Previously, the guest_fpu field was embedded in the kvm_vcpu_arch
struct. Unfortunately, the field is quite large, (e.g., 4352 bytes on my
current setup). This bloats the kvm_vcpu_arch struct for x86 into an
order 3 memory allocation, which can become a problem on overcommitted
machines. Thus, this patch moves the fpu state outside of the
kvm_vcpu_arch struct.
With this patch applied, the kvm_vcpu_arch struct is reduced to 15168
bytes for vmx on my setup when building the kernel with kvmconfig.
Suggested-by: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Marc Orr <marcorr@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Previously, x86's instantiation of 'struct kvm_vcpu_arch' added an fpu
field to save/restore fpu-related architectural state, which will differ
from kvm's fpu state. However, this is redundant to the 'struct fpu'
field, called fpu, embedded in the task struct, via the thread field.
Thus, this patch removes the user_fpu field from the kvm_vcpu_arch
struct and replaces it with the task struct's fpu field.
This change is significant because the fpu struct is actually quite
large. For example, on the system used to develop this patch, this
change reduces the size of the vcpu_vmx struct from 23680 bytes down to
19520 bytes, when building the kernel with kvmconfig. This reduction in
the size of the vcpu_vmx struct moves us closer to being able to
allocate the struct at order 2, rather than order 3.
Suggested-by: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Marc Orr <marcorr@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
.. to improve readability and maintainability, and to align the code as per
the layout of the checks in chapter "VM Entries" in Intel SDM vol 3C.
Signed-off-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Reviewed-by: Mihai Carabas <mihai.carabas@oracle.com>
Reviewed-by: Mark Kanda <mark.kanda@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
.. to improve readability and maintainability, and to align the code as per
the layout of the checks in chapter "VM Entries" in Intel SDM vol 3C.
Signed-off-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Reviewed-by: Mihai Carabas <mihai.carabas@oracle.com>
Reviewed-by: Mark Kanda <mark.kanda@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
.. to improve readability and maintainability, and to align the code as per
the layout of the checks in chapter "VM Entries" in Intel SDM vol 3C.
Signed-off-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Reviewed-by: Mihai Carabas <mihai.carabas@oracle.com>
Reviewed-by: Mark Kanda <mark.kanda@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
.. to improve readability and maintainability, and to align the code as per
the layout of the checks in chapter "VM Entries" in Intel SDM vol 3C.
Signed-off-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Reviewed-by: Mihai Carabas <mihai.carabas@oracle.com>
Reviewed-by: Mark Kanda <mark.kanda@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Passing the enum and doing an indirect lookup is silly when we can
simply pass the field directly. Remove the "fast path" code in
nested_vmx_check_msr_switch_controls() as it's now nothing more than a
redundant check.
Remove the debug message rather than continue passing the enum for the
address field. Having debug messages for the MSRs themselves is useful
as MSR legality is a huge space, whereas messing up a physical address
means the VMM is fundamentally broken.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
.. to improve readability and maintainability, and to align the code as per
the layout of the checks in chapter "VM Entries" in Intel SDM vol 3C.
Signed-off-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Reviewed-by: Mihai Carabas <mihai.carabas@oracle.com>
Reviewed-by: Mark Kanda <mark.kanda@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
.. as they are used only in nested vmx context.
Signed-off-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Reviewed-by: Liran Alon <liran.alon@oracle.com>
Reviewed-by: Mihai Carabas <mihai.carabas@oracle.com>
Reviewed-by: Mark Kanda <mark.kanda@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This patch is to initialize ept_pointer to INVALID_PAGE and check it
before flushing ept tlb. If ept_pointer is invalid, bypass the flush
request.
Signed-off-by: Lan Tianyu <Tianyu.Lan@microsoft.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
According to section "VM-entry Failures During or After Loading Guest State"
in Intel SDM vol 3C,
"No MSRs are saved into the VM-exit MSR-store area."
when bit 31 of the exit reason is set.
Reported-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Suggested-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Reviewed-by: Darren Kenny <darren.kenny@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If userspace has provided a different value for this MSR (e.g with the
turbo bits set), the userspace-provided value should survive a vCPU
reset. For backwards compatibility, MSR_PLATFORM_INFO is initialized
in kvm_arch_vcpu_setup.
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Drew Schmitt <dasch@google.com>
Cc: Abhiroop Dabral <adabral@paloaltonetworks.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This patch adds Intel "Xeon CPU E3-1220 V2", with CPUID.01H.EAX=0x000306A8,
into the list of known broken CPUs which fail to support VMX preemption
timer. This bug was found while running the APIC timer test of
kvm-unit-test on this specific CPU, even though the errata info can't be
located in the public domain for this CPU.
Signed-off-by: Wei Huang <wei@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Months ago, we have added code to allow direct access to MSR_IA32_SPEC_CTRL
to the guest, which makes STIBP available to guests. This was implemented
by commits d28b387fb7 ("KVM/VMX: Allow direct access to
MSR_IA32_SPEC_CTRL") and b2ac58f905 ("KVM/SVM: Allow direct access to
MSR_IA32_SPEC_CTRL").
However, we never updated GET_SUPPORTED_CPUID to let userspace know that
STIBP can be enabled in CPUID. Fix that by updating
kvm_cpuid_8000_0008_ebx_x86_features and kvm_cpuid_7_0_edx_x86_features.
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Turns out we over-engineered Direct Mode for stimers a bit: unlike
traditional stimers where we may want to try to re-inject the message upon
EOI, Direct Mode stimers just set the irq in APIC and kvm_apic_set_irq()
fails only when APIC is disabled (see APIC_DM_FIXED case in
__apic_accept_irq()). Remove the redundant part.
Suggested-by: Roman Kagan <rkagan@virtuozzo.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
stimers_pending optimization only helps us to avoid multiple
kvm_make_request() calls. This doesn't happen very often and these
calls are very cheap in the first place, remove open-coded version of
stimer_mark_pending() from kvm_hv_notify_acked_sint().
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Roman Kagan <rkagan@virtuozzo.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Turns out Hyper-V on KVM (as of 2016) will only use synthetic timers
if direct mode is available. With direct mode we notify the guest by
asserting APIC irq instead of sending a SynIC message.
The implementation uses existing vec_bitmap for letting lapic code
know that we're interested in the particular IRQ's EOI request. We assume
that the same APIC irq won't be used by the guest for both direct mode
stimer and as sint source (especially with AutoEOI semantics). It is
unclear how things should be handled if that's not true.
Direct mode is also somewhat less expensive; in my testing
stimer_send_msg() takes not less than 1500 cpu cycles and
stimer_notify_direct() can usually be done in 300-400. WS2016 without
Hyper-V, however, always sticks to non-direct version.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Roman Kagan <rkagan@virtuozzo.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
As a preparation to implementing Direct Mode for Hyper-V synthetic
timers switch to using stimer config definition from hyperv-tlfs.h.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
We implement Hyper-V SynIC and synthetic timers in KVM too so there's some
room for code sharing.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Michael Kelley <mikelley@microsoft.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a simple (and stupid) hyperv_cpuid test: check that we got the
expected number of entries with and without Enlightened VMCS enabled
and that all currently reserved fields are zeroed.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In case we want to test failing ioctls we need an option to not
fail. Following _vcpu_run() precedent implement _vcpu_ioctl().
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
With every new Hyper-V Enlightenment we implement we're forced to add a
KVM_CAP_HYPERV_* capability. While this approach works it is fairly
inconvenient: the majority of the enlightenments we do have corresponding
CPUID feature bit(s) and userspace has to know this anyways to be able to
expose the feature to the guest.
Add KVM_GET_SUPPORTED_HV_CPUID ioctl (backed by KVM_CAP_HYPERV_CPUID, "one
cap to rule them all!") returning all Hyper-V CPUID feature leaves.
Using the existing KVM_GET_SUPPORTED_CPUID doesn't seem to be possible:
Hyper-V CPUID feature leaves intersect with KVM's (e.g. 0x40000000,
0x40000001) and we would probably confuse userspace in case we decide to
return these twice.
KVM_CAP_HYPERV_CPUID's number is interim: we're intended to drop
KVM_CAP_HYPERV_STIMER_DIRECT and use its number instead.
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The upcoming KVM_GET_SUPPORTED_HV_CPUID ioctl will need to return
Enlightened VMCS version in HYPERV_CPUID_NESTED_FEATURES.EAX when
it was enabled.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
BIT(13) in HYPERV_CPUID_FEATURES.EBX is described as "ConfigureProfiler" in
TLFS v4.0 but starting 5.0 it is replaced with 'Reserved'. As we don't
currently us it in kernel it can just be dropped.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Michael Kelley <mikelley@microsoft.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
hyperv-tlfs.h is a bit messy: CPUID feature bits are not always sorted,
it's hard to get which CPUID they belong to, some items are duplicated
(e.g. HV_X64_MSR_CRASH_CTL_NOTIFY/HV_CRASH_CTL_CRASH_NOTIFY).
Do some housekeeping work. While on it, replace all (1 << X) with BIT(X)
macro.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Michael Kelley <mikelley@microsoft.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The TLFS structures are used for hypervisor-guest communication and must
exactly meet the specification.
Compilers can add alignment padding to structures or reorder struct members
for randomization and optimization, which would break the hypervisor ABI.
Mark the structures as packed to prevent this. 'struct hv_vp_assist_page'
and 'struct hv_enlightened_vmcs' need to be properly padded to support the
change.
Suggested-by: Nadav Amit <nadav.amit@gmail.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Nadav Amit <nadav.amit@gmail.com>
Reviewed-by: Michael Kelley <mikelley@microsoft.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The SynIC message delivery protocol allows the message originator to
request, should the message slot be busy, to be notified when it's free.
However, this is unnecessary and even undesirable for messages generated
by SynIC timers in periodic mode: if the period is short enough compared
to the time the guest spends in the timer interrupt handler, so the
timer ticks start piling up, the excessive interactions due to this
notification and retried message delivery only makes the things worse.
[This was observed, in particular, with Windows L2 guests setting
(temporarily) the periodic timer to 2 kHz, and spending hundreds of
microseconds in the timer interrupt handler due to several L2->L1 exits;
under some load in L0 this could exceed 500 us so the timer ticks
started to pile up and the guest livelocked.]
Relieve the situation somewhat by not retrying message delivery for
periodic SynIC timers. This appears to remain within the "lazy" lost
ticks policy for SynIC timers as implemented in KVM.
Note that it doesn't solve the fundamental problem of livelocking the
guest with a periodic timer whose period is smaller than the time needed
to process a tick, but it makes it a bit less likely to be triggered.
Signed-off-by: Roman Kagan <rkagan@virtuozzo.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
SynIC message delivery is somewhat overengineered: it pretends to follow
the ordering rules when grabbing the message slot, using atomic
operations and all that, but does it incorrectly and unnecessarily.
The correct order would be to first set .msg_pending, then atomically
replace .message_type if it was zero, and then clear .msg_pending if
the previous step was successful. But this all is done in vcpu context
so the whole update looks atomic to the guest (it's assumed to only
access the message page from this cpu), and therefore can be done in
whatever order is most convenient (and is also the reason why the
incorrect order didn't trigger any bugs so far).
While at this, also switch to kvm_vcpu_{read,write}_guest_page, and drop
the no longer needed synic_clear_sint_msg_pending.
Signed-off-by: Roman Kagan <rkagan@virtuozzo.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In the previous code, the variable apic_sw_disabled influences
recalculate_apic_map. But in "KVM: x86: simplify kvm_apic_map"
(commit: 3b5a5ffa92),
the access to apic_sw_disabled in recalculate_apic_map has been
deleted.
Signed-off-by: Peng Hao <peng.hao2@zte.com.cn>
Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Like IA32_STAR, IA32_LSTAR and IA32_FMASK only need to contain guest
values on VM-entry when the guest is in long mode and EFER.SCE is set.
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Peter Shier <pshier@google.com>
Reviewed-by: Marc Orr <marcorr@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
SYSCALL raises #UD in compatibility mode on Intel CPUs, so it's
pointless to load the guest's IA32_CSTAR value into the hardware MSR.
IA32_CSTAR still provides 48 bits of storage on Intel CPUs that have
CPUID.80000001:EDX.LM[bit 29] set, so we cannot remove it from the
vmx_msr_index[] array.
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Peter Shier <pshier@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a comment explaining why MSR_STAR must be included in
vmx_msr_index[] even for i386 builds.
The elided comment has not been relevant since move_msr_up() was
introduced in commit a75beee6e4 ("KVM: VMX: Avoid saving and
restoring msrs on lightweight vmexit").
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Peter Shier <pshier@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
RDTSCP is supported in legacy mode as well as long mode. The
IA32_TSC_AUX MSR should be set to the correct guest value before
entering any guest that supports RDTSCP.
Fixes: 4e47c7a6d7 ("KVM: VMX: Add instruction rdtscp support for guest")
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Peter Shier <pshier@google.com>
Reviewed-by: Marc Orr <marcorr@google.com>
Reviewed-by: Liran Alon <liran.alon@oracle.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
From a functional perspective, this is (supposed to be) a straight
copy-paste of code. Code was moved piecemeal to nested.c as not all
code that could/should be moved was obviously nested-only. The nested
code was then re-ordered as needed to compile, i.e. stats may not show
this is being a "pure" move despite there not being any intended changes
in functionality.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Exposing only the function allows @nested, i.e. the module param, to be
statically defined in vmx.c, ensuring we aren't unnecessarily checking
said variable in the nested code. nested_vmx_allowed() is exposed due
to the need to verify nested support in vmx_{get,set}_nested_state().
The downside is that nested_vmx_allowed() likely won't be inlined in
vmx_{get,set}_nested_state(), but that should be a non-issue as they're
not a hot path. Keeping vmx_{get,set}_nested_state() in vmx.c isn't a
viable option as they need access to several nested-only functions.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
...as they're used directly by the nested code. This will allow
moving the bulk of the nested code out of vmx.c without concurrent
changes to vmx.h.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Exposed vmx_msr_index, vmx_return and host_efer via vmx.h so that the
nested code can be moved out of vmx.c.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
...so that the function doesn't need to be created when moving the
nested code out of vmx.c.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
...so that it doesn't need access to @nested. The only case where the
provided struct isn't already zeroed is the call from vmx_create_vcpu()
as setup_vmcs_config() zeroes the struct in the other use cases. This
will allow @nested to be statically defined in vmx.c, i.e. this removes
the last direct reference from nested code.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
...in nested-specific code so that they can eventually be moved out of
vmx.c, e.g. into nested.c.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
...so that future patches can reference e.g. @kvm_vmx_exit_handlers
without having to simultaneously move a big chunk of code. Speaking
from experience, resolving merge conflicts is an absolute nightmare
without pre-moving the code.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
...so that it can conditionally set by the VMX code, i.e. iff @nested is
true. This will in turn allow it to be moved out of vmx.c and into a
nested-specified file.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Eventually this will allow us to move the nested VMX code out of vmx.c.
Note that this also effectively wraps @enable_shadow_vmcs with @nested
so that it too can be moved out of vmx.c.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
VMX has a few hundred lines of code just to wrap various VMX specific
instructions, e.g. VMWREAD, INVVPID, etc... Move them to a dedicated
header so it's easier to find/isolate the boilerplate.
With this change, more inlines can be moved from vmx.c to vmx.h.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The header, evmcs.h, already exists and contains a fair amount of code,
but there are a few pieces in vmx.c that can be moved verbatim. In
addition, move an array definition to evmcs.c to prepare for multiple
consumers of evmcs.h.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
vmcs12 is the KVM-defined struct used to track a nested VMCS, e.g. a
VMCS created by L1 for L2.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This isn't intended to be a pure reflection of hardware, e.g. struct
loaded_vmcs and struct vmcs_host_state are KVM-defined constructs.
Similar to capabilities.h, this is a standalone file to avoid circular
dependencies between yet-to-be-created vmx.h and nested.h files.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Expose the variables associated with various module params that are
needed by the nested VMX code. There is no ulterior logic for what
variables are/aren't exposed, this is purely "what's needed by the
nested code".
Note that @nested is intentionally not exposed.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>