Commit Graph

102 Commits

Author SHA1 Message Date
Linus Torvalds b6e3224fb2 Revert "task_struct: make journal_info conditional"
This reverts commit e4c570c4cb, as
requested by Alexey:

 "I think I gave a good enough arguments to not merge it.
  To iterate:
   * patch makes impossible to start using ext3 on EXT3_FS=n kernels
     without reboot.
   * this is done only for one pointer on task_struct"

  None of config options which define task_struct are tristate directly
  or effectively."

Requested-by: Alexey Dobriyan <adobriyan@gmail.com>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-17 13:23:24 -08:00
Linus Torvalds 8f0ddf91f2 Merge branch 'core-locking-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip
* 'core-locking-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (26 commits)
  clockevents: Convert to raw_spinlock
  clockevents: Make tick_device_lock static
  debugobjects: Convert to raw_spinlocks
  perf_event: Convert to raw_spinlock
  hrtimers: Convert to raw_spinlocks
  genirq: Convert irq_desc.lock to raw_spinlock
  smp: Convert smplocks to raw_spinlocks
  rtmutes: Convert rtmutex.lock to raw_spinlock
  sched: Convert pi_lock to raw_spinlock
  sched: Convert cpupri lock to raw_spinlock
  sched: Convert rt_runtime_lock to raw_spinlock
  sched: Convert rq->lock to raw_spinlock
  plist: Make plist debugging raw_spinlock aware
  bkl: Fixup core_lock fallout
  locking: Cleanup the name space completely
  locking: Further name space cleanups
  alpha: Fix fallout from locking changes
  locking: Implement new raw_spinlock
  locking: Convert raw_rwlock functions to arch_rwlock
  locking: Convert raw_rwlock to arch_rwlock
  ...
2009-12-15 09:02:01 -08:00
Hiroshi Shimamoto e4c570c4cb task_struct: make journal_info conditional
journal_info in task_struct is used in journaling file system only.  So
introduce CONFIG_FS_JOURNAL_INFO and make it conditional.

Signed-off-by: Hiroshi Shimamoto <h-shimamoto@ct.jp.nec.com>
Cc: Chris Mason <chris.mason@oracle.com>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Steven Whitehouse <swhiteho@redhat.com>
Cc: KONISHI Ryusuke <konishi.ryusuke@lab.ntt.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 08:53:27 -08:00
Thomas Gleixner 1d61548254 sched: Convert pi_lock to raw_spinlock
Convert locks which cannot be sleeping locks in preempt-rt to
raw_spinlocks.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Ingo Molnar <mingo@elte.hu>
2009-12-14 23:55:33 +01:00
Serge E. Hallyn b3a222e52e remove CONFIG_SECURITY_FILE_CAPABILITIES compile option
As far as I know, all distros currently ship kernels with default
CONFIG_SECURITY_FILE_CAPABILITIES=y.  Since having the option on
leaves a 'no_file_caps' option to boot without file capabilities,
the main reason to keep the option is that turning it off saves
you (on my s390x partition) 5k.  In particular, vmlinux sizes
came to:

without patch fscaps=n:		 	53598392
without patch fscaps=y:		 	53603406
with this patch applied:		53603342

with the security-next tree.

Against this we must weigh the fact that there is no simple way for
userspace to figure out whether file capabilities are supported,
while things like per-process securebits, capability bounding
sets, and adding bits to pI if CAP_SETPCAP is in pE are not supported
with SECURITY_FILE_CAPABILITIES=n, leaving a bit of a problem for
applications wanting to know whether they can use them and/or why
something failed.

It also adds another subtly different set of semantics which we must
maintain at the risk of severe security regressions.

So this patch removes the SECURITY_FILE_CAPABILITIES compile
option.  It drops the kernel size by about 50k over the stock
SECURITY_FILE_CAPABILITIES=y kernel, by removing the
cap_limit_ptraced_target() function.

Changelog:
	Nov 20: remove cap_limit_ptraced_target() as it's logic
		was ifndef'ed.

Signed-off-by: Serge E. Hallyn <serue@us.ibm.com>
Acked-by: Andrew G. Morgan" <morgan@kernel.org>
Signed-off-by: James Morris <jmorris@namei.org>
2009-11-24 15:06:47 +11:00
Ingo Molnar cdd6c482c9 perf: Do the big rename: Performance Counters -> Performance Events
Bye-bye Performance Counters, welcome Performance Events!

In the past few months the perfcounters subsystem has grown out its
initial role of counting hardware events, and has become (and is
becoming) a much broader generic event enumeration, reporting, logging,
monitoring, analysis facility.

Naming its core object 'perf_counter' and naming the subsystem
'perfcounters' has become more and more of a misnomer. With pending
code like hw-breakpoints support the 'counter' name is less and
less appropriate.

All in one, we've decided to rename the subsystem to 'performance
events' and to propagate this rename through all fields, variables
and API names. (in an ABI compatible fashion)

The word 'event' is also a bit shorter than 'counter' - which makes
it slightly more convenient to write/handle as well.

Thanks goes to Stephane Eranian who first observed this misnomer and
suggested a rename.

User-space tooling and ABI compatibility is not affected - this patch
should be function-invariant. (Also, defconfigs were not touched to
keep the size down.)

This patch has been generated via the following script:

  FILES=$(find * -type f | grep -vE 'oprofile|[^K]config')

  sed -i \
    -e 's/PERF_EVENT_/PERF_RECORD_/g' \
    -e 's/PERF_COUNTER/PERF_EVENT/g' \
    -e 's/perf_counter/perf_event/g' \
    -e 's/nb_counters/nb_events/g' \
    -e 's/swcounter/swevent/g' \
    -e 's/tpcounter_event/tp_event/g' \
    $FILES

  for N in $(find . -name perf_counter.[ch]); do
    M=$(echo $N | sed 's/perf_counter/perf_event/g')
    mv $N $M
  done

  FILES=$(find . -name perf_event.*)

  sed -i \
    -e 's/COUNTER_MASK/REG_MASK/g' \
    -e 's/COUNTER/EVENT/g' \
    -e 's/\<event\>/event_id/g' \
    -e 's/counter/event/g' \
    -e 's/Counter/Event/g' \
    $FILES

... to keep it as correct as possible. This script can also be
used by anyone who has pending perfcounters patches - it converts
a Linux kernel tree over to the new naming. We tried to time this
change to the point in time where the amount of pending patches
is the smallest: the end of the merge window.

Namespace clashes were fixed up in a preparatory patch - and some
stylistic fallout will be fixed up in a subsequent patch.

( NOTE: 'counters' are still the proper terminology when we deal
  with hardware registers - and these sed scripts are a bit
  over-eager in renaming them. I've undone some of that, but
  in case there's something left where 'counter' would be
  better than 'event' we can undo that on an individual basis
  instead of touching an otherwise nicely automated patch. )

Suggested-by: Stephane Eranian <eranian@google.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Paul Mackerras <paulus@samba.org>
Reviewed-by: Arjan van de Ven <arjan@linux.intel.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: David Howells <dhowells@redhat.com>
Cc: Kyle McMartin <kyle@mcmartin.ca>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: <linux-arch@vger.kernel.org>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-09-21 14:28:04 +02:00
Paul E. McKenney dd5d19bafd rcu: Create rcutree plugins to handle hotplug CPU for multi-level trees
When offlining CPUs from a multi-level tree, there is the
possibility of offlining the last CPU from a given node when
there are preempted RCU read-side critical sections that
started life on one of the CPUs on that node.

In this case, the corresponding tasks will be enqueued via the
task_struct's rcu_node_entry list_head onto one of the
rcu_node's blocked_tasks[] lists.  These tasks need to be moved
somewhere else so that they will prevent the current grace
period from ending. That somewhere is the root rcu_node.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: akpm@linux-foundation.org
Cc: mathieu.desnoyers@polymtl.ca
Cc: josht@linux.vnet.ibm.com
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
LKML-Reference: <20090827215816.GA30472@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-29 15:34:39 +02:00
Paul E. McKenney 6b3ef48adf rcu: Remove CONFIG_PREEMPT_RCU
Now that CONFIG_TREE_PREEMPT_RCU is in place, there is no
further need for CONFIG_PREEMPT_RCU.  Remove it, along with
whatever subtle bugs it may (or may not) contain.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: akpm@linux-foundation.org
Cc: mathieu.desnoyers@polymtl.ca
Cc: josht@linux.vnet.ibm.com
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
LKML-Reference: <125097461396-git-send-email->
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-23 10:32:40 +02:00
Paul E. McKenney f41d911f8c rcu: Merge preemptable-RCU functionality into hierarchical RCU
Create a kernel/rcutree_plugin.h file that contains definitions
for preemptable RCU (or, under the #else branch of the #ifdef,
empty definitions for the classic non-preemptable semantics).
These definitions fit into plugins defined in kernel/rcutree.c
for this purpose.

This variant of preemptable RCU uses a new algorithm whose
read-side expense is roughly that of classic hierarchical RCU
under CONFIG_PREEMPT. This new algorithm's update-side expense
is similar to that of classic hierarchical RCU, and, in absence
of read-side preemption or blocking, is exactly that of classic
hierarchical RCU.  Perhaps more important, this new algorithm
has a much simpler implementation, saving well over 1,000 lines
of code compared to mainline's implementation of preemptable
RCU, which will hopefully be retired in favor of this new
algorithm.

The simplifications are obtained by maintaining per-task
nesting state for running tasks, and using a simple
lock-protected algorithm to handle accounting when tasks block
within RCU read-side critical sections, making use of lessons
learned while creating numerous user-level RCU implementations
over the past 18 months.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: akpm@linux-foundation.org
Cc: mathieu.desnoyers@polymtl.ca
Cc: josht@linux.vnet.ibm.com
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
LKML-Reference: <12509746134003-git-send-email->
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-23 10:32:40 +02:00
Tim Abbott 857eceebd2 Add new __init_task_data macro to be used in arch init_task.c files.
This patch is preparation for replacing most ".data.init_task" in the
kernel with macros, so that the section name can later be changed
without having to touch a lot of the kernel.

The long-term goal here is to be able to change the kernel's magic
section names to those that are compatible with -ffunction-sections
-fdata-sections.  This requires renaming all magic sections with names
of the form ".data.foo".

Signed-off-by: Tim Abbott <tabbott@ksplice.com>
Signed-off-by: Sam Ravnborg <sam@ravnborg.org>
2009-06-27 00:06:42 +02:00
Alexey Dobriyan bb1f17b037 mm: consolidate init_mm definition
* create mm/init-mm.c, move init_mm there
* remove INIT_MM, initialize init_mm with C99 initializer
* unexport init_mm on all arches:

  init_mm is already unexported on x86.

  One strange place is some OMAP driver (drivers/video/omap/) which
  won't build modular, but it's already wants get_vm_area() export.
  Somebody should look there.

[akpm@linux-foundation.org: add missing #includes]
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Mike Frysinger <vapier.adi@gmail.com>
Cc: Americo Wang <xiyou.wangcong@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-16 19:47:28 -07:00
Linus Torvalds 8a1ca8cedd Merge branch 'perfcounters-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip
* 'perfcounters-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (574 commits)
  perf_counter: Turn off by default
  perf_counter: Add counter->id to the throttle event
  perf_counter: Better align code
  perf_counter: Rename L2 to LL cache
  perf_counter: Standardize event names
  perf_counter: Rename enums
  perf_counter tools: Clean up u64 usage
  perf_counter: Rename perf_counter_limit sysctl
  perf_counter: More paranoia settings
  perf_counter: powerpc: Implement generalized cache events for POWER processors
  perf_counters: powerpc: Add support for POWER7 processors
  perf_counter: Accurate period data
  perf_counter: Introduce struct for sample data
  perf_counter tools: Normalize data using per sample period data
  perf_counter: Annotate exit ctx recursion
  perf_counter tools: Propagate signals properly
  perf_counter tools: Small frequency related fixes
  perf_counter: More aggressive frequency adjustment
  perf_counter/x86: Fix the model number of Intel Core2 processors
  perf_counter, x86: Correct some event and umask values for Intel processors
  ...
2009-06-11 14:01:07 -07:00
Linus Torvalds 3296ca27f5 Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/security-testing-2.6
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/security-testing-2.6: (44 commits)
  nommu: Provide mmap_min_addr definition.
  TOMOYO: Add description of lists and structures.
  TOMOYO: Remove unused field.
  integrity: ima audit dentry_open failure
  TOMOYO: Remove unused parameter.
  security: use mmap_min_addr indepedently of security models
  TOMOYO: Simplify policy reader.
  TOMOYO: Remove redundant markers.
  SELinux: define audit permissions for audit tree netlink messages
  TOMOYO: Remove unused mutex.
  tomoyo: avoid get+put of task_struct
  smack: Remove redundant initialization.
  integrity: nfsd imbalance bug fix
  rootplug: Remove redundant initialization.
  smack: do not beyond ARRAY_SIZE of data
  integrity: move ima_counts_get
  integrity: path_check update
  IMA: Add __init notation to ima functions
  IMA: Minimal IMA policy and boot param for TCB IMA policy
  selinux: remove obsolete read buffer limit from sel_read_bool
  ...
2009-06-11 10:01:41 -07:00
Ingo Molnar 940010c5a3 Merge branch 'linus' into perfcounters/core
Conflicts:
	arch/x86/kernel/irqinit.c
	arch/x86/kernel/irqinit_64.c
	arch/x86/kernel/traps.c
	arch/x86/mm/fault.c
	include/linux/sched.h
	kernel/exit.c
2009-06-11 17:55:42 +02:00
Peter Zijlstra 082ff5a276 perf_counter: Change pctrl() behaviour
Instead of en/dis-abling all counters acting on a particular
task, en/dis- able all counters we created.

[ v2: fix crash on first counter enable ]

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: John Kacur <jkacur@redhat.com>
LKML-Reference: <20090523163012.916937244@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-05-24 08:24:08 +02:00
Paul Mackerras a63eaf34ae perf_counter: Dynamically allocate tasks' perf_counter_context struct
This replaces the struct perf_counter_context in the task_struct with
a pointer to a dynamically allocated perf_counter_context struct.  The
main reason for doing is this is to allow us to transfer a
perf_counter_context from one task to another when we do lazy PMU
switching in a later patch.

This has a few side-benefits: the task_struct becomes a little smaller,
we save some memory because only tasks that have perf_counters attached
get a perf_counter_context allocated for them, and we can remove the
inclusion of <linux/perf_counter.h> in sched.h, meaning that we don't
end up recompiling nearly everything whenever perf_counter.h changes.

The perf_counter_context structures are reference-counted and freed
when the last reference is dropped.  A context can have references
from its task and the counters on its task.  Counters can outlive the
task so it is possible that a context will be freed well after its
task has exited.

Contexts are allocated on fork if the parent had a context, or
otherwise the first time that a per-task counter is created on a task.
In the latter case, we set the context pointer in the task struct
locklessly using an atomic compare-and-exchange operation in case we
raced with some other task in creating a context for the subject task.

This also removes the task pointer from the perf_counter struct.  The
task pointer was not used anywhere and would make it harder to move a
context from one task to another.  Anything that needed to know which
task a counter was attached to was already using counter->ctx->task.

The __perf_counter_init_context function moves up in perf_counter.c
so that it can be called from find_get_context, and now initializes
the refcount, but is otherwise unchanged.

We were potentially calling list_del_counter twice: once from
__perf_counter_exit_task when the task exits and once from
__perf_counter_remove_from_context when the counter's fd gets closed.
This adds a check in list_del_counter so it doesn't do anything if
the counter has already been removed from the lists.

Since perf_counter_task_sched_in doesn't do anything if the task doesn't
have a context, and leaves cpuctx->task_ctx = NULL, this adds code to
__perf_install_in_context to set cpuctx->task_ctx if necessary, i.e. in
the case where the current task adds the first counter to itself and
thus creates a context for itself.

This also adds similar code to __perf_counter_enable to handle a
similar situation which can arise when the counters have been disabled
using prctl; that also leaves cpuctx->task_ctx = NULL.

[ Impact: refactor counter context management to prepare for new feature ]

Signed-off-by: Paul Mackerras <paulus@samba.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
LKML-Reference: <18966.10075.781053.231153@cargo.ozlabs.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-05-22 12:18:19 +02:00
David Howells 5e751e992f CRED: Rename cred_exec_mutex to reflect that it's a guard against ptrace
Rename cred_exec_mutex to reflect that it's a guard against foreign
intervention on a process's credential state, such as is made by ptrace().  The
attachment of a debugger to a process affects execve()'s calculation of the new
credential state - _and_ also setprocattr()'s calculation of that state.

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
2009-05-11 08:15:36 +10:00
Ingo Molnar 44347d947f Merge branch 'linus' into tracing/core
Merge reason: tracing/core was on a .30-rc1 base and was missing out on
              on a handful of tracing fixes present in .30-rc5-almost.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-05-07 11:17:34 +02:00
Ingo Molnar e7fd5d4b3d Merge branch 'linus' into perfcounters/core
Merge reason: This brach was on -rc1, refresh it to almost-rc4 to pick up
              the latest upstream fixes.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-04-29 14:47:05 +02:00
Steven Rostedt 261842b7c9 tracing: add same level recursion detection
The tracing infrastructure allows for recursion. That is, an interrupt
may interrupt the act of tracing an event, and that interrupt may very well
perform its own trace. This is a recursive trace, and is fine to do.

The problem arises when there is a bug, and the utility doing the trace
calls something that recurses back into the tracer. This recursion is not
caused by an external event like an interrupt, but by code that is not
expected to recurse. The result could be a lockup.

This patch adds a bitmask to the task structure that keeps track
of the trace recursion. To find the interrupt depth, the following
algorithm is used:

  level = hardirq_count() + softirq_count() + in_nmi;

Here, level will be the depth of interrutps and softirqs, and even handles
the nmi. Then the corresponding bit is set in the recursion bitmask.
If the bit was already set, we know we had a recursion at the same level
and we warn about it and fail the writing to the buffer.

After the data has been committed to the buffer, we clear the bit.
No atomics are needed. The only races are with interrupts and they reset
the bitmask before returning anywy.

[ Impact: detect same irq level trace recursion ]

Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2009-04-17 16:21:32 -04:00
Alexey Dobriyan 17a5138d20 aio: remove INIT_KIOCTX
Unused after 20dcae3243 aka
"[PATCH] aio: remove kioctx from mm_struct".

Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-13 15:04:29 -07:00
Ingo Molnar 5ea472a77f Merge commit 'v2.6.30-rc1' into perfcounters/core
Conflicts:
	arch/powerpc/include/asm/systbl.h
	arch/powerpc/include/asm/unistd.h
	include/linux/init_task.h

Merge reason: the conflicts are non-trivial: PowerPC placement
              of sys_perf_counter_open has to be mixed with the
	      new preadv/pwrite syscalls.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-04-08 10:35:30 +02:00
Linus Torvalds c93f216b5b Merge branch 'tracing-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip
* 'tracing-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
  branch tracer, intel-iommu: fix build with CONFIG_BRANCH_TRACER=y
  branch tracer: Fix for enabling branch profiling makes sparse unusable
  ftrace: Correct a text align for event format output
  Update /debug/tracing/README
  tracing/ftrace: alloc the started cpumask for the trace file
  tracing, x86: remove duplicated #include
  ftrace: Add check of sched_stopped for probe_sched_wakeup
  function-graph: add proper initialization for init task
  tracing/ftrace: fix missing include string.h
  tracing: fix incorrect return type of ns2usecs()
  tracing: remove CALLER_ADDR2 from wakeup tracer
  blktrace: fix pdu_len when tracing packet command requests
  blktrace: small cleanup in blk_msg_write()
  blktrace: NUL-terminate user space messages
  tracing: move scripts/trace/power.pl to scripts/tracing/power.pl
2009-04-07 14:10:10 -07:00
Ingo Molnar 86665c75da Merge branch 'tracing/urgent' into tracing/ftrace 2009-04-07 14:41:17 +02:00
Steven Rostedt 5ac9f62267 function-graph: add proper initialization for init task
Impact: fix to crash going to kexec

The init task did not properly initialize the function graph pointers.
Altough these pointers are NULL, they can not be assumed to be NULL
for the init task, and must still be properly initialize.

This usually is not an issue since a problem only arises when a task
exits, and the init tasks do not usually exit. But when doing tests
with kexec, the init tasks do exit, and the bug appears.

This patch properly initializes the init tasks function graph data
structures.

Reported-and-Tested-by: Yinghai Lu <yinghai@kernel.org>
LKML-Reference: <alpine.DEB.2.00.0903252053080.5675@gandalf.stny.rr.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-04-07 14:00:39 +02:00
Peter Zijlstra 01ef09d9ff perf_counter: fix uninitialized usage of event_list
Impact: fix boot crash

When doing the generic context switch event I ran into some early
boot hangs, which were caused by inf func recursion (event, fault,
event, fault).

I eventually tracked it down to event_list not being initialized
at the time of the first event. Fix this.

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Orig-LKML-Reference: <20090319194233.195392657@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-04-06 09:30:15 +02:00
Ingo Molnar f541ae326f Merge branch 'linus' into perfcounters/core-v2
Merge reason: we have gathered quite a few conflicts, need to merge upstream

Conflicts:
	arch/powerpc/kernel/Makefile
	arch/x86/ia32/ia32entry.S
	arch/x86/include/asm/hardirq.h
	arch/x86/include/asm/unistd_32.h
	arch/x86/include/asm/unistd_64.h
	arch/x86/kernel/cpu/common.c
	arch/x86/kernel/irq.c
	arch/x86/kernel/syscall_table_32.S
	arch/x86/mm/iomap_32.c
	include/linux/sched.h
	kernel/Makefile

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-04-06 09:02:57 +02:00
Ingo Molnar 5274f8354d Merge branch 'sched/urgent'; commit 'v2.6.29-rc5' into sched/core 2009-02-15 21:15:16 +01:00
Ingo Molnar e9c4ffb11f Merge branch 'linus' into perfcounters/core
Conflicts:
	arch/x86/kernel/acpi/boot.c
2009-02-13 09:34:07 +01:00
Ingo Molnar 95fd4845ed Merge commit 'v2.6.29-rc4' into perfcounters/core
Conflicts:
	arch/x86/kernel/setup_percpu.c
	arch/x86/mm/fault.c
	drivers/acpi/processor_idle.c
	kernel/irq/handle.c
2009-02-11 09:22:04 +01:00
Ingo Molnar 140573d33b Merge branches 'sched/rt' and 'sched/urgent' into sched/core 2009-02-08 20:12:46 +01:00
Peter Zijlstra 4cd4c1b40d timers: split process wide cpu clocks/timers
Change the process wide cpu timers/clocks so that we:

 1) don't mess up the kernel with too many threads,
 2) don't have a per-cpu allocation for each process,
 3) have no impact when not used.

In order to accomplish this we're going to split it into two parts:

 - clocks; which can take all the time they want since they run
           from user context -- ie. sys_clock_gettime(CLOCK_PROCESS_CPUTIME_ID)

 - timers; which need constant time sampling but since they're
           explicity used, the user can pay the overhead.

The clock readout will go back to a full sum of the thread group, while the
timers will run of a global 'clock' that only runs when needed, so only
programs that make use of the facility pay the price.

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Reviewed-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-02-05 13:04:33 +01:00
Ingo Molnar 0a6d4e1dc9 Merge branch 'sched/latest' of git://git.kernel.org/pub/scm/linux/kernel/git/ghaskins/linux-2.6-hacks into sched/rt 2009-01-11 04:58:49 +01:00
Ingo Molnar 506c10f26c Merge commit 'v2.6.29-rc1' into perfcounters/core
Conflicts:
	include/linux/kernel_stat.h
2009-01-11 02:42:53 +01:00
Peter Zijlstra 490dea45d0 itimers: remove the per-cpu-ish-ness
Either we bounce once cacheline per cpu per tick, yielding n^2 bounces
or we just bounce a single..

Also, using per-cpu allocations for the thread-groups complicates the
per-cpu allocator in that its currently aimed to be a fixed sized
allocator and the only possible extention to that would be vmap based,
which is seriously constrained on 32 bit archs.

So making the per-cpu memory requirement depend on the number of
processes is an issue.

Lastly, it didn't deal with cpu-hotplug, although admittedly that might
be fixable.

Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-01-07 18:52:44 +01:00
Al Viro 18d8fda7c3 take init_fs to saner place
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2008-12-31 18:07:42 -05:00
Gregory Haskins 917b627d4d sched: create "pushable_tasks" list to limit pushing to one attempt
The RT scheduler employs a "push/pull" design to actively balance tasks
within the system (on a per disjoint cpuset basis).  When a task is
awoken, it is immediately determined if there are any lower priority
cpus which should be preempted.  This is opposed to the way normal
SCHED_OTHER tasks behave, which will wait for a periodic rebalancing
operation to occur before spreading out load.

When a particular RQ has more than 1 active RT task, it is said to
be in an "overloaded" state.  Once this occurs, the system enters
the active balancing mode, where it will try to push the task away,
or persuade a different cpu to pull it over.  The system will stay
in this state until the system falls back below the <= 1 queued RT
task per RQ.

However, the current implementation suffers from a limitation in the
push logic.  Once overloaded, all tasks (other than current) on the
RQ are analyzed on every push operation, even if it was previously
unpushable (due to affinity, etc).  Whats more, the operation stops
at the first task that is unpushable and will not look at items
lower in the queue.  This causes two problems:

1) We can have the same tasks analyzed over and over again during each
   push, which extends out the fast path in the scheduler for no
   gain.  Consider a RQ that has dozens of tasks that are bound to a
   core.  Each one of those tasks will be encountered and skipped
   for each push operation while they are queued.

2) There may be lower-priority tasks under the unpushable task that
   could have been successfully pushed, but will never be considered
   until either the unpushable task is cleared, or a pull operation
   succeeds.  The net result is a potential latency source for mid
   priority tasks.

This patch aims to rectify these two conditions by introducing a new
priority sorted list: "pushable_tasks".  A task is added to the list
each time a task is activated or preempted.  It is removed from the
list any time it is deactivated, made current, or fails to push.

This works because a task only needs to be attempted to push once.
After an initial failure to push, the other cpus will eventually try to
pull the task when the conditions are proper.  This also solves the
problem that we don't completely analyze all tasks due to encountering
an unpushable tasks.  Now every task will have a push attempted (when
appropriate).

This reduces latency both by shorting the critical section of the
rq->lock for certain workloads, and by making sure the algorithm
considers all eligible tasks in the system.

[ rostedt: added a couple more BUG_ONs ]

Signed-off-by: Gregory Haskins <ghaskins@novell.com>
Acked-by: Steven Rostedt <srostedt@redhat.com>
2008-12-29 09:39:53 -05:00
Ingo Molnar e1df957670 Merge branch 'linus' into perfcounters/core
Conflicts:
	fs/exec.c
	include/linux/init_task.h

Simple context conflicts.
2008-12-29 09:45:15 +01:00
Ingo Molnar 78b6084c90 perfcounters: fix init context lock
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-23 12:45:18 +01:00
Ingo Molnar eef6cbf584 perfcounters: pull inherited counters
Change counter inheritance from a 'push' to a 'pull' model: instead of
child tasks pushing their final counts to the parent, reuse the wait4
infrastructure to pull counters as child tasks are exit-processed,
much like how cutime/cstime is collected.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-23 12:45:16 +01:00
Serge Hallyn 18b6e0414e User namespaces: set of cleanups (v2)
The user_ns is moved from nsproxy to user_struct, so that a struct
cred by itself is sufficient to determine access (which it otherwise
would not be).  Corresponding ecryptfs fixes (by David Howells) are
here as well.

Fix refcounting.  The following rules now apply:
        1. The task pins the user struct.
        2. The user struct pins its user namespace.
        3. The user namespace pins the struct user which created it.

User namespaces are cloned during copy_creds().  Unsharing a new user_ns
is no longer possible.  (We could re-add that, but it'll cause code
duplication and doesn't seem useful if PAM doesn't need to clone user
namespaces).

When a user namespace is created, its first user (uid 0) gets empty
keyrings and a clean group_info.

This incorporates a previous patch by David Howells.  Here
is his original patch description:

>I suggest adding the attached incremental patch.  It makes the following
>changes:
>
> (1) Provides a current_user_ns() macro to wrap accesses to current's user
>     namespace.
>
> (2) Fixes eCryptFS.
>
> (3) Renames create_new_userns() to create_user_ns() to be more consistent
>     with the other associated functions and because the 'new' in the name is
>     superfluous.
>
> (4) Moves the argument and permission checks made for CLONE_NEWUSER to the
>     beginning of do_fork() so that they're done prior to making any attempts
>     at allocation.
>
> (5) Calls create_user_ns() after prepare_creds(), and gives it the new creds
>     to fill in rather than have it return the new root user.  I don't imagine
>     the new root user being used for anything other than filling in a cred
>     struct.
>
>     This also permits me to get rid of a get_uid() and a free_uid(), as the
>     reference the creds were holding on the old user_struct can just be
>     transferred to the new namespace's creator pointer.
>
> (6) Makes create_user_ns() reset the UIDs and GIDs of the creds under
>     preparation rather than doing it in copy_creds().
>
>David

>Signed-off-by: David Howells <dhowells@redhat.com>

Changelog:
	Oct 20: integrate dhowells comments
		1. leave thread_keyring alone
		2. use current_user_ns() in set_user()

Signed-off-by: Serge Hallyn <serue@us.ibm.com>
2008-11-24 18:57:41 -05:00
David Howells 3b11a1dece CRED: Differentiate objective and effective subjective credentials on a task
Differentiate the objective and real subjective credentials from the effective
subjective credentials on a task by introducing a second credentials pointer
into the task_struct.

task_struct::real_cred then refers to the objective and apparent real
subjective credentials of a task, as perceived by the other tasks in the
system.

task_struct::cred then refers to the effective subjective credentials of a
task, as used by that task when it's actually running.  These are not visible
to the other tasks in the system.

__task_cred(task) then refers to the objective/real credentials of the task in
question.

current_cred() refers to the effective subjective credentials of the current
task.

prepare_creds() uses the objective creds as a base and commit_creds() changes
both pointers in the task_struct (indeed commit_creds() requires them to be the
same).

override_creds() and revert_creds() change the subjective creds pointer only,
and the former returns the old subjective creds.  These are used by NFSD,
faccessat() and do_coredump(), and will by used by CacheFiles.

In SELinux, current_has_perm() is provided as an alternative to
task_has_perm().  This uses the effective subjective context of current,
whereas task_has_perm() uses the objective/real context of the subject.

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 10:39:26 +11:00
David Howells d84f4f992c CRED: Inaugurate COW credentials
Inaugurate copy-on-write credentials management.  This uses RCU to manage the
credentials pointer in the task_struct with respect to accesses by other tasks.
A process may only modify its own credentials, and so does not need locking to
access or modify its own credentials.

A mutex (cred_replace_mutex) is added to the task_struct to control the effect
of PTRACE_ATTACHED on credential calculations, particularly with respect to
execve().

With this patch, the contents of an active credentials struct may not be
changed directly; rather a new set of credentials must be prepared, modified
and committed using something like the following sequence of events:

	struct cred *new = prepare_creds();
	int ret = blah(new);
	if (ret < 0) {
		abort_creds(new);
		return ret;
	}
	return commit_creds(new);

There are some exceptions to this rule: the keyrings pointed to by the active
credentials may be instantiated - keyrings violate the COW rule as managing
COW keyrings is tricky, given that it is possible for a task to directly alter
the keys in a keyring in use by another task.

To help enforce this, various pointers to sets of credentials, such as those in
the task_struct, are declared const.  The purpose of this is compile-time
discouragement of altering credentials through those pointers.  Once a set of
credentials has been made public through one of these pointers, it may not be
modified, except under special circumstances:

  (1) Its reference count may incremented and decremented.

  (2) The keyrings to which it points may be modified, but not replaced.

The only safe way to modify anything else is to create a replacement and commit
using the functions described in Documentation/credentials.txt (which will be
added by a later patch).

This patch and the preceding patches have been tested with the LTP SELinux
testsuite.

This patch makes several logical sets of alteration:

 (1) execve().

     This now prepares and commits credentials in various places in the
     security code rather than altering the current creds directly.

 (2) Temporary credential overrides.

     do_coredump() and sys_faccessat() now prepare their own credentials and
     temporarily override the ones currently on the acting thread, whilst
     preventing interference from other threads by holding cred_replace_mutex
     on the thread being dumped.

     This will be replaced in a future patch by something that hands down the
     credentials directly to the functions being called, rather than altering
     the task's objective credentials.

 (3) LSM interface.

     A number of functions have been changed, added or removed:

     (*) security_capset_check(), ->capset_check()
     (*) security_capset_set(), ->capset_set()

     	 Removed in favour of security_capset().

     (*) security_capset(), ->capset()

     	 New.  This is passed a pointer to the new creds, a pointer to the old
     	 creds and the proposed capability sets.  It should fill in the new
     	 creds or return an error.  All pointers, barring the pointer to the
     	 new creds, are now const.

     (*) security_bprm_apply_creds(), ->bprm_apply_creds()

     	 Changed; now returns a value, which will cause the process to be
     	 killed if it's an error.

     (*) security_task_alloc(), ->task_alloc_security()

     	 Removed in favour of security_prepare_creds().

     (*) security_cred_free(), ->cred_free()

     	 New.  Free security data attached to cred->security.

     (*) security_prepare_creds(), ->cred_prepare()

     	 New. Duplicate any security data attached to cred->security.

     (*) security_commit_creds(), ->cred_commit()

     	 New. Apply any security effects for the upcoming installation of new
     	 security by commit_creds().

     (*) security_task_post_setuid(), ->task_post_setuid()

     	 Removed in favour of security_task_fix_setuid().

     (*) security_task_fix_setuid(), ->task_fix_setuid()

     	 Fix up the proposed new credentials for setuid().  This is used by
     	 cap_set_fix_setuid() to implicitly adjust capabilities in line with
     	 setuid() changes.  Changes are made to the new credentials, rather
     	 than the task itself as in security_task_post_setuid().

     (*) security_task_reparent_to_init(), ->task_reparent_to_init()

     	 Removed.  Instead the task being reparented to init is referred
     	 directly to init's credentials.

	 NOTE!  This results in the loss of some state: SELinux's osid no
	 longer records the sid of the thread that forked it.

     (*) security_key_alloc(), ->key_alloc()
     (*) security_key_permission(), ->key_permission()

     	 Changed.  These now take cred pointers rather than task pointers to
     	 refer to the security context.

 (4) sys_capset().

     This has been simplified and uses less locking.  The LSM functions it
     calls have been merged.

 (5) reparent_to_kthreadd().

     This gives the current thread the same credentials as init by simply using
     commit_thread() to point that way.

 (6) __sigqueue_alloc() and switch_uid()

     __sigqueue_alloc() can't stop the target task from changing its creds
     beneath it, so this function gets a reference to the currently applicable
     user_struct which it then passes into the sigqueue struct it returns if
     successful.

     switch_uid() is now called from commit_creds(), and possibly should be
     folded into that.  commit_creds() should take care of protecting
     __sigqueue_alloc().

 (7) [sg]et[ug]id() and co and [sg]et_current_groups.

     The set functions now all use prepare_creds(), commit_creds() and
     abort_creds() to build and check a new set of credentials before applying
     it.

     security_task_set[ug]id() is called inside the prepared section.  This
     guarantees that nothing else will affect the creds until we've finished.

     The calling of set_dumpable() has been moved into commit_creds().

     Much of the functionality of set_user() has been moved into
     commit_creds().

     The get functions all simply access the data directly.

 (8) security_task_prctl() and cap_task_prctl().

     security_task_prctl() has been modified to return -ENOSYS if it doesn't
     want to handle a function, or otherwise return the return value directly
     rather than through an argument.

     Additionally, cap_task_prctl() now prepares a new set of credentials, even
     if it doesn't end up using it.

 (9) Keyrings.

     A number of changes have been made to the keyrings code:

     (a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have
     	 all been dropped and built in to the credentials functions directly.
     	 They may want separating out again later.

     (b) key_alloc() and search_process_keyrings() now take a cred pointer
     	 rather than a task pointer to specify the security context.

     (c) copy_creds() gives a new thread within the same thread group a new
     	 thread keyring if its parent had one, otherwise it discards the thread
     	 keyring.

     (d) The authorisation key now points directly to the credentials to extend
     	 the search into rather pointing to the task that carries them.

     (e) Installing thread, process or session keyrings causes a new set of
     	 credentials to be created, even though it's not strictly necessary for
     	 process or session keyrings (they're shared).

(10) Usermode helper.

     The usermode helper code now carries a cred struct pointer in its
     subprocess_info struct instead of a new session keyring pointer.  This set
     of credentials is derived from init_cred and installed on the new process
     after it has been cloned.

     call_usermodehelper_setup() allocates the new credentials and
     call_usermodehelper_freeinfo() discards them if they haven't been used.  A
     special cred function (prepare_usermodeinfo_creds()) is provided
     specifically for call_usermodehelper_setup() to call.

     call_usermodehelper_setkeys() adjusts the credentials to sport the
     supplied keyring as the new session keyring.

(11) SELinux.

     SELinux has a number of changes, in addition to those to support the LSM
     interface changes mentioned above:

     (a) selinux_setprocattr() no longer does its check for whether the
     	 current ptracer can access processes with the new SID inside the lock
     	 that covers getting the ptracer's SID.  Whilst this lock ensures that
     	 the check is done with the ptracer pinned, the result is only valid
     	 until the lock is released, so there's no point doing it inside the
     	 lock.

(12) is_single_threaded().

     This function has been extracted from selinux_setprocattr() and put into
     a file of its own in the lib/ directory as join_session_keyring() now
     wants to use it too.

     The code in SELinux just checked to see whether a task shared mm_structs
     with other tasks (CLONE_VM), but that isn't good enough.  We really want
     to know if they're part of the same thread group (CLONE_THREAD).

(13) nfsd.

     The NFS server daemon now has to use the COW credentials to set the
     credentials it is going to use.  It really needs to pass the credentials
     down to the functions it calls, but it can't do that until other patches
     in this series have been applied.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 10:39:23 +11:00
David Howells f1752eec61 CRED: Detach the credentials from task_struct
Detach the credentials from task_struct, duplicating them in copy_process()
and releasing them in __put_task_struct().

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 10:39:17 +11:00
David Howells b6dff3ec5e CRED: Separate task security context from task_struct
Separate the task security context from task_struct.  At this point, the
security data is temporarily embedded in the task_struct with two pointers
pointing to it.

Note that the Alpha arch is altered as it refers to (E)UID and (E)GID in
entry.S via asm-offsets.

With comment fixes Signed-off-by: Marc Dionne <marc.c.dionne@gmail.com>

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 10:39:16 +11:00
Arjan van de Ven 6976675d94 hrtimer: create a "timer_slack" field in the task struct
We want to be able to control the default "rounding" that is used by
select() and poll() and friends. This is a per process property
(so that we can have a "nice" like program to start certain programs with
a looser or stricter rounding) that can be set/get via a prctl().

For this purpose, a field called "timer_slack_ns" is added to the task
struct. In addition, a field called "default_timer_slack"ns" is added
so that tasks easily can temporarily to a more/less accurate slack and then
back to the default.

The default value of the slack is set to 50 usec; this is significantly less
than 2.6.27's average select() and poll() timing error but still allows
the kernel to group timers somewhat to preserve power behavior. Applications
and admins can override this via the prctl()

Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
2008-09-05 21:35:30 -07:00
Oleg Nesterov 7b34e4283c introduce PF_KTHREAD flag
Introduce the new PF_KTHREAD flag to mark the kernel threads.  It is set
by INIT_TASK() and copied to the forked childs (we could set it in
kthreadd() along with PF_NOFREEZE instead).

daemonize() was changed as well.  In that case testing of PF_KTHREAD is
racy, but daemonize() is hopeless anyway.

This flag is cleared in do_execve(), before search_binary_handler().
Probably not the best place, we can do this in exec_mmap() or in
start_thread(), or clear it along with PF_FORKNOEXEC.  But I think this
doesn't matter in practice, and if do_execve() fails kthread should die
soon.

Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Cc: Roland McGrath <roland@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-25 10:53:39 -07:00
Roland McGrath f470021adb ptrace children revamp
ptrace no longer fiddles with the children/sibling links, and the
old ptrace_children list is gone.  Now ptrace, whether of one's own
children or another's via PTRACE_ATTACH, just uses the new ptraced
list instead.

There should be no user-visible difference that matters.  The only
change is the order in which do_wait() sees multiple stopped
children and stopped ptrace attachees.  Since wait_task_stopped()
was changed earlier so it no longer reorders the children list, we
already know this won't cause any new problems.

Signed-off-by: Roland McGrath <roland@redhat.com>
2008-07-16 18:02:33 -07:00
Al Viro f52111b154 [PATCH] take init_files to fs/file.c
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2008-05-16 17:22:20 -04:00
Al Viro 9f3acc3140 [PATCH] split linux/file.h
Initial splitoff of the low-level stuff; taken to fdtable.h

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2008-05-01 13:08:16 -04:00