Commit Graph

11836 Commits

Author SHA1 Message Date
Linus Torvalds a0725ab0c7 Merge branch 'for-4.14/block' of git://git.kernel.dk/linux-block
Pull block layer updates from Jens Axboe:
 "This is the first pull request for 4.14, containing most of the code
  changes. It's a quiet series this round, which I think we needed after
  the churn of the last few series. This contains:

   - Fix for a registration race in loop, from Anton Volkov.

   - Overflow complaint fix from Arnd for DAC960.

   - Series of drbd changes from the usual suspects.

   - Conversion of the stec/skd driver to blk-mq. From Bart.

   - A few BFQ improvements/fixes from Paolo.

   - CFQ improvement from Ritesh, allowing idling for group idle.

   - A few fixes found by Dan's smatch, courtesy of Dan.

   - A warning fixup for a race between changing the IO scheduler and
     device remova. From David Jeffery.

   - A few nbd fixes from Josef.

   - Support for cgroup info in blktrace, from Shaohua.

   - Also from Shaohua, new features in the null_blk driver to allow it
     to actually hold data, among other things.

   - Various corner cases and error handling fixes from Weiping Zhang.

   - Improvements to the IO stats tracking for blk-mq from me. Can
     drastically improve performance for fast devices and/or big
     machines.

   - Series from Christoph removing bi_bdev as being needed for IO
     submission, in preparation for nvme multipathing code.

   - Series from Bart, including various cleanups and fixes for switch
     fall through case complaints"

* 'for-4.14/block' of git://git.kernel.dk/linux-block: (162 commits)
  kernfs: checking for IS_ERR() instead of NULL
  drbd: remove BIOSET_NEED_RESCUER flag from drbd_{md_,}io_bio_set
  drbd: Fix allyesconfig build, fix recent commit
  drbd: switch from kmalloc() to kmalloc_array()
  drbd: abort drbd_start_resync if there is no connection
  drbd: move global variables to drbd namespace and make some static
  drbd: rename "usermode_helper" to "drbd_usermode_helper"
  drbd: fix race between handshake and admin disconnect/down
  drbd: fix potential deadlock when trying to detach during handshake
  drbd: A single dot should be put into a sequence.
  drbd: fix rmmod cleanup, remove _all_ debugfs entries
  drbd: Use setup_timer() instead of init_timer() to simplify the code.
  drbd: fix potential get_ldev/put_ldev refcount imbalance during attach
  drbd: new disk-option disable-write-same
  drbd: Fix resource role for newly created resources in events2
  drbd: mark symbols static where possible
  drbd: Send P_NEG_ACK upon write error in protocol != C
  drbd: add explicit plugging when submitting batches
  drbd: change list_for_each_safe to while(list_first_entry_or_null)
  drbd: introduce drbd_recv_header_maybe_unplug
  ...
2017-09-07 11:59:42 -07:00
Linus Torvalds bac65d9d87 powerpc updates for 4.14
Nothing really major this release, despite quite a lot of activity. Just lots of
 things all over the place.
 
 Some things of note include:
 
  - Access via perf to a new type of PMU (IMC) on Power9, which can count both
    core events as well as nest unit events (Memory controller etc).
 
  - Optimisations to the radix MMU TLB flushing, mostly to avoid unnecessary Page
    Walk Cache (PWC) flushes when the structure of the tree is not changing.
 
  - Reworks/cleanups of do_page_fault() to modernise it and bring it closer to
    other architectures where possible.
 
  - Rework of our page table walking so that THP updates only need to send IPIs
    to CPUs where the affected mm has run, rather than all CPUs.
 
  - The size of our vmalloc area is increased to 56T on 64-bit hash MMU systems.
    This avoids problems with the percpu allocator on systems with very sparse
    NUMA layouts.
 
  - STRICT_KERNEL_RWX support on PPC32.
 
  - A new sched domain topology for Power9, to capture the fact that pairs of
    cores may share an L2 cache.
 
  - Power9 support for VAS, which is a new mechanism for accessing coprocessors,
    and initial support for using it with the NX compression accelerator.
 
  - Major work on the instruction emulation support, adding support for many new
    instructions, and reworking it so it can be used to implement the emulation
    needed to fixup alignment faults.
 
  - Support for guests under PowerVM to use the Power9 XIVE interrupt controller.
 
 And probably that many things again that are almost as interesting, but I had to
 keep the list short. Plus the usual fixes and cleanups as always.
 
 Thanks to:
   Alexey Kardashevskiy, Alistair Popple, Andreas Schwab, Aneesh Kumar K.V, Anju
   T Sudhakar, Arvind Yadav, Balbir Singh, Benjamin Herrenschmidt, Bhumika Goyal,
   Breno Leitao, Bryant G. Ly, Christophe Leroy, Cédric Le Goater, Dan Carpenter,
   Dou Liyang, Frederic Barrat, Gautham R. Shenoy, Geliang Tang, Geoff Levand,
   Hannes Reinecke, Haren Myneni, Ivan Mikhaylov, John Allen, Julia Lawall, LABBE
   Corentin, Laurentiu Tudor, Madhavan Srinivasan, Markus Elfring, Masahiro
   Yamada, Matt Brown, Michael Neuling, Murilo Opsfelder Araujo, Nathan Fontenot,
   Naveen N. Rao, Nicholas Piggin, Oliver O'Halloran, Paul Mackerras, Rashmica
   Gupta, Rob Herring, Rui Teng, Sam Bobroff, Santosh Sivaraj, Scott Wood,
   Shilpasri G Bhat, Sukadev Bhattiprolu, Suraj Jitindar Singh, Tobin C. Harding,
   Victor Aoqui.
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQIcBAABAgAGBQJZr83SAAoJEFHr6jzI4aWA6pUP/3CEaj2bSxNzWIwidqyYjuoS
 O1moEsP0oYH7eBEWVHalYxvo0QPIIAhbFPaFyrOrgtfDH01Szwu9LcCALGb8orC5
 Hg3IY8mpNG3Q1T8wEtTa56Ik4b5ZFty35S5+X9qLNSFoDUqSvGlSsLzhPNN7f2tl
 XFm2hWqd8wXCwDsuVSFBCF61M3SAm+g6NMVNJ+VL2KIDCwBrOZLhKDPRoxLTAuMa
 jjSdjVIozWyXjUrBFi8HVcoOWLxcT1HsNF0tRs51LwY/+Mlj2jAtFtsx+a06HZa6
 f2p/Kcp/MEispSTk064Ap9cC1seXWI18zwZKpCUFqu0Ec2yTAiGdjOWDyYQldIp+
 ttVPSHQ01YrVKwDFTtM9CiA0EET6fVPhWgAPkPfvH5TvtKwGkNdy0b+nQLuWrYip
 BUmOXmjdIG3nujCzA9sv6/uNNhjhj2y+HWwuV7Qo002VFkhgZFL67u2SSUQLpYPj
 PxdkY8pPVq+O+in94oDV3c36dYFF6+g6A6505Vn6eKUm/TLpszRFGkS3bKKA5vtn
 74FR+guV/5RwYJcdZbfm04DgAocl7AfUDxpwRxibt6KtAK2VZKQuw4ugUTgYEd7W
 mL2+AMmPKuajWXAMTHjCZPbUp9gFNyYyBQTFfGVX/XLiM8erKBnGfoa1/KzUJkhr
 fVZLYIO/gzl34PiTIfgD
 =UJtt
 -----END PGP SIGNATURE-----

Merge tag 'powerpc-4.14-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux

Pull powerpc updates from Michael Ellerman:
 "Nothing really major this release, despite quite a lot of activity.
  Just lots of things all over the place.

  Some things of note include:

   - Access via perf to a new type of PMU (IMC) on Power9, which can
     count both core events as well as nest unit events (Memory
     controller etc).

   - Optimisations to the radix MMU TLB flushing, mostly to avoid
     unnecessary Page Walk Cache (PWC) flushes when the structure of the
     tree is not changing.

   - Reworks/cleanups of do_page_fault() to modernise it and bring it
     closer to other architectures where possible.

   - Rework of our page table walking so that THP updates only need to
     send IPIs to CPUs where the affected mm has run, rather than all
     CPUs.

   - The size of our vmalloc area is increased to 56T on 64-bit hash MMU
     systems. This avoids problems with the percpu allocator on systems
     with very sparse NUMA layouts.

   - STRICT_KERNEL_RWX support on PPC32.

   - A new sched domain topology for Power9, to capture the fact that
     pairs of cores may share an L2 cache.

   - Power9 support for VAS, which is a new mechanism for accessing
     coprocessors, and initial support for using it with the NX
     compression accelerator.

   - Major work on the instruction emulation support, adding support for
     many new instructions, and reworking it so it can be used to
     implement the emulation needed to fixup alignment faults.

   - Support for guests under PowerVM to use the Power9 XIVE interrupt
     controller.

  And probably that many things again that are almost as interesting,
  but I had to keep the list short. Plus the usual fixes and cleanups as
  always.

  Thanks to: Alexey Kardashevskiy, Alistair Popple, Andreas Schwab,
  Aneesh Kumar K.V, Anju T Sudhakar, Arvind Yadav, Balbir Singh,
  Benjamin Herrenschmidt, Bhumika Goyal, Breno Leitao, Bryant G. Ly,
  Christophe Leroy, Cédric Le Goater, Dan Carpenter, Dou Liyang,
  Frederic Barrat, Gautham R. Shenoy, Geliang Tang, Geoff Levand, Hannes
  Reinecke, Haren Myneni, Ivan Mikhaylov, John Allen, Julia Lawall,
  LABBE Corentin, Laurentiu Tudor, Madhavan Srinivasan, Markus Elfring,
  Masahiro Yamada, Matt Brown, Michael Neuling, Murilo Opsfelder Araujo,
  Nathan Fontenot, Naveen N. Rao, Nicholas Piggin, Oliver O'Halloran,
  Paul Mackerras, Rashmica Gupta, Rob Herring, Rui Teng, Sam Bobroff,
  Santosh Sivaraj, Scott Wood, Shilpasri G Bhat, Sukadev Bhattiprolu,
  Suraj Jitindar Singh, Tobin C. Harding, Victor Aoqui"

* tag 'powerpc-4.14-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (321 commits)
  powerpc/xive: Fix section __init warning
  powerpc: Fix kernel crash in emulation of vector loads and stores
  powerpc/xive: improve debugging macros
  powerpc/xive: add XIVE Exploitation Mode to CAS
  powerpc/xive: introduce H_INT_ESB hcall
  powerpc/xive: add the HW IRQ number under xive_irq_data
  powerpc/xive: introduce xive_esb_write()
  powerpc/xive: rename xive_poke_esb() in xive_esb_read()
  powerpc/xive: guest exploitation of the XIVE interrupt controller
  powerpc/xive: introduce a common routine xive_queue_page_alloc()
  powerpc/sstep: Avoid used uninitialized error
  axonram: Return directly after a failed kzalloc() in axon_ram_probe()
  axonram: Improve a size determination in axon_ram_probe()
  axonram: Delete an error message for a failed memory allocation in axon_ram_probe()
  powerpc/powernv/npu: Move tlb flush before launching ATSD
  powerpc/macintosh: constify wf_sensor_ops structures
  powerpc/iommu: Use permission-specific DEVICE_ATTR variants
  powerpc/eeh: Delete an error out of memory message at init time
  powerpc/mm: Use seq_putc() in two functions
  macintosh: Convert to using %pOF instead of full_name
  ...
2017-09-07 10:15:40 -07:00
Linus Torvalds 608c1d3c17 Merge branch 'for-4.14' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup
Pull cgroup updates from Tejun Heo:
 "Several notable changes this cycle:

   - Thread mode was merged. This will be used for cgroup2 support for
     CPU and possibly other controllers. Unfortunately, CPU controller
     cgroup2 support didn't make this pull request but most contentions
     have been resolved and the support is likely to be merged before
     the next merge window.

   - cgroup.stat now shows the number of descendant cgroups.

   - cpuset now can enable the easier-to-configure v2 behavior on v1
     hierarchy"

* 'for-4.14' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: (21 commits)
  cpuset: Allow v2 behavior in v1 cgroup
  cgroup: Add mount flag to enable cpuset to use v2 behavior in v1 cgroup
  cgroup: remove unneeded checks
  cgroup: misc changes
  cgroup: short-circuit cset_cgroup_from_root() on the default hierarchy
  cgroup: re-use the parent pointer in cgroup_destroy_locked()
  cgroup: add cgroup.stat interface with basic hierarchy stats
  cgroup: implement hierarchy limits
  cgroup: keep track of number of descent cgroups
  cgroup: add comment to cgroup_enable_threaded()
  cgroup: remove unnecessary empty check when enabling threaded mode
  cgroup: update debug controller to print out thread mode information
  cgroup: implement cgroup v2 thread support
  cgroup: implement CSS_TASK_ITER_THREADED
  cgroup: introduce cgroup->dom_cgrp and threaded css_set handling
  cgroup: add @flags to css_task_iter_start() and implement CSS_TASK_ITER_PROCS
  cgroup: reorganize cgroup.procs / task write path
  cgroup: replace css_set walking populated test with testing cgrp->nr_populated_csets
  cgroup: distinguish local and children populated states
  cgroup: remove now unused list_head @pending in cgroup_apply_cftypes()
  ...
2017-09-06 22:25:25 -07:00
Linus Torvalds a7cbfd05f4 Merge branch 'for-4.14' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu
Pull percpu updates from Tejun Heo:
 "A lot of changes for percpu this time around. percpu inherited the
  same area allocator from the original pre-virtual-address-mapped
  implementation. This was from the time when percpu allocator wasn't
  used all that much and the implementation was focused on simplicity,
  with the unfortunate computational complexity of O(number of areas
  allocated from the chunk) per alloc / free.

  With the increase in percpu usage, we're hitting cases where the lack
  of scalability is hurting. The most prominent one right now is bpf
  perpcu map creation / destruction which may allocate and free a lot of
  entries consecutively and it's likely that the problem will become
  more prominent in the future.

  To address the issue, Dennis replaced the area allocator with hinted
  bitmap allocator which is more consistent. While the new allocator
  does perform a bit worse in some cases, it outperforms the old
  allocator way more than an order of magnitude in other more common
  scenarios while staying mostly flat in CPU overhead and completely
  flat in memory consumption"

* 'for-4.14' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu: (27 commits)
  percpu: update header to contain bitmap allocator explanation.
  percpu: update pcpu_find_block_fit to use an iterator
  percpu: use metadata blocks to update the chunk contig hint
  percpu: update free path to take advantage of contig hints
  percpu: update alloc path to only scan if contig hints are broken
  percpu: keep track of the best offset for contig hints
  percpu: skip chunks if the alloc does not fit in the contig hint
  percpu: add first_bit to keep track of the first free in the bitmap
  percpu: introduce bitmap metadata blocks
  percpu: replace area map allocator with bitmap
  percpu: generalize bitmap (un)populated iterators
  percpu: increase minimum percpu allocation size and align first regions
  percpu: introduce nr_empty_pop_pages to help empty page accounting
  percpu: change the number of pages marked in the first_chunk pop bitmap
  percpu: combine percpu address checks
  percpu: modify base_addr to be region specific
  percpu: setup_first_chunk rename schunk/dchunk to chunk
  percpu: end chunk area maps page aligned for the populated bitmap
  percpu: unify allocation of schunk and dchunk
  percpu: setup_first_chunk remove dyn_size and consolidate logic
  ...
2017-09-06 21:33:12 -07:00
Linus Torvalds d34fc1adf0 Merge branch 'akpm' (patches from Andrew)
Merge updates from Andrew Morton:

 - various misc bits

 - DAX updates

 - OCFS2

 - most of MM

* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (119 commits)
  mm,fork: introduce MADV_WIPEONFORK
  x86,mpx: make mpx depend on x86-64 to free up VMA flag
  mm: add /proc/pid/smaps_rollup
  mm: hugetlb: clear target sub-page last when clearing huge page
  mm: oom: let oom_reap_task and exit_mmap run concurrently
  swap: choose swap device according to numa node
  mm: replace TIF_MEMDIE checks by tsk_is_oom_victim
  mm, oom: do not rely on TIF_MEMDIE for memory reserves access
  z3fold: use per-cpu unbuddied lists
  mm, swap: don't use VMA based swap readahead if HDD is used as swap
  mm, swap: add sysfs interface for VMA based swap readahead
  mm, swap: VMA based swap readahead
  mm, swap: fix swap readahead marking
  mm, swap: add swap readahead hit statistics
  mm/vmalloc.c: don't reinvent the wheel but use existing llist API
  mm/vmstat.c: fix wrong comment
  selftests/memfd: add memfd_create hugetlbfs selftest
  mm/shmem: add hugetlbfs support to memfd_create()
  mm, devm_memremap_pages: use multi-order radix for ZONE_DEVICE lookups
  mm/vmalloc.c: halve the number of comparisons performed in pcpu_get_vm_areas()
  ...
2017-09-06 20:49:49 -07:00
Rik van Riel d2cd9ede6e mm,fork: introduce MADV_WIPEONFORK
Introduce MADV_WIPEONFORK semantics, which result in a VMA being empty
in the child process after fork.  This differs from MADV_DONTFORK in one
important way.

If a child process accesses memory that was MADV_WIPEONFORK, it will get
zeroes.  The address ranges are still valid, they are just empty.

If a child process accesses memory that was MADV_DONTFORK, it will get a
segmentation fault, since those address ranges are no longer valid in
the child after fork.

Since MADV_DONTFORK also seems to be used to allow very large programs
to fork in systems with strict memory overcommit restrictions, changing
the semantics of MADV_DONTFORK might break existing programs.

MADV_WIPEONFORK only works on private, anonymous VMAs.

The use case is libraries that store or cache information, and want to
know that they need to regenerate it in the child process after fork.

Examples of this would be:
 - systemd/pulseaudio API checks (fail after fork) (replacing a getpid
   check, which is too slow without a PID cache)
 - PKCS#11 API reinitialization check (mandated by specification)
 - glibc's upcoming PRNG (reseed after fork)
 - OpenSSL PRNG (reseed after fork)

The security benefits of a forking server having a re-inialized PRNG in
every child process are pretty obvious.  However, due to libraries
having all kinds of internal state, and programs getting compiled with
many different versions of each library, it is unreasonable to expect
calling programs to re-initialize everything manually after fork.

A further complication is the proliferation of clone flags, programs
bypassing glibc's functions to call clone directly, and programs calling
unshare, causing the glibc pthread_atfork hook to not get called.

It would be better to have the kernel take care of this automatically.

The patch also adds MADV_KEEPONFORK, to undo the effects of a prior
MADV_WIPEONFORK.

This is similar to the OpenBSD minherit syscall with MAP_INHERIT_ZERO:

    https://man.openbsd.org/minherit.2

[akpm@linux-foundation.org: numerically order arch/parisc/include/uapi/asm/mman.h #defines]
Link: http://lkml.kernel.org/r/20170811212829.29186-3-riel@redhat.com
Signed-off-by: Rik van Riel <riel@redhat.com>
Reported-by: Florian Weimer <fweimer@redhat.com>
Reported-by: Colm MacCártaigh <colm@allcosts.net>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Helge Deller <deller@gmx.de>
Cc: Kees Cook <keescook@chromium.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Drewry <wad@chromium.org>
Cc: <linux-api@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 17:27:30 -07:00
Huang Ying c79b57e462 mm: hugetlb: clear target sub-page last when clearing huge page
Huge page helps to reduce TLB miss rate, but it has higher cache
footprint, sometimes this may cause some issue.  For example, when
clearing huge page on x86_64 platform, the cache footprint is 2M.  But
on a Xeon E5 v3 2699 CPU, there are 18 cores, 36 threads, and only 45M
LLC (last level cache).  That is, in average, there are 2.5M LLC for
each core and 1.25M LLC for each thread.

If the cache pressure is heavy when clearing the huge page, and we clear
the huge page from the begin to the end, it is possible that the begin
of huge page is evicted from the cache after we finishing clearing the
end of the huge page.  And it is possible for the application to access
the begin of the huge page after clearing the huge page.

To help the above situation, in this patch, when we clear a huge page,
the order to clear sub-pages is changed.  In quite some situation, we
can get the address that the application will access after we clear the
huge page, for example, in a page fault handler.  Instead of clearing
the huge page from begin to end, we will clear the sub-pages farthest
from the the sub-page to access firstly, and clear the sub-page to
access last.  This will make the sub-page to access most cache-hot and
sub-pages around it more cache-hot too.  If we cannot know the address
the application will access, the begin of the huge page is assumed to be
the the address the application will access.

With this patch, the throughput increases ~28.3% in vm-scalability
anon-w-seq test case with 72 processes on a 2 socket Xeon E5 v3 2699
system (36 cores, 72 threads).  The test case creates 72 processes, each
process mmap a big anonymous memory area and writes to it from the begin
to the end.  For each process, other processes could be seen as other
workload which generates heavy cache pressure.  At the same time, the
cache miss rate reduced from ~33.4% to ~31.7%, the IPC (instruction per
cycle) increased from 0.56 to 0.74, and the time spent in user space is
reduced ~7.9%

Christopher Lameter suggests to clear bytes inside a sub-page from end
to begin too.  But tests show no visible performance difference in the
tests.  May because the size of page is small compared with the cache
size.

Thanks Andi Kleen to propose to use address to access to determine the
order of sub-pages to clear.

The hugetlbfs access address could be improved, will do that in another
patch.

[ying.huang@intel.com: improve readability of clear_huge_page()]
  Link: http://lkml.kernel.org/r/20170830051842.1397-1-ying.huang@intel.com
Link: http://lkml.kernel.org/r/20170815014618.15842-1-ying.huang@intel.com
Suggested-by: Andi Kleen <andi.kleen@intel.com>
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Acked-by: Jan Kara <jack@suse.cz>
Reviewed-by: Michal Hocko <mhocko@suse.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Nadia Yvette Chambers <nyc@holomorphy.com>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Shaohua Li <shli@fb.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 17:27:30 -07:00
Andrea Arcangeli 2129258024 mm: oom: let oom_reap_task and exit_mmap run concurrently
This is purely required because exit_aio() may block and exit_mmap() may
never start, if the oom_reap_task cannot start running on a mm with
mm_users == 0.

At the same time if the OOM reaper doesn't wait at all for the memory of
the current OOM candidate to be freed by exit_mmap->unmap_vmas, it would
generate a spurious OOM kill.

If it wasn't because of the exit_aio or similar blocking functions in
the last mmput, it would be enough to change the oom_reap_task() in the
case it finds mm_users == 0, to wait for a timeout or to wait for
__mmput to set MMF_OOM_SKIP itself, but it's not just exit_mmap the
problem here so the concurrency of exit_mmap and oom_reap_task is
apparently warranted.

It's a non standard runtime, exit_mmap() runs without mmap_sem, and
oom_reap_task runs with the mmap_sem for reading as usual (kind of
MADV_DONTNEED).

The race between the two is solved with a combination of
tsk_is_oom_victim() (serialized by task_lock) and MMF_OOM_SKIP
(serialized by a dummy down_write/up_write cycle on the same lines of
the ksm_exit method).

If the oom_reap_task() may be running concurrently during exit_mmap,
exit_mmap will wait it to finish in down_write (before taking down mm
structures that would make the oom_reap_task fail with use after free).

If exit_mmap comes first, oom_reap_task() will skip the mm if
MMF_OOM_SKIP is already set and in turn all memory is already freed and
furthermore the mm data structures may already have been taken down by
free_pgtables.

[aarcange@redhat.com: incremental one liner]
  Link: http://lkml.kernel.org/r/20170726164319.GC29716@redhat.com
[rientjes@google.com: remove unused mmput_async]
  Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1708141733130.50317@chino.kir.corp.google.com
[aarcange@redhat.com: microoptimization]
  Link: http://lkml.kernel.org/r/20170817171240.GB5066@redhat.com
Link: http://lkml.kernel.org/r/20170726162912.GA29716@redhat.com
Fixes: 26db62f179 ("oom: keep mm of the killed task available")
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Reported-by: David Rientjes <rientjes@google.com>
Tested-by: David Rientjes <rientjes@google.com>
Reviewed-by: Michal Hocko <mhocko@suse.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 17:27:30 -07:00
Aaron Lu a2468cc9bf swap: choose swap device according to numa node
If the system has more than one swap device and swap device has the node
information, we can make use of this information to decide which swap
device to use in get_swap_pages() to get better performance.

The current code uses a priority based list, swap_avail_list, to decide
which swap device to use and if multiple swap devices share the same
priority, they are used round robin.  This patch changes the previous
single global swap_avail_list into a per-numa-node list, i.e.  for each
numa node, it sees its own priority based list of available swap
devices.  Swap device's priority can be promoted on its matching node's
swap_avail_list.

The current swap device's priority is set as: user can set a >=0 value,
or the system will pick one starting from -1 then downwards.  The
priority value in the swap_avail_list is the negated value of the swap
device's due to plist being sorted from low to high.  The new policy
doesn't change the semantics for priority >=0 cases, the previous
starting from -1 then downwards now becomes starting from -2 then
downwards and -1 is reserved as the promoted value.

Take 4-node EX machine as an example, suppose 4 swap devices are
available, each sit on a different node:
swapA on node 0
swapB on node 1
swapC on node 2
swapD on node 3

After they are all swapped on in the sequence of ABCD.

Current behaviour:
their priorities will be:
swapA: -1
swapB: -2
swapC: -3
swapD: -4
And their position in the global swap_avail_list will be:
swapA   -> swapB   -> swapC   -> swapD
prio:1     prio:2     prio:3     prio:4

New behaviour:
their priorities will be(note that -1 is skipped):
swapA: -2
swapB: -3
swapC: -4
swapD: -5
And their positions in the 4 swap_avail_lists[nid] will be:
swap_avail_lists[0]: /* node 0's available swap device list */
swapA   -> swapB   -> swapC   -> swapD
prio:1     prio:3     prio:4     prio:5
swap_avali_lists[1]: /* node 1's available swap device list */
swapB   -> swapA   -> swapC   -> swapD
prio:1     prio:2     prio:4     prio:5
swap_avail_lists[2]: /* node 2's available swap device list */
swapC   -> swapA   -> swapB   -> swapD
prio:1     prio:2     prio:3     prio:5
swap_avail_lists[3]: /* node 3's available swap device list */
swapD   -> swapA   -> swapB   -> swapC
prio:1     prio:2     prio:3     prio:4

To see the effect of the patch, a test that starts N process, each mmap
a region of anonymous memory and then continually write to it at random
position to trigger both swap in and out is used.

On a 2 node Skylake EP machine with 64GiB memory, two 170GB SSD drives
are used as swap devices with each attached to a different node, the
result is:

runtime=30m/processes=32/total test size=128G/each process mmap region=4G
kernel         throughput
vanilla        13306
auto-binding   15169 +14%

runtime=30m/processes=64/total test size=128G/each process mmap region=2G
kernel         throughput
vanilla        11885
auto-binding   14879 +25%

[aaron.lu@intel.com: v2]
  Link: http://lkml.kernel.org/r/20170814053130.GD2369@aaronlu.sh.intel.com
  Link: http://lkml.kernel.org/r/20170816024439.GA10925@aaronlu.sh.intel.com
[akpm@linux-foundation.org: use kmalloc_array()]
Link: http://lkml.kernel.org/r/20170814053130.GD2369@aaronlu.sh.intel.com
Link: http://lkml.kernel.org/r/20170816024439.GA10925@aaronlu.sh.intel.com
Signed-off-by: Aaron Lu <aaron.lu@intel.com>
Cc: "Chen, Tim C" <tim.c.chen@intel.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 17:27:30 -07:00
Michal Hocko da99ecf117 mm: replace TIF_MEMDIE checks by tsk_is_oom_victim
TIF_MEMDIE is set only to the tasks whick were either directly selected
by the OOM killer or passed through mark_oom_victim from the allocator
path.  tsk_is_oom_victim is more generic and allows to identify all
tasks (threads) which share the mm with the oom victim.

Please note that the freezer still needs to check TIF_MEMDIE because we
cannot thaw tasks which do not participage in oom_victims counting
otherwise a !TIF_MEMDIE task could interfere after oom_disbale returns.

Link: http://lkml.kernel.org/r/20170810075019.28998-3-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 17:27:30 -07:00
Michal Hocko cd04ae1e2d mm, oom: do not rely on TIF_MEMDIE for memory reserves access
For ages we have been relying on TIF_MEMDIE thread flag to mark OOM
victims and then, among other things, to give these threads full access
to memory reserves.  There are few shortcomings of this implementation,
though.

First of all and the most serious one is that the full access to memory
reserves is quite dangerous because we leave no safety room for the
system to operate and potentially do last emergency steps to move on.

Secondly this flag is per task_struct while the OOM killer operates on
mm_struct granularity so all processes sharing the given mm are killed.
Giving the full access to all these task_structs could lead to a quick
memory reserves depletion.  We have tried to reduce this risk by giving
TIF_MEMDIE only to the main thread and the currently allocating task but
that doesn't really solve this problem while it surely opens up a room
for corner cases - e.g.  GFP_NO{FS,IO} requests might loop inside the
allocator without access to memory reserves because a particular thread
was not the group leader.

Now that we have the oom reaper and that all oom victims are reapable
after 1b51e65eab ("oom, oom_reaper: allow to reap mm shared by the
kthreads") we can be more conservative and grant only partial access to
memory reserves because there are reasonable chances of the parallel
memory freeing.  We still want some access to reserves because we do not
want other consumers to eat up the victim's freed memory.  oom victims
will still contend with __GFP_HIGH users but those shouldn't be so
aggressive to starve oom victims completely.

Introduce ALLOC_OOM flag and give all tsk_is_oom_victim tasks access to
the half of the reserves.  This makes the access to reserves independent
on which task has passed through mark_oom_victim.  Also drop any usage
of TIF_MEMDIE from the page allocator proper and replace it by
tsk_is_oom_victim as well which will make page_alloc.c completely
TIF_MEMDIE free finally.

CONFIG_MMU=n doesn't have oom reaper so let's stick to the original
ALLOC_NO_WATERMARKS approach.

There is a demand to make the oom killer memcg aware which will imply
many tasks killed at once.  This change will allow such a usecase
without worrying about complete memory reserves depletion.

Link: http://lkml.kernel.org/r/20170810075019.28998-2-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 17:27:30 -07:00
Vitaly Wool d30561c56f z3fold: use per-cpu unbuddied lists
It's been noted that z3fold doesn't scale well when it's run in a large
number of threads on many cores, which can be easily reproduced with fio
'randrw' test with --numjobs=32.  E.g.  the result for 1 cluster (4 cores)
is:

Run status group 0 (all jobs):
   READ: io=244785MB, aggrb=496883KB/s, minb=15527KB/s, ...
  WRITE: io=246735MB, aggrb=500841KB/s, minb=15651KB/s, ...

While for 8 cores (2 clusters) the result is:

Run status group 0 (all jobs):
   READ: io=244785MB, aggrb=265942KB/s, minb=8310KB/s, ...
  WRITE: io=246735MB, aggrb=268060KB/s, minb=8376KB/s, ...

The bottleneck here is the pool lock which many threads become waiting
upon.  To reduce that spin lock contention, z3fold can operate only on
the lists local to the current CPU whenever possible.  Due to the nature
of z3fold unbuddied list handling (it only takes the first entry off the
list on a hot path), if the z3fold pool is big enough and balanced well
enough, limiting search to only local unbuddied list doesn't lead to a
significant compression ratio degrade (2.57x vs 2.65x in our
measurements).

This patch also introduces two worker threads: one for async in-page
object layout optimization and one for releasing freed pages.  This is
done to speed up z3fold_free() which is often on a hot path.

The fio results for 8-core case are now the following:

Run status group 0 (all jobs):
   READ: io=244785MB, aggrb=1568.3MB/s, minb=50182KB/s, ...
  WRITE: io=246735MB, aggrb=1580.8MB/s, minb=50582KB/s, ...

So we're in for almost 6x performance increase.

Link: http://lkml.kernel.org/r/20170806181443.f9b65018f8bde25ef990f9e8@gmail.com
Signed-off-by: Vitaly Wool <vitalywool@gmail.com>
Cc: Dan Streetman <ddstreet@ieee.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 17:27:30 -07:00
Huang Ying 81a0298bdf mm, swap: don't use VMA based swap readahead if HDD is used as swap
VMA based swap readahead will readahead the virtual pages that is
continuous in the virtual address space.  While the original swap
readahead will readahead the swap slots that is continuous in the swap
device.  Although VMA based swap readahead is more correct for the swap
slots to be readahead, it will trigger more small random readings, which
may cause the performance of HDD (hard disk) to degrade heavily, and may
finally exceed the benefit.

To avoid the issue, in this patch, if the HDD is used as swap, the VMA
based swap readahead will be disabled, and the original swap readahead
will be used instead.

Link: http://lkml.kernel.org/r/20170807054038.1843-6-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Cc: Tim Chen <tim.c.chen@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 17:27:30 -07:00
Huang Ying d9bfcfdc41 mm, swap: add sysfs interface for VMA based swap readahead
The sysfs interface to control the VMA based swap readahead is added as
follow,

/sys/kernel/mm/swap/vma_ra_enabled

Enable the VMA based swap readahead algorithm, or use the original
global swap readahead algorithm.

/sys/kernel/mm/swap/vma_ra_max_order

Set the max order of the readahead window size for the VMA based swap
readahead algorithm.

The corresponding ABI documentation is added too.

Link: http://lkml.kernel.org/r/20170807054038.1843-5-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Cc: Tim Chen <tim.c.chen@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 17:27:29 -07:00
Huang Ying ec560175c0 mm, swap: VMA based swap readahead
The swap readahead is an important mechanism to reduce the swap in
latency.  Although pure sequential memory access pattern isn't very
popular for anonymous memory, the space locality is still considered
valid.

In the original swap readahead implementation, the consecutive blocks in
swap device are readahead based on the global space locality estimation.
But the consecutive blocks in swap device just reflect the order of page
reclaiming, don't necessarily reflect the access pattern in virtual
memory.  And the different tasks in the system may have different access
patterns, which makes the global space locality estimation incorrect.

In this patch, when page fault occurs, the virtual pages near the fault
address will be readahead instead of the swap slots near the fault swap
slot in swap device.  This avoid to readahead the unrelated swap slots.
At the same time, the swap readahead is changed to work on per-VMA from
globally.  So that the different access patterns of the different VMAs
could be distinguished, and the different readahead policy could be
applied accordingly.  The original core readahead detection and scaling
algorithm is reused, because it is an effect algorithm to detect the
space locality.

The test and result is as follow,

Common test condition
=====================

Test Machine: Xeon E5 v3 (2 sockets, 72 threads, 32G RAM) Swap device:
NVMe disk

Micro-benchmark with combined access pattern
============================================

vm-scalability, sequential swap test case, 4 processes to eat 50G
virtual memory space, repeat the sequential memory writing until 300
seconds.  The first round writing will trigger swap out, the following
rounds will trigger sequential swap in and out.

At the same time, run vm-scalability random swap test case in
background, 8 processes to eat 30G virtual memory space, repeat the
random memory write until 300 seconds.  This will trigger random swap-in
in the background.

This is a combined workload with sequential and random memory accessing
at the same time.  The result (for sequential workload) is as follow,

			Base		Optimized
			----		---------
throughput		345413 KB/s	414029 KB/s (+19.9%)
latency.average		97.14 us	61.06 us (-37.1%)
latency.50th		2 us		1 us
latency.60th		2 us		1 us
latency.70th		98 us		2 us
latency.80th		160 us		2 us
latency.90th		260 us		217 us
latency.95th		346 us		369 us
latency.99th		1.34 ms		1.09 ms
ra_hit%			52.69%		99.98%

The original swap readahead algorithm is confused by the background
random access workload, so readahead hit rate is lower.  The VMA-base
readahead algorithm works much better.

Linpack
=======

The test memory size is bigger than RAM to trigger swapping.

			Base		Optimized
			----		---------
elapsed_time		393.49 s	329.88 s (-16.2%)
ra_hit%			86.21%		98.82%

The score of base and optimized kernel hasn't visible changes.  But the
elapsed time reduced and readahead hit rate improved, so the optimized
kernel runs better for startup and tear down stages.  And the absolute
value of readahead hit rate is high, shows that the space locality is
still valid in some practical workloads.

Link: http://lkml.kernel.org/r/20170807054038.1843-4-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Cc: Tim Chen <tim.c.chen@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 17:27:29 -07:00
Huang Ying c4fa63092f mm, swap: fix swap readahead marking
In the original implementation, it is possible that the existing pages
in the swap cache (not newly readahead) could be marked as the readahead
pages.  This will cause the statistics of swap readahead be wrong and
influence the swap readahead algorithm too.

This is fixed via marking a page as the readahead page only if it is
newly allocated and read from the disk.

When testing with linpack, after the fixing the swap readahead hit rate
increased from ~66% to ~86%.

Link: http://lkml.kernel.org/r/20170807054038.1843-3-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Cc: Tim Chen <tim.c.chen@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 17:27:29 -07:00
Huang Ying cbc65df240 mm, swap: add swap readahead hit statistics
Patch series "mm, swap: VMA based swap readahead", v4.

The swap readahead is an important mechanism to reduce the swap in
latency.  Although pure sequential memory access pattern isn't very
popular for anonymous memory, the space locality is still considered
valid.

In the original swap readahead implementation, the consecutive blocks in
swap device are readahead based on the global space locality estimation.
But the consecutive blocks in swap device just reflect the order of page
reclaiming, don't necessarily reflect the access pattern in virtual
memory space.  And the different tasks in the system may have different
access patterns, which makes the global space locality estimation
incorrect.

In this patchset, when page fault occurs, the virtual pages near the
fault address will be readahead instead of the swap slots near the fault
swap slot in swap device.  This avoid to readahead the unrelated swap
slots.  At the same time, the swap readahead is changed to work on
per-VMA from globally.  So that the different access patterns of the
different VMAs could be distinguished, and the different readahead
policy could be applied accordingly.  The original core readahead
detection and scaling algorithm is reused, because it is an effect
algorithm to detect the space locality.

In addition to the swap readahead changes, some new sysfs interface is
added to show the efficiency of the readahead algorithm and some other
swap statistics.

This new implementation will incur more small random read, on SSD, the
improved correctness of estimation and readahead target should beat the
potential increased overhead, this is also illustrated in the test
results below.  But on HDD, the overhead may beat the benefit, so the
original implementation will be used by default.

The test and result is as follow,

Common test condition
=====================

Test Machine: Xeon E5 v3 (2 sockets, 72 threads, 32G RAM)
Swap device: NVMe disk

Micro-benchmark with combined access pattern
============================================

vm-scalability, sequential swap test case, 4 processes to eat 50G
virtual memory space, repeat the sequential memory writing until 300
seconds.  The first round writing will trigger swap out, the following
rounds will trigger sequential swap in and out.

At the same time, run vm-scalability random swap test case in
background, 8 processes to eat 30G virtual memory space, repeat the
random memory write until 300 seconds.  This will trigger random swap-in
in the background.

This is a combined workload with sequential and random memory accessing
at the same time.  The result (for sequential workload) is as follow,

			Base		Optimized
			----		---------
throughput		345413 KB/s	414029 KB/s (+19.9%)
latency.average		97.14 us	61.06 us (-37.1%)
latency.50th		2 us		1 us
latency.60th		2 us		1 us
latency.70th		98 us		2 us
latency.80th		160 us		2 us
latency.90th		260 us		217 us
latency.95th		346 us		369 us
latency.99th		1.34 ms		1.09 ms
ra_hit%			52.69%		99.98%

The original swap readahead algorithm is confused by the background
random access workload, so readahead hit rate is lower.  The VMA-base
readahead algorithm works much better.

Linpack
=======

The test memory size is bigger than RAM to trigger swapping.

			Base		Optimized
			----		---------
elapsed_time		393.49 s	329.88 s (-16.2%)
ra_hit%			86.21%		98.82%

The score of base and optimized kernel hasn't visible changes.  But the
elapsed time reduced and readahead hit rate improved, so the optimized
kernel runs better for startup and tear down stages.  And the absolute
value of readahead hit rate is high, shows that the space locality is
still valid in some practical workloads.

This patch (of 5):

The statistics for total readahead pages and total readahead hits are
recorded and exported via the following sysfs interface.

/sys/kernel/mm/swap/ra_hits
/sys/kernel/mm/swap/ra_total

With them, the efficiency of the swap readahead could be measured, so
that the swap readahead algorithm and parameters could be tuned
accordingly.

[akpm@linux-foundation.org: don't display swap stats if CONFIG_SWAP=n]
Link: http://lkml.kernel.org/r/20170807054038.1843-2-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Cc: Tim Chen <tim.c.chen@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 17:27:29 -07:00
Byungchul Park 894e58c147 mm/vmalloc.c: don't reinvent the wheel but use existing llist API
Although llist provides proper APIs, they are not used.  Make them used.

Link: http://lkml.kernel.org/r/1502095374-16112-1-git-send-email-byungchul.park@lge.com
Signed-off-by: Byungchul Park <byungchul.park@lge.com>
Cc: zijun_hu <zijun_hu@htc.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 17:27:29 -07:00
SeongJae Park f113e64121 mm/vmstat.c: fix wrong comment
Comment for pagetypeinfo_showblockcount() is mistakenly duplicated from
pagetypeinfo_show_free()'s comment.  This commit fixes it.

Link: http://lkml.kernel.org/r/20170809185816.11244-1-sj38.park@gmail.com
Fixes: 467c996c1e ("Print out statistics in relation to fragmentation avoidance to /proc/pagetypeinfo")
Signed-off-by: SeongJae Park <sj38.park@gmail.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 17:27:29 -07:00
Mike Kravetz 749df87bd7 mm/shmem: add hugetlbfs support to memfd_create()
This patch came out of discussions in this e-mail thread:
  http://lkml.kernel.org/r/1499357846-7481-1-git-send-email-mike.kravetz%40oracle.com

The Oracle JVM team is developing a new garbage collection model.  This
new model requires multiple mappings of the same anonymous memory.  One
straight forward way to accomplish this is with memfd_create.  They can
use the returned fd to create multiple mappings of the same memory.

The JVM today has an option to use (static hugetlb) huge pages.  If this
option is specified, they would like to use the same garbage collection
model requiring multiple mappings to the same memory.  Using hugetlbfs,
it is possible to explicitly mount a filesystem and specify file paths
in order to get an fd that can be used for multiple mappings.  However,
this introduces additional system admin work and coordination.

Ideally they would like to get a hugetlbfs fd without requiring explicit
mounting of a filesystem.  Today, mmap and shmget can make use of
hugetlbfs without explicitly mounting a filesystem.  The patch adds this
functionality to memfd_create.

Add a new flag MFD_HUGETLB to memfd_create() that will specify the file
to be created resides in the hugetlbfs filesystem.  This is the generic
hugetlbfs filesystem not associated with any specific mount point.  As
with other system calls that request hugetlbfs backed pages, there is
the ability to encode huge page size in the flag arguments.

hugetlbfs does not support sealing operations, therefore specifying
MFD_ALLOW_SEALING with MFD_HUGETLB will result in EINVAL.

Of course, the memfd_man page would need updating if this type of
functionality moves forward.

Link: http://lkml.kernel.org/r/1502149672-7759-2-git-send-email-mike.kravetz@oracle.com
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 17:27:29 -07:00
Dan Williams ab1b597ee0 mm, devm_memremap_pages: use multi-order radix for ZONE_DEVICE lookups
devm_memremap_pages() records mapped ranges in pgmap_radix with an entry
per section's worth of memory (128MB).  The key for each of those
entries is a section number.

This leads to false positives when devm_memremap_pages() is passed a
section-unaligned range as lookups in the misalignment fail to return
NULL.  We can close this hole by using the pfn as the key for entries in
the tree.  The number of entries required to describe a remapped range
is reduced by leveraging multi-order entries.

In practice this approach usually yields just one entry in the tree if
the size and starting address are of the same power-of-2 alignment.
Previously we always needed nr_entries = mapping_size / 128MB.

Link: https://lists.01.org/pipermail/linux-nvdimm/2016-August/006666.html
Link: http://lkml.kernel.org/r/150215410565.39310.13767886055248249438.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Reported-by: Toshi Kani <toshi.kani@hpe.com>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 17:27:29 -07:00
Wei Yang c568da282b mm/vmalloc.c: halve the number of comparisons performed in pcpu_get_vm_areas()
In pcpu_get_vm_areas(), it checks each range is not overlapped.  To make
sure it is, only (N^2)/2 comparison is necessary, while current code
does N^2 times.  By starting from the next range, it achieves the goal
and the continue could be removed.

Also,

 - the overlap check of two ranges could be done with one clause

 - one typo in comment is fixed.

Link: http://lkml.kernel.org/r/20170803063822.48702-1-richard.weiyang@gmail.com
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 17:27:29 -07:00
Wen Yang 88d6ac40c1 mm/vmstat: fix divide error at __fragmentation_index
When order is -1 or too big, *1UL << order* will be 0, which will cause
a divide error.  Although it seems that all callers of
__fragmentation_index() will only do so with a valid order, the patch
can make it more robust.

Should prevent reoccurrences of
https://bugzilla.kernel.org/show_bug.cgi?id=196555

Link: http://lkml.kernel.org/r/1501751520-2598-1-git-send-email-wen.yang99@zte.com.cn
Signed-off-by: Wen Yang <wen.yang99@zte.com.cn>
Reviewed-by: Jiang Biao <jiang.biao2@zte.com.cn>
Suggested-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 17:27:29 -07:00
Michal Hocko 79b63f12ab mm, hugetlb: do not allocate non-migrateable gigantic pages from movable zones
alloc_gigantic_page doesn't consider movability of the gigantic hugetlb
when scanning eligible ranges for the allocation.  As 1GB hugetlb pages
are not movable currently this can break the movable zone assumption
that all allocations are migrateable and as such break memory hotplug.

Reorganize the code and use the standard zonelist allocations scheme
that we use for standard hugetbl pages.  htlb_alloc_mask will ensure
that only migratable hugetlb pages will ever see a movable zone.

Link: http://lkml.kernel.org/r/20170803083549.21407-1-mhocko@kernel.org
Fixes: 944d9fec8d ("hugetlb: add support for gigantic page allocation at runtime")
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 17:27:29 -07:00
Andrea Arcangeli 2376dd7ced userfaultfd: call userfaultfd_unmap_prep only if __split_vma succeeds
A __split_vma is not a worthy event to report, and it's definitely not a
unmap so it would be incorrect to report unmap for the whole region to
the userfaultfd manager if a __split_vma fails.

So only call userfaultfd_unmap_prep after the __vma_splitting is over
and do_munmap cannot fail anymore.

Also add unlikely because it's better to optimize for the vast majority
of apps that aren't using userfaultfd in a non cooperative way.  Ideally
we should also find a way to eliminate the branch entirely if
CONFIG_USERFAULTFD=n, but it would complicate things so stick to
unlikely for now.

Link: http://lkml.kernel.org/r/20170802165145.22628-5-aarcange@redhat.com
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com>
Cc: Alexey Perevalov <a.perevalov@samsung.com>
Cc: Maxime Coquelin <maxime.coquelin@redhat.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 17:27:29 -07:00
Michal Hocko c41f012ade mm: rename global_page_state to global_zone_page_state
global_page_state is error prone as a recent bug report pointed out [1].
It only returns proper values for zone based counters as the enum it
gets suggests.  We already have global_node_page_state so let's rename
global_page_state to global_zone_page_state to be more explicit here.
All existing users seems to be correct:

$ git grep "global_page_state(NR_" | sed 's@.*(\(NR_[A-Z_]*\)).*@\1@' | sort | uniq -c
      2 NR_BOUNCE
      2 NR_FREE_CMA_PAGES
     11 NR_FREE_PAGES
      1 NR_KERNEL_STACK_KB
      1 NR_MLOCK
      2 NR_PAGETABLE

This patch shouldn't introduce any functional change.

[1] http://lkml.kernel.org/r/201707260628.v6Q6SmaS030814@www262.sakura.ne.jp

Link: http://lkml.kernel.org/r/20170801134256.5400-2-hannes@cmpxchg.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Cc: Josef Bacik <josef@toxicpanda.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 17:27:29 -07:00
Mike Rapoport 8fb44e5403 userfaultfd: shmem: wire up shmem_mfill_zeropage_pte
For shmem VMAs we can use shmem_mfill_zeropage_pte for UFFDIO_ZEROPAGE

Link: http://lkml.kernel.org/r/1497939652-16528-6-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Pavel Emelyanov <xemul@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 17:27:28 -07:00
Mike Rapoport 3217d3c79b userfaultfd: mcopy_atomic: introduce mfill_atomic_pte helper
Shuffle the code a bit to improve readability.

Link: http://lkml.kernel.org/r/1497939652-16528-5-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Pavel Emelyanov <xemul@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 17:27:28 -07:00
Mike Rapoport 8d10396342 userfaultfd: shmem: add shmem_mfill_zeropage_pte for userfaultfd support
shmem_mfill_zeropage_pte is the low level routine that implements the
userfaultfd UFFDIO_ZEROPAGE command.  Since for shmem mappings zero
pages are always allocated and accounted, the new method is a slight
extension of the existing shmem_mcopy_atomic_pte.

Link: http://lkml.kernel.org/r/1497939652-16528-4-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Pavel Emelyanov <xemul@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 17:27:28 -07:00
Mike Rapoport 0f07969456 shmem: introduce shmem_inode_acct_block
The shmem_acct_block and the update of used_blocks are following one
another in all the places they are used.  Combine these two into a
helper function.

Link: http://lkml.kernel.org/r/1497939652-16528-3-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Pavel Emelyanov <xemul@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 17:27:28 -07:00
Mike Rapoport b1cc94ab2f shmem: shmem_charge: verify max_block is not exceeded before inode update
Patch series "userfaultfd: enable zeropage support for shmem".

These patches enable support for UFFDIO_ZEROPAGE for shared memory.

The first two patches are not strictly related to userfaultfd, they are
just minor refactoring to reduce amount of code duplication.

This patch (of 7):

Currently we update inode and shmem_inode_info before verifying that
used_blocks will not exceed max_blocks.  In case it will, we undo the
update.  Let's switch the order and move the verification of the blocks
count before the inode and shmem_inode_info update.

Link: http://lkml.kernel.org/r/1497939652-16528-2-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Pavel Emelyanov <xemul@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 17:27:28 -07:00
Huang Ying fe490cc0fe mm, THP, swap: add THP swapping out fallback counting
When swapping out THP (Transparent Huge Page), instead of swapping out
the THP as a whole, sometimes we have to fallback to split the THP into
normal pages before swapping, because no free swap clusters are
available, or cgroup limit is exceeded, etc.  To count the number of the
fallback, a new VM event THP_SWPOUT_FALLBACK is added, and counted when
we fallback to split the THP.

Link: http://lkml.kernel.org/r/20170724051840.2309-13-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Ross Zwisler <ross.zwisler@intel.com> [for brd.c, zram_drv.c, pmem.c]
Cc: Vishal L Verma <vishal.l.verma@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 17:27:28 -07:00
Huang Ying bd4c82c22c mm, THP, swap: delay splitting THP after swapped out
In this patch, splitting transparent huge page (THP) during swapping out
is delayed from after adding the THP into the swap cache to after
swapping out finishes.  After the patch, more operations for the
anonymous THP reclaiming, such as writing the THP to the swap device,
removing the THP from the swap cache could be batched.  So that the
performance of anonymous THP swapping out could be improved.

This is the second step for the THP swap support.  The plan is to delay
splitting the THP step by step and avoid splitting the THP finally.

With the patchset, the swap out throughput improves 42% (from about
5.81GB/s to about 8.25GB/s) in the vm-scalability swap-w-seq test case
with 16 processes.  At the same time, the IPI (reflect TLB flushing)
reduced about 78.9%.  The test is done on a Xeon E5 v3 system.  The swap
device used is a RAM simulated PMEM (persistent memory) device.  To test
the sequential swapping out, the test case creates 8 processes, which
sequentially allocate and write to the anonymous pages until the RAM and
part of the swap device is used up.

Link: http://lkml.kernel.org/r/20170724051840.2309-12-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Ross Zwisler <ross.zwisler@intel.com> [for brd.c, zram_drv.c, pmem.c]
Cc: Vishal L Verma <vishal.l.verma@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 17:27:28 -07:00
Huang Ying d6810d7300 memcg, THP, swap: make mem_cgroup_swapout() support THP
This patch makes mem_cgroup_swapout() works for the transparent huge
page (THP).  Which will move the memory cgroup charge from memory to
swap for a THP.

This will be used for the THP swap support.  Where a THP may be swapped
out as a whole to a set of (HPAGE_PMD_NR) continuous swap slots on the
swap device.

Link: http://lkml.kernel.org/r/20170724051840.2309-11-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Rik van Riel <riel@redhat.com>
Cc: Ross Zwisler <ross.zwisler@intel.com> [for brd.c, zram_drv.c, pmem.c]
Cc: Shaohua Li <shli@kernel.org>
Cc: Vishal L Verma <vishal.l.verma@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 17:27:28 -07:00
Huang Ying abe2895b76 memcg, THP, swap: avoid to duplicated charge THP in swap cache
For a THP (Transparent Huge Page), tail_page->mem_cgroup is NULL.  So to
check whether the page is charged already, we need to check the head
page.  This is not an issue before because it is impossible for a THP to
be in the swap cache before.  But after we add delaying splitting THP
after swapped out support, it is possible now.

Link: http://lkml.kernel.org/r/20170724051840.2309-10-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Rik van Riel <riel@redhat.com>
Cc: Ross Zwisler <ross.zwisler@intel.com> [for brd.c, zram_drv.c, pmem.c]
Cc: Shaohua Li <shli@kernel.org>
Cc: Vishal L Verma <vishal.l.verma@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 17:27:28 -07:00
Huang Ying 3e14a57b24 memcg, THP, swap: support move mem cgroup charge for THP swapped out
PTE mapped THP (Transparent Huge Page) will be ignored when moving
memory cgroup charge.  But for THP which is in the swap cache, the
memory cgroup charge for the swap of a tail-page may be moved in current
implementation.  That isn't correct, because the swap charge for all
sub-pages of a THP should be moved together.  Following the processing
of the PTE mapped THP, the mem cgroup charge moving for the swap entry
for a tail-page of a THP is ignored too.

Link: http://lkml.kernel.org/r/20170724051840.2309-9-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Rik van Riel <riel@redhat.com>
Cc: Ross Zwisler <ross.zwisler@intel.com> [for brd.c, zram_drv.c, pmem.c]
Cc: Shaohua Li <shli@kernel.org>
Cc: Vishal L Verma <vishal.l.verma@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 17:27:28 -07:00
Huang Ying 59807685a7 mm, THP, swap: support splitting THP for THP swap out
After adding swapping out support for THP (Transparent Huge Page), it is
possible that a THP in swap cache (partly swapped out) need to be split.
To split such a THP, the swap cluster backing the THP need to be split
too, that is, the CLUSTER_FLAG_HUGE flag need to be cleared for the swap
cluster.  The patch implemented this.

And because the THP swap writing needs the THP keeps as huge page during
writing.  The PageWriteback flag is checked before splitting.

Link: http://lkml.kernel.org/r/20170724051840.2309-8-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Ross Zwisler <ross.zwisler@intel.com> [for brd.c, zram_drv.c, pmem.c]
Cc: Vishal L Verma <vishal.l.verma@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 17:27:28 -07:00
Huang Ying 225311a464 mm: test code to write THP to swap device as a whole
To support delay splitting THP (Transparent Huge Page) after swapped
out, we need to enhance swap writing code to support to write a THP as a
whole.  This will improve swap write IO performance.

As Ming Lei <ming.lei@redhat.com> pointed out, this should be based on
multipage bvec support, which hasn't been merged yet.  So this patch is
only for testing the functionality of the other patches in the series.
And will be reimplemented after multipage bvec support is merged.

Link: http://lkml.kernel.org/r/20170724051840.2309-7-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Ross Zwisler <ross.zwisler@intel.com> [for brd.c, zram_drv.c, pmem.c]
Cc: Shaohua Li <shli@kernel.org>
Cc: Vishal L Verma <vishal.l.verma@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 17:27:28 -07:00
Huang Ying f0eea189e8 mm, THP, swap: don't allocate huge cluster for file backed swap device
It's hard to write a whole transparent huge page (THP) to a file backed
swap device during swapping out and the file backed swap device isn't
very popular.  So the huge cluster allocation for the file backed swap
device is disabled.

Link: http://lkml.kernel.org/r/20170724051840.2309-5-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Ross Zwisler <ross.zwisler@intel.com> [for brd.c, zram_drv.c, pmem.c]
Cc: Vishal L Verma <vishal.l.verma@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 17:27:27 -07:00
Huang Ying ba3c4ce6de mm, THP, swap: make reuse_swap_page() works for THP swapped out
After supporting to delay THP (Transparent Huge Page) splitting after
swapped out, it is possible that some page table mappings of the THP are
turned into swap entries.  So reuse_swap_page() need to check the swap
count in addition to the map count as before.  This patch done that.

In the huge PMD write protect fault handler, in addition to the page map
count, the swap count need to be checked too, so the page lock need to
be acquired too when calling reuse_swap_page() in addition to the page
table lock.

[ying.huang@intel.com: silence a compiler warning]
  Link: http://lkml.kernel.org/r/87bmnzizjy.fsf@yhuang-dev.intel.com
Link: http://lkml.kernel.org/r/20170724051840.2309-4-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Ross Zwisler <ross.zwisler@intel.com> [for brd.c, zram_drv.c, pmem.c]
Cc: Vishal L Verma <vishal.l.verma@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 17:27:27 -07:00
Huang Ying e07098294a mm, THP, swap: support to reclaim swap space for THP swapped out
The normal swap slot reclaiming can be done when the swap count reaches
SWAP_HAS_CACHE.  But for the swap slot which is backing a THP, all swap
slots backing one THP must be reclaimed together, because the swap slot
may be used again when the THP is swapped out again later.  So the swap
slots backing one THP can be reclaimed together when the swap count for
all swap slots for the THP reached SWAP_HAS_CACHE.  In the patch, the
functions to check whether the swap count for all swap slots backing one
THP reached SWAP_HAS_CACHE are implemented and used when checking
whether a swap slot can be reclaimed.

To make it easier to determine whether a swap slot is backing a THP, a
new swap cluster flag named CLUSTER_FLAG_HUGE is added to mark a swap
cluster which is backing a THP (Transparent Huge Page).  Because THP
swap in as a whole isn't supported now.  After deleting the THP from the
swap cache (for example, swapping out finished), the CLUSTER_FLAG_HUGE
flag will be cleared.  So that, the normal pages inside THP can be
swapped in individually.

[ying.huang@intel.com: fix swap_page_trans_huge_swapped on HDD]
  Link: http://lkml.kernel.org/r/874ltsm0bi.fsf@yhuang-dev.intel.com
Link: http://lkml.kernel.org/r/20170724051840.2309-3-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Ross Zwisler <ross.zwisler@intel.com> [for brd.c, zram_drv.c, pmem.c]
Cc: Vishal L Verma <vishal.l.verma@intel.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 17:27:27 -07:00
Huang Ying a3aea839e4 mm, THP, swap: support to clear swap cache flag for THP swapped out
Patch series "mm, THP, swap: Delay splitting THP after swapped out", v3.

This is the second step of THP (Transparent Huge Page) swap
optimization.  In the first step, the splitting huge page is delayed
from almost the first step of swapping out to after allocating the swap
space for the THP and adding the THP into the swap cache.  In the second
step, the splitting is delayed further to after the swapping out
finished.  The plan is to delay splitting THP step by step, finally
avoid splitting THP for the THP swapping out and swap out/in the THP as
a whole.

In the patchset, more operations for the anonymous THP reclaiming, such
as TLB flushing, writing the THP to the swap device, removing the THP
from the swap cache are batched.  So that the performance of anonymous
THP swapping out are improved.

During the development, the following scenarios/code paths have been
checked,

 - swap out/in
 - swap off
 - write protect page fault
 - madvise_free
 - process exit
 - split huge page

With the patchset, the swap out throughput improves 42% (from about
5.81GB/s to about 8.25GB/s) in the vm-scalability swap-w-seq test case
with 16 processes.  At the same time, the IPI (reflect TLB flushing)
reduced about 78.9%.  The test is done on a Xeon E5 v3 system.  The swap
device used is a RAM simulated PMEM (persistent memory) device.  To test
the sequential swapping out, the test case creates 8 processes, which
sequentially allocate and write to the anonymous pages until the RAM and
part of the swap device is used up.

Below is the part of the cover letter for the first step patchset of THP
swap optimization which applies to all steps.

=========================

Recently, the performance of the storage devices improved so fast that
we cannot saturate the disk bandwidth with single logical CPU when do
page swap out even on a high-end server machine.  Because the
performance of the storage device improved faster than that of single
logical CPU.  And it seems that the trend will not change in the near
future.  On the other hand, the THP becomes more and more popular
because of increased memory size.  So it becomes necessary to optimize
THP swap performance.

The advantages of the THP swap support include:

 - Batch the swap operations for the THP to reduce TLB flushing and lock
   acquiring/releasing, including allocating/freeing the swap space,
   adding/deleting to/from the swap cache, and writing/reading the swap
   space, etc. This will help improve the performance of the THP swap.

 - The THP swap space read/write will be 2M sequential IO. It is
   particularly helpful for the swap read, which are usually 4k random
   IO. This will improve the performance of the THP swap too.

 - It will help the memory fragmentation, especially when the THP is
   heavily used by the applications. The 2M continuous pages will be
   free up after THP swapping out.

 - It will improve the THP utilization on the system with the swap
   turned on. Because the speed for khugepaged to collapse the normal
   pages into the THP is quite slow. After the THP is split during the
   swapping out, it will take quite long time for the normal pages to
   collapse back into the THP after being swapped in. The high THP
   utilization helps the efficiency of the page based memory management
   too.

There are some concerns regarding THP swap in, mainly because possible
enlarged read/write IO size (for swap in/out) may put more overhead on
the storage device.  To deal with that, the THP swap in should be turned
on only when necessary.

For example, it can be selected via "always/never/madvise" logic, to be
turned on globally, turned off globally, or turned on only for VMA with
MADV_HUGEPAGE, etc.

This patch (of 12):

Previously, swapcache_free_cluster() is used only in the error path of
shrink_page_list() to free the swap cluster just allocated if the THP
(Transparent Huge Page) is failed to be split.  In this patch, it is
enhanced to clear the swap cache flag (SWAP_HAS_CACHE) for the swap
cluster that holds the contents of THP swapped out.

This will be used in delaying splitting THP after swapping out support.
Because there is no THP swapping in as a whole support yet, after
clearing the swap cache flag, the swap cluster backing the THP swapped
out will be split.  So that the swap slots in the swap cluster can be
swapped in as normal pages later.

Link: http://lkml.kernel.org/r/20170724051840.2309-2-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Ross Zwisler <ross.zwisler@intel.com> [for brd.c, zram_drv.c, pmem.c]
Cc: Vishal L Verma <vishal.l.verma@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 17:27:27 -07:00
Matthias Kaehlcke 04fecbf51b mm: memcontrol: use int for event/state parameter in several functions
Several functions use an enum type as parameter for an event/state, but
are called in some locations with an argument of a different enum type.
Adjust the interface of these functions to reality by changing the
parameter to int.

This fixes a ton of enum-conversion warnings that are generated when
building the kernel with clang.

[mka@chromium.org: also change parameter type of inc/dec/mod_memcg_page_state()]
  Link: http://lkml.kernel.org/r/20170728213442.93823-1-mka@chromium.org
Link: http://lkml.kernel.org/r/20170727211004.34435-1-mka@chromium.org
Signed-off-by: Matthias Kaehlcke <mka@chromium.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Doug Anderson <dianders@chromium.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 17:27:27 -07:00
Arvind Yadav 67e5ed9699 mm/hugetlb.c: constify attribute_group structures
attribute_group are not supposed to change at runtime.  All functions
working with attribute_group provided by <linux/sysfs.h> work with const
attribute_group.  So mark the non-const structs as const.

Link: http://lkml.kernel.org/r/1501157260-3922-1-git-send-email-arvind.yadav.cs@gmail.com
Signed-off-by: Arvind Yadav <arvind.yadav.cs@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 17:27:27 -07:00
Arvind Yadav 8aa95a21bc mm/huge_memory.c: constify attribute_group structures
attribute_group are not supposed to change at runtime.  All functions
working with attribute_group provided by <linux/sysfs.h> work with const
attribute_group.  So mark the non-const structs as const.

Link: http://lkml.kernel.org/r/1501157240-3876-1-git-send-email-arvind.yadav.cs@gmail.com
Signed-off-by: Arvind Yadav <arvind.yadav.cs@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 17:27:27 -07:00
Arvind Yadav fd147cbb6a mm/page_idle.c: constify attribute_group structures
attribute_group are not supposed to change at runtime.  All functions
working with attribute_group provided by <linux/sysfs.h> work with const
attribute_group.  So mark the non-const structs as const.

Link: http://lkml.kernel.org/r/1501157221-3832-1-git-send-email-arvind.yadav.cs@gmail.com
Signed-off-by: Arvind Yadav <arvind.yadav.cs@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 17:27:27 -07:00
Arvind Yadav 1fdaaa2329 mm/slub.c: constify attribute_group structures
attribute_group are not supposed to change at runtime.  All functions
working with attribute_group provided by <linux/sysfs.h> work with const
attribute_group.  So mark the non-const structs as const.

Link: http://lkml.kernel.org/r/1501157186-3749-1-git-send-email-arvind.yadav.cs@gmail.com
Signed-off-by: Arvind Yadav <arvind.yadav.cs@gmail.com>
Acked-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 17:27:27 -07:00
Arvind Yadav f907c26a91 mm/ksm.c: constify attribute_group structures
attribute_group are not supposed to change at runtime.  All functions
working with attribute_group provided by <linux/sysfs.h> work with const
attribute_group.  So mark the non-const structs as const.

Link: http://lkml.kernel.org/r/1501157167-3706-2-git-send-email-arvind.yadav.cs@gmail.com
Signed-off-by: Arvind Yadav <arvind.yadav.cs@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 17:27:27 -07:00
Roman Gushchin 63677c745d mm, memcg: reset memory.low during memcg offlining
A removed memory cgroup with a defined memory.low and some belonging
pagecache has very low chances to be freed.

If a cgroup has been removed, there is likely no memory pressure inside
the cgroup, and the pagecache is protected from the external pressure by
the defined low limit.  The cgroup will be freed only after the reclaim
of all belonging pages.  And it will not happen until there are any
reclaimable memory in the system.  That means, there is a good chance,
that a cold pagecache will reside in the memory for an undefined amount
of time, wasting system resources.

This problem was fixed earlier by fa06235b8e ("cgroup: reset css on
destruction"), but it's not a best way to do it, as we can't really
reset all limits/counters during cgroup offlining.

Link: http://lkml.kernel.org/r/20170727130428.28856-1-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 17:27:27 -07:00
Jan Kara 397162ffa2 mm: remove nr_pages argument from pagevec_lookup{,_range}()
All users of pagevec_lookup() and pagevec_lookup_range() now pass
PAGEVEC_SIZE as a desired number of pages.

Just drop the argument.

Link: http://lkml.kernel.org/r/20170726114704.7626-11-jack@suse.cz
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 17:27:27 -07:00