Correct various typos and formatting inconsistencies in the
commentary of futex_wait_requeue_pi().
Signed-off-by: Darren Hart <dvhltc@us.ibm.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Dinakar Guniguntala <dino@in.ibm.com>
Cc: John Stultz <johnstul@us.ibm.com>
LKML-Reference: <20090922052958.8717.21932.stgit@Aeon>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
There is currently no check to ensure that userspace uses the same
futex requeue target (uaddr2) in futex_requeue() that the waiter used
in futex_wait_requeue_pi(). A mismatch here could very unexpected
results as the waiter assumes it either wakes on uaddr1 or uaddr2. We
could detect this on wakeup in the waiter, but the cleanup is more
intense after the improper requeue has occured.
This patch stores the waiter's expected requeue target in a new
requeue_pi_key pointer in the futex_q which futex_requeue() checks
prior to attempting to do a proxy lock acquistion or a requeue when
requeue_pi=1. If they don't match, return -EINVAL from futex_requeue,
aborting the requeue of any remaining waiters.
Signed-off-by: Darren Hart <dvhltc@us.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: John Kacur <jkacur@redhat.com>
Cc: Dinakar Guniguntala <dino@in.ibm.com>
Cc: John Stultz <johnstul@us.ibm.com>
LKML-Reference: <20090814003650.14634.63916.stgit@Aeon>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
If futex_requeue(requeue_pi=1) finds a futex_q that was created by a call
other the futex_wait_requeue_pi(), the q.rt_waiter may be null. If so,
this will result in an oops from the following call graph:
futex_requeue()
rt_mutex_start_proxy_lock()
task_blocks_on_rt_mutex()
waiter->task dereference
OOPS
We currently WARN_ON() if this is detected, clearly this is inadequate.
If we detect a mispairing in futex_requeue(), bail out, seding -EINVAL to
user-space.
V2: Fix parenthesis warnings.
Signed-off-by: Darren Hart <dvhltc@us.ibm.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: John Kacur <jkacur@redhat.com>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Dinakar Guniguntala <dino@in.ibm.com>
Cc: John Stultz <johnstul@linux.vnet.ibm.com>
LKML-Reference: <4A7CA8C0.7010809@us.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
futex_requeue() can acquire the lock on behalf of a waiter
early on or during the requeue loop if it is uncontended or in
the event of a lock steal or owner died. On wakeup, the waiter
(in futex_wait_requeue_pi()) cleans up the pi_state owner using
the lock_ptr to protect against concurrent access to the
pi_state. The pi_state is hung off futex_q's on the requeue
target futex hash bucket so the lock_ptr needs to be updated
accordingly.
The problem manifested by triggering the WARN_ON in
lookup_pi_state() about the pid != pi_state->owner->pid. With
this patch, the pi_state is properly guarded against concurrent
access via the requeue target hb lock.
The astute reviewer may notice that there is a window of time
between when futex_requeue() unlocks the hb locks and when
futex_wait_requeue_pi() will acquire hb2->lock. During this
time the pi_state and uval are not in sync with the underlying
rtmutex owner (but the uval does indicate there are waiters, so
no atomic changes will occur in userspace). However, this is
not a problem. Should a contending thread enter
lookup_pi_state() and acquire hb2->lock before the ownership is
fixed up, it will find the pi_state hung off a waiter's
(possibly the pending owner's) futex_q and block on the
rtmutex. Once futex_wait_requeue_pi() fixes up the owner, it
will also move the pi_state from the old owner's
task->pi_state_list to its own.
v3: Fix plist lock name for application to mainline (rather
than -rt) Compile tested against tip/v2.6.31-rc5.
Signed-off-by: Darren Hart <dvhltc@us.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Dinakar Guniguntala <dino@in.ibm.com>
Cc: John Stultz <johnstul@linux.vnet.ibm.com>
LKML-Reference: <4A7F4EFF.6090903@us.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The state machine described in the comments wasn't updated with
a follow-on fix. Address that and cleanup the corresponding
commentary in the function.
Signed-off-by: Darren Hart <dvhltc@us.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
LKML-Reference: <4A737C2A.9090001@us.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
get_futex_key() can infinitely loop if it is called on a
virtual address that is within a huge page but not aligned to
the beginning of that page. The call to get_user_pages_fast
will return the struct page for a sub-page within the huge page
and the check for page->mapping will always fail.
The fix is to call compound_head on the page before checking
that it's mapped.
Signed-off-by: Sonny Rao <sonnyrao@us.ibm.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@kernel.org
Cc: anton@samba.org
Cc: rajamony@us.ibm.com
Cc: speight@us.ibm.com
Cc: mstephen@us.ibm.com
Cc: grimm@us.ibm.com
Cc: mikey@ozlabs.au.ibm.com
LKML-Reference: <20090710231313.GA23572@us.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Yanmin noticed that fault_in_user_writeable() requests 4 pages instead
of one.
That's the result of blindly trusting Linus' proposal :) I even looked
up the prototype to verify the correctness: the argument in question
is confusingly enough named "len" while in reality it means number of
pages.
Pointed-out-by: Yanmin Zhang <yanmin_zhang@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
commit 64d1304a64 (futex: setup writeable mapping for futex ops which
modify user space data) did address only half of the problem of write
access faults.
The patch was made on two wrong assumptions:
1) access_ok(VERIFY_WRITE,...) would actually check write access.
On x86 it does _NOT_. It's a pure address range check.
2) a RW mapped region can not go away under us.
That's wrong as well. Nobody can prevent another thread to call
mprotect(PROT_READ) on that region where the futex resides. If that
call hits between the get_user_pages_fast() verification and the
actual write access in the atomic region we are toast again.
The solution is to not rely on access_ok and get_user() for any write
access related fault on private and shared futexes. Instead we need to
fault it in with verification of write access.
There is no generic non destructive write mechanism which would fault
the user page in trough a #PF, but as we already know that we will
fault we can as well call get_user_pages() directly and avoid the #PF
overhead.
If get_user_pages() returns -EFAULT we know that we can not fix it
anymore and need to bail out to user space.
Remove a bunch of confusing comments on this issue as well.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@kernel.org
If the waiter has been requeued to the outer PI futex and is
interrupted by a signal and the thread handles the signal then
ERESTART_RESTARTBLOCK is changed to EINTR and the restart block is
discarded. That way we return an unexcpected EINTR to user space
instead of ending up in futex_lock_pi_restart.
But we do not need to restart the syscall because we know that the
condition has changed since we have been requeued. If we would simply
restart the syscall then we would drop out via the comparison of the
user space value with EWOULDBLOCK.
The user space side needs to handle EWOULDBLOCK anyway as the
enqueueing on the inner futex can race with a requeue/wake. So we can
simply return EWOULDBLOCK to user space which also signals that we did
not take the outer futex and let user space handle it in the same way
it has to handle the requeue/wake race.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The futex_wait_requeue_pi op should restart unconditionally like
futex_lock_pi. The user of that function e.g. pthread_cond_wait can
not be interrupted so we do not care about the SA_RESTART flag of the
signal. Clean up the FIXMEs.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Merge reason: this branch was on an pre -rc1 base, merge it up to -rc6+
to get the latest upstream fixes.
Conflicts:
kernel/futex.c
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The futex code installs a read only mapping via get_user_pages_fast()
even if the futex op function has to modify user space data. The
eventual fault was fixed up by futex_handle_fault() which walked the
VMA with mmap_sem held.
After the cleanup patches which removed the mmap_sem dependency of the
futex code commit 4dc5b7a36a49eff97050894cf1b3a9a02523717 (futex:
clean up fault logic) removed the private VMA walk logic from the
futex code. This change results in a stale RO mapping which is not
fixed up.
Instead of reintroducing the previous fault logic we set up the
mapping in get_user_pages_fast() read/write for all operations which
modify user space data. Also handle private futexes in the same way
and make the current unconditional access_ok(VERIFY_WRITE) depend on
the futex op.
Reported-by: Andreas Schwab <schwab@linux-m68k.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
CC: stable@kernel.org
The waitqueue which is used in struct futex_q is a leftover from the
futexfd implementation. There is no need to use a waitqueue at all, as
the waiting task is the only user of it. The waitqueue just adds
additional locking and a loop in the wake up path which both can be
avoided.
We have already a task reference in struct futex_q which is used for
PI futexes. Use it for normal futexes as well and just wake up the
task directly.
The logic of signalling the futex wakeup via setting q->lock_ptr to
NULL is kept with the difference that we set it NULL before doing the
wakeup. This opens an exit race window vs. a non futex wake up of the
to be woken up task, which we prevent with get_task_struct /
put_task_struct on the waiter.
[ Impact: simplification ]
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The new requeue PI futex op codes were modeled after the existing
FUTEX_REQUEUE and FUTEX_CMP_REQUEUE calls. I was unaware at the time
that FUTEX_REQUEUE was only around for compatibility reasons and
shouldn't be used in new code. Ulrich Drepper elaborates on this in his
Futexes are Tricky paper: http://people.redhat.com/drepper/futex.pdf.
The deprecated call doesn't catch changes to the futex corresponding to
the destination futex which can lead to deadlock.
Therefor, I feel it best to remove FUTEX_REQUEUE_PI and leave only
FUTEX_CMP_REQUEUE_PI as there are not yet any existing users of the API.
This patch does change the OP code value of FUTEX_CMP_REQUEUE_PI to 12
from 13. Since my test case is the only known user of this API, I felt
this was the right thing to do, rather than leave a hole in the
enumeration.
I chose to continue using the _CMP_ modifier in the OP code to make it
explicit to the user that the test is being done.
Builds, boots, and ran several hundred iterations requeue_pi.c.
Signed-off-by: Darren Hart <dvhltc@us.ibm.com>
LKML-Reference: <49ED580E.1050502@us.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
If the get_futex_key() call were to fail, the existing code would
try and put_futex_key() prior to returning. This patch makes sure
we only put_futex_key() if get_futex_key() succeeded.
Reported-by: Clark Williams <williams@redhat.com>
Signed-off-by: Darren Hart <dvhltc@us.ibm.com>
LKML-Reference: <20090410165005.14342.16973.stgit@Aeon>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Thomas's testing caught a problem when the requeue target futex is
unowned and multiple tasks are requeued to it. This patch ensures
the FUTEX_WAITERS bit gets set if futex_requeue() will requeue one
or more tasks in addition to the one acquiring the lock.
Signed-off-by: Darren Hart <dvhltc@us.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
PI Futexes and their underlying rt_mutex cannot be left ownerless if
there are pending waiters as this will break the PI boosting logic, so
the standard requeue commands aren't sufficient. The new commands
properly manage pi futex ownership by ensuring a futex with waiters
has an owner at all times. This will allow glibc to properly handle
pi mutexes with pthread_condvars.
The approach taken here is to create two new futex op codes:
FUTEX_WAIT_REQUEUE_PI:
Tasks will use this op code to wait on a futex (such as a non-pi waitqueue)
and wake after they have been requeued to a pi futex. Prior to returning to
userspace, they will acquire this pi futex (and the underlying rt_mutex).
futex_wait_requeue_pi() is the result of a high speed collision between
futex_wait() and futex_lock_pi() (with the first part of futex_lock_pi() being
done by futex_proxy_trylock_atomic() on behalf of the top_waiter).
FUTEX_REQUEUE_PI (and FUTEX_CMP_REQUEUE_PI):
This call must be used to wake tasks waiting with FUTEX_WAIT_REQUEUE_PI,
regardless of how many tasks the caller intends to wake or requeue.
pthread_cond_broadcast() should call this with nr_wake=1 and
nr_requeue=INT_MAX. pthread_cond_signal() should call this with nr_wake=1 and
nr_requeue=0. The reason being we need both callers to get the benefit of the
futex_proxy_trylock_atomic() routine. futex_requeue() also enqueues the
top_waiter on the rt_mutex via rt_mutex_start_proxy_lock().
Signed-off-by: Darren Hart <dvhltc@us.ibm.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Refactor the code to validate the expected futex value in order to
reuse it with the requeue_pi code.
Signed-off-by: Darren Hart <dvhltc@us.ibm.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
futex_requeue() is getting a bit long-winded, and will be getting more
so after the requeue_pi patch. Factor out the actual requeueing into a
nicely contained inline function to reduce function length and improve
legibility.
Signed-off-by: Darren Hart <dvhltc@us.ibm.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Currently restart is only used if there is a timeout. The requeue_pi
functionality requires restarting to futex_lock_pi() on signal after
wakeup in futex_wait_requeue_pi() regardless of if there was a timeout
or not. Using 0 for the timeout value is confusing as that could
indicate an expired timer. The flag makes this explicit. While the
check is not technically needed in futex_wait_restart(), doing so
makes the code consistent with and will avoid confusion should the
need arise to restart wait without a timeout.
Signed-off-by: Darren Hart <dvhltc@us.ibm.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Refactor the post lock acquisition logic from futex_lock_pi(). This
code will be reused in futex_wait_requeue_pi().
Signed-off-by: Darren Hart <dvhltc@us.ibm.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Refactor the atomic portion of futex_lock_pi() into futex_lock_pi_atomic().
This logic will be needed by requeue_pi, so modularize it to reduce
code duplication. The only significant change is passing of the task
to try and take the lock for. This simplifies the -EDEADLK test as if
the lock is owned by task t, it's a deadlock, regardless of if we are
doing requeue pi or not. This patch updates the corresponding comment
accordingly.
Signed-off-by: Darren Hart <dvhltc@us.ibm.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Improve legibility by wrapping finding the top waiter in a function.
This will be used by the follow-on patches for enabling requeue pi.
Signed-off-by: Darren Hart <dvhltc@us.ibm.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Refactor futex_wait() in preparation for futex_wait_requeue_pi(). In
order to reuse a good chunk of the futex_wait() code for the upcoming
futex_wait_requeue_pi() function, this patch breaks out the
queue-to-wakeup section of futex_wait() into futex_wait_queue_me().
Signed-off-by: Darren Hart <dvhltc@us.ibm.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
We've tripped over the futex_requeue drop_count refering to key2
instead of key1. The code is actually correct, but is non-intuitive.
This patch adds an explicit comment explaining the requeue.
Signed-off-by: Darren Hart <dvhltc@us.ibm.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: fix double unlock crash
Thomas Gleixner noticed that the simplified double_unlock_hb()
became ... too unsophisticated: in the hb1 == hb2 case it will
do a double unlock.
Reported-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Darren Hart <dvhltc@us.ibm.com>
LKML-Reference: <20090312221118.11146.68610.stgit@Aeon>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: simplify code
I mistakenly included the pointer value ordering in the
double_unlock_hb() in my previous patch. It's only necessary
in the double_lock_hb() function. This patch removes it.
Signed-off-by: Darren Hart <dvhltc@us.ibm.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Rusty Russell <rusty@rustcorp.com.au>
LKML-Reference: <20090312221118.11146.68610.stgit@Aeon>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: cleanup
Older versions of the futex code held the mmap_sem which had to
be dropped in order to call get_user(), so a two-pronged fault
handling mechanism was employed to handle faults of the atomic
operations. The mmap_sem is no longer held, so get_user()
should be adequate. This patch greatly simplifies the logic and
improves legibility.
Build and boot tested on a 4 way Intel x86_64 workstation.
Passes basic pthread_mutex and PI tests out of
ltp/testcases/realtime.
Signed-off-by: Darren Hart <dvhltc@us.ibm.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Rusty Russell <rusty@rustcorp.com.au>
LKML-Reference: <20090312075612.9856.48612.stgit@Aeon>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: rt-mutex failure case fix
futex_lock_pi can potentially return -EFAULT with the rt_mutex
held. This seems like the wrong thing to do as userspace should
assume -EFAULT means the lock was not taken. Even if it could
figure this out, we'd be leaving the pi_state->owner in an
inconsistent state. This patch unlocks the rt_mutex prior to
returning -EFAULT to userspace.
Build and boot tested on a 4 way Intel x86_64 workstation.
Passes basic pthread_mutex and PI tests out of
ltp/testcases/realtime.
Signed-off-by: Darren Hart <dvhltc@us.ibm.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Rusty Russell <rusty@rustcorp.com.au>
LKML-Reference: <20090312075606.9856.88729.stgit@Aeon>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
RT tasks should set their timer slack to 0 on their own. This
patch removes the 'if (rt_task()) slack = 0;' block in
futex_wait.
Build and boot tested on a 4 way Intel x86_64 workstation.
Passes basic pthread_mutex and PI tests out of
ltp/testcases/realtime.
Signed-off-by: Darren Hart <dvhltc@us.ibm.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Arjan van de Ven <arjan@linux.intel.com>
LKML-Reference: <20090312075559.9856.28822.stgit@Aeon>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: cleanup
The futex code uses double_lock_hb() which locks the hb->lock's
in pointer value order. There is no parallel unlock routine,
and the code unlocks them in name order, ignoring pointer value.
This patch adds double_unlock_hb() to refactor the duplicated
code segments.
Build and boot tested on a 4 way Intel x86_64 workstation.
Passes basic pthread_mutex and PI tests out of
ltp/testcases/realtime.
Signed-off-by: Darren Hart <dvhltc@us.ibm.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Rusty Russell <rusty@rustcorp.com.au>
LKML-Reference: <20090312075552.9856.48021.stgit@Aeon>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: fix races
futex_requeue and futex_lock_pi still had some bad
(get|put)_futex_key() usage. This patch adds the missing
put_futex_keys() and corrects a goto in futex_lock_pi() to avoid
a double get.
Build and boot tested on a 4 way Intel x86_64 workstation.
Passes basic pthread_mutex and PI tests out of
ltp/testcases/realtime.
Signed-off-by: Darren Hart <dvhltc@us.ibm.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Rusty Russell <rusty@rustcorp.com.au>
LKML-Reference: <20090312075545.9856.75152.stgit@Aeon>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: cleanup
The futex_hash_bucket can be a bit confusing when first looking
at the code as it is a shared queue (and futex_q isn't a queue
at all, but rather an element on the queue).
The mmap_sem is no longer held outside of the
futex_handle_fault() routine, yet numerous comments refer to it.
The fshared argument is no an integer. I left some of these
comments along as they are simply removed in future patches.
Some of the commentary refering to futexes by virtual page
mappings was not very clear, and completely accurate (as for
shared futexes both the page and the offset are used to
determine the key). For the purposes of the function
description, just referring to "the futex" seems sufficient.
With hashed futexes we now access the page after the hash-bucket
is locked, and not only after it is enqueued.
Signed-off-by: Darren Hart <dvhltc@us.ibm.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Rusty Russell <rusty@rustcorp.com.au>
LKML-Reference: <20090312075537.9856.29954.stgit@Aeon>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Catalin noticed that (38d47c1b7075: futex: rely on get_user_pages() for
shared futexes) caused an mm_struct leak.
Some tracing with the function graph tracer quickly pointed out that
futex_wait() has exit paths with unbalanced reference counts.
This regression was discovered by kmemleak.
Reported-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Tested-by: "Pallipadi, Venkatesh" <venkatesh.pallipadi@intel.com>
Tested-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: add debug check
Following up on my previous key reference accounting patches, this patch
will catch puts on keys that haven't been "got". This won't catch nested
get/put mismatches though.
Build and boot tested, with minimal desktop activity and a run of the
open_posix_testsuite in LTP for testing. No warnings logged.
Signed-off-by: Darren Hart <dvhltc@us.ibm.com>
Cc: <stable@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* 'core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (63 commits)
stacktrace: provide save_stack_trace_tsk() weak alias
rcu: provide RCU options on non-preempt architectures too
printk: fix discarding message when recursion_bug
futex: clean up futex_(un)lock_pi fault handling
"Tree RCU": scalable classic RCU implementation
futex: rename field in futex_q to clarify single waiter semantics
x86/swiotlb: add default swiotlb_arch_range_needs_mapping
x86/swiotlb: add default phys<->bus conversion
x86: unify pci iommu setup and allow swiotlb to compile for 32 bit
x86: add swiotlb allocation functions
swiotlb: consolidate swiotlb info message printing
swiotlb: support bouncing of HighMem pages
swiotlb: factor out copy to/from device
swiotlb: add arch hook to force mapping
swiotlb: allow architectures to override phys<->bus<->phys conversions
swiotlb: add comment where we handle the overflow of a dma mask on 32 bit
rcu: fix rcutorture behavior during reboot
resources: skip sanity check of busy resources
swiotlb: move some definitions to header
swiotlb: allow architectures to override swiotlb pool allocation
...
Fix up trivial conflicts in
arch/x86/kernel/Makefile
arch/x86/mm/init_32.c
include/linux/hardirq.h
as per Ingo's suggestions.
Impact: cleanup
This patch makes the calls to futex_get_key_refs() and futex_drop_key_refs()
explicitly symmetric by only "putting" keys we successfully "got". Also
cleanup a couple return points that didn't "put" after a successful "get".
Build and boot tested on an x86_64 system.
Signed-off-by: Darren Hart <dvhltc@us.ibm.com>
Cc: <stable@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: cleanup
Some apparently left over cruft code was complicating the fault logic:
Testing if uval != -EFAULT doesn't have any meaning, get_user() sets ret
to either 0 or -EFAULT, there's no need to compare uval, especially not
against EFAULT which it will never be. This patch removes the superfluous
test and clarifies the comment blocks.
Build and boot tested on an 8way x86_64 system.
Signed-off-by: Darren Hart <dvhltc@us.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: simplify code
I've tripped over the naming of this field a couple times.
The futex_q uses a "waiters" list to represent a single blocked task and
then calles wake_up_all().
This can lead to confusion in trying to understand the intent of the code,
which is to have a single futex_q for every task waiting on a futex.
This patch corrects the problem, using a single pointer to the waiting
task, and an appropriate call to wake_up, rather than wake_up_all.
Compile and boot tested on an 8way x86_64 machine.
Signed-off-by: Darren Hart <dvhltc@us.ibm.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
FUTEX_WAIT_BITSET could be used instead of FUTEX_WAIT by setting the
bit set to FUTEX_BITSET_MATCH_ANY, but FUTEX_WAIT uses CLOCK_REALTIME
while FUTEX_WAIT_BITSET uses CLOCK_MONOTONIC.
Add a flag to select CLOCK_REALTIME for FUTEX_WAIT_BITSET so glibc can
replace the FUTEX_WAIT logic which needs to do gettimeofday() calls
before and after the syscall to convert the absolute timeout to a
relative timeout for FUTEX_WAIT.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Ulrich Drepper <drepper@redhat.com>
Use RCU to access another task's creds and to release a task's own creds.
This means that it will be possible for the credentials of a task to be
replaced without another task (a) requiring a full lock to read them, and (b)
seeing deallocated memory.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
Separate the task security context from task_struct. At this point, the
security data is temporarily embedded in the task_struct with two pointers
pointing to it.
Note that the Alpha arch is altered as it refers to (E)UID and (E)GID in
entry.S via asm-offsets.
With comment fixes Signed-off-by: Marc Dionne <marc.c.dionne@gmail.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
Wrap access to task credentials so that they can be separated more easily from
the task_struct during the introduction of COW creds.
Change most current->(|e|s|fs)[ug]id to current_(|e|s|fs)[ug]id().
Change some task->e?[ug]id to task_e?[ug]id(). In some places it makes more
sense to use RCU directly rather than a convenient wrapper; these will be
addressed by later patches.
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: James Morris <jmorris@namei.org>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: linux-audit@redhat.com
Cc: containers@lists.linux-foundation.org
Cc: linux-mm@kvack.org
Signed-off-by: James Morris <jmorris@namei.org>
With the get_user_pages_fast() patches we made get_futex_key() obtain a
reference on the returned key, but failed to do so for private futexes.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
fshared doesn't need to be a rw_sem pointer anymore, so clean that up.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Change the get_user_pages() call with fast_gup() which doesn't require holding
the mmap_sem thereby removing the mmap_sem from all fast paths.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
now that we rely on get_user_pages() for the shared key handling
move all the mmap_sem stuff closely around the slow paths.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
On the way of getting rid of the mmap_sem requirement for shared futexes,
start by relying on get_user_pages().
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This patch makes the futex() system call use the per process
slack value; with this users are able to externally control existing
applications to reduce the wakeup rate.
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
In order to be able to do range hrtimers we need to use accessor functions
to the "expire" member of the hrtimer struct.
This patch converts kernel/* to these accessors.
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
This patch addresses a very sporadic pi-futex related failure in
highly threaded java apps on large SMP systems.
David Holmes reported that the pi_state consistency check in
lookup_pi_state triggered with his test application. This means that
the kernel internal pi_state and the user space futex variable are out
of sync. First we assumed that this is a user space data corruption,
but deeper investigation revieled that the problem happend because the
pi-futex code is not handling a fault in the futex_lock_pi path when
the user space variable needs to be fixed up.
The fault happens when a fork mapped the anon memory which contains
the futex readonly for COW or the page got swapped out exactly between
the unlock of the futex and the return of either the new futex owner
or the task which was the expected owner but failed to acquire the
kernel internal rtmutex. The current futex_lock_pi() code drops out
with an inconsistent in case it faults and returns -EFAULT to user
space. User space has no way to fixup that state.
When we wrote this code we thought that we could not drop the hash
bucket lock at this point to handle the fault.
After analysing the code again it turned out to be wrong because there
are only two tasks involved which might modify the pi_state and the
user space variable:
- the task which acquired the rtmutex
- the pending owner of the pi_state which did not get the rtmutex
Both tasks drop into the fixup_pi_state() function before returning to
user space. The first task which acquired the hash bucket lock faults
in the fixup of the user space variable, drops the spinlock and calls
futex_handle_fault() to fault in the page. Now the second task could
acquire the hash bucket lock and tries to fixup the user space
variable as well. It either faults as well or it succeeds because the
first task already faulted the page in.
One caveat is to avoid a double fixup. After returning from the fault
handling we reacquire the hash bucket lock and check whether the
pi_state owner has been modified already.
Reported-by: David Holmes <david.holmes@sun.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: David Holmes <david.holmes@sun.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: <stable@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
kernel/futex.c | 93 ++++++++++++++++++++++++++++++++++++++++++++-------------
1 file changed, 73 insertions(+), 20 deletions(-)
Since FUTEX_FD was scheduled for removal in June 2007 lets remove it.
Google Code search found no users for it and NGPT was abandoned in 2003
according to IBM. futex.h is left untouched to make sure the id does
not get reassigned. Since queue_me() has no users left it is commented
out to avoid a warning, i didnt remove it completely since it is part of
the internal api (matching unqueue_me())
Signed-off-by: Eric Sesterhenn <snakebyte@gmx.de>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> (removed rest)
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
hrtimers have now dynamic users in the network code. Put them under
debugobjects surveillance as well.
Add calls to the generic object debugging infrastructure and provide fixup
functions which allow to keep the system alive when recoverable problems have
been detected by the object debugging core code.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Greg KH <greg@kroah.com>
Cc: Randy Dunlap <randy.dunlap@oracle.com>
Cc: Kay Sievers <kay.sievers@vrfy.org>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The futex init function is called init(). This is a pain in the neck
when debugging when you code dies in ... init :-)
This renames it to futex_init().
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Not all architectures implement futex_atomic_cmpxchg_inatomic(). The default
implementation returns -ENOSYS, which is currently not handled inside of the
futex guts.
Futex PI calls and robust list exits with a held futex result in an endless
loop in the futex code on architectures which have no support.
Fixing up every place where futex_atomic_cmpxchg_inatomic() is called would
add a fair amount of extra if/else constructs to the already complex code. It
is also not possible to disable the robust feature before user space tries to
register robust lists.
Compile time disabling is not a good idea either, as there are already
architectures with runtime detection of futex_atomic_cmpxchg_inatomic support.
Detect the functionality at runtime instead by calling
cmpxchg_futex_value_locked() with a NULL pointer from the futex initialization
code. This is guaranteed to fail, but the call of
futex_atomic_cmpxchg_inatomic() happens with pagefaults disabled.
On architectures, which use the asm-generic implementation or have a runtime
CPU feature detection, a -ENOSYS return value disables the PI/robust features.
On architectures with a working implementation the call returns -EFAULT and
the PI/robust features are enabled.
The relevant syscalls return -ENOSYS and the robust list exit code is blocked,
when the detection fails.
Fixes http://lkml.org/lkml/2008/2/11/149
Originally reported by: Lennart Buytenhek
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Ingo Molnar <mingo@elte.hu>
Cc: Lennert Buytenhek <buytenh@wantstofly.org>
Cc: Riku Voipio <riku.voipio@movial.fi>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When the futex init code fails to initialize the futex pseudo file system it
returns early without initializing the hash queues. Should the boot succeed
then a futex syscall which tries to enqueue a waiter on the hashqueue will
crash due to the unitilialized plist heads.
Initialize the hash queues before the filesystem.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Ingo Molnar <mingo@elte.hu>
Cc: Lennert Buytenhek <buytenh@wantstofly.org>
Cc: Riku Voipio <riku.voipio@movial.fi>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Various user space callers ask for relative timeouts. While we fixed
that overflow issue in hrtimer_start(), the sites which convert
relative user space values to absolute timeouts themself were uncovered.
Instead of putting overflow checks into each place add a function
which does the sanity checking and convert all affected callers to use
it.
Thanks to Frans Pop, who reported the problem and tested the fixes.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Ingo Molnar <mingo@elte.hu>
Tested-by: Frans Pop <elendil@planet.nl>
To allow the implementation of optimized rw-locks in user space, glibc
needs a possibility to select waiters for wakeup depending on a bitset
mask.
This requires two new futex OPs: FUTEX_WAIT_BITS and FUTEX_WAKE_BITS
These OPs are basically the same as FUTEX_WAIT and FUTEX_WAKE plus an
additional argument - a bitset. Further the FUTEX_WAIT_BITS OP is
expecting an absolute timeout value instead of the relative one, which
is used for the FUTEX_WAIT OP.
FUTEX_WAIT_BITS calls into the kernel with a bitset. The bitset is
stored in the futex_q structure, which is used to enqueue the waiter
into the hashed futex waitqueue.
FUTEX_WAKE_BITS also calls into the kernel with a bitset. The wakeup
function logically ANDs the bitset with the bitset stored in each
waiters futex_q structure. If the result is zero (i.e. none of the set
bits in the bitsets is matching), then the waiter is not woken up. If
the result is not zero (i.e. one of the set bits in the bitsets is
matching), then the waiter is woken.
The bitset provided by the caller must be non zero. In case the
provided bitset is zero the kernel returns EINVAL.
Internaly the new OPs are only extensions to the existing FUTEX_WAIT
and FUTEX_WAKE functions. The existing OPs hand a bitset with all bits
set into the futex_wait() and futex_wake() functions.
Signed-off-by: Thomas Gleixner <tgxl@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The WARN_ON() in the fixup return path of futex_lock_pi() can
trigger with false positives.
The following scenario happens:
t1 holds the futex and t2 and t3 are blocked on the kernel side rt_mutex.
t1 releases the futex (and the rt_mutex) and assigned t2 to be the next
owner of the futex.
t2 is interrupted and returns w/o acquiring the rt_mutex, before t1 can
release the rtmutex.
t1 releases the rtmutex and t3 becomes the pending owner of the rtmutex.
t2 notices that it is the designated owner (user space variable) and
fails to acquire the rt_mutex via trylock, because it is not allowed to
steal the rt_mutex from t3. Now it looks at the rt_mutex pending owner (t3)
and assigns the futex and the pi_state to it.
During the fixup t4 steals the rtmutex from t3.
t2 returns from the fixup and the owner of the rt_mutex has changed from
t3 to t4.
There is no need to do another round of fixups from t2. The important
part (t2 is not returning as the user space visible owner) is
done. The further fixups are done, before either t3 or t4 return to
user space.
For the user space it is not relevant which task (t3 or t4) is the real
owner, as long as those are both in the kernel, which is guaranteed by
the serialization of the hash bucket lock. Both tasks (which ever returns
first to userspace - t4 because it locked the rt_mutex or t3 due to a signal)
are going through the lock_futex_pi() return path where the ownership is
fixed before the return to user space.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
this patch:
commit 37bb6cb409
Author: Peter Zijlstra <a.p.zijlstra@chello.nl>
Date: Fri Jan 25 21:08:32 2008 +0100
hrtimer: unlock hrtimer_wakeup
Broke hrtimer_init_sleeper() users. It forgot to fix up the futex
caller of this function to detect the failed queueing and messed up
the do_nanosleep() caller in that it could leak a TASK_INTERRUPTIBLE
state.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Roland Westrelin did a great analysis of a long standing thinko in the
return path of futex_lock_pi.
While we fixed the lock steal case long ago, which was easy to trigger,
we never had a test case which exposed this problem and stupidly never
thought about the reverse lock stealing scenario and the return to user
space with a stale state.
When a blocked tasks returns from rt_mutex_timed_locked without holding
the rt_mutex (due to a signal or timeout) and at the same time the task
holding the futex is releasing the futex and assigning the ownership of
the futex to the returning task, then it might happen that a third task
acquires the rt_mutex before the final rt_mutex_trylock() of the
returning task happens under the futex hash bucket lock. The returning
task returns to user space with ETIMEOUT or EINTR, but the user space
futex value is assigned to this task. The task which acquired the
rt_mutex fixes the user space futex value right after the hash bucket
lock has been released by the returning task, but for a short period of
time the user space value is wrong.
Detailed description is available at:
https://bugzilla.redhat.com/show_bug.cgi?id=400541
The fix for this is the same as we do when the rt_mutex was acquired by
a higher priority task via lock stealing from the designated new owner.
In that case we already fix the user space value and the internal
pi_state up before we return. This mechanism can be used to fixup the
above corner case as well. When the returning task, which failed to
acquire the rt_mutex, notices that it is the designated owner of the
futex, then it fixes up the stale user space value and the pi_state,
before returning to user space. This happens with the futex hash bucket
lock held, so the task which acquired the rt_mutex is guaranteed to be
blocked on the hash bucket lock. We can access the rt_mutex owner, which
gives us the pid of the new owner, safely here as the owner is not able
to modify (release) it while waiting on the hash bucket lock.
Rename the "curr" argument of fixup_pi_state_owner() to "newowner" to
avoid confusion with current and add the check for the stale state into
the failure path of rt_mutex_trylock() in the return path of
unlock_futex_pi(). If the situation is detected use
fixup_pi_state_owner() to assign everything to the owner of the
rt_mutex.
Pointed-out-and-tested-by: Roland Westrelin <roland.westrelin@sun.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
David Holmes found a bug in the -rt tree with respect to
pthread_cond_timedwait. After trying his test program on the latest git
from mainline, I found the bug was there too. The bug he was seeing
that his test program showed, was that if one were to do a "Ctrl-Z" on a
process that was in the pthread_cond_timedwait, and then did a "bg" on
that process, it would return with a "-ETIMEDOUT" but early. That is,
the timer would go off early.
Looking into this, I found the source of the problem. And it is a rather
nasty bug at that.
Here's the relevant code from kernel/futex.c: (not in order in the file)
[...]
smlinkage long sys_futex(u32 __user *uaddr, int op, u32 val,
struct timespec __user *utime, u32 __user *uaddr2,
u32 val3)
{
struct timespec ts;
ktime_t t, *tp = NULL;
u32 val2 = 0;
int cmd = op & FUTEX_CMD_MASK;
if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI)) {
if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
return -EFAULT;
if (!timespec_valid(&ts))
return -EINVAL;
t = timespec_to_ktime(ts);
if (cmd == FUTEX_WAIT)
t = ktime_add(ktime_get(), t);
tp = &t;
}
[...]
return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
}
[...]
long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
u32 __user *uaddr2, u32 val2, u32 val3)
{
int ret;
int cmd = op & FUTEX_CMD_MASK;
struct rw_semaphore *fshared = NULL;
if (!(op & FUTEX_PRIVATE_FLAG))
fshared = ¤t->mm->mmap_sem;
switch (cmd) {
case FUTEX_WAIT:
ret = futex_wait(uaddr, fshared, val, timeout);
[...]
static int futex_wait(u32 __user *uaddr, struct rw_semaphore *fshared,
u32 val, ktime_t *abs_time)
{
[...]
struct restart_block *restart;
restart = ¤t_thread_info()->restart_block;
restart->fn = futex_wait_restart;
restart->arg0 = (unsigned long)uaddr;
restart->arg1 = (unsigned long)val;
restart->arg2 = (unsigned long)abs_time;
restart->arg3 = 0;
if (fshared)
restart->arg3 |= ARG3_SHARED;
return -ERESTART_RESTARTBLOCK;
[...]
static long futex_wait_restart(struct restart_block *restart)
{
u32 __user *uaddr = (u32 __user *)restart->arg0;
u32 val = (u32)restart->arg1;
ktime_t *abs_time = (ktime_t *)restart->arg2;
struct rw_semaphore *fshared = NULL;
restart->fn = do_no_restart_syscall;
if (restart->arg3 & ARG3_SHARED)
fshared = ¤t->mm->mmap_sem;
return (long)futex_wait(uaddr, fshared, val, abs_time);
}
So when the futex_wait is interrupt by a signal we break out of the
hrtimer code and set up or return from signal. This code does not return
back to userspace, so we set up a RESTARTBLOCK. The bug here is that we
save the "abs_time" which is a pointer to the stack variable "ktime_t t"
from sys_futex.
This returns and unwinds the stack before we get to call our signal. On
return from the signal we go to futex_wait_restart, where we update all
the parameters for futex_wait and call it. But here we have a problem
where abs_time is no longer valid.
I verified this with print statements, and sure enough, what abs_time
was set to ends up being garbage when we get to futex_wait_restart.
The solution I did to solve this (with input from Linus Torvalds)
was to add unions to the restart_block to allow system calls to
use the restart with specific parameters. This way the futex code now
saves the time in a 64bit value in the restart block instead of storing
it on the stack.
Note: I'm a bit nervious to add "linux/types.h" and use u32 and u64
in thread_info.h, when there's a #ifdef __KERNEL__ just below that.
Not sure what that is there for. If this turns out to be a problem, I've
tested this with using "unsigned int" for u32 and "unsigned long long" for
u64 and it worked just the same. I'm using u32 and u64 just to be
consistent with what the futex code uses.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
The following functions can now become static again:
- get_futex_key()
- get_futex_key_refs()
- drop_futex_key_refs()
Signed-off-by: Adrian Bunk <bunk@kernel.org>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
The find_task_by_something is a set of macros are used to find task by pid
depending on what kind of pid is proposed - global or virtual one. All of
them are wrappers above the most generic one - find_task_by_pid_type_ns() -
and just substitute some args for it.
It turned out, that dereferencing the current->nsproxy->pid_ns construction
and pushing one more argument on the stack inline cause kernel text size to
grow.
This patch moves all this stuff out-of-line into kernel/pid.c. Together
with the next patch it saves a bit less than 400 bytes from the .text
section.
Signed-off-by: Pavel Emelyanov <xemul@openvz.org>
Cc: Sukadev Bhattiprolu <sukadev@us.ibm.com>
Cc: Oleg Nesterov <oleg@tv-sign.ru>
Cc: Paul Menage <menage@google.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Acked-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is the largest patch in the set. Make all (I hope) the places where
the pid is shown to or get from user operate on the virtual pids.
The idea is:
- all in-kernel data structures must store either struct pid itself
or the pid's global nr, obtained with pid_nr() call;
- when seeking the task from kernel code with the stored id one
should use find_task_by_pid() call that works with global pids;
- when showing pid's numerical value to the user the virtual one
should be used, but however when one shows task's pid outside this
task's namespace the global one is to be used;
- when getting the pid from userspace one need to consider this as
the virtual one and use appropriate task/pid-searching functions.
[akpm@linux-foundation.org: build fix]
[akpm@linux-foundation.org: nuther build fix]
[akpm@linux-foundation.org: yet nuther build fix]
[akpm@linux-foundation.org: remove unneeded casts]
Signed-off-by: Pavel Emelyanov <xemul@openvz.org>
Signed-off-by: Alexey Dobriyan <adobriyan@openvz.org>
Cc: Sukadev Bhattiprolu <sukadev@us.ibm.com>
Cc: Oleg Nesterov <oleg@tv-sign.ru>
Cc: Paul Menage <menage@google.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Get rid of sparse related warnings from places that use integer as NULL
pointer.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org>
Cc: Andi Kleen <ak@suse.de>
Cc: Jeff Garzik <jeff@garzik.org>
Cc: Matt Mackall <mpm@selenic.com>
Cc: Ian Kent <raven@themaw.net>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Davide Libenzi <davidel@xmailserver.org>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Right now futexfs and inotifyfs have one magic 0xBAD1DEA, that looks a
little bit confusing. Use 0xBAD1DEA as magic for futexfs and 0x2BAD1DEA as
magic for inotifyfs.
Signed-off-by: Andrey Mirkin <major@openvz.org>
Acked-by: Randy Dunlap <randy.dunlap@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Calling handle_futex_death in exit_robust_list for the different robust
mutexes of a thread basically frees the mutex. Another thread might grab
the lock immediately which updates the next pointer of the mutex.
fetch_robust_entry over the next pointer might therefore branch into the
robust mutex list of a different thread. This can cause two problems: 1)
some mutexes held by the dead thread are not getting freed and 2) some
mutexs held by a different thread are freed.
The next point need to be read before calling handle_futex_death.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Acked-by: Ingo Molnar <mingo@elte.hu>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Avoid futex_unlock_pi returning -EFAULT (which results in deadlock), by
clearing uval before jumping to retry_locked.
Signed-off-by: John Stultz <johnstul@us.ibm.com>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The fourth argument of sys_futex is ignored when op == FUTEX_WAKE_OP,
but futex_wake_op expects it as its nr_wake2 parameter.
The only user of this operation in glibc is always passing 1, so this
bug had no consequences so far.
Signed-off-by: Andreas Schwab <schwab@suse.de>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Ulrich Drepper <drepper@redhat.com>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch completes Linus's wish that the fault return codes be made into
bit flags, which I agree makes everything nicer. This requires requires
all handle_mm_fault callers to be modified (possibly the modifications
should go further and do things like fault accounting in handle_mm_fault --
however that would be for another patch).
[akpm@linux-foundation.org: fix alpha build]
[akpm@linux-foundation.org: fix s390 build]
[akpm@linux-foundation.org: fix sparc build]
[akpm@linux-foundation.org: fix sparc64 build]
[akpm@linux-foundation.org: fix ia64 build]
Signed-off-by: Nick Piggin <npiggin@suse.de>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Ian Molton <spyro@f2s.com>
Cc: Bryan Wu <bryan.wu@analog.com>
Cc: Mikael Starvik <starvik@axis.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Hirokazu Takata <takata@linux-m32r.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Roman Zippel <zippel@linux-m68k.org>
Cc: Greg Ungerer <gerg@uclinux.org>
Cc: Matthew Wilcox <willy@debian.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Kazumoto Kojima <kkojima@rr.iij4u.or.jp>
Cc: Richard Curnow <rc@rc0.org.uk>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Jeff Dike <jdike@addtoit.com>
Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Cc: Miles Bader <uclinux-v850@lsi.nec.co.jp>
Cc: Chris Zankel <chris@zankel.net>
Acked-by: Kyle McMartin <kyle@mcmartin.ca>
Acked-by: Haavard Skinnemoen <hskinnemoen@atmel.com>
Acked-by: Ralf Baechle <ralf@linux-mips.org>
Acked-by: Andi Kleen <ak@muc.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
[ Still apparently needs some ARM and PPC loving - Linus ]
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The recent PRIVATE and REQUEUE_PI changes to the futex code made it hard to
read. Tidy it up.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The return value of futex_find_get_task() needs to be -ESRCH in case
that the search fails. This was part of the original futex fixes and
got accidentally dropped, when the futex-tidy-up patch was split out.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Stable Team <stable@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This reverts commit d0aa7a70bf.
It not only introduced user space visible changes to the futex syscall,
it is also non-functional and there is no way to fix it proper before
the 2.6.22 release.
The breakage report ( http://lkml.org/lkml/2007/5/12/17 ) went
unanswered, and unfortunately it turned out that the concept is not
feasible at all. It violates the rtmutex semantics badly by introducing
a virtual owner, which hacks around the coupling of the user-space
pi_futex and the kernel internal rt_mutex representation.
At the moment the only safe option is to remove it fully as it contains
user-space visible changes to broken kernel code, which we do not want
to expose in the 2.6.22 release.
The patch reverts the original patch mostly 1:1, but contains a couple
of trivial manual cleanups which were necessary due to patches, which
touched the same area of code later.
Verified against the glibc tests and my own PI futex tests.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Ingo Molnar <mingo@elte.hu>
Acked-by: Ulrich Drepper <drepper@redhat.com>
Cc: Pierre Peiffer <pierre.peiffer@bull.net>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
1. New entries can be added to tsk->pi_state_list after task completed
exit_pi_state_list(). The result is memory leakage and deadlocks.
2. handle_mm_fault() is called under spinlock. The result is obvious.
3. results in self-inflicted deadlock inside glibc.
Sometimes futex_lock_pi returns -ESRCH, when it is not expected
and glibc enters to for(;;) sleep() to simulate deadlock. This problem
is quite obvious and I think the patch is right. Though it looks like
each "if" in futex_lock_pi() got some stupid special case "else if". :-)
4. sometimes futex_lock_pi() returns -EDEADLK,
when nobody has the lock. The reason is also obvious (see comment
in the patch), but correct fix is far beyond my comprehension.
I guess someone already saw this, the chunk:
if (rt_mutex_trylock(&q.pi_state->pi_mutex))
ret = 0;
is obviously from the same opera. But it does not work, because the
rtmutex is really taken at this point: wake_futex_pi() of previous
owner reassigned it to us. My fix works. But it looks very stupid.
I would think about removal of shift of ownership in wake_futex_pi()
and making all the work in context of process taking lock.
From: Thomas Gleixner <tglx@linutronix.de>
Fix 1) Avoid the tasklist lock variant of the exit race fix by adding
an additional state transition to the exit code.
This fixes also the issue, when a task with recursive segfaults
is not able to release the futexes.
Fix 2) Cleanup the lookup_pi_state() failure path and solve the -ESRCH
problem finally.
Fix 3) Solve the fixup_pi_state_owner() problem which needs to do the fixup
in the lock protected section by using the in_atomic userspace access
functions.
This removes also the ugly lock drop / unqueue inside of fixup_pi_state()
Fix 4) Fix a stale lock in the error path of futex_wake_pi()
Added some error checks for verification.
The -EDEADLK problem is solved by the rtmutex fixups.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Ingo Molnar <mingo@elte.hu>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ulrich Drepper <drepper@redhat.com>
Cc: Eric Dumazet <dada1@cosmosbay.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Analysis of current linux futex code :
--------------------------------------
A central hash table futex_queues[] holds all contexts (futex_q) of waiting
threads.
Each futex_wait()/futex_wait() has to obtain a spinlock on a hash slot to
perform lookups or insert/deletion of a futex_q.
When a futex_wait() is done, calling thread has to :
1) - Obtain a read lock on mmap_sem to be able to validate the user pointer
(calling find_vma()). This validation tells us if the futex uses
an inode based store (mapped file), or mm based store (anonymous mem)
2) - compute a hash key
3) - Atomic increment of reference counter on an inode or a mm_struct
4) - lock part of futex_queues[] hash table
5) - perform the test on value of futex.
(rollback is value != expected_value, returns EWOULDBLOCK)
(various loops if test triggers mm faults)
6) queue the context into hash table, release the lock got in 4)
7) - release the read_lock on mmap_sem
<block>
8) Eventually unqueue the context (but rarely, as this part may be done
by the futex_wake())
Futexes were designed to improve scalability but current implementation has
various problems :
- Central hashtable :
This means scalability problems if many processes/threads want to use
futexes at the same time.
This means NUMA unbalance because this hashtable is located on one node.
- Using mmap_sem on every futex() syscall :
Even if mmap_sem is a rw_semaphore, up_read()/down_read() are doing atomic
ops on mmap_sem, dirtying cache line :
- lot of cache line ping pongs on SMP configurations.
mmap_sem is also extensively used by mm code (page faults, mmap()/munmap())
Highly threaded processes might suffer from mmap_sem contention.
mmap_sem is also used by oprofile code. Enabling oprofile hurts threaded
programs because of contention on the mmap_sem cache line.
- Using an atomic_inc()/atomic_dec() on inode ref counter or mm ref counter:
It's also a cache line ping pong on SMP. It also increases mmap_sem hold time
because of cache misses.
Most of these scalability problems come from the fact that futexes are in
one global namespace. As we use a central hash table, we must make sure
they are all using the same reference (given by the mm subsystem). We
chose to force all futexes be 'shared'. This has a cost.
But fact is POSIX defined PRIVATE and SHARED, allowing clear separation,
and optimal performance if carefuly implemented. Time has come for linux
to have better threading performance.
The goal is to permit new futex commands to avoid :
- Taking the mmap_sem semaphore, conflicting with other subsystems.
- Modifying a ref_count on mm or an inode, still conflicting with mm or fs.
This is possible because, for one process using PTHREAD_PROCESS_PRIVATE
futexes, we only need to distinguish futexes by their virtual address, no
matter the underlying mm storage is.
If glibc wants to exploit this new infrastructure, it should use new
_PRIVATE futex subcommands for PTHREAD_PROCESS_PRIVATE futexes. And be
prepared to fallback on old subcommands for old kernels. Using one global
variable with the FUTEX_PRIVATE_FLAG or 0 value should be OK.
PTHREAD_PROCESS_SHARED futexes should still use the old subcommands.
Compatibility with old applications is preserved, they still hit the
scalability problems, but new applications can fly :)
Note : the same SHARED futex (mapped on a file) can be used by old binaries
*and* new binaries, because both binaries will use the old subcommands.
Note : Vast majority of futexes should be using PROCESS_PRIVATE semantic,
as this is the default semantic. Almost all applications should benefit
of this changes (new kernel and updated libc)
Some bench results on a Pentium M 1.6 GHz (SMP kernel on a UP machine)
/* calling futex_wait(addr, value) with value != *addr */
433 cycles per futex(FUTEX_WAIT) call (mixing 2 futexes)
424 cycles per futex(FUTEX_WAIT) call (using one futex)
334 cycles per futex(FUTEX_WAIT_PRIVATE) call (mixing 2 futexes)
334 cycles per futex(FUTEX_WAIT_PRIVATE) call (using one futex)
For reference :
187 cycles per getppid() call
188 cycles per umask() call
181 cycles per ni_syscall() call
Signed-off-by: Eric Dumazet <dada1@cosmosbay.com>
Pierre Peiffer <pierre.peiffer@bull.net>
Cc: "Ulrich Drepper" <drepper@gmail.com>
Cc: "Nick Piggin" <nickpiggin@yahoo.com.au>
Cc: "Ingo Molnar" <mingo@elte.hu>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch provides the futex_requeue_pi functionality, which allows some
threads waiting on a normal futex to be requeued on the wait-queue of a
PI-futex.
This provides an optimization, already used for (normal) futexes, to be used
with the PI-futexes.
This optimization is currently used by the glibc in pthread_broadcast, when
using "normal" mutexes. With futex_requeue_pi, it can be used with
PRIO_INHERIT mutexes too.
Signed-off-by: Pierre Peiffer <pierre.peiffer@bull.net>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Ulrich Drepper <drepper@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch modifies futex_wait() to use an hrtimer + schedule() in place of
schedule_timeout().
schedule_timeout() is tick based, therefore the timeout granularity is the
tick (1 ms, 4 ms or 10 ms depending on HZ). By using a high resolution timer
for timeout wakeup, we can attain a much finer timeout granularity (in the
microsecond range). This parallels what is already done for futex_lock_pi().
The timeout passed to the syscall is no longer converted to jiffies and is
therefore passed to do_futex() and futex_wait() as an absolute ktime_t
therefore keeping nanosecond resolution.
Also this removes the need to pass the nanoseconds timeout part to
futex_lock_pi() in val2.
In futex_wait(), if there is no timeout then a regular schedule() is
performed. Otherwise, an hrtimer is fired before schedule() is called.
[akpm@linux-foundation.org: fix `make headers_check']
Signed-off-by: Sebastien Dugue <sebastien.dugue@bull.net>
Signed-off-by: Pierre Peiffer <pierre.peiffer@bull.net>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Ulrich Drepper <drepper@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Today, all threads waiting for a given futex are woken in FIFO order (first
waiter woken first) instead of priority order.
This patch makes use of plist (pirotity ordered lists) instead of simple list
in futex_hash_bucket.
All non-RT threads are stored with priority MAX_RT_PRIO, causing them to be
woken last, in FIFO order (RT-threads are woken first, in priority order).
Signed-off-by: Sebastien Dugue <sebastien.dugue@bull.net>
Signed-off-by: Pierre Peiffer <pierre.peiffer@bull.net>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Ulrich Drepper <drepper@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
LTP test sigaction_16_24 fails, because it expects sem_wait to be restarted
if SA_RESTART is set. sem_wait is implemented with futex_wait, that
currently doesn't support being restarted. Ulrich confirms that the call
should be restartable.
Implement a restart_block method to handle the relative timeout, and allow
restarts.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Cc: Ulrich Drepper <drepper@redhat.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Roland McGrath <roland@redhat.com>
Cc: Oleg Nesterov <oleg@tv-sign.ru>
Acked-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
lguest uses the convenient futex infrastructure for inter-domain I/O, so
expose get_futex_key, get_key_refs (renamed get_futex_key_refs) and
drop_key_refs (renamed drop_futex_key_refs). Also means we need to expose the
union that these use.
No code changes.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Cc: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Testing of -rt by IBM uncovered a locking bug in wake_futex_pi(): the PI
state needs to be locked before we access it.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Chuck Ebbert <cebbert@redhat.com>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
- hrtimers did not use the hrtimer_restart enum and relied on the implict
int representation. Fix the prototypes and the functions using the enums.
- Use seperate name spaces for the enumerations
- Convert hrtimer_restart macro to inline function
- Add comments
No functional changes.
[akpm@osdl.org: fix input driver]
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Cc: john stultz <johnstul@us.ibm.com>
Cc: Roman Zippel <zippel@linux-m68k.org>
Cc: Dmitry Torokhov <dtor@mail.ru>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Change all the uses of f_{dentry,vfsmnt} to f_path.{dentry,mnt} in
linux/kernel/.
Signed-off-by: Josef "Jeff" Sipek <jsipek@cs.sunysb.edu>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
- move some file_operations structs into the .rodata section
- move static strings from policy_types[] array into the .rodata section
- fix generic seq_operations usages, so that those structs may be defined
as "const" as well
[akpm@osdl.org: couple of fixes]
Signed-off-by: Helge Deller <deller@gmx.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
When disassembling a kernel I found around over 90 sync Instructions from
mb, rmb and wmb calls in the kernel and only few of those make any sense to
me. So here's the first one - I think the wmb() in kernel/futex.c is not
needed on uniprocessors so should become an smb_wmb().
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
Acked-by: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Introduce pagefault_{disable,enable}() and use these where previously we did
manual preempt increments/decrements to make the pagefault handler do the
atomic thing.
Currently they still rely on the increased preempt count, but do not rely on
the disabled preemption, this might go away in the future.
(NOTE: the extra barrier() in pagefault_disable might fix some holes on
machines which have too many registers for their own good)
[heiko.carstens@de.ibm.com: s390 fix]
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Nick Piggin <npiggin@suse.de>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Apparently FUTEX_FD is unfixably racy and nothing uses it (or if it does, it
shouldn't).
Add a warning printk, give any remaining users six months to migrate off it.
Cc: Ulrich Drepper <drepper@redhat.com>
Cc: Ingo Molnar <mingo@elte.hu>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Alan Cox <alan@lxorguk.ukuu.org.uk>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
File handles can be requested to send sigio and sigurg to processes. By
tracking the destination processes using struct pid instead of pid_t we make
the interface safe from all potential pid wrap around problems.
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>