Commit Graph

6 Commits

Author SHA1 Message Date
Tejun Heo 5a0e3ad6af include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files.  percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.

percpu.h -> slab.h dependency is about to be removed.  Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability.  As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.

  http://userweb.kernel.org/~tj/misc/slabh-sweep.py

The script does the followings.

* Scan files for gfp and slab usages and update includes such that
  only the necessary includes are there.  ie. if only gfp is used,
  gfp.h, if slab is used, slab.h.

* When the script inserts a new include, it looks at the include
  blocks and try to put the new include such that its order conforms
  to its surrounding.  It's put in the include block which contains
  core kernel includes, in the same order that the rest are ordered -
  alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
  doesn't seem to be any matching order.

* If the script can't find a place to put a new include (mostly
  because the file doesn't have fitting include block), it prints out
  an error message indicating which .h file needs to be added to the
  file.

The conversion was done in the following steps.

1. The initial automatic conversion of all .c files updated slightly
   over 4000 files, deleting around 700 includes and adding ~480 gfp.h
   and ~3000 slab.h inclusions.  The script emitted errors for ~400
   files.

2. Each error was manually checked.  Some didn't need the inclusion,
   some needed manual addition while adding it to implementation .h or
   embedding .c file was more appropriate for others.  This step added
   inclusions to around 150 files.

3. The script was run again and the output was compared to the edits
   from #2 to make sure no file was left behind.

4. Several build tests were done and a couple of problems were fixed.
   e.g. lib/decompress_*.c used malloc/free() wrappers around slab
   APIs requiring slab.h to be added manually.

5. The script was run on all .h files but without automatically
   editing them as sprinkling gfp.h and slab.h inclusions around .h
   files could easily lead to inclusion dependency hell.  Most gfp.h
   inclusion directives were ignored as stuff from gfp.h was usually
   wildly available and often used in preprocessor macros.  Each
   slab.h inclusion directive was examined and added manually as
   necessary.

6. percpu.h was updated not to include slab.h.

7. Build test were done on the following configurations and failures
   were fixed.  CONFIG_GCOV_KERNEL was turned off for all tests (as my
   distributed build env didn't work with gcov compiles) and a few
   more options had to be turned off depending on archs to make things
   build (like ipr on powerpc/64 which failed due to missing writeq).

   * x86 and x86_64 UP and SMP allmodconfig and a custom test config.
   * powerpc and powerpc64 SMP allmodconfig
   * sparc and sparc64 SMP allmodconfig
   * ia64 SMP allmodconfig
   * s390 SMP allmodconfig
   * alpha SMP allmodconfig
   * um on x86_64 SMP allmodconfig

8. percpu.h modifications were reverted so that it could be applied as
   a separate patch and serve as bisection point.

Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.

Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-30 22:02:32 +09:00
Haavard Skinnemoen 3611553ef9 [AVR32] Drop GFP_COMP for DMA memory allocations
dma_alloc_coherent wants to split pages after allocation in order to
reduce the memory footprint. This does not work well with GFP_COMP
pages, so drop this flag before allocation.

This patch was forward-ported from BSP 2.0

Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com>
2008-01-25 08:31:39 +01:00
Ralf Baechle 622a9edd91 Remove dma_cache_(wback|inv|wback_inv) functions
dma_cache_(wback|inv|wback_inv) were the earliest attempt on a generalized
cache managment API for I/O purposes.  Originally it was basically the raw
MIPS low level cache API exported to the entire world.  The API has
suffered from a lack of documentation, was not very widely used unlike it's
more modern brothers and can easily be replaced by dma_cache_sync.  So
remove it rsp.  turn the surviving bits back into an arch private API, as
discussed on linux-arch.

Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
Acked-by: Paul Mundt <lethal@linux-sh.org>
Acked-by: Paul Mackerras <paulus@samba.org>
Acked-by: David S. Miller <davem@davemloft.net>
Acked-by: Kyle McMartin <kyle@parisc-linux.org>
Acked-by: Haavard Skinnemoen <hskinnemoen@atmel.com>
Cc: <linux-arch@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-17 08:42:57 -07:00
Haavard Skinnemoen a492dbb9e3 [AVR32] Implement dma_{alloc,free}_writecombine()
Implement dma_alloc_writecombine() and its dma_free_writecombine()
counterpart. These will do basically the same thing as
dma_alloc_coherent() except that the virtual mapping will allow
write buffering, causing better performance for certain use cases
like frame buffers.

The same API is already available on ARM.

Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com>
2007-05-09 08:48:39 +02:00
Ralf Baechle d3fa72e455 [PATCH] Pass struct dev pointer to dma_cache_sync()
Pass struct dev pointer to dma_cache_sync()

dma_cache_sync() is ill-designed in that it does not have a struct device
pointer argument which makes proper support for systems that consist of a
mix of coherent and non-coherent DMA devices hard.  Change dma_cache_sync
to take a struct device pointer as first argument and fix all its callers
to pass it.

Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
Cc: James Bottomley <James.Bottomley@steeleye.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Greg KH <greg@kroah.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-07 08:39:41 -08:00
Haavard Skinnemoen 5f97f7f940 [PATCH] avr32 architecture
This adds support for the Atmel AVR32 architecture as well as the AT32AP7000
CPU and the AT32STK1000 development board.

AVR32 is a new high-performance 32-bit RISC microprocessor core, designed for
cost-sensitive embedded applications, with particular emphasis on low power
consumption and high code density.  The AVR32 architecture is not binary
compatible with earlier 8-bit AVR architectures.

The AVR32 architecture, including the instruction set, is described by the
AVR32 Architecture Manual, available from

http://www.atmel.com/dyn/resources/prod_documents/doc32000.pdf

The Atmel AT32AP7000 is the first CPU implementing the AVR32 architecture.  It
features a 7-stage pipeline, 16KB instruction and data caches and a full
Memory Management Unit.  It also comes with a large set of integrated
peripherals, many of which are shared with the AT91 ARM-based controllers from
Atmel.

Full data sheet is available from

http://www.atmel.com/dyn/resources/prod_documents/doc32003.pdf

while the CPU core implementation including caches and MMU is documented by
the AVR32 AP Technical Reference, available from

http://www.atmel.com/dyn/resources/prod_documents/doc32001.pdf

Information about the AT32STK1000 development board can be found at

http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3918

including a BSP CD image with an earlier version of this patch, development
tools (binaries and source/patches) and a root filesystem image suitable for
booting from SD card.

Alternatively, there's a preliminary "getting started" guide available at
http://avr32linux.org/twiki/bin/view/Main/GettingStarted which provides links
to the sources and patches you will need in order to set up a cross-compiling
environment for avr32-linux.

This patch, as well as the other patches included with the BSP and the
toolchain patches, is actively supported by Atmel Corporation.

[dmccr@us.ibm.com: Fix more pxx_page macro locations]
[bunk@stusta.de: fix `make defconfig']
Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Dave McCracken <dmccr@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-26 08:48:54 -07:00