Because the common underlying code for ARM kprobes and uprobes needs
to share a common architecrure-specific context structure, and because
the generic kprobes include file insists on defining this to a dummy
structure when kprobes is not configured, a new common structure is
required which can exist when uprobes is configured without kprobes.
In this case kprobes will define a dummy structure, but without the
define aliasing the two structure tags it will not affect uprobes and
the shared probes code.
Signed-off-by: David A. Long <dave.long@linaro.org>
Acked-by: Jon Medhurst <tixy@linaro.org>
Add an emulate flag into the instruction interpreter, primarily for uprobes
support.
Signed-off-by: David A. Long <dave.long@linaro.org>
Acked-by: Jon Medhurst <tixy@linaro.org>
Any more ARM kprobes/uprobes symbols which have "kprobe" in the name must be
changed to the more generic "probes" or other non-kprobes specific symbol.
Signed-off-by: David A. Long <dave.long@linaro.org>
Acked-by: Jon Medhurst <tixy@linaro.org>
Change the name of kprobes_insn to probes_insn so it can be shared between
kprobes and uprobes without confusion.
Signed-off-by: David A. Long <dave.long@linaro.org>
Acked-by: Jon Medhurst <tixy@linaro.org>
Change kprobe_emulate_none, kprobe_simulate_nop, and arm_kprobe_decode_init
function names to something more appropriate for code being shared
outside of the kprobes subsystem. Also, move the new arm_probes_decode_init
declaration out of the kprobes.h include file and into the probes.h include file.
Signed-off-by: David A. Long <dave.long@linaro.org>
Acked-by: Jon Medhurst <tixy@linaro.org>
In preparation for sharing the ARM kprobes instruction interpreting
code with uprobes, make the symbols names less kprobes-specific.
Signed-off-by: David A. Long <dave.long@linaro.org>
Acked-by: Jon Medhurst <tixy@linaro.org>
Make the instruction interpreter call back to semantic action functions
through a function pointer array provided by the invoker. The interpreter
decodes the instructions into groups and uses the group number to index
into the supplied array. kprobes and uprobes code will each supply their
own array of functions.
Signed-off-by: David A. Long <dave.long@linaro.org>
Acked-by: Jon Medhurst <tixy@linaro.org>
Move the arm version of the kprobes instruction parsing code into more generic
files from where it can be used by uprobes and possibly other subsystems. The
symbol names will be made more generic in a subsequent part of this patchset.
Signed-off-by: David A. Long <dave.long@linaro.org>
Acked-by: Jon Medhurst <tixy@linaro.org>
The test code will be using kprobes' internal decoding tables so we
need to export these for when then the tests are compiled as a module.
Signed-off-by: Jon Medhurst <tixy@yxit.co.uk>
Acked-by: Nicolas Pitre <nicolas.pitre@linaro.org>
This writes a new value to PC which was obtained as the result of an ARM
ALU instruction. For ARMv7 and later this performs interworking.
On ARM kernels we shouldn't encounter any ALU instructions trying to
switch to Thumb mode so support for this isn't strictly necessary.
However, the approach taken in all other instruction decoding is for us
to avoid unpredictable modification of the PC for security reasons. This
is usually achieved by rejecting insertion of probes on problematic
instruction, but for ALU instructions we can't do this as it depends on
the contents of the CPU registers at the time the probe is hit. So, as
we require some form of run-time checking to trap undesirable PC
modification, we may as well simulate the instructions correctly, i.e.
in the way they would behave in the absence of a probe.
Signed-off-by: Jon Medhurst <tixy@yxit.co.uk>
Acked-by: Nicolas Pitre <nicolas.pitre@linaro.org>
The encoding of these instructions is substantially the same for both
ARM and Thumb, so we can have common decoding and simulation functions.
This patch moves the simulation functions from kprobes-arm.c to
kprobes-common.c. It also adds a new simulation function
(simulate_ldm1_pc) for the case where we load into PC because this may
need to interwork.
The instruction decoding is done by a custom function
(kprobe_decode_ldmstm) rather than just relying on decoding table
entries because we will later be adding optimisation code.
Signed-off-by: Jon Medhurst <tixy@yxit.co.uk>
Acked-by: Nicolas Pitre <nicolas.pitre@linaro.org>
This writes a value to PC which was obtained as the result of a
LDR or LDM instruction. For ARMv5T and later this must perform
interworking.
Signed-off-by: Jon Medhurst <tixy@yxit.co.uk>
Acked-by: Nicolas Pitre <nicolas.pitre@linaro.org>
This writes a value to PC, with interworking. I.e. switches to Thumb or
ARM mode depending on the state of the least significant bit.
Signed-off-by: Jon Medhurst <tixy@yxit.co.uk>
Acked-by: Nicolas Pitre <nicolas.pitre@linaro.org>
For hints which may have observable effects, like SEV (send event), we
use kprobe_emulate_none which emulates the hint by executing the
original instruction.
For NOP we simulate the instruction using kprobe_simulate_nop, which
does nothing. As probes execute with interrupts disabled this is also
used for hints which may block for an indefinite time, like WFE (wait
for event).
Signed-off-by: Jon Medhurst <tixy@yxit.co.uk>
Acked-by: Nicolas Pitre <nicolas.pitre@linaro.org>
The existing ARM instruction decoding functions are a mass of if/else
code. Rather than follow this pattern for Thumb instruction decoding
this patch implements an infrastructure for a new table driven scheme.
This has several advantages:
- Reduces the kernel size by approx 2kB. (The ARM instruction decoding
will eventually have -3.1kB code, +1.3kB data; with similar or better
estimated savings for Thumb decoding.)
- Allows programmatic checking of decoding consistency and test case
coverage.
- Provides more uniform source code and is therefore, arguably, clearer.
For a detailed explanation of how decoding tables work see the in-source
documentation in kprobes.h, and also for kprobe_decode_insn().
Signed-off-by: Jon Medhurst <tixy@yxit.co.uk>
Acked-by: Nicolas Pitre <nicolas.pitre@linaro.org>
Now we no longer trigger probes on conditional instructions when the
condition is false, we can make use of conditional instructions as
breakpoints in ARM code to avoid taking unnecessary exceptions.
Note, we can't rely on not getting an exception when the condition check
fails, as that is Implementation Defined on newer ARM architectures. We
therefore still need to perform manual condition checks as well.
Signed-off-by: Jon Medhurst <tixy@yxit.co.uk>
Acked-by: Nicolas Pitre <nicolas.pitre@linaro.org>
This advances the ITSTATE bits in CPSR to their values for the next
instruction.
Signed-off-by: Jon Medhurst <tixy@yxit.co.uk>
Acked-by: Nicolas Pitre <nicolas.pitre@linaro.org>
Extend the breakpoint insertion and catching functions to support Thumb
code.
As breakpoints are no longer of a fixed size, the flush_insns macro
is modified to take a size argument instead of an instruction count.
Note, we need both 16- and 32-bit Thumb breakpoints, because if we
were to use a 16-bit breakpoint to replace a 32-bit instruction which
was in an IT block, and the condition check failed, then the breakpoint
may not fire (it's unpredictable behaviour) and the CPU could then try
and execute the second half of the 32-bit Thumb instruction.
Signed-off-by: Jon Medhurst <tixy@yxit.co.uk>
Acked-by: Nicolas Pitre <nicolas.pitre@linaro.org>
Extend arch_prepare_kprobe to support probing of Thumb code. For
the actual decoding of Thumb instructions, stub functions are
added which currently just reject the probe.
Signed-off-by: Jon Medhurst <tixy@yxit.co.uk>
Acked-by: Nicolas Pitre <nicolas.pitre@linaro.org>
The str_pc_offset value is architecturally defined on ARMv7 onwards so
we can make it a compile time constant. This means on Thumb kernels the
runtime checking code isn't needed, which saves us from having to fix it
to work for Thumb.
Signed-off-by: Jon Medhurst <tixy@yxit.co.uk>
Acked-by: Nicolas Pitre <nicolas.pitre@linaro.org>
Move str_pc_offset into kprobes-common.c as it will be needed by common
code later.
Signed-off-by: Jon Medhurst <tixy@yxit.co.uk>
Acked-by: Nicolas Pitre <nicolas.pitre@linaro.org>
This file will contain the instruction decoding and emulation code
which is common to both ARM and Thumb instruction sets.
For now, we will just move over condition_checks from kprobes-arm.c
This table is also renamed to kprobe_condition_checks to avoid polluting
the public namespace with a too generic name.
Signed-off-by: Jon Medhurst <tixy@yxit.co.uk>
Acked-by: Nicolas Pitre <nicolas.pitre@linaro.org>
Later, we will be adding a considerable amount of internal
implementation definitions to kprobe header files and it would be good
to have these in local header file along side the source code, rather
than pollute the existing header which is include by all users of
kprobes.
To this end, we add arch/arm/kernel/kprobes.h and move into this the
existing internal defintions from arch/arm/include/asm/kprobes.h
Signed-off-by: Jon Medhurst <tixy@yxit.co.uk>
Acked-by: Nicolas Pitre <nicolas.pitre@linaro.org>