Pull big execve/kernel_thread/fork unification series from Al Viro:
"All architectures are converted to new model. Quite a bit of that
stuff is actually shared with architecture trees; in such cases it's
literally shared branch pulled by both, not a cherry-pick.
A lot of ugliness and black magic is gone (-3KLoC total in this one):
- kernel_thread()/kernel_execve()/sys_execve() redesign.
We don't do syscalls from kernel anymore for either kernel_thread()
or kernel_execve():
kernel_thread() is essentially clone(2) with callback run before we
return to userland, the callbacks either never return or do
successful do_execve() before returning.
kernel_execve() is a wrapper for do_execve() - it doesn't need to
do transition to user mode anymore.
As a result kernel_thread() and kernel_execve() are
arch-independent now - they live in kernel/fork.c and fs/exec.c
resp. sys_execve() is also in fs/exec.c and it's completely
architecture-independent.
- daemonize() is gone, along with its parts in fs/*.c
- struct pt_regs * is no longer passed to do_fork/copy_process/
copy_thread/do_execve/search_binary_handler/->load_binary/do_coredump.
- sys_fork()/sys_vfork()/sys_clone() unified; some architectures
still need wrappers (ones with callee-saved registers not saved in
pt_regs on syscall entry), but the main part of those suckers is in
kernel/fork.c now."
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/signal: (113 commits)
do_coredump(): get rid of pt_regs argument
print_fatal_signal(): get rid of pt_regs argument
ptrace_signal(): get rid of unused arguments
get rid of ptrace_signal_deliver() arguments
new helper: signal_pt_regs()
unify default ptrace_signal_deliver
flagday: kill pt_regs argument of do_fork()
death to idle_regs()
don't pass regs to copy_process()
flagday: don't pass regs to copy_thread()
bfin: switch to generic vfork, get rid of pointless wrappers
xtensa: switch to generic clone()
openrisc: switch to use of generic fork and clone
unicore32: switch to generic clone(2)
score: switch to generic fork/vfork/clone
c6x: sanitize copy_thread(), get rid of clone(2) wrapper, switch to generic clone()
take sys_fork/sys_vfork/sys_clone prototypes to linux/syscalls.h
mn10300: switch to generic fork/vfork/clone
h8300: switch to generic fork/vfork/clone
tile: switch to generic clone()
...
Conflicts:
arch/microblaze/include/asm/Kbuild
The hlt_use_halt function returns always true and there is only
one definition of it.
The default_idle function can then get ride of the if ...
statement and we can remove the else branch.
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: linaro-dev@lists.linaro.org
Cc: patches@linaro.org
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1351181591-8710-1-git-send-email-daniel.lezcano@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull generic execve() changes from Al Viro:
"This introduces the generic kernel_thread() and kernel_execve()
functions, and switches x86, arm, alpha, um and s390 over to them."
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/signal: (26 commits)
s390: convert to generic kernel_execve()
s390: switch to generic kernel_thread()
s390: fold kernel_thread_helper() into ret_from_fork()
s390: fold execve_tail() into start_thread(), convert to generic sys_execve()
um: switch to generic kernel_thread()
x86, um/x86: switch to generic sys_execve and kernel_execve
x86: split ret_from_fork
alpha: introduce ret_from_kernel_execve(), switch to generic kernel_execve()
alpha: switch to generic kernel_thread()
alpha: switch to generic sys_execve()
arm: get rid of execve wrapper, switch to generic execve() implementation
arm: optimized current_pt_regs()
arm: introduce ret_from_kernel_execve(), switch to generic kernel_execve()
arm: split ret_from_fork, simplify kernel_thread() [based on patch by rmk]
generic sys_execve()
generic kernel_execve()
new helper: current_pt_regs()
preparation for generic kernel_thread()
um: kill thread->forking
um: let signal_delivered() do SIGTRAP on singlestepping into handler
...
32bit wrapper is lost on that; 64bit one is *not*, since
we need to arrange for full pt_regs on stack when we call
sys_execve() and we need to load callee-saved ones from
there afterwards.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
TIF_NOTIFY_RESUME will work in precisely the same way; all that
is achieved by TIF_IRET is appearing that there's some work to be
done, so we end up on the iret exit path. Just use NOTIFY_RESUME.
And for execve() do that in 32bit start_thread(), not sys_execve()
itself.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Decouple non-lazy/eager fpu restore policy from the existence of the xsave
feature. Introduce a synthetic CPUID flag to represent the eagerfpu
policy. "eagerfpu=on" boot paramter will enable the policy.
Requested-by: H. Peter Anvin <hpa@zytor.com>
Requested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Link: http://lkml.kernel.org/r/1347300665-6209-2-git-send-email-suresh.b.siddha@intel.com
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Fundamental model of the current Linux kernel is to lazily init and
restore FPU instead of restoring the task state during context switch.
This changes that fundamental lazy model to the non-lazy model for
the processors supporting xsave feature.
Reasons driving this model change are:
i. Newer processors support optimized state save/restore using xsaveopt and
xrstor by tracking the INIT state and MODIFIED state during context-switch.
This is faster than modifying the cr0.TS bit which has serializing semantics.
ii. Newer glibc versions use SSE for some of the optimized copy/clear routines.
With certain workloads (like boot, kernel-compilation etc), application
completes its work with in the first 5 task switches, thus taking upto 5 #DNA
traps with the kernel not getting a chance to apply the above mentioned
pre-load heuristic.
iii. Some xstate features (like AMD's LWP feature) don't honor the cr0.TS bit
and thus will not work correctly in the presence of lazy restore. Non-lazy
state restore is needed for enabling such features.
Some data on a two socket SNB system:
* Saved 20K DNA exceptions during boot on a two socket SNB system.
* Saved 50K DNA exceptions during kernel-compilation workload.
* Improved throughput of the AVX based checksumming function inside the
kernel by ~15% as xsave/xrstor is faster than the serializing clts/stts
pair.
Also now kernel_fpu_begin/end() relies on the patched
alternative instructions. So move check_fpu() which uses the
kernel_fpu_begin/end() after alternative_instructions().
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Link: http://lkml.kernel.org/r/1345842782-24175-7-git-send-email-suresh.b.siddha@intel.com
Merge 32-bit boot fix from,
Link: http://lkml.kernel.org/r/1347300665-6209-4-git-send-email-suresh.b.siddha@intel.com
Cc: Jim Kukunas <james.t.kukunas@linux.intel.com>
Cc: NeilBrown <neilb@suse.de>
Cc: Avi Kivity <avi@redhat.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Currently for x86 and x86_32 binaries, fpstate in the user sigframe is copied
to/from the fpstate in the task struct.
And in the case of signal delivery for x86_64 binaries, if the fpstate is live
in the CPU registers, then the live state is copied directly to the user
sigframe. Otherwise fpstate in the task struct is copied to the user sigframe.
During restore, fpstate in the user sigframe is restored directly to the live
CPU registers.
Historically, different code paths led to different bugs. For example,
x86_64 code path was not preemption safe till recently. Also there is lot
of code duplication for support of new features like xsave etc.
Unify signal handling code paths for x86 and x86_64 kernels.
New strategy is as follows:
Signal delivery: Both for 32/64-bit frames, align the core math frame area to
64bytes as needed by xsave (this where the main fpu/extended state gets copied
to and excludes the legacy compatibility fsave header for the 32-bit [f]xsave
frames). If the state is live, copy the register state directly to the user
frame. If not live, copy the state in the thread struct to the user frame. And
for 32-bit [f]xsave frames, construct the fsave header separately before
the actual [f]xsave area.
Signal return: As the 32-bit frames with [f]xstate has an additional
'fsave' header, copy everything back from the user sigframe to the
fpstate in the task structure and reconstruct the fxstate from the 'fsave'
header (Also user passed pointers may not be correctly aligned for
any attempt to directly restore any partial state). At the next fpstate usage,
everything will be restored to the live CPU registers.
For all the 64-bit frames and the 32-bit fsave frame, restore the state from
the user sigframe directly to the live CPU registers. 64-bit signals always
restored the math frame directly, so we can expect the math frame pointer
to be correctly aligned. For 32-bit fsave frames, there are no alignment
requirements, so we can restore the state directly.
"lat_sig catch" microbenchmark numbers (for x86, x86_64, x86_32 binaries) are
with in the noise range with this change.
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Link: http://lkml.kernel.org/r/1343171129-2747-4-git-send-email-suresh.b.siddha@intel.com
[ Merged in compilation fix ]
Link: http://lkml.kernel.org/r/1344544736.8326.17.camel@sbsiddha-desk.sc.intel.com
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Use a more current logging style:
- Bare printks should have a KERN_<LEVEL> for consistency's sake
- Add pr_fmt where appropriate
- Neaten some macro definitions
- Convert some Ok output to OK
- Use "%s: ", __func__ in pr_fmt for summit
- Convert some printks to pr_<level>
Message output is not identical in all cases.
Signed-off-by: Joe Perches <joe@perches.com>
Cc: levinsasha928@gmail.com
Link: http://lkml.kernel.org/r/1337655007.24226.10.camel@joe2Laptop
[ merged two similar patches, tidied up the changelog ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull fpu state cleanups from Ingo Molnar:
"This tree streamlines further aspects of FPU handling by eliminating
the prepare_to_copy() complication and moving that logic to
arch_dup_task_struct().
It also fixes the FPU dumps in threaded core dumps, removes and old
(and now invalid) assumption plus micro-optimizes the exit path by
avoiding an FPU save for dead tasks."
Fixed up trivial add-add conflict in arch/sh/kernel/process.c that came
in because we now do the FPU handling in arch_dup_task_struct() rather
than the legacy (and now gone) prepare_to_copy().
* 'x86-fpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86, fpu: drop the fpu state during thread exit
x86, xsave: remove thread_has_fpu() bug check in __sanitize_i387_state()
coredump: ensure the fpu state is flushed for proper multi-threaded core dump
fork: move the real prepare_to_copy() users to arch_dup_task_struct()
Pull scheduler changes from Ingo Molnar:
"The biggest change is the cleanup/simplification of the load-balancer:
instead of the current practice of architectures twiddling scheduler
internal data structures and providing the scheduler domains in
colorfully inconsistent ways, we now have generic scheduler code in
kernel/sched/core.c:sched_init_numa() that looks at the architecture's
node_distance() parameters and (while not fully trusting it) deducts a
NUMA topology from it.
This inevitably changes balancing behavior - hopefully for the better.
There are various smaller optimizations, cleanups and fixlets as well"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched: Taint kernel with TAINT_WARN after sleep-in-atomic bug
sched: Remove stale power aware scheduling remnants and dysfunctional knobs
sched/debug: Fix printing large integers on 32-bit platforms
sched/fair: Improve the ->group_imb logic
sched/nohz: Fix rq->cpu_load[] calculations
sched/numa: Don't scale the imbalance
sched/fair: Revert sched-domain iteration breakage
sched/x86: Rewrite set_cpu_sibling_map()
sched/numa: Fix the new NUMA topology bits
sched/numa: Rewrite the CONFIG_NUMA sched domain support
sched/fair: Propagate 'struct lb_env' usage into find_busiest_group
sched/fair: Add some serialization to the sched_domain load-balance walk
sched/fair: Let minimally loaded cpu balance the group
sched: Change rq->nr_running to unsigned int
x86/numa: Check for nonsensical topologies on real hw as well
x86/numa: Hard partition cpu topology masks on node boundaries
x86/numa: Allow specifying node_distance() for numa=fake
x86/sched: Make mwait_usable() heed to "idle=" kernel parameters properly
sched: Update documentation and comments
sched_rt: Avoid unnecessary dequeue and enqueue of pushable tasks in set_cpus_allowed_rt()
Pull percpu updates from Tejun Heo:
"Contains Alex Shi's three patches to remove percpu_xxx() which overlap
with this_cpu_xxx(). There shouldn't be any functional change."
* 'for-3.5' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu:
percpu: remove percpu_xxx() functions
x86: replace percpu_xxx funcs with this_cpu_xxx
net: replace percpu_xxx funcs with this_cpu_xxx or __this_cpu_xxx
There is no need to save any active fpu state to the task structure
memory if the task is dead. Just drop the state instead.
For example, this saved some 1770 xsave's during the system boot
of a two socket Xeon system.
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Link: http://lkml.kernel.org/r/1336692811-30576-4-git-send-email-suresh.b.siddha@intel.com
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Historical prepare_to_copy() is mostly a no-op, duplicated for majority of
the architectures and the rest following the x86 model of flushing the extended
register state like fpu there.
Remove it and use the arch_dup_task_struct() instead.
Suggested-by: Oleg Nesterov <oleg@redhat.com>
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Link: http://lkml.kernel.org/r/1336692811-30576-1-git-send-email-suresh.b.siddha@intel.com
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: David Howells <dhowells@redhat.com>
Cc: Koichi Yasutake <yasutake.koichi@jp.panasonic.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Chris Zankel <chris@zankel.net>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Haavard Skinnemoen <hskinnemoen@gmail.com>
Cc: Mike Frysinger <vapier@gentoo.org>
Cc: Mark Salter <msalter@redhat.com>
Cc: Aurelien Jacquiot <a-jacquiot@ti.com>
Cc: Mikael Starvik <starvik@axis.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Richard Kuo <rkuo@codeaurora.org>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: James E.J. Bottomley <jejb@parisc-linux.org>
Cc: Helge Deller <deller@gmx.de>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Chen Liqin <liqin.chen@sunplusct.com>
Cc: Lennox Wu <lennox.wu@gmail.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Jeff Dike <jdike@addtoit.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Guan Xuetao <gxt@mprc.pku.edu.cn>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Since percpu_xxx() serial functions are duplicated with this_cpu_xxx().
Removing percpu_xxx() definition and replacing them by this_cpu_xxx()
in code. There is no function change in this patch, just preparation for
later percpu_xxx serial function removing.
On x86 machine the this_cpu_xxx() serial functions are same as
__this_cpu_xxx() without no unnecessary premmpt enable/disable.
Thanks for Stephen Rothwell, he found and fixed a i386 build error in
the patch.
Also thanks for Andrew Morton, he kept updating the patchset in Linus'
tree.
Signed-off-by: Alex Shi <alex.shi@intel.com>
Acked-by: Christoph Lameter <cl@gentwo.org>
Acked-by: Tejun Heo <tj@kernel.org>
Acked-by: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Tejun Heo <tj@kernel.org>
What was called show_registers() so far already showed a stack
trace for kernel faults, and kernel_stack_pointer() isn't even
valid to be used for faults from user mode, hence it was
pointless for show_regs() to call show_trace() after
show_registers().
Simply rename show_registers() to show_regs() and eliminate
the old definition.
Signed-off-by: Jan Beulich <jbeulich@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Link: http://lkml.kernel.org/r/4FAA3D3902000078000826E1@nat28.tlf.novell.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The only difference is the free_thread_info function, which frees
xstate.
Use the new arch_release_task_struct() function instead and switch
over to the core allocator.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20120505150141.559556763@linutronix.de
Cc: x86@kernel.org
The checks that exist in mwait_usable() for "idle=" kernel
parameters are insufficient. As a result, mwait_usable() can
return 1 even if "idle=nomwait" or "idle=poll" or "idle=halt"
parameters are passed.
Of these cases, incorrect handling of idle=nomwait is a
universal problem since mwait can get used for usual CPU idling.
However the rest of the cases are problematic only during CPU
Hotplug (offline) because, in the CPU offline path, the function
mwait_play_dead() is called, which might result in mwait being
used in the offline CPUs, if mwait_usable() happens to return 1.
Fix these issues by checking for the boot time "idle=" kernel
parameter properly in mwait_usable().
The first issue (usual cpu idling) is demonstrated below:
Before applying the patch (dmesg snippet):
[ 0.000000] Command line: [...] idle=nomwait
[ 0.000000] Kernel command line: [...] idle=nomwait
[ 0.000000] RCU dyntick-idle grace-period acceleration is enabled.
[ 0.140606] using mwait in idle threads. <======= mwait being used
[ 4.303986] cpuidle: using governor ladder
[ 4.308232] cpuidle: using governor menu
After applying the patch:
[ 0.000000] Command line: [...] idle=nomwait
[ 0.000000] Kernel command line: [...] idle=nomwait
[ 0.000000] RCU dyntick-idle grace-period acceleration is enabled.
[ 4.264100] cpuidle: using governor ladder
[ 4.268342] cpuidle: using governor menu
Signed-off-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Acked-by: Deepthi Dharwar <deepthi@linux.vnet.ibm.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: venki@google.com
Cc: suresh.b.siddha@intel.com
Cc: Borislav Petkov <bp@amd64.org>
Cc: lenb@kernel.org
Cc: Rafael J. Wysocki <rjw@sisk.pl>
Link: http://lkml.kernel.org/r/4F9E37B8.30001@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Same code. Use the generic version. The special Makefile treatment is
pointless anyway as init_task.o contains only data which is handled by
the linker script. So no point on being treated like head text.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20120503085035.739963562@linutronix.de
Cc: x86@kernel.org
The X86_32-only disable_hlt/enable_hlt mechanism was used by the
32-bit floppy driver. Its effect was to replace the use of the
HLT instruction inside default_idle() with cpu_relax() - essentially
it turned off the use of HLT.
This workaround was commented in the code as:
"disable hlt during certain critical i/o operations"
"This halt magic was a workaround for ancient floppy DMA
wreckage. It should be safe to remove."
H. Peter Anvin additionally adds:
"To the best of my knowledge, no-hlt only existed because of
flaky power distributions on 386/486 systems which were sold to
run DOS. Since DOS did no power management of any kind,
including HLT, the power draw was fairly uniform; when exposed
to the much hhigher noise levels you got when Linux used HLT
caused some of these systems to fail.
They were by far in the minority even back then."
Alan Cox further says:
"Also for the Cyrix 5510 which tended to go castors up if a HLT
occurred during a DMA cycle and on a few other boxes HLT during
DMA tended to go astray.
Do we care ? I doubt it. The 5510 was pretty obscure, the 5520
fixed it, the 5530 is probably the oldest still in any kind of
use."
So, let's finally drop this.
Signed-off-by: Len Brown <len.brown@intel.com>
Signed-off-by: Josh Boyer <jwboyer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: "H. Peter Anvin" <hpa@zytor.com>
Acked-by: Alan Cox <alan@lxorguk.ukuu.org.uk>
Cc: Stephen Hemminger <shemminger@vyatta.com
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: <stable@kernel.org>
Link: http://lkml.kernel.org/n/tip-3rhk9bzf0x9rljkv488tloib@git.kernel.org
[ If anyone cares then alternative instruction patching could be
used to replace HLT with a one-byte NOP instruction. Much simpler. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull x86 updates from Ingo Molnar.
This touches some non-x86 files due to the sanitized INLINE_SPIN_UNLOCK
config usage.
Fixed up trivial conflicts due to just header include changes (removing
headers due to cpu_idle() merge clashing with the <asm/system.h> split).
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/apic/amd: Be more verbose about LVT offset assignments
x86, tls: Off by one limit check
x86/ioapic: Add io_apic_ops driver layer to allow interception
x86/olpc: Add debugfs interface for EC commands
x86: Merge the x86_32 and x86_64 cpu_idle() functions
x86/kconfig: Remove CONFIG_TR=y from the defconfigs
x86: Stop recursive fault in print_context_stack after stack overflow
x86/io_apic: Move and reenable irq only when CONFIG_GENERIC_PENDING_IRQ=y
x86/apic: Add separate apic_id_valid() functions for selected apic drivers
locking/kconfig: Simplify INLINE_SPIN_UNLOCK usage
x86/kconfig: Update defconfigs
x86: Fix excessive MSR print out when show_msr is not specified
Both functions are mostly identical.
The differences are:
- x86_32's cpu_idle() makes use of check_pgt_cache(), which is a
nop on both x86_32 and x86_64.
- x86_64's cpu_idle() uses enter/__exit_idle/(), on x86_32 these
function are a nop.
- In contrast to x86_32, x86_64 calls rcu_idle_enter/exit() in
the innermost loop because idle notifications need RCU.
Calling these function on x86_32 also in the innermost loop
does not hurt.
So we can merge both functions.
Signed-off-by: Richard Weinberger <richard@nod.at>
Acked-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: paulmck@linux.vnet.ibm.com
Cc: josh@joshtriplett.org
Cc: tj@kernel.org
Link: http://lkml.kernel.org/r/1332709204-22496-1-git-send-email-richard@nod.at
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull x86/fpu changes from Ingo Molnar.
* 'x86-fpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
i387: Split up <asm/i387.h> into exported and internal interfaces
i387: Uninline the generic FP helpers that we expose to kernel modules
While various modules include <asm/i387.h> to get access to things we
actually *intend* for them to use, most of that header file was really
pretty low-level internal stuff that we really don't want to expose to
others.
So split the header file into two: the small exported interfaces remain
in <asm/i387.h>, while the internal definitions that are only used by
core architecture code are now in <asm/fpu-internal.h>.
The guiding principle for this was to expose functions that we export to
modules, and leave them in <asm/i387.h>, while stuff that is used by
task switching or was marked GPL-only is in <asm/fpu-internal.h>.
The fpu-internal.h file could be further split up too, especially since
arch/x86/kvm/ uses some of the remaining stuff for its module. But that
kvm usage should probably be abstracted out a bit, and at least now the
internal FPU accessor functions are much more contained. Even if it
isn't perhaps as contained as it _could_ be.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/alpine.LFD.2.02.1202211340330.5354@i5.linux-foundation.org
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
The power and cpuidle tracepoints are called within a rcu_idle_exit()
section, and must be denoted with the _rcuidle() version of the tracepoint.
Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
The x86_64 kernel pushes the fake kernel stack in
arch/x86/kernel/entry_64.S:FAKE_STACK_FRAME, and
rflags register in it does not conform to the specification.
Although Intel's manual[1] says bit 1 of it shall be set to 1,
this bit is cleared to 0 on pushing the fake stack.
[1] Intel(R) 64 and IA-32 Architectures Software Developer's Manual
Vol.1 3-21 Figure 3-8. EFLAGS Register
If it is not on purpose, it is better to be fixed, because
it can lead some tools misunderstanding the stack frame. For example,
"crash" utility[2] actually detects it and warns you like
below:
RIP: ffffffff8005dfa2 RSP: ffff8104ce0c7f58 RFLAGS: 00000200
[...]
bt: WARNING: possibly bogus exception frame
Signed-off-by: Seiichi Ikarashi <s.ikarashi@jp.fujitsu.com>
Tested-by: Masayoshi MIZUMA <m.mizuma@jp.fujitsu.com>
Cc: Jan Beulich <JBeulich@suse.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The idea behind commit d91ee5863b ("cpuidle: replace xen access to x86
pm_idle and default_idle") was to have one call - disable_cpuidle()
which would make pm_idle not be molested by other code. It disallows
cpuidle_idle_call to be set to pm_idle (which is excellent).
But in the select_idle_routine() and idle_setup(), the pm_idle can still
be set to either: amd_e400_idle, mwait_idle or default_idle. This
depends on some CPU flags (MWAIT) and in AMD case on the type of CPU.
In case of mwait_idle we can hit some instances where the hypervisor
(Amazon EC2 specifically) sets the MWAIT and we get:
Brought up 2 CPUs
invalid opcode: 0000 [#1] SMP
Pid: 0, comm: swapper Not tainted 3.1.0-0.rc6.git0.3.fc16.x86_64 #1
RIP: e030:[<ffffffff81015d1d>] [<ffffffff81015d1d>] mwait_idle+0x6f/0xb4
...
Call Trace:
[<ffffffff8100e2ed>] cpu_idle+0xae/0xe8
[<ffffffff8149ee78>] cpu_bringup_and_idle+0xe/0x10
RIP [<ffffffff81015d1d>] mwait_idle+0x6f/0xb4
RSP <ffff8801d28ddf10>
In the case of amd_e400_idle we don't get so spectacular crashes, but we
do end up making an MSR which is trapped in the hypervisor, and then
follow it up with a yield hypercall. Meaning we end up going to
hypervisor twice instead of just once.
The previous behavior before v3.0 was that pm_idle was set to
default_idle regardless of select_idle_routine/idle_setup.
We want to do that, but only for one specific case: Xen. This patch
does that.
Fixes RH BZ #739499 and Ubuntu #881076
Reported-by: Stefan Bader <stefan.bader@canonical.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Because THREAD_SIZE is defined as PAGE_SIZE << THREAD_ORDER on x86, the
call of get_order(THREAD_SIZE) can be replaced with THREAD_ORDER.
Signed-off-by: Zhao Jin <cronozhj@gmail.com>
Link: http://lkml.kernel.org/r/4E4FB5A9.700@gmail.com
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
...and make it static
no functional change
cc: x86@kernel.org
Acked-by: H. Peter Anvin <hpa@linux.intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
[ Also from Ben Hutchings <ben@decadent.org.uk> and Vitaliy Ivanov
<vitalivanov@gmail.com> ]
Commit 06ae40ce07 ("x86 idle: EXPORT_SYMBOL(default_idle, pm_idle)
only when APM demands it") removed the export for pm_idle/default_idle
unless the apm module was modularised and CONFIG_APM_CPU_IDLE was set.
But the apm module uses pm_idle/default_idle unconditionally,
CONFIG_APM_CPU_IDLE only affects the bios idle threshold. Adjust the
export accordingly.
[ Used #ifdef instead of #if defined() as it's shorter, and what both
Ben and Vitaliy used.. Andy, you're out-voted ;) - Linus ]
Reported-by: Randy Dunlap <randy.dunlap@oracle.com>
Acked-by: Jiri Kosina <jkosina@suse.cz>
Acked-by: Ingo Molnar <mingo@elte.hu>
Acked-by: Len Brown <len.brown@intel.com>
Signed-off-by: Andy Whitcroft <apw@canonical.com>
Signed-off-by: Vitaliy Ivanov <vitalivanov@gmail.com>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86: Fix mwait_play_dead() faulting on mwait-incapable cpus
x86 idle: Fix mwait deprecation warning message
Evil merge to remove extra quote noticed by Joe Perches
* 'idle-release' of git://git.kernel.org/pub/scm/linux/kernel/git/lenb/linux-idle-2.6:
x86 idle: deprecate mwait_idle() and "idle=mwait" cmdline param
x86 idle: deprecate "no-hlt" cmdline param
x86 idle APM: deprecate CONFIG_APM_CPU_IDLE
x86 idle floppy: deprecate disable_hlt()
x86 idle: EXPORT_SYMBOL(default_idle, pm_idle) only when APM demands it
x86 idle: clarify AMD erratum 400 workaround
idle governor: Avoid lock acquisition to read pm_qos before entering idle
cpuidle: menu: fixed wrapping timers at 4.294 seconds
mwait_idle() is a C1-only idle loop intended to be more efficient
than HLT on SMP hardware that supports it.
But mwait_idle() has been replaced by the more general
mwait_idle_with_hints(), which handles both C1 and deeper C-states.
ACPI uses only mwait_idle_with_hints(), and never uses mwait_idle().
Deprecate mwait_idle() and the "idle=mwait" cmdline param
to simplify the x86 idle code.
After this change, kernels configured with
(!CONFIG_ACPI=n && !CONFIG_INTEL_IDLE=n) when run on hardware
that support MWAIT will simply use HLT. If MWAIT is desired
on those systems, cpuidle and the cpuidle drivers above
can be used.
cc: x86@kernel.org
cc: stable@kernel.org # .39.x
Signed-off-by: Len Brown <len.brown@intel.com>
In the long run, we don't want default_idle() or (pm_idle)() to
be exported outside of process.c. Start by not exporting them
to modules, unless the APM build demands it.
cc: x86@kernel.org
cc: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Len Brown <len.brown@intel.com>
The workaround for AMD erratum 400 uses the term "c1e" falsely suggesting:
1. Intel C1E is somehow involved
2. All AMD processors with C1E are involved
Use the string "amd_c1e" instead of simply "c1e" to clarify that
this workaround is specific to AMD's version of C1E.
Use the string "e400" to clarify that the workaround is specific
to AMD processors with Erratum 400.
This patch is text-substitution only, with no functional change.
cc: x86@kernel.org
Acked-by: Borislav Petkov <borislav.petkov@amd.com>
Signed-off-by: Len Brown <len.brown@intel.com>
Add this_cpu_has() which determines if the current cpu has a certain
ability using a segment prefix and a bit test operation.
For that we need to add bit operations to x86s percpu.h.
Many uses of cpu_has use a pointer passed to a function to determine
the current flags. That is no longer necessary after this patch.
However, this patch only converts the straightforward cases where
cpu_has is used with this_cpu_ptr. The rest is work for later.
-tj: Rolled up patch to add x86_ prefix and use percpu_read() instead
of percpu_read_stable().
Signed-off-by: Christoph Lameter <cl@linux.com>
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Tejun Heo <tj@kernel.org>
Current stack dump code scans entire stack and check each entry
contains a pointer to kernel code. If CONFIG_FRAME_POINTER=y it
could mark whether the pointer is valid or not based on value of
the frame pointer. Invalid entries could be preceded by '?' sign.
However this was not going to happen because scan start point
was always higher than the frame pointer so that they could not
meet.
Commit 9c0729dc80 ("x86: Eliminate bp argument from the stack
tracing routines") delayed bp acquisition point, so the bp was
read in lower frame, thus all of the entries were marked
invalid.
This patch fixes this by reverting above commit while retaining
stack_frame() helper as suggested by Frederic Weisbecker.
End result looks like below:
before:
[ 3.508329] Call Trace:
[ 3.508551] [<ffffffff814f35c9>] ? panic+0x91/0x199
[ 3.508662] [<ffffffff814f3739>] ? printk+0x68/0x6a
[ 3.508770] [<ffffffff81a981b2>] ? mount_block_root+0x257/0x26e
[ 3.508876] [<ffffffff81a9821f>] ? mount_root+0x56/0x5a
[ 3.508975] [<ffffffff81a98393>] ? prepare_namespace+0x170/0x1a9
[ 3.509216] [<ffffffff81a9772b>] ? kernel_init+0x1d2/0x1e2
[ 3.509335] [<ffffffff81003894>] ? kernel_thread_helper+0x4/0x10
[ 3.509442] [<ffffffff814f6880>] ? restore_args+0x0/0x30
[ 3.509542] [<ffffffff81a97559>] ? kernel_init+0x0/0x1e2
[ 3.509641] [<ffffffff81003890>] ? kernel_thread_helper+0x0/0x10
after:
[ 3.522991] Call Trace:
[ 3.523351] [<ffffffff814f35b9>] panic+0x91/0x199
[ 3.523468] [<ffffffff814f3729>] ? printk+0x68/0x6a
[ 3.523576] [<ffffffff81a981b2>] mount_block_root+0x257/0x26e
[ 3.523681] [<ffffffff81a9821f>] mount_root+0x56/0x5a
[ 3.523780] [<ffffffff81a98393>] prepare_namespace+0x170/0x1a9
[ 3.523885] [<ffffffff81a9772b>] kernel_init+0x1d2/0x1e2
[ 3.523987] [<ffffffff81003894>] kernel_thread_helper+0x4/0x10
[ 3.524228] [<ffffffff814f6880>] ? restore_args+0x0/0x30
[ 3.524345] [<ffffffff81a97559>] ? kernel_init+0x0/0x1e2
[ 3.524445] [<ffffffff81003890>] ? kernel_thread_helper+0x0/0x10
-v5:
* fix build breakage with oprofile
-v4:
* use 0 instead of regs->bp
* separate out printk changes
-v3:
* apply comment from Frederic
* add a couple of printk fixes
Signed-off-by: Namhyung Kim <namhyung@gmail.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Soren Sandmann <ssp@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Robert Richter <robert.richter@amd.com>
LKML-Reference: <1300416006-3163-1-git-send-email-namhyung@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Printing a single character alone when there's an immediately
following printk() is pretty pointless (and wasteful).
Signed-off-by: Jan Beulich <jbeulich@novell.com>
LKML-Reference: <4D5D535A0200007800032730@vpn.id2.novell.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The "Type 2" SMBIOS record that contains Board Name is not
strictly required and may be absent in the SMBIOS on some
platforms.
( Please note that Type 2 is not listed in Table 3 in Sec 6.2
("Required Structures and Data") of the SMBIOS v2.7
Specification. )
Use the Manufacturer Name (aka System Vendor) name.
Print Board Name only when it is present.
Before the fix:
(i) dmesg output: DMI: /ProLiant DL380 G6, BIOS P62 01/29/2011
(ii) oops output: Pid: 2170, comm: bash Not tainted 2.6.38-rc4+ #3 /ProLiant DL380 G6
After the fix:
(i) dmesg output: DMI: HP ProLiant DL380 G6, BIOS P62 01/29/2011
(ii) oops output: Pid: 2278, comm: bash Not tainted 2.6.38-rc4+ #4 HP ProLiant DL380 G6
Signed-off-by: Naga Chumbalkar <nagananda.chumbalkar@hp.com>
Reviewed-by: Bjorn Helgaas <bjorn.helgaas@hp.com>
Cc: <stable@kernel.org> # .3x - good for debugging, please apply as far back as it applies cleanly
LKML-Reference: <20110214224423.2182.13929.sendpatchset@nchumbalkar.americas.hpqcorp.net>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
We use it in non __cpuinit code now too so drop marker.
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
LKML-Reference: <20110211171754.GA21047@aftab>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
ea53069231 made a CPU use monitor/mwait
when offline. This is not the optimal choice for AMD wrt to powersavings
and we'd prefer our cores to halt (i.e. enter C1) instead. For this, the
same selection whether to use monitor/mwait has to be used as when we
select the idle routine for the machine.
With this patch, offlining cores 1-5 on a X6 machine allows core0 to
boost again.
[ hpa: putting this in urgent since it is a (power) regression fix ]
Reported-by: Andreas Herrmann <andreas.herrmann3@amd.com>
Cc: stable@kernel.org # 37.x
Cc: H. Peter Anvin <hpa@linux.intel.com>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Len Brown <lenb@kernel.org>
Cc: Venkatesh Pallipadi <venki@google.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.hl>
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
LKML-Reference: <1295534572-10730-1-git-send-email-bp@amd64.org>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Currently intel_idle and acpi_idle driver show double cpu_idle "exit idle"
events -> this patch fixes it and makes cpu_idle events throwing less complex.
It also introduces cpu_idle events for all architectures which use
the cpuidle subsystem, namely:
- arch/arm/mach-at91/cpuidle.c
- arch/arm/mach-davinci/cpuidle.c
- arch/arm/mach-kirkwood/cpuidle.c
- arch/arm/mach-omap2/cpuidle34xx.c
- arch/drivers/acpi/processor_idle.c (for all cases, not only mwait)
- arch/x86/kernel/process.c (did throw events before, but was a mess)
- drivers/idle/intel_idle.c (did throw events before)
Convention should be:
Fire cpu_idle events inside the current pm_idle function (not somewhere
down the the callee tree) to keep things easy.
Current possible pm_idle functions in X86:
c1e_idle, poll_idle, cpuidle_idle_call, mwait_idle, default_idle
-> this is really easy is now.
This affects userspace:
The type field of the cpu_idle power event can now direclty get
mapped to:
/sys/devices/system/cpu/cpuX/cpuidle/stateX/{name,desc,usage,time,...}
instead of throwing very CPU/mwait specific values.
This change is not visible for the intel_idle driver.
For the acpi_idle driver it should only be visible if the vendor
misses out C-states in his BIOS.
Another (perf timechart) patch reads out cpuidle info of cpu_idle
events from:
/sys/.../cpuidle/stateX/*, then the cpuidle events are mapped
to the correct C-/cpuidle state again, even if e.g. vendors miss
out C-states in their BIOS and for example only export C1 and C3.
-> everything is fine.
Signed-off-by: Thomas Renninger <trenn@suse.de>
CC: Robert Schoene <robert.schoene@tu-dresden.de>
CC: Jean Pihet <j-pihet@ti.com>
CC: Arjan van de Ven <arjan@linux.intel.com>
CC: Ingo Molnar <mingo@elte.hu>
CC: Frederic Weisbecker <fweisbec@gmail.com>
CC: linux-pm@lists.linux-foundation.org
CC: linux-acpi@vger.kernel.org
CC: linux-kernel@vger.kernel.org
CC: linux-perf-users@vger.kernel.org
CC: linux-omap@vger.kernel.org
Signed-off-by: Len Brown <len.brown@intel.com>