Moru7Aix0C6GWxTJp/wKgw21CS3reZxgLai6x81xNYG/s2wCNjo
IccObVd7mvzyqPdxOeyHBsJBbQDqWvoD6O2duH8cqGMgBRgh3CSdUep2zLvPpSAx
2W1SvWYCLDnCuarboFrCA8c4AN3eCZiqD7z9lHyFQGjy3nTUWzk1uBaOP46uaiMv
w89N8EMdXJ/iY6ONzihvE05NEYbMA8fuvosKLLNdghRiHIjbMQU8SneY23pvyPDd
ZziPu9NcO3Hw9OVbkwtJp47U3KCBgvKHmnixyZKkikjiD+HVoABw2IMwcYwyBZwP
Bic/ddONJUvAxMHpKRnQaW7znAiHARk21nDG28UAI7FWXH/wMXgicMp6LRcNKqKF
vqXdxHTKJb0QUR4xrYI+eA8ihstss7UUpgSgByuANJ0X729xHiJtlEvPb1DPo1Dz
9CB4OHOVRl5O8sA5Jc6PSusZiKEpvWoyWbdmw0IiwDF5pe922VLl5Nv88ta+sJ38
v2Ll5AgYcluk7F3599Uh9D7gwp5hxW2Ph3bNYyg2j3HP4/dKsL9XvIJPXqEthgCr
3KQS9rOZfI/7URieT+H+Mlf+OWZhXsZilJG7No0fYgIVjgJ00h3SF1/299YIq6Qp
9W7ZXBfVSwLYA2AEVSvGFeZPUxgBwHrSZ62wya4uFeB1jyoodPk=
=p12E
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma
Pull rdma updates from Jason Gunthorpe:
"This has been a slightly more active cycle than normal with ongoing
core changes and quite a lot of collected driver updates.
- Various driver fixes for bnxt_re, cxgb4, hns, mlx5, pvrdma, rxe
- A new data transfer mode for HFI1 giving higher performance
- Significant functional and bug fix update to the mlx5
On-Demand-Paging MR feature
- A chip hang reset recovery system for hns
- Change mm->pinned_vm to an atomic64
- Update bnxt_re to support a new 57500 chip
- A sane netlink 'rdma link add' method for creating rxe devices and
fixing the various unregistration race conditions in rxe's
unregister flow
- Allow lookup up objects by an ID over netlink
- Various reworking of the core to driver interface:
- drivers should not assume umem SGLs are in PAGE_SIZE chunks
- ucontext is accessed via udata not other means
- start to make the core code responsible for object memory
allocation
- drivers should convert struct device to struct ib_device via a
helper
- drivers have more tools to avoid use after unregister problems"
* tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma: (280 commits)
net/mlx5: ODP support for XRC transport is not enabled by default in FW
IB/hfi1: Close race condition on user context disable and close
RDMA/umem: Revert broken 'off by one' fix
RDMA/umem: minor bug fix in error handling path
RDMA/hns: Use GFP_ATOMIC in hns_roce_v2_modify_qp
cxgb4: kfree mhp after the debug print
IB/rdmavt: Fix concurrency panics in QP post_send and modify to error
IB/rdmavt: Fix loopback send with invalidate ordering
IB/iser: Fix dma_nents type definition
IB/mlx5: Set correct write permissions for implicit ODP MR
bnxt_re: Clean cq for kernel consumers only
RDMA/uverbs: Don't do double free of allocated PD
RDMA: Handle ucontext allocations by IB/core
RDMA/core: Fix a WARN() message
bnxt_re: fix the regression due to changes in alloc_pbl
IB/mlx4: Increase the timeout for CM cache
IB/core: Abort page fault handler silently during owning process exit
IB/mlx5: Validate correct PD before prefetch MR
IB/mlx5: Protect against prefetch of invalid MR
RDMA/uverbs: Store PR pointer before it is overwritten
...
Pull x86 mm cleanup from Ingo Molnar:
"A single GUP cleanup"
* 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
mm/gup: Remove the 'write' parameter from gup_fast_permitted()
Pull percpu updates from Dennis Zhou:
"There are 2 minor changes to the percpu allocator this merge window:
- for loop condition that could be out of bounds on multi-socket UP
- cosmetic removal of pcpu_group_offsets[0] in UP code as it is 0
There has been an interest in having better alignment with percpu
allocations. This has caused a performance regression in at least one
reported workload. I have a series out which adds scan hints to the
allocator as well as some other performance oriented changes. I hope
to have this queued for v5.2 soon"
* 'for-5.1' of git://git.kernel.org/pub/scm/linux/kernel/git/dennis/percpu:
percpu: km: no need to consider pcpu_group_offsets[0]
percpu: use nr_groups as check condition
When using mremap() syscall in addition to MREMAP_FIXED flag, mremap()
calls mremap_to() which does the following:
1) unmaps the destination region where we are going to move the map
2) If the new region is going to be smaller, we unmap the last part
of the old region
Then, we will eventually call move_vma() to do the actual move.
move_vma() checks whether we are at least 4 maps below max_map_count
before going further, otherwise it bails out with -ENOMEM. The problem
is that we might have already unmapped the vma's in steps 1) and 2), so
it is not possible for userspace to figure out the state of the vmas
after it gets -ENOMEM, and it gets tricky for userspace to clean up
properly on error path.
While it is true that we can return -ENOMEM for more reasons (e.g: see
may_expand_vm() or move_page_tables()), I think that we can avoid this
scenario if we check early in mremap_to() if the operation has high
chances to succeed map-wise.
Should that not be the case, we can bail out before we even try to unmap
anything, so we make sure the vma's are left untouched in case we are
likely to be short of maps.
The thumb-rule now is to rely on the worst-scenario case we can have.
That is when both vma's (old region and new region) are going to be
split in 3, so we get two more maps to the ones we already hold (one per
each). If current map count + 2 maps still leads us to 4 maps below the
threshold, we are going to pass the check in move_vma().
Of course, this is not free, as it might generate false positives when
it is true that we are tight map-wise, but the unmap operation can
release several vma's leading us to a good state.
Another approach was also investigated [1], but it may be too much
hassle for what it brings.
[1] https://lore.kernel.org/lkml/20190219155320.tkfkwvqk53tfdojt@d104.suse.de/
Link: http://lkml.kernel.org/r/20190226091314.18446-1-osalvador@suse.de
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Joel Fernandes (Google) <joel@joelfernandes.org>
Cc: Yang Shi <yang.shi@linux.alibaba.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Cyril Hrubis <chrubis@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
next_present_section_nr() could only return an unsigned number -1, so
just check it specifically where compilers will convert -1 to unsigned
if needed.
mm/sparse.c: In function 'sparse_init_nid':
mm/sparse.c:200:20: warning: comparison of unsigned expression >= 0 is always true [-Wtype-limits]
((section_nr >= 0) && \
^~
mm/sparse.c:478:2: note: in expansion of macro
'for_each_present_section_nr'
for_each_present_section_nr(pnum_begin, pnum) {
^~~~~~~~~~~~~~~~~~~~~~~~~~~
mm/sparse.c:200:20: warning: comparison of unsigned expression >= 0 is always true [-Wtype-limits]
((section_nr >= 0) && \
^~
mm/sparse.c:497:2: note: in expansion of macro
'for_each_present_section_nr'
for_each_present_section_nr(pnum_begin, pnum) {
^~~~~~~~~~~~~~~~~~~~~~~~~~~
mm/sparse.c: In function 'sparse_init':
mm/sparse.c:200:20: warning: comparison of unsigned expression >= 0 is always true [-Wtype-limits]
((section_nr >= 0) && \
^~
mm/sparse.c:520:2: note: in expansion of macro
'for_each_present_section_nr'
for_each_present_section_nr(pnum_begin + 1, pnum_end) {
^~~~~~~~~~~~~~~~~~~~~~~~~~~
Link: http://lkml.kernel.org/r/20190228181839.86504-1-cai@lca.pw
Fixes: c4e1be9ec1 ("mm, sparsemem: break out of loops early")
Signed-off-by: Qian Cai <cai@lca.pw>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
LTP testcase mtest06 [1] can trigger a crash on s390x running 5.0.0-rc8.
This is a stress test, where one thread mmaps/writes/munmaps memory area
and other thread is trying to read from it:
CPU: 0 PID: 2611 Comm: mmap1 Not tainted 5.0.0-rc8+ #51
Hardware name: IBM 2964 N63 400 (z/VM 6.4.0)
Krnl PSW : 0404e00180000000 00000000001ac8d8 (__lock_acquire+0x7/0x7a8)
Call Trace:
([<0000000000000000>] (null))
[<00000000001adae4>] lock_acquire+0xec/0x258
[<000000000080d1ac>] _raw_spin_lock_bh+0x5c/0x98
[<000000000012a780>] page_table_free+0x48/0x1a8
[<00000000002f6e54>] do_fault+0xdc/0x670
[<00000000002fadae>] __handle_mm_fault+0x416/0x5f0
[<00000000002fb138>] handle_mm_fault+0x1b0/0x320
[<00000000001248cc>] do_dat_exception+0x19c/0x2c8
[<000000000080e5ee>] pgm_check_handler+0x19e/0x200
page_table_free() is called with NULL mm parameter, but because "0" is a
valid address on s390 (see S390_lowcore), it keeps going until it
eventually crashes in lockdep's lock_acquire. This crash is
reproducible at least since 4.14.
Problem is that "vmf->vma" used in do_fault() can become stale. Because
mmap_sem may be released, other threads can come in, call munmap() and
cause "vma" be returned to kmem cache, and get zeroed/re-initialized and
re-used:
handle_mm_fault |
__handle_mm_fault |
do_fault |
vma = vmf->vma |
do_read_fault |
__do_fault |
vma->vm_ops->fault(vmf); |
mmap_sem is released |
|
| do_munmap()
| remove_vma_list()
| remove_vma()
| vm_area_free()
| # vma is released
| ...
| # same vma is allocated
| # from kmem cache
| do_mmap()
| vm_area_alloc()
| memset(vma, 0, ...)
|
pte_free(vma->vm_mm, ...); |
page_table_free |
spin_lock_bh(&mm->context.lock);|
<crash> |
Cache mm_struct to avoid using potentially stale "vma".
[1] https://github.com/linux-test-project/ltp/blob/master/testcases/kernel/mem/mtest06/mmap1.c
Link: http://lkml.kernel.org/r/5b3fdf19e2a5be460a384b936f5b56e13733f1b8.1551595137.git.jstancek@redhat.com
Signed-off-by: Jan Stancek <jstancek@redhat.com>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Reviewed-by: Matthew Wilcox <willy@infradead.org>
Acked-by: Rafael Aquini <aquini@redhat.com>
Reviewed-by: Minchan Kim <minchan@kernel.org>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Souptick Joarder <jrdr.linux@gmail.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit a00cc7d9dd ("mm, x86: add support for PUD-sized transparent
hugepages") introduced pudp_huge_get_and_clear_full() but no one uses
its return code.
In order to not diverge from pmdp_huge_get_and_clear_full(), just change
zap_huge_pud() to not assign the return value from
pudp_huge_get_and_clear_full().
mm/huge_memory.c: In function 'zap_huge_pud':
mm/huge_memory.c:1982:8: warning: variable 'orig_pud' set but not used [-Wunused-but-set-variable]
pud_t orig_pud;
^~~~~~~~
Link: http://lkml.kernel.org/r/20190301221956.97493-1-cai@lca.pw
Signed-off-by: Qian Cai <cai@lca.pw>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When onlining a memory block with DEBUG_PAGEALLOC, it unmaps the pages
in the block from kernel, However, it does not map those pages while
offlining at the beginning. As the result, it triggers a panic below
while onlining on ppc64le as it checks if the pages are mapped before
unmapping. However, the imbalance exists for all arches where
double-unmappings could happen. Therefore, let kernel map those pages
in generic_online_page() before they have being freed into the page
allocator for the first time where it will set the page count to one.
On the other hand, it works fine during the boot, because at least for
IBM POWER8, it does,
early_setup
early_init_mmu
harsh__early_init_mmu
htab_initialize [1]
htab_bolt_mapping [2]
where it effectively map all memblock regions just like
kernel_map_linear_page(), so later mem_init() -> memblock_free_all()
will unmap them just fine without any imbalance. On other arches
without this imbalance checking, it still unmap them once at the most.
[1]
for_each_memblock(memory, reg) {
base = (unsigned long)__va(reg->base);
size = reg->size;
DBG("creating mapping for region: %lx..%lx (prot: %lx)\n",
base, size, prot);
BUG_ON(htab_bolt_mapping(base, base + size, __pa(base),
prot, mmu_linear_psize, mmu_kernel_ssize));
}
[2] linear_map_hash_slots[paddr >> PAGE_SHIFT] = ret | 0x80;
kernel BUG at arch/powerpc/mm/hash_utils_64.c:1815!
Oops: Exception in kernel mode, sig: 5 [#1]
LE SMP NR_CPUS=256 DEBUG_PAGEALLOC NUMA pSeries
CPU: 2 PID: 4298 Comm: bash Not tainted 5.0.0-rc7+ #15
NIP: c000000000062670 LR: c00000000006265c CTR: 0000000000000000
REGS: c0000005bf8a75b0 TRAP: 0700 Not tainted (5.0.0-rc7+)
MSR: 800000000282b033 <SF,VEC,VSX,EE,FP,ME,IR,DR,RI,LE> CR: 28422842
XER: 00000000
CFAR: c000000000804f44 IRQMASK: 1
NIP [c000000000062670] __kernel_map_pages+0x2e0/0x4f0
LR [c00000000006265c] __kernel_map_pages+0x2cc/0x4f0
Call Trace:
__kernel_map_pages+0x2cc/0x4f0
free_unref_page_prepare+0x2f0/0x4d0
free_unref_page+0x44/0x90
__online_page_free+0x84/0x110
online_pages_range+0xc0/0x150
walk_system_ram_range+0xc8/0x120
online_pages+0x280/0x5a0
memory_subsys_online+0x1b4/0x270
device_online+0xc0/0xf0
state_store+0xc0/0x180
dev_attr_store+0x3c/0x60
sysfs_kf_write+0x70/0xb0
kernfs_fop_write+0x10c/0x250
__vfs_write+0x48/0x240
vfs_write+0xd8/0x210
ksys_write+0x70/0x120
system_call+0x5c/0x70
Link: http://lkml.kernel.org/r/20190301220814.97339-1-cai@lca.pw
Signed-off-by: Qian Cai <cai@lca.pw>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au> [powerpc]
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Souptick Joarder <jrdr.linux@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>