Per-zone dirty limits try to distribute page cache pages allocated for
writing across zones in proportion to the individual zone sizes, to reduce
the likelihood of reclaim having to write back individual pages from the
LRU lists in order to make progress.
This patch:
The amount of dirtyable pages should not include the full number of free
pages: there is a number of reserved pages that the page allocator and
kswapd always try to keep free.
The closer (reclaimable pages - dirty pages) is to the number of reserved
pages, the more likely it becomes for reclaim to run into dirty pages:
+----------+ ---
| anon | |
+----------+ |
| | |
| | -- dirty limit new -- flusher new
| file | | |
| | | |
| | -- dirty limit old -- flusher old
| | |
+----------+ --- reclaim
| reserved |
+----------+
| kernel |
+----------+
This patch introduces a per-zone dirty reserve that takes both the lowmem
reserve as well as the high watermark of the zone into account, and a
global sum of those per-zone values that is subtracted from the global
amount of dirtyable pages. The lowmem reserve is unavailable to page
cache allocations and kswapd tries to keep the high watermark free. We
don't want to end up in a situation where reclaim has to clean pages in
order to balance zones.
Not treating reserved pages as dirtyable on a global level is only a
conceptual fix. In reality, dirty pages are not distributed equally
across zones and reclaim runs into dirty pages on a regular basis.
But it is important to get this right before tackling the problem on a
per-zone level, where the distance between reclaim and the dirty pages is
mostly much smaller in absolute numbers.
[akpm@linux-foundation.org: fix highmem build]
Signed-off-by: Johannes Weiner <jweiner@redhat.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Shaohua Li <shaohua.li@intel.com>
Cc: Chris Mason <chris.mason@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now all ARCH_POPULATES_NODE_MAP archs select HAVE_MEBLOCK_NODE_MAP -
there's no user of early_node_map[] left. Kill early_node_map[] and
replace ARCH_POPULATES_NODE_MAP with HAVE_MEMBLOCK_NODE_MAP. Also,
relocate for_each_mem_pfn_range() and helper from mm.h to memblock.h
as page_alloc.c would no longer host an alternative implementation.
This change is ultimately one to one mapping and shouldn't cause any
observable difference; however, after the recent changes, there are
some functions which now would fit memblock.c better than page_alloc.c
and dependency on HAVE_MEMBLOCK_NODE_MAP instead of HAVE_MEMBLOCK
doesn't make much sense on some of them. Further cleanups for
functions inside HAVE_MEMBLOCK_NODE_MAP in mm.h would be nice.
-v2: Fix compile bug introduced by mis-spelling
CONFIG_HAVE_MEMBLOCK_NODE_MAP to CONFIG_MEMBLOCK_HAVE_NODE_MAP in
mmzone.h. Reported by Stephen Rothwell.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Chen Liqin <liqin.chen@sunplusct.com>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: "H. Peter Anvin" <hpa@zytor.com>
When direct reclaim encounters a dirty page, it gets recycled around the
LRU for another cycle. This patch marks the page PageReclaim similar to
deactivate_page() so that the page gets reclaimed almost immediately after
the page gets cleaned. This is to avoid reclaiming clean pages that are
younger than a dirty page encountered at the end of the LRU that might
have been something like a use-once page.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: Johannes Weiner <jweiner@redhat.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Alex Elder <aelder@sgi.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Chris Mason <chris.mason@oracle.com>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Testing from the XFS folk revealed that there is still too much I/O from
the end of the LRU in kswapd. Previously it was considered acceptable by
VM people for a small number of pages to be written back from reclaim with
testing generally showing about 0.3% of pages reclaimed were written back
(higher if memory was low). That writing back a small number of pages is
ok has been heavily disputed for quite some time and Dave Chinner
explained it well;
It doesn't have to be a very high number to be a problem. IO
is orders of magnitude slower than the CPU time it takes to
flush a page, so the cost of making a bad flush decision is
very high. And single page writeback from the LRU is almost
always a bad flush decision.
To complicate matters, filesystems respond very differently to requests
from reclaim according to Christoph Hellwig;
xfs tries to write it back if the requester is kswapd
ext4 ignores the request if it's a delayed allocation
btrfs ignores the request
As a result, each filesystem has different performance characteristics
when under memory pressure and there are many pages being dirtied. In
some cases, the request is ignored entirely so the VM cannot depend on the
IO being dispatched.
The objective of this series is to reduce writing of filesystem-backed
pages from reclaim, play nicely with writeback that is already in progress
and throttle reclaim appropriately when writeback pages are encountered.
The assumption is that the flushers will always write pages faster than if
reclaim issues the IO.
A secondary goal is to avoid the problem whereby direct reclaim splices
two potentially deep call stacks together.
There is a potential new problem as reclaim has less control over how long
before a page in a particularly zone or container is cleaned and direct
reclaimers depend on kswapd or flusher threads to do the necessary work.
However, as filesystems sometimes ignore direct reclaim requests already,
it is not expected to be a serious issue.
Patch 1 disables writeback of filesystem pages from direct reclaim
entirely. Anonymous pages are still written.
Patch 2 removes dead code in lumpy reclaim as it is no longer able
to synchronously write pages. This hurts lumpy reclaim but
there is an expectation that compaction is used for hugepage
allocations these days and lumpy reclaim's days are numbered.
Patches 3-4 add warnings to XFS and ext4 if called from
direct reclaim. With patch 1, this "never happens" and is
intended to catch regressions in this logic in the future.
Patch 5 disables writeback of filesystem pages from kswapd unless
the priority is raised to the point where kswapd is considered
to be in trouble.
Patch 6 throttles reclaimers if too many dirty pages are being
encountered and the zones or backing devices are congested.
Patch 7 invalidates dirty pages found at the end of the LRU so they
are reclaimed quickly after being written back rather than
waiting for a reclaimer to find them
I consider this series to be orthogonal to the writeback work but it is
worth noting that the writeback work affects the viability of patch 8 in
particular.
I tested this on ext4 and xfs using fs_mark, a simple writeback test based
on dd and a micro benchmark that does a streaming write to a large mapping
(exercises use-once LRU logic) followed by streaming writes to a mix of
anonymous and file-backed mappings. The command line for fs_mark when
botted with 512M looked something like
./fs_mark -d /tmp/fsmark-2676 -D 100 -N 150 -n 150 -L 25 -t 1 -S0 -s 10485760
The number of files was adjusted depending on the amount of available
memory so that the files created was about 3xRAM. For multiple threads,
the -d switch is specified multiple times.
The test machine is x86-64 with an older generation of AMD processor with
4 cores. The underlying storage was 4 disks configured as RAID-0 as this
was the best configuration of storage I had available. Swap is on a
separate disk. Dirty ratio was tuned to 40% instead of the default of
20%.
Testing was run with and without monitors to both verify that the patches
were operating as expected and that any performance gain was real and not
due to interference from monitors.
Here is a summary of results based on testing XFS.
512M1P-xfs Files/s mean 32.69 ( 0.00%) 34.44 ( 5.08%)
512M1P-xfs Elapsed Time fsmark 51.41 48.29
512M1P-xfs Elapsed Time simple-wb 114.09 108.61
512M1P-xfs Elapsed Time mmap-strm 113.46 109.34
512M1P-xfs Kswapd efficiency fsmark 62% 63%
512M1P-xfs Kswapd efficiency simple-wb 56% 61%
512M1P-xfs Kswapd efficiency mmap-strm 44% 42%
512M-xfs Files/s mean 30.78 ( 0.00%) 35.94 (14.36%)
512M-xfs Elapsed Time fsmark 56.08 48.90
512M-xfs Elapsed Time simple-wb 112.22 98.13
512M-xfs Elapsed Time mmap-strm 219.15 196.67
512M-xfs Kswapd efficiency fsmark 54% 56%
512M-xfs Kswapd efficiency simple-wb 54% 55%
512M-xfs Kswapd efficiency mmap-strm 45% 44%
512M-4X-xfs Files/s mean 30.31 ( 0.00%) 33.33 ( 9.06%)
512M-4X-xfs Elapsed Time fsmark 63.26 55.88
512M-4X-xfs Elapsed Time simple-wb 100.90 90.25
512M-4X-xfs Elapsed Time mmap-strm 261.73 255.38
512M-4X-xfs Kswapd efficiency fsmark 49% 50%
512M-4X-xfs Kswapd efficiency simple-wb 54% 56%
512M-4X-xfs Kswapd efficiency mmap-strm 37% 36%
512M-16X-xfs Files/s mean 60.89 ( 0.00%) 65.22 ( 6.64%)
512M-16X-xfs Elapsed Time fsmark 67.47 58.25
512M-16X-xfs Elapsed Time simple-wb 103.22 90.89
512M-16X-xfs Elapsed Time mmap-strm 237.09 198.82
512M-16X-xfs Kswapd efficiency fsmark 45% 46%
512M-16X-xfs Kswapd efficiency simple-wb 53% 55%
512M-16X-xfs Kswapd efficiency mmap-strm 33% 33%
Up until 512-4X, the FSmark improvements were statistically significant.
For the 4X and 16X tests the results were within standard deviations but
just barely. The time to completion for all tests is improved which is an
important result. In general, kswapd efficiency is not affected by
skipping dirty pages.
1024M1P-xfs Files/s mean 39.09 ( 0.00%) 41.15 ( 5.01%)
1024M1P-xfs Elapsed Time fsmark 84.14 80.41
1024M1P-xfs Elapsed Time simple-wb 210.77 184.78
1024M1P-xfs Elapsed Time mmap-strm 162.00 160.34
1024M1P-xfs Kswapd efficiency fsmark 69% 75%
1024M1P-xfs Kswapd efficiency simple-wb 71% 77%
1024M1P-xfs Kswapd efficiency mmap-strm 43% 44%
1024M-xfs Files/s mean 35.45 ( 0.00%) 37.00 ( 4.19%)
1024M-xfs Elapsed Time fsmark 94.59 91.00
1024M-xfs Elapsed Time simple-wb 229.84 195.08
1024M-xfs Elapsed Time mmap-strm 405.38 440.29
1024M-xfs Kswapd efficiency fsmark 79% 71%
1024M-xfs Kswapd efficiency simple-wb 74% 74%
1024M-xfs Kswapd efficiency mmap-strm 39% 42%
1024M-4X-xfs Files/s mean 32.63 ( 0.00%) 35.05 ( 6.90%)
1024M-4X-xfs Elapsed Time fsmark 103.33 97.74
1024M-4X-xfs Elapsed Time simple-wb 204.48 178.57
1024M-4X-xfs Elapsed Time mmap-strm 528.38 511.88
1024M-4X-xfs Kswapd efficiency fsmark 81% 70%
1024M-4X-xfs Kswapd efficiency simple-wb 73% 72%
1024M-4X-xfs Kswapd efficiency mmap-strm 39% 38%
1024M-16X-xfs Files/s mean 42.65 ( 0.00%) 42.97 ( 0.74%)
1024M-16X-xfs Elapsed Time fsmark 103.11 99.11
1024M-16X-xfs Elapsed Time simple-wb 200.83 178.24
1024M-16X-xfs Elapsed Time mmap-strm 397.35 459.82
1024M-16X-xfs Kswapd efficiency fsmark 84% 69%
1024M-16X-xfs Kswapd efficiency simple-wb 74% 73%
1024M-16X-xfs Kswapd efficiency mmap-strm 39% 40%
All FSMark tests up to 16X had statistically significant improvements.
For the most part, tests are completing faster with the exception of the
streaming writes to a mixture of anonymous and file-backed mappings which
were slower in two cases
In the cases where the mmap-strm tests were slower, there was more
swapping due to dirty pages being skipped. The number of additional pages
swapped is almost identical to the fewer number of pages written from
reclaim. In other words, roughly the same number of pages were reclaimed
but swapping was slower. As the test is a bit unrealistic and stresses
memory heavily, the small shift is acceptable.
4608M1P-xfs Files/s mean 29.75 ( 0.00%) 30.96 ( 3.91%)
4608M1P-xfs Elapsed Time fsmark 512.01 492.15
4608M1P-xfs Elapsed Time simple-wb 618.18 566.24
4608M1P-xfs Elapsed Time mmap-strm 488.05 465.07
4608M1P-xfs Kswapd efficiency fsmark 93% 86%
4608M1P-xfs Kswapd efficiency simple-wb 88% 84%
4608M1P-xfs Kswapd efficiency mmap-strm 46% 45%
4608M-xfs Files/s mean 27.60 ( 0.00%) 28.85 ( 4.33%)
4608M-xfs Elapsed Time fsmark 555.96 532.34
4608M-xfs Elapsed Time simple-wb 659.72 571.85
4608M-xfs Elapsed Time mmap-strm 1082.57 1146.38
4608M-xfs Kswapd efficiency fsmark 89% 91%
4608M-xfs Kswapd efficiency simple-wb 88% 82%
4608M-xfs Kswapd efficiency mmap-strm 48% 46%
4608M-4X-xfs Files/s mean 26.00 ( 0.00%) 27.47 ( 5.35%)
4608M-4X-xfs Elapsed Time fsmark 592.91 564.00
4608M-4X-xfs Elapsed Time simple-wb 616.65 575.07
4608M-4X-xfs Elapsed Time mmap-strm 1773.02 1631.53
4608M-4X-xfs Kswapd efficiency fsmark 90% 94%
4608M-4X-xfs Kswapd efficiency simple-wb 87% 82%
4608M-4X-xfs Kswapd efficiency mmap-strm 43% 43%
4608M-16X-xfs Files/s mean 26.07 ( 0.00%) 26.42 ( 1.32%)
4608M-16X-xfs Elapsed Time fsmark 602.69 585.78
4608M-16X-xfs Elapsed Time simple-wb 606.60 573.81
4608M-16X-xfs Elapsed Time mmap-strm 1549.75 1441.86
4608M-16X-xfs Kswapd efficiency fsmark 98% 98%
4608M-16X-xfs Kswapd efficiency simple-wb 88% 82%
4608M-16X-xfs Kswapd efficiency mmap-strm 44% 42%
Unlike the other tests, the fsmark results are not statistically
significant but the min and max times are both improved and for the most
part, tests completed faster.
There are other indications that this is an improvement as well. For
example, in the vast majority of cases, there were fewer pages scanned by
direct reclaim implying in many cases that stalls due to direct reclaim
are reduced. KSwapd is scanning more due to skipping dirty pages which is
unfortunate but the CPU usage is still acceptable
In an earlier set of tests, I used blktrace and in almost all cases
throughput throughout the entire test was higher. However, I ended up
discarding those results as recording blktrace data was too heavy for my
liking.
On a laptop, I plugged in a USB stick and ran a similar tests of tests
using it as backing storage. A desktop environment was running and for
the entire duration of the tests, firefox and gnome terminal were
launching and exiting to vaguely simulate a user.
1024M-xfs Files/s mean 0.41 ( 0.00%) 0.44 ( 6.82%)
1024M-xfs Elapsed Time fsmark 2053.52 1641.03
1024M-xfs Elapsed Time simple-wb 1229.53 768.05
1024M-xfs Elapsed Time mmap-strm 4126.44 4597.03
1024M-xfs Kswapd efficiency fsmark 84% 85%
1024M-xfs Kswapd efficiency simple-wb 92% 81%
1024M-xfs Kswapd efficiency mmap-strm 60% 51%
1024M-xfs Avg wait ms fsmark 5404.53 4473.87
1024M-xfs Avg wait ms simple-wb 2541.35 1453.54
1024M-xfs Avg wait ms mmap-strm 3400.25 3852.53
The mmap-strm results were hurt because firefox launching had a tendency
to push the test out of memory. On the postive side, firefox launched
marginally faster with the patches applied. Time to completion for many
tests was faster but more importantly - the "Avg wait" time as measured by
iostat was far lower implying the system would be more responsive. It was
also the case that "Avg wait ms" on the root filesystem was lower. I
tested it manually and while the system felt slightly more responsive
while copying data to a USB stick, it was marginal enough that it could be
my imagination.
This patch: do not writeback filesystem pages in direct reclaim.
When kswapd is failing to keep zones above the min watermark, a process
will enter direct reclaim in the same manner kswapd does. If a dirty page
is encountered during the scan, this page is written to backing storage
using mapping->writepage.
This causes two problems. First, it can result in very deep call stacks,
particularly if the target storage or filesystem are complex. Some
filesystems ignore write requests from direct reclaim as a result. The
second is that a single-page flush is inefficient in terms of IO. While
there is an expectation that the elevator will merge requests, this does
not always happen. Quoting Christoph Hellwig;
The elevator has a relatively small window it can operate on,
and can never fix up a bad large scale writeback pattern.
This patch prevents direct reclaim writing back filesystem pages by
checking if current is kswapd. Anonymous pages are still written to swap
as there is not the equivalent of a flusher thread for anonymous pages.
If the dirty pages cannot be written back, they are placed back on the LRU
lists. There is now a direct dependency on dirty page balancing to
prevent too many pages in the system being dirtied which would prevent
reclaim making forward progress.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Johannes Weiner <jweiner@redhat.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Alex Elder <aelder@sgi.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Chris Mason <chris.mason@oracle.com>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In __zone_reclaim case, we don't want to shrink mapped page. Nonetheless,
we have isolated mapped page and re-add it into LRU's head. It's
unnecessary CPU overhead and makes LRU churning.
Of course, when we isolate the page, the page might be mapped but when we
try to migrate the page, the page would be not mapped. So it could be
migrated. But race is rare and although it happens, it's no big deal.
Signed-off-by: Minchan Kim <minchan.kim@gmail.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In async mode, compaction doesn't migrate dirty or writeback pages. So,
it's meaningless to pick the page and re-add it to lru list.
Of course, when we isolate the page in compaction, the page might be dirty
or writeback but when we try to migrate the page, the page would be not
dirty, writeback. So it could be migrated. But it's very unlikely as
isolate and migration cycle is much faster than writeout.
So, this patch helps cpu overhead and prevent unnecessary LRU churning.
Signed-off-by: Minchan Kim <minchan.kim@gmail.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Change ISOLATE_XXX macro with bitwise isolate_mode_t type. Normally,
macro isn't recommended as it's type-unsafe and making debugging harder as
symbol cannot be passed throught to the debugger.
Quote from Johannes
" Hmm, it would probably be cleaner to fully convert the isolation mode
into independent flags. INACTIVE, ACTIVE, BOTH is currently a
tri-state among flags, which is a bit ugly."
This patch moves isolate mode from swap.h to mmzone.h by memcontrol.h
Signed-off-by: Minchan Kim <minchan.kim@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This allows us to move duplicated code in <asm/atomic.h>
(atomic_inc_not_zero() for now) to <linux/atomic.h>
Signed-off-by: Arun Sharma <asharma@fb.com>
Reviewed-by: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: David Miller <davem@davemloft.net>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Acked-by: Mike Frysinger <vapier@gentoo.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In mm/memcontrol.c, there are many lru stat functions as..
mem_cgroup_zone_nr_lru_pages
mem_cgroup_node_nr_file_lru_pages
mem_cgroup_nr_file_lru_pages
mem_cgroup_node_nr_anon_lru_pages
mem_cgroup_nr_anon_lru_pages
mem_cgroup_node_nr_unevictable_lru_pages
mem_cgroup_nr_unevictable_lru_pages
mem_cgroup_node_nr_lru_pages
mem_cgroup_nr_lru_pages
mem_cgroup_get_local_zonestat
Some of them are under #ifdef MAX_NUMNODES >1 and others are not.
This seems bad. This patch consolidates all functions into
mem_cgroup_zone_nr_lru_pages()
mem_cgroup_node_nr_lru_pages()
mem_cgroup_nr_lru_pages()
For these functions, "which LRU?" information is passed by a mask.
example:
mem_cgroup_nr_lru_pages(mem, BIT(LRU_ACTIVE_ANON))
And I added some macro as ALL_LRU, ALL_LRU_FILE, ALL_LRU_ANON.
example:
mem_cgroup_nr_lru_pages(mem, ALL_LRU)
BTW, considering layout of NUMA memory placement of counters, this patch seems
to be better.
Now, when we gather all LRU information, we scan in following orer
for_each_lru -> for_each_node -> for_each_zone.
This means we'll touch cache lines in different node in turn.
After patch, we'll scan
for_each_node -> for_each_zone -> for_each_lru(mask)
Then, we'll gather information in the same cacheline at once.
[akpm@linux-foundation.org: fix warnigns, build error]
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Ying Han <yinghan@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
commit 21a3c96 uses node_start/end_pfn(nid) for detection start/end
of nodes. But, it's not defined in linux/mmzone.h but defined in
/arch/???/include/mmzone.h which is included only under
CONFIG_NEED_MULTIPLE_NODES=y.
Then, we see
mm/page_cgroup.c: In function 'page_cgroup_init':
mm/page_cgroup.c:308: error: implicit declaration of function 'node_start_pfn'
mm/page_cgroup.c:309: error: implicit declaration of function 'node_end_pfn'
So, fixiing page_cgroup.c is an idea...
But node_start_pfn()/node_end_pfn() is a very generic macro and
should be implemented in the same manner for all archs.
(m32r has different implementation...)
This patch removes definitions of node_start/end_pfn() in each archs
and defines a unified one in linux/mmzone.h. It's not under
CONFIG_NEED_MULTIPLE_NODES, now.
A result of macro expansion is here (mm/page_cgroup.c)
for !NUMA
start_pfn = ((&contig_page_data)->node_start_pfn);
end_pfn = ({ pg_data_t *__pgdat = (&contig_page_data); __pgdat->node_start_pfn + __pgdat->node_spanned_pages;});
for NUMA (x86-64)
start_pfn = ((node_data[nid])->node_start_pfn);
end_pfn = ({ pg_data_t *__pgdat = (node_data[nid]); __pgdat->node_start_pfn + __pgdat->node_spanned_pages;});
Changelog:
- fixed to avoid using "nid" twice in node_end_pfn() macro.
Reported-and-acked-by: Randy Dunlap <randy.dunlap@oracle.com>
Reported-and-tested-by: Ingo Molnar <mingo@elte.hu>
Acked-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'for-linus' of master.kernel.org:/home/rmk/linux-2.6-arm: (45 commits)
ARM: 6945/1: Add unwinding support for division functions
ARM: kill pmd_off()
ARM: 6944/1: mm: allow ASID 0 to be allocated to tasks
ARM: 6943/1: mm: use TTBR1 instead of reserved context ID
ARM: 6942/1: mm: make TTBR1 always point to swapper_pg_dir on ARMv6/7
ARM: 6941/1: cache: ensure MVA is cacheline aligned in flush_kern_dcache_area
ARM: add sendmmsg syscall
ARM: 6863/1: allow hotplug on msm
ARM: 6832/1: mmci: support for ST-Ericsson db8500v2
ARM: 6830/1: mach-ux500: force PrimeCell revisions
ARM: 6829/1: amba: make hardcoded periphid override hardware
ARM: 6828/1: mach-ux500: delete SSP PrimeCell ID
ARM: 6827/1: mach-netx: delete hardcoded periphid
ARM: 6940/1: fiq: Briefly document driver responsibilities for suspend/resume
ARM: 6938/1: fiq: Refactor {get,set}_fiq_regs() for Thumb-2
ARM: 6914/1: sparsemem: fix highmem detection when using SPARSEMEM
ARM: 6913/1: sparsemem: allow pfn_valid to be overridden when using SPARSEMEM
at91: drop at572d940hf support
at91rm9200: introduce at91rm9200_set_type to specficy cpu package
at91: drop boot_params and PLAT_PHYS_OFFSET
...
During memory reclaim we determine the number of pages to be scanned per
zone as
(anon + file) >> priority.
Assume
scan = (anon + file) >> priority.
If scan < SWAP_CLUSTER_MAX, the scan will be skipped for this time and
priority gets higher. This has some problems.
1. This increases priority as 1 without any scan.
To do scan in this priority, amount of pages should be larger than 512M.
If pages>>priority < SWAP_CLUSTER_MAX, it's recorded and scan will be
batched, later. (But we lose 1 priority.)
If memory size is below 16M, pages >> priority is 0 and no scan in
DEF_PRIORITY forever.
2. If zone->all_unreclaimabe==true, it's scanned only when priority==0.
So, x86's ZONE_DMA will never be recoverred until the user of pages
frees memory by itself.
3. With memcg, the limit of memory can be small. When using small memcg,
it gets priority < DEF_PRIORITY-2 very easily and need to call
wait_iff_congested().
For doing scan before priorty=9, 64MB of memory should be used.
Then, this patch tries to scan SWAP_CLUSTER_MAX of pages in force...when
1. the target is enough small.
2. it's kswapd or memcg reclaim.
Then we can avoid rapid priority drop and may be able to recover
all_unreclaimable in a small zones. And this patch removes nr_saved_scan.
This will allow scanning in this priority even when pages >> priority is
very small.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Ying Han <yinghan@google.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In commit eb33575c ("[ARM] Double check memmap is actually valid with a
memmap has unexpected holes V2"), a new function, memmap_valid_within,
was introduced to mmzone.h so that holes in the memmap which pass
pfn_valid in SPARSEMEM configurations can be detected and avoided.
The fix to this problem checks that the pfn <-> page linkages are
correct by calculating the page for the pfn and then checking that
page_to_pfn on that page returns the original pfn. Unfortunately, in
SPARSEMEM configurations, this results in reading from the page flags to
determine the correct section. Since the memmap here has been freed,
junk is read from memory and the check is no longer robust.
In the best case, reading from /proc/pagetypeinfo will give you the
wrong answer. In the worst case, you get SEGVs, Kernel OOPses and hung
CPUs. Furthermore, ioremap implementations that use pfn_valid to
disallow the remapping of normal memory will break.
This patch allows architectures to provide their own pfn_valid function
instead of using the default implementation used by sparsemem. The
architecture-specific version is aware of the memmap state and will
return false when passed a pfn for a freed page within a valid section.
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Tested-by: H Hartley Sweeten <hsweeten@visionengravers.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Add SECTION_ALIGN_UP() and SECTION_ALIGN_DOWN() macro which aligns given
pfn to upper section and lower section boundary accordingly.
Required for the latest memory hotplug support for the Xen balloon driver.
Signed-off-by: Daniel Kiper <dkiper@net-space.pl>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
pfn_to_section_nr()/section_nr_to_pfn() is valid only in CONFIG_SPARSEMEM
context. Move it to proper place.
Signed-off-by: Daniel Kiper <dkiper@net-space.pl>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add hugepage stat information to /proc/vmstat and /proc/meminfo.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Simon Kirby reported the following problem
We're seeing cases on a number of servers where cache never fully
grows to use all available memory. Sometimes we see servers with 4 GB
of memory that never seem to have less than 1.5 GB free, even with a
constantly-active VM. In some cases, these servers also swap out while
this happens, even though they are constantly reading the working set
into memory. We have been seeing this happening for a long time; I
don't think it's anything recent, and it still happens on 2.6.36.
After some debugging work by Simon, Dave Hansen and others, the prevaling
theory became that kswapd is reclaiming order-3 pages requested by SLUB
too aggressive about it.
There are two apparent problems here. On the target machine, there is a
small Normal zone in comparison to DMA32. As kswapd tries to balance all
zones, it would continually try reclaiming for Normal even though DMA32
was balanced enough for callers. The second problem is that
sleeping_prematurely() does not use the same logic as balance_pgdat() when
deciding whether to sleep or not. This keeps kswapd artifically awake.
A number of tests were run and the figures from previous postings will
look very different for a few reasons. One, the old figures were forcing
my network card to use GFP_ATOMIC in attempt to replicate Simon's problem.
Second, I previous specified slub_min_order=3 again in an attempt to
reproduce Simon's problem. In this posting, I'm depending on Simon to say
whether his problem is fixed or not and these figures are to show the
impact to the ordinary cases. Finally, the "vmscan" figures are taken
from /proc/vmstat instead of the tracepoints. There is less information
but recording is less disruptive.
The first test of relevance was postmark with a process running in the
background reading a large amount of anonymous memory in blocks. The
objective was to vaguely simulate what was happening on Simon's machine
and it's memory intensive enough to have kswapd awake.
POSTMARK
traceonly kanyzone
Transactions per second: 156.00 ( 0.00%) 153.00 (-1.96%)
Data megabytes read per second: 21.51 ( 0.00%) 21.52 ( 0.05%)
Data megabytes written per second: 29.28 ( 0.00%) 29.11 (-0.58%)
Files created alone per second: 250.00 ( 0.00%) 416.00 (39.90%)
Files create/transact per second: 79.00 ( 0.00%) 76.00 (-3.95%)
Files deleted alone per second: 520.00 ( 0.00%) 420.00 (-23.81%)
Files delete/transact per second: 79.00 ( 0.00%) 76.00 (-3.95%)
MMTests Statistics: duration
User/Sys Time Running Test (seconds) 16.58 17.4
Total Elapsed Time (seconds) 218.48 222.47
VMstat Reclaim Statistics: vmscan
Direct reclaims 0 4
Direct reclaim pages scanned 0 203
Direct reclaim pages reclaimed 0 184
Kswapd pages scanned 326631 322018
Kswapd pages reclaimed 312632 309784
Kswapd low wmark quickly 1 4
Kswapd high wmark quickly 122 475
Kswapd skip congestion_wait 1 0
Pages activated 700040 705317
Pages deactivated 212113 203922
Pages written 9875 6363
Total pages scanned 326631 322221
Total pages reclaimed 312632 309968
%age total pages scanned/reclaimed 95.71% 96.20%
%age total pages scanned/written 3.02% 1.97%
proc vmstat: Faults
Major Faults 300 254
Minor Faults 645183 660284
Page ins 493588 486704
Page outs 4960088 4986704
Swap ins 1230 661
Swap outs 9869 6355
Performance is mildly affected because kswapd is no longer doing as much
work and the background memory consumer process is getting in the way.
Note that kswapd scanned and reclaimed fewer pages as it's less aggressive
and overall fewer pages were scanned and reclaimed. Swap in/out is
particularly reduced again reflecting kswapd throwing out fewer pages.
The slight performance impact is unfortunate here but it looks like a
direct result of kswapd being less aggressive. As the bug report is about
too many pages being freed by kswapd, it may have to be accepted for now.
The second test is a streaming IO benchmark that was previously used by
Johannes to show regressions in page reclaim.
MICRO
traceonly kanyzone
User/Sys Time Running Test (seconds) 29.29 28.87
Total Elapsed Time (seconds) 492.18 488.79
VMstat Reclaim Statistics: vmscan
Direct reclaims 2128 1460
Direct reclaim pages scanned 2284822 1496067
Direct reclaim pages reclaimed 148919 110937
Kswapd pages scanned 15450014 16202876
Kswapd pages reclaimed 8503697 8537897
Kswapd low wmark quickly 3100 3397
Kswapd high wmark quickly 1860 7243
Kswapd skip congestion_wait 708 801
Pages activated 9635 9573
Pages deactivated 1432 1271
Pages written 223 1130
Total pages scanned 17734836 17698943
Total pages reclaimed 8652616 8648834
%age total pages scanned/reclaimed 48.79% 48.87%
%age total pages scanned/written 0.00% 0.01%
proc vmstat: Faults
Major Faults 165 221
Minor Faults 9655785 9656506
Page ins 3880 7228
Page outs 37692940 37480076
Swap ins 0 69
Swap outs 19 15
Again fewer pages are scanned and reclaimed as expected and this time the
test completed faster. Note that kswapd is hitting its watermarks faster
(low and high wmark quickly) which I expect is due to kswapd reclaiming
fewer pages.
I also ran fs-mark, iozone and sysbench but there is nothing interesting
to report in the figures. Performance is not significantly changed and
the reclaim statistics look reasonable.
Tgis patch:
When the allocator enters its slow path, kswapd is woken up to balance the
node. It continues working until all zones within the node are balanced.
For order-0 allocations, this makes perfect sense but for higher orders it
can have unintended side-effects. If the zone sizes are imbalanced,
kswapd may reclaim heavily within a smaller zone discarding an excessive
number of pages. The user-visible behaviour is that kswapd is awake and
reclaiming even though plenty of pages are free from a suitable zone.
This patch alters the "balance" logic for high-order reclaim allowing
kswapd to stop if any suitable zone becomes balanced to reduce the number
of pages it reclaims from other zones. kswapd still tries to ensure that
order-0 watermarks for all zones are met before sleeping.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Eric B Munson <emunson@mgebm.net>
Cc: Simon Kirby <sim@hostway.ca>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Shaohua Li <shaohua.li@intel.com>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit aa45484 ("calculate a better estimate of NR_FREE_PAGES when memory
is low") noted that watermarks were based on the vmstat NR_FREE_PAGES. To
avoid synchronization overhead, these counters are maintained on a per-cpu
basis and drained both periodically and when a threshold is above a
threshold. On large CPU systems, the difference between the estimate and
real value of NR_FREE_PAGES can be very high. The system can get into a
case where pages are allocated far below the min watermark potentially
causing livelock issues. The commit solved the problem by taking a better
reading of NR_FREE_PAGES when memory was low.
Unfortately, as reported by Shaohua Li this accurate reading can consume a
large amount of CPU time on systems with many sockets due to cache line
bouncing. This patch takes a different approach. For large machines
where counter drift might be unsafe and while kswapd is awake, the per-cpu
thresholds for the target pgdat are reduced to limit the level of drift to
what should be a safe level. This incurs a performance penalty in heavy
memory pressure by a factor that depends on the workload and the machine
but the machine should function correctly without accidentally exhausting
all memory on a node. There is an additional cost when kswapd wakes and
sleeps but the event is not expected to be frequent - in Shaohua's test
case, there was one recorded sleep and wake event at least.
To ensure that kswapd wakes up, a safe version of zone_watermark_ok() is
introduced that takes a more accurate reading of NR_FREE_PAGES when called
from wakeup_kswapd, when deciding whether it is really safe to go back to
sleep in sleeping_prematurely() and when deciding if a zone is really
balanced or not in balance_pgdat(). We are still using an expensive
function but limiting how often it is called.
When the test case is reproduced, the time spent in the watermark
functions is reduced. The following report is on the percentage of time
spent cumulatively spent in the functions zone_nr_free_pages(),
zone_watermark_ok(), __zone_watermark_ok(), zone_watermark_ok_safe(),
zone_page_state_snapshot(), zone_page_state().
vanilla 11.6615%
disable-threshold 0.2584%
David said:
: We had to pull aa454840 "mm: page allocator: calculate a better estimate
: of NR_FREE_PAGES when memory is low and kswapd is awake" from 2.6.36
: internally because tests showed that it would cause the machine to stall
: as the result of heavy kswapd activity. I merged it back with this fix as
: it is pending in the -mm tree and it solves the issue we were seeing, so I
: definitely think this should be pushed to -stable (and I would seriously
: consider it for 2.6.37 inclusion even at this late date).
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Reported-by: Shaohua Li <shaohua.li@intel.com>
Reviewed-by: Christoph Lameter <cl@linux.com>
Tested-by: Nicolas Bareil <nico@chdir.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Kyle McMartin <kyle@mcmartin.ca>
Cc: <stable@kernel.org> [2.6.37.1, 2.6.36.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If congestion_wait() is called with no BDI congested, the caller will
sleep for the full timeout and this may be an unnecessary sleep. This
patch adds a wait_iff_congested() that checks congestion and only sleeps
if a BDI is congested else, it calls cond_resched() to ensure the caller
is not hogging the CPU longer than its quota but otherwise will not sleep.
This is aimed at reducing some of the major desktop stalls reported during
IO. For example, while kswapd is operating, it calls congestion_wait()
but it could just have been reclaiming clean page cache pages with no
congestion. Without this patch, it would sleep for a full timeout but
after this patch, it'll just call schedule() if it has been on the CPU too
long. Similar logic applies to direct reclaimers that are not making
enough progress.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
To help developers and applications gain visibility into writeback
behaviour adding two entries to vm_stat_items and /proc/vmstat. This will
allow us to track the "written" and "dirtied" counts.
# grep nr_dirtied /proc/vmstat
nr_dirtied 3747
# grep nr_written /proc/vmstat
nr_written 3618
Signed-off-by: Michael Rubin <mrubin@google.com>
Reviewed-by: Wu Fengguang <fengguang.wu@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Ordinarily watermark checks are based on the vmstat NR_FREE_PAGES as it is
cheaper than scanning a number of lists. To avoid synchronization
overhead, counter deltas are maintained on a per-cpu basis and drained
both periodically and when the delta is above a threshold. On large CPU
systems, the difference between the estimated and real value of
NR_FREE_PAGES can be very high. If NR_FREE_PAGES is much higher than
number of real free page in buddy, the VM can allocate pages below min
watermark, at worst reducing the real number of pages to zero. Even if
the OOM killer kills some victim for freeing memory, it may not free
memory if the exit path requires a new page resulting in livelock.
This patch introduces a zone_page_state_snapshot() function (courtesy of
Christoph) that takes a slightly more accurate view of an arbitrary vmstat
counter. It is used to read NR_FREE_PAGES while kswapd is awake to avoid
the watermark being accidentally broken. The estimate is not perfect and
may result in cache line bounces but is expected to be lighter than the
IPI calls necessary to continually drain the per-cpu counters while kswapd
is awake.
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since 2.6.28 zone->prev_priority is unused. Then it can be removed
safely. It reduce stack usage slightly.
Now I have to say that I'm sorry. 2 years ago, I thought prev_priority
can be integrate again, it's useful. but four (or more) times trying
haven't got good performance number. Thus I give up such approach.
The rest of this changelog is notes on prev_priority and why it existed in
the first place and why it might be not necessary any more. This information
is based heavily on discussions between Andrew Morton, Rik van Riel and
Kosaki Motohiro who is heavily quotes from.
Historically prev_priority was important because it determined when the VM
would start unmapping PTE pages. i.e. there are no balances of note within
the VM, Anon vs File and Mapped vs Unmapped. Without prev_priority, there
is a potential risk of unnecessarily increasing minor faults as a large
amount of read activity of use-once pages could push mapped pages to the
end of the LRU and get unmapped.
There is no proof this is still a problem but currently it is not considered
to be. Active files are not deactivated if the active file list is smaller
than the inactive list reducing the liklihood that file-mapped pages are
being pushed off the LRU and referenced executable pages are kept on the
active list to avoid them getting pushed out by read activity.
Even if it is a problem, prev_priority prev_priority wouldn't works
nowadays. First of all, current vmscan still a lot of UP centric code. it
expose some weakness on some dozens CPUs machine. I think we need more and
more improvement.
The problem is, current vmscan mix up per-system-pressure, per-zone-pressure
and per-task-pressure a bit. example, prev_priority try to boost priority to
other concurrent priority. but if the another task have mempolicy restriction,
it is unnecessary, but also makes wrong big latency and exceeding reclaim.
per-task based priority + prev_priority adjustment make the emulation of
per-system pressure. but it have two issue 1) too rough and brutal emulation
2) we need per-zone pressure, not per-system.
Another example, currently DEF_PRIORITY is 12. it mean the lru rotate about
2 cycle (1/4096 + 1/2048 + 1/1024 + .. + 1) before invoking OOM-Killer.
but if 10,0000 thrreads enter DEF_PRIORITY reclaim at the same time, the
system have higher memory pressure than priority==0 (1/4096*10,000 > 2).
prev_priority can't solve such multithreads workload issue. In other word,
prev_priority concept assume the sysmtem don't have lots threads."
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Chris Mason <chris.mason@oracle.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Michael Rubin <mrubin@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Introduce numa_mem_id(), based on generic percpu variable infrastructure
to track "nearest node with memory" for archs that support memoryless
nodes.
Define API in <linux/topology.h> when CONFIG_HAVE_MEMORYLESS_NODES
defined, else stubs. Architectures will define HAVE_MEMORYLESS_NODES
if/when they support them.
Archs can override definitions of:
numa_mem_id() - returns node number of "local memory" node
set_numa_mem() - initialize [this cpus'] per cpu variable 'numa_mem'
cpu_to_mem() - return numa_mem for specified cpu; may be used as lvalue
Generic initialization of 'numa_mem' occurs in __build_all_zonelists().
This will initialize the boot cpu at boot time, and all cpus on change of
numa_zonelist_order, or when node or memory hot-plug requires zonelist
rebuild. Archs that support memoryless nodes will need to initialize
'numa_mem' for secondary cpus as they're brought on-line.
[akpm@linux-foundation.org: fix build]
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Nick Piggin <npiggin@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Eric Whitney <eric.whitney@hp.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: <linux-arch@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add global mutex zonelists_mutex to fix the possible race:
CPU0 CPU1 CPU2
(1) zone->present_pages += online_pages;
(2) build_all_zonelists();
(3) alloc_page();
(4) free_page();
(5) build_all_zonelists();
(6) __build_all_zonelists();
(7) zone->pageset = alloc_percpu();
In step (3,4), zone->pageset still points to boot_pageset, so bad
things may happen if 2+ nodes are in this state. Even if only 1 node
is accessing the boot_pageset, (3) may still consume too much memory
to fail the memory allocations in step (7).
Besides, atomic operation ensures alloc_percpu() in step (7) will never fail
since there is a new fresh memory block added in step(6).
[haicheng.li@linux.intel.com: hold zonelists_mutex when build_all_zonelists]
Signed-off-by: Haicheng Li <haicheng.li@linux.intel.com>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Reviewed-by: Andi Kleen <andi.kleen@intel.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For each new populated zone of hotadded node, need to update its pagesets
with dynamically allocated per_cpu_pageset struct for all possible CPUs:
1) Detach zone->pageset from the shared boot_pageset
at end of __build_all_zonelists().
2) Use mutex to protect zone->pageset when it's still
shared in onlined_pages()
Otherwises, multiple zones of different nodes would share same boot strapping
boot_pageset for same CPU, which will finally cause below kernel panic:
------------[ cut here ]------------
kernel BUG at mm/page_alloc.c:1239!
invalid opcode: 0000 [#1] SMP
...
Call Trace:
[<ffffffff811300c1>] __alloc_pages_nodemask+0x131/0x7b0
[<ffffffff81162e67>] alloc_pages_current+0x87/0xd0
[<ffffffff81128407>] __page_cache_alloc+0x67/0x70
[<ffffffff811325f0>] __do_page_cache_readahead+0x120/0x260
[<ffffffff81132751>] ra_submit+0x21/0x30
[<ffffffff811329c6>] ondemand_readahead+0x166/0x2c0
[<ffffffff81132ba0>] page_cache_async_readahead+0x80/0xa0
[<ffffffff8112a0e4>] generic_file_aio_read+0x364/0x670
[<ffffffff81266cfa>] nfs_file_read+0xca/0x130
[<ffffffff8117b20a>] do_sync_read+0xfa/0x140
[<ffffffff8117bf75>] vfs_read+0xb5/0x1a0
[<ffffffff8117c151>] sys_read+0x51/0x80
[<ffffffff8103c032>] system_call_fastpath+0x16/0x1b
RIP [<ffffffff8112ff13>] get_page_from_freelist+0x883/0x900
RSP <ffff88000d1e78a8>
---[ end trace 4bda28328b9990db ]
[akpm@linux-foundation.org: merge fix]
Signed-off-by: Haicheng Li <haicheng.li@linux.intel.com>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Reviewed-by: Andi Kleen <andi.kleen@intel.com>
Reviewed-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Got this while compiling for ARM/SA1100:
mm/sparse.c: In function '__section_nr':
mm/sparse.c:135: warning: 'root' is used uninitialized in this function
This patch follows Russell King's suggestion for a new calculation for
NR_SECTION_ROOTS. Thanks also to Sergei Shtylyov for pointing out the
existence of the macro DIV_ROUND_UP.
Atsushi Nemoto observed:
: This fix doesn't just silence the warning - it fixes a real problem.
:
: Without this fix, mem_section[] might have 0 size so mem_section[0]
: will share other variable area. For example, I got:
:
: c030c700 b __warned.16478
: c030c700 B mem_section
: c030c701 b __warned.16483
:
: This might cause very strange behavior. Your patch actually fixes it.
Signed-off-by: Marcelo Roberto Jimenez <mroberto@cpti.cetuc.puc-rio.br>
Cc: Atsushi Nemoto <anemo@mba.ocn.ne.jp>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Sergei Shtylyov <sshtylyov@mvista.com>
Cc: Russell King <rmk@arm.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The fragmentation index may indicate that a failure is due to external
fragmentation but after a compaction run completes, it is still possible
for an allocation to fail. There are two obvious reasons as to why
o Page migration cannot move all pages so fragmentation remains
o A suitable page may exist but watermarks are not met
In the event of compaction followed by an allocation failure, this patch
defers further compaction in the zone (1 << compact_defer_shift) times.
If the next compaction attempt also fails, compact_defer_shift is
increased up to a maximum of 6. If compaction succeeds, the defer
counters are reset again.
The zone that is deferred is the first zone in the zonelist - i.e. the
preferred zone. To defer compaction in the other zones, the information
would need to be stored in the zonelist or implemented similar to the
zonelist_cache. This would impact the fast-paths and is not justified at
this time.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Cc: Rik van Riel <riel@redhat.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
commit e815af95 ("change all_unreclaimable zone member to flags") changed
all_unreclaimable member to bit flag. But it had an undesireble side
effect. free_one_page() is one of most hot path in linux kernel and
increasing atomic ops in it can reduce kernel performance a bit.
Thus, this patch revert such commit partially. at least
all_unreclaimable shouldn't share memory word with other zone flags.
[akpm@linux-foundation.org: fix patch interaction]
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Huang Shijie <shijie8@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'x86-bootmem-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (30 commits)
early_res: Need to save the allocation name in drop_range_partial()
sparsemem: Fix compilation on PowerPC
early_res: Add free_early_partial()
x86: Fix non-bootmem compilation on PowerPC
core: Move early_res from arch/x86 to kernel/
x86: Add find_fw_memmap_area
Move round_up/down to kernel.h
x86: Make 32bit support NO_BOOTMEM
early_res: Enhance check_and_double_early_res
x86: Move back find_e820_area to e820.c
x86: Add find_early_area_size
x86: Separate early_res related code from e820.c
x86: Move bios page reserve early to head32/64.c
sparsemem: Put mem map for one node together.
sparsemem: Put usemap for one node together
x86: Make 64 bit use early_res instead of bootmem before slab
x86: Only call dma32_reserve_bootmem 64bit !CONFIG_NUMA
x86: Make early_node_mem get mem > 4 GB if possible
x86: Dynamically increase early_res array size
x86: Introduce max_early_res and early_res_count
...
Add __percpu sparse annotations to core subsystems.
These annotations are to make sparse consider percpu variables to be
in a different address space and warn if accessed without going
through percpu accessors. This patch doesn't affect normal builds.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Christoph Lameter <cl@linux-foundation.org>
Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: linux-mm@kvack.org
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Dipankar Sarma <dipankar@in.ibm.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Eric Biederman <ebiederm@xmission.com>
Finally we can use early_res to replace bootmem for x86_64 now.
Still can use CONFIG_NO_BOOTMEM to enable it or not.
-v2: fix 32bit compiling about MAX_DMA32_PFN
-v3: folded bug fix from LKML message below
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
LKML-Reference: <4B747239.4070907@kernel.org>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Some comments misspell "invocation"; this fixes them. No code
changes.
Signed-off-by: Adam Buchbinder <adam.buchbinder@gmail.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Use the per cpu allocator functionality to avoid per cpu arrays in struct zone.
This drastically reduces the size of struct zone for systems with large
amounts of processors and allows placement of critical variables of struct
zone in one cacheline even on very large systems.
Another effect is that the pagesets of one processor are placed near one
another. If multiple pagesets from different zones fit into one cacheline
then additional cacheline fetches can be avoided on the hot paths when
allocating memory from multiple zones.
Bootstrap becomes simpler if we use the same scheme for UP, SMP, NUMA. #ifdefs
are reduced and we can drop the zone_pcp macro.
Hotplug handling is also simplified since cpu alloc can bring up and
shut down cpu areas for a specific cpu as a whole. So there is no need to
allocate or free individual pagesets.
V7-V8:
- Explain chicken egg dilemmna with percpu allocator.
V4-V5:
- Fix up cases where per_cpu_ptr is called before irq disable
- Integrate the bootstrap logic that was separate before.
tj: Build failure in pageset_cpuup_callback() due to missing ret
variable fixed.
Reviewed-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Tejun Heo <tj@kernel.org>
It's unused.
It isn't needed -- read or write flag is already passed and sysctl
shouldn't care about the rest.
It _was_ used in two places at arch/frv for some reason.
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Cc: David Howells <dhowells@redhat.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: James Morris <jmorris@namei.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The following two patches remove searching in the page allocator fast-path
by maintaining multiple free-lists in the per-cpu structure. At the time
the search was introduced, increasing the per-cpu structures would waste a
lot of memory as per-cpu structures were statically allocated at
compile-time. This is no longer the case.
The patches are as follows. They are based on mmotm-2009-08-27.
Patch 1 adds multiple lists to struct per_cpu_pages, one per
migratetype that can be stored on the PCP lists.
Patch 2 notes that the pcpu drain path check empty lists multiple times. The
patch reduces the number of checks by maintaining a count of free
lists encountered. Lists containing pages will then free multiple
pages in batch
The patches were tested with kernbench, netperf udp/tcp, hackbench and
sysbench. The netperf tests were not bound to any CPU in particular and
were run such that the results should be 99% confidence that the reported
results are within 1% of the estimated mean. sysbench was run with a
postgres background and read-only tests. Similar to netperf, it was run
multiple times so that it's 99% confidence results are within 1%. The
patches were tested on x86, x86-64 and ppc64 as
x86: Intel Pentium D 3GHz with 8G RAM (no-brand machine)
kernbench - No significant difference, variance well within noise
netperf-udp - 1.34% to 2.28% gain
netperf-tcp - 0.45% to 1.22% gain
hackbench - Small variances, very close to noise
sysbench - Very small gains
x86-64: AMD Phenom 9950 1.3GHz with 8G RAM (no-brand machine)
kernbench - No significant difference, variance well within noise
netperf-udp - 1.83% to 10.42% gains
netperf-tcp - No conclusive until buffer >= PAGE_SIZE
4096 +15.83%
8192 + 0.34% (not significant)
16384 + 1%
hackbench - Small gains, very close to noise
sysbench - 0.79% to 1.6% gain
ppc64: PPC970MP 2.5GHz with 10GB RAM (it's a terrasoft powerstation)
kernbench - No significant difference, variance well within noise
netperf-udp - 2-3% gain for almost all buffer sizes tested
netperf-tcp - losses on small buffers, gains on larger buffers
possibly indicates some bad caching effect.
hackbench - No significant difference
sysbench - 2-4% gain
This patch:
Currently the per-cpu page allocator searches the PCP list for pages of
the correct migrate-type to reduce the possibility of pages being
inappropriate placed from a fragmentation perspective. This search is
potentially expensive in a fast-path and undesirable. Splitting the
per-cpu list into multiple lists increases the size of a per-cpu structure
and this was potentially a major problem at the time the search was
introduced. These problem has been mitigated as now only the necessary
number of structures is allocated for the running system.
This patch replaces a list search in the per-cpu allocator with one list
per migrate type. The potential snag with this approach is when bulk
freeing pages. We round-robin free pages based on migrate type which has
little bearing on the cache hotness of the page and potentially checks
empty lists repeatedly in the event the majority of PCP pages are of one
type.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Nick Piggin <npiggin@suse.de>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For mem_cgroup, shrink_zone() may call shrink_list() with nr_to_scan=1, in
which case shrink_list() _still_ calls isolate_pages() with the much
larger SWAP_CLUSTER_MAX. It effectively scales up the inactive list scan
rate by up to 32 times.
For example, with 16k inactive pages and DEF_PRIORITY=12, (16k >> 12)=4.
So when shrink_zone() expects to scan 4 pages in the active/inactive list,
the active list will be scanned 4 pages, while the inactive list will be
(over) scanned SWAP_CLUSTER_MAX=32 pages in effect. And that could break
the balance between the two lists.
It can further impact the scan of anon active list, due to the anon
active/inactive ratio rebalance logic in balance_pgdat()/shrink_zone():
inactive anon list over scanned => inactive_anon_is_low() == TRUE
=> shrink_active_list()
=> active anon list over scanned
So the end result may be
- anon inactive => over scanned
- anon active => over scanned (maybe not as much)
- file inactive => over scanned
- file active => under scanned (relatively)
The accesses to nr_saved_scan are not lock protected and so not 100%
accurate, however we can tolerate small errors and the resulted small
imbalanced scan rates between zones.
Cc: Rik van Riel <riel@redhat.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If the system is running a heavy load of processes then concurrent reclaim
can isolate a large number of pages from the LRU. /proc/vmstat and the
output generated for an OOM do not show how many pages were isolated.
This has been observed during process fork bomb testing (mstctl11 in LTP).
This patch shows the information about isolated pages.
Reproduced via:
-----------------------
% ./hackbench 140 process 1000
=> OOM occur
active_anon:146 inactive_anon:0 isolated_anon:49245
active_file:79 inactive_file:18 isolated_file:113
unevictable:0 dirty:0 writeback:0 unstable:0 buffer:39
free:370 slab_reclaimable:309 slab_unreclaimable:5492
mapped:53 shmem:15 pagetables:28140 bounce:0
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Wu Fengguang <fengguang.wu@intel.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Recently we encountered OOM problems due to memory use of the GEM cache.
Generally a large amuont of Shmem/Tmpfs pages tend to create a memory
shortage problem.
We often use the following calculation to determine the amount of shmem
pages:
shmem = NR_ACTIVE_ANON + NR_INACTIVE_ANON - NR_ANON_PAGES
however the expression does not consider isolated and mlocked pages.
This patch adds explicit accounting for pages used by shmem and tmpfs.
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Christoph Lameter <cl@linux-foundation.org>
Acked-by: Wu Fengguang <fengguang.wu@intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The amount of memory allocated to kernel stacks can become significant and
cause OOM conditions. However, we do not display the amount of memory
consumed by stacks.
Add code to display the amount of memory used for stacks in /proc/meminfo.
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Christoph Lameter <cl@linux-foundation.org>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The vmscan batching logic is twisting. Move it into a standalone function
nr_scan_try_batch() and document it. No behavior change.
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Christoph Lameter <cl@linux-foundation.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
ALLOC_WMARK_MIN, ALLOC_WMARK_LOW and ALLOC_WMARK_HIGH determin whether
pages_min, pages_low or pages_high is used as the zone watermark when
allocating the pages. Two branches in the allocator hotpath determine
which watermark to use.
This patch uses the flags as an array index into a watermark array that is
indexed with WMARK_* defines accessed via helpers. All call sites that
use zone->pages_* are updated to use the helpers for accessing the values
and the array offsets for setting.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Christoph Lameter <cl@linux-foundation.org>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
On low-memory systems, anti-fragmentation gets disabled as there is
nothing it can do and it would just incur overhead shuffling pages between
lists constantly. Currently the check is made in the free page fast path
for every page. This patch moves it to a slow path. On machines with low
memory, there will be small amount of additional overhead as pages get
shuffled between lists but it should quickly settle.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Christoph Lameter <cl@linux-foundation.org>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
pfn_valid() is meant to be able to tell if a given PFN has valid memmap
associated with it or not. In FLATMEM, it is expected that holes always
have valid memmap as long as there is valid PFNs either side of the hole.
In SPARSEMEM, it is assumed that a valid section has a memmap for the
entire section.
However, ARM and maybe other embedded architectures in the future free
memmap backing holes to save memory on the assumption the memmap is never
used. The page_zone linkages are then broken even though pfn_valid()
returns true. A walker of the full memmap must then do this additional
check to ensure the memmap they are looking at is sane by making sure the
zone and PFN linkages are still valid. This is expensive, but walkers of
the full memmap are extremely rare.
This was caught before for FLATMEM and hacked around but it hits again for
SPARSEMEM because the page_zone linkages can look ok where the PFN linkages
are totally screwed. This looks like a hatchet job but the reality is that
any clean solution would end up consumning all the memory saved by punching
these unexpected holes in the memmap. For example, we tried marking the
memmap within the section invalid but the section size exceeds the size of
the hole in most cases so pfn_valid() starts returning false where valid
memmap exists. Shrinking the size of the section would increase memory
consumption offsetting the gains.
This patch identifies when an architecture is punching unexpected holes
in the memmap that the memory model cannot automatically detect and sets
ARCH_HAS_HOLES_MEMORYMODEL. At the moment, this is restricted to EP93xx
which is the model sub-architecture this has been reported on but may expand
later. When set, walkers of the full memmap must call memmap_valid_within()
for each PFN and passing in what it expects the page and zone to be for
that PFN. If it finds the linkages to be broken, it assumes the memmap is
invalid for that PFN.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
* git://git.kernel.org/pub/scm/linux/kernel/git/rusty/linux-2.6-cpumask: (36 commits)
cpumask: remove cpumask allocation from idle_balance, fix
numa, cpumask: move numa_node_id default implementation to topology.h, fix
cpumask: remove cpumask allocation from idle_balance
x86: cpumask: x86 mmio-mod.c use cpumask_var_t for downed_cpus
x86: cpumask: update 32-bit APM not to mug current->cpus_allowed
x86: microcode: cleanup
x86: cpumask: use work_on_cpu in arch/x86/kernel/microcode_core.c
cpumask: fix CONFIG_CPUMASK_OFFSTACK=y cpu hotunplug crash
numa, cpumask: move numa_node_id default implementation to topology.h
cpumask: convert node_to_cpumask_map[] to cpumask_var_t
cpumask: remove x86 cpumask_t uses.
cpumask: use cpumask_var_t in uv_flush_tlb_others.
cpumask: remove cpumask_t assignment from vector_allocation_domain()
cpumask: make Xen use the new operators.
cpumask: clean up summit's send_IPI functions
cpumask: use new cpumask functions throughout x86
x86: unify cpu_callin_mask/cpu_callout_mask/cpu_initialized_mask/cpu_sibling_setup_mask
cpumask: convert struct cpuinfo_x86's llc_shared_map to cpumask_var_t
cpumask: convert node_to_cpumask_map[] to cpumask_var_t
x86: unify 32 and 64-bit node_to_cpumask_map
...