Remove chunk_objectid argument from btrfs_relocate_chunk() because
it is not necessary, it can also cleanup some code in caller for
prepare its value.
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
objectid's init-value is not used in any case, remove it.
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
We need error checking code for get_ref_objectid_v0() in
relocate_block_group(), to avoid unpredictable result, especially
for accessing uninitialized value(when function failed) after
this line.
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
xfstests btrfs/070 sometimes failed.
In my test machine, its fail rate is about 30%.
In another vm(vmware), its fail rate is about 50%.
Reason:
btrfs/070 do replace and defrag with fsstress simultaneously,
after above operation, checksum error is found by scrub.
Actually, it have no relationship with defrag operation, only
replace with fsstress can trigger this bug.
New data writen to target device have possibility rewrited by
old data from source device by replace code in debug, to avoid
above problem, we can set target block group to readonly in
replace period, so new data requested by other operation will
not write to same place with replace code.
Before patch(4.1-rc3):
30% failed in 100 xfstests.
After patch:
0% failed in 300 xfstests.
It also happened in btrfs/071 as it's another scrub with IO load tests.
Reported-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
Use new intruduced scrub_pause_on/off() can make this code block
clean and more readable.
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
It can reduce current duplicated code which is similar to
scrub_blocked_if_needed() but can not call it because little
different.
It also used by my next patch which is in same case.
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
More than one code call set_block_group_ro() and restore rw in fail.
Old code use bool bit to save blockgroup's ro state, it can not
support parallel case(it is confirmd exist in my debug log).
This patch use ref count to store ro state, and rename
set_block_group_ro/set_block_group_rw
to
inc_block_group_ro/dec_block_group_ro.
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
When we access extent_root in scrub_stripe() and
scrub_raid56_parity(), we need bypass unrelated tree item firstly
before using its contents to do other condition.
It is not a bug fix, only making code sequence in logic.
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
We need not load csum of whole strip in scrub because strip is trimed
before use, it is to say, what we really need to calculate csum is
data between [extent_logical, extent_len).
This patch changed to use above segment for btrfs_lookup_csums_range()
in scrub_stripe()
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
For example, in scrub_raid56_parity(), following lines are used
to judge is all data processed:
place1: if (key.objectid > logic_end) ...
place2: if (logic_start >= logic_end) ...
...
(place2 is typo, is should be ">", it is copied from other
place, where logic_end's meaning is different, long story...)
We can fix above typo directly, but the root reason is ambiguous
meaning of logic_end in scrub raid56 parity.
In other place, XXX_end is pointed to data which is not included,
and we need to process segment of [XXX_start, XXX_end).
But for scrub raid56 parity, logic_end is pointed to lattest data
need to process, and introduced many "+ 1" and "- 1" in code as
below:
length = sparity->logic_end - sparity->logic_start + 1
logic_end - logic_start + 1
stripe_logical + increment - 1
This patch changed logic_end's meaning to make it in normal understanding
in raid56 parity functions and data struct alone with above bugfix.
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
When scrub_extent() failed, we need to free previois created
checksum list.
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
Old code checking cancel and pause request inside scrub stripe
operation, like:
loop() {
if (parity) {
scrub_parity_stripe();
continue;
}
check_cancel_and_pause()
scrub_normal_stripe();
}
Reason is when introduce raid56 stripe scrub, new code is inserted
simplely to front of loop.
Better to:
loop() {
check_cancel_and_pause()
if (parity)
scrub_parity_stripe();
else
scrub_normal_stripe();
}
This patch adjusted code place to realize above sequence.
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
When mount failed because missing device, we can see following
dmesg:
[ 1060.267743] BTRFS: too many missing devices, writeable mount is not allowed
[ 1060.273158] BTRFS: open_ctree failed
This patch add missing_device_number and tolerated_missing_device_number
to above output, to let user know what really happened, and helps
bug-report and debug.
dmesg after patch:
[ 127.050367] BTRFS: missing devices(1) exceeds the limit(0), writeable mount is not allowed
[ 127.056099] BTRFS: open_ctree failed
Changelog v1->v2:
1: Changed to more clear description, suggested-by:
Anand Jain <anand.jain@oracle.com>
Suggested-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
Scrub panic in following operation:
mkfs.ext4 /dev/vdh
btrfs-convert /dev/vdh
mount /dev/vdh /mnt/tmp1
btrfs scrub start -B /dev/vdh
(panic)
Reason:
1: In some case, leaf created by btrfs-convert was splited into 2
strips.
2: Scrub bypassed part of above wrong leaf data, but remain data
caused panic in scrub_checksum_tree_block().
For reason 1:
we can get following information after some simple operation.
a. mkfs.ext4 /dev/vdh
btrfs-convert /dev/vdh
b. btrfs-debug-tree /dev/vdh
we can see following item in extent tree:
item 25 key (27054080 METADATA_ITEM 0) itemoff 15083 itemsize 33
Its logical address is [27054080, 27070464)
and acrossed 2 strips:
[27000832, 27066368)
[27066368, 27131904)
Will be fixed in btrfs-progs(btrfs-convert, btrfsck, ...)
For reason 2:
Scrub is trying to do a "bypass" in this case, but the result is
"panic", because current code lacks of some condition in bypass,
and let some wrong leaf data escaped.
This patch fixed above scrub code.
Before patch:
# btrfs scrub start -B /dev/vdh
(panic)
After patch:
# btrfs scrub start -B /dev/vdh
scrub done for 353cec8f-da31-4a94-aa35-be72d997b06e
...
# dmesg
...
[ 59.088697] BTRFS error (device vdh): scrub: tree block 27054080 spanning stripes, ignored. logical=27000832
[ 59.089929] BTRFS error (device vdh): scrub: tree block 27054080 spanning stripes, ignored. logical=27066368
#
Reported-by: Chris Murphy <lists@colorremedies.com>
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
We have one more case where after a log tree is replayed we get
inconsistent metadata leading to stale directory entries, due to
some directories having entries pointing to some inode while the
inode does not have a matching BTRFS_INODE_[REF|EXTREF]_KEY item.
To trigger the problem we need to have a file with multiple hard links
belonging to different parent directories. Then if one of those hard
links is removed and we fsync the file using one of its other links
that belongs to a different parent directory, we end up not logging
the fact that the removed hard link doesn't exists anymore in the
parent directory.
Simple reproducer:
seq=`basename $0`
seqres=$RESULT_DIR/$seq
echo "QA output created by $seq"
tmp=/tmp/$$
status=1 # failure is the default!
trap "_cleanup; exit \$status" 0 1 2 3 15
_cleanup()
{
_cleanup_flakey
rm -f $tmp.*
}
# get standard environment, filters and checks
. ./common/rc
. ./common/filter
. ./common/dmflakey
# real QA test starts here
_need_to_be_root
_supported_fs generic
_supported_os Linux
_require_scratch
_require_dm_flakey
_require_metadata_journaling $SCRATCH_DEV
rm -f $seqres.full
_scratch_mkfs >>$seqres.full 2>&1
_init_flakey
_mount_flakey
# Create our test directory and file.
mkdir $SCRATCH_MNT/testdir
touch $SCRATCH_MNT/foo
ln $SCRATCH_MNT/foo $SCRATCH_MNT/testdir/foo2
ln $SCRATCH_MNT/foo $SCRATCH_MNT/testdir/foo3
# Make sure everything done so far is durably persisted.
sync
# Now we remove one of our file's hardlinks in the directory testdir.
unlink $SCRATCH_MNT/testdir/foo3
# We now fsync our file using the "foo" link, which has a parent that
# is not the directory "testdir".
$XFS_IO_PROG -c "fsync" $SCRATCH_MNT/foo
# Silently drop all writes and unmount to simulate a crash/power
# failure.
_load_flakey_table $FLAKEY_DROP_WRITES
_unmount_flakey
# Allow writes again, mount to trigger journal/log replay.
_load_flakey_table $FLAKEY_ALLOW_WRITES
_mount_flakey
# After the journal/log is replayed we expect to not see the "foo3"
# link anymore and we should be able to remove all names in the
# directory "testdir" and then remove it (no stale directory entries
# left after the journal/log replay).
echo "Entries in testdir:"
ls -1 $SCRATCH_MNT/testdir
rm -f $SCRATCH_MNT/testdir/*
rmdir $SCRATCH_MNT/testdir
_unmount_flakey
status=0
exit
The test fails with:
$ ./check generic/107
FSTYP -- btrfs
PLATFORM -- Linux/x86_64 debian3 4.1.0-rc6-btrfs-next-11+
MKFS_OPTIONS -- /dev/sdc
MOUNT_OPTIONS -- /dev/sdc /home/fdmanana/btrfs-tests/scratch_1
generic/107 3s ... - output mismatch (see .../results/generic/107.out.bad)
--- tests/generic/107.out 2015-08-01 01:39:45.807462161 +0100
+++ /home/fdmanana/git/hub/xfstests/results//generic/107.out.bad
@@ -1,3 +1,5 @@
QA output created by 107
Entries in testdir:
foo2
+foo3
+rmdir: failed to remove '/home/fdmanana/btrfs-tests/scratch_1/testdir': Directory not empty
...
_check_btrfs_filesystem: filesystem on /dev/sdc is inconsistent \
(see /home/fdmanana/git/hub/xfstests/results//generic/107.full)
_check_dmesg: something found in dmesg (see .../results/generic/107.dmesg)
Ran: generic/107
Failures: generic/107
Failed 1 of 1 tests
$ cat /home/fdmanana/git/hub/xfstests/results//generic/107.full
(...)
checking fs roots
root 5 inode 257 errors 200, dir isize wrong
unresolved ref dir 257 index 3 namelen 4 name foo3 filetype 1 errors 5, no dir item, no inode ref
(...)
And produces the following warning in dmesg:
[127298.759064] BTRFS info (device dm-0): failed to delete reference to foo3, inode 258 parent 257
[127298.762081] ------------[ cut here ]------------
[127298.763311] WARNING: CPU: 10 PID: 7891 at fs/btrfs/inode.c:3956 __btrfs_unlink_inode+0x182/0x35a [btrfs]()
[127298.767327] BTRFS: Transaction aborted (error -2)
(...)
[127298.788611] Call Trace:
[127298.789137] [<ffffffff8145f077>] dump_stack+0x4f/0x7b
[127298.790090] [<ffffffff81095de5>] ? console_unlock+0x356/0x3a2
[127298.791157] [<ffffffff8104b3b0>] warn_slowpath_common+0xa1/0xbb
[127298.792323] [<ffffffffa065ad09>] ? __btrfs_unlink_inode+0x182/0x35a [btrfs]
[127298.793633] [<ffffffff8104b410>] warn_slowpath_fmt+0x46/0x48
[127298.794699] [<ffffffffa065ad09>] __btrfs_unlink_inode+0x182/0x35a [btrfs]
[127298.797640] [<ffffffffa065be8f>] btrfs_unlink_inode+0x1e/0x40 [btrfs]
[127298.798876] [<ffffffffa065bf11>] btrfs_unlink+0x60/0x9b [btrfs]
[127298.800154] [<ffffffff8116fb48>] vfs_unlink+0x9c/0xed
[127298.801303] [<ffffffff81173481>] do_unlinkat+0x12b/0x1fb
[127298.802450] [<ffffffff81253855>] ? lockdep_sys_exit_thunk+0x12/0x14
[127298.803797] [<ffffffff81174056>] SyS_unlinkat+0x29/0x2b
[127298.805017] [<ffffffff81465197>] system_call_fastpath+0x12/0x6f
[127298.806310] ---[ end trace bbfddacb7aaada7b ]---
[127298.807325] BTRFS warning (device dm-0): __btrfs_unlink_inode:3956: Aborting unused transaction(No such entry).
So fix this by logging all parent inodes, current and old ones, to make
sure we do not get stale entries after log replay. This is not a simple
solution such as triggering a full transaction commit because it would
imply full transaction commit when an inode is fsynced in the same
transaction that modified it and reloaded it after eviction (because its
last_unlink_trans is set to the same value as its last_trans as of the
commit with the title "Btrfs: fix stale dir entries after unlink, inode
eviction and fsync"), and it would also make fstest generic/066 fail
since one of the fsyncs triggers a full commit and the next fsync will
not find the inode in the log anymore (therefore not removing the xattr).
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
The search key advancing condition used in copy_to_sk() is loose. It can
advance the key even if it reaches sk->max_*: e.g. when the max key = (512,
1024, -1) and the current key = (512, 1025, 10), it increments the
offset by 1, continues hopeless search from (512, 1025, 11). This issue
make ioctl() to take unexpectedly long time scanning all the leaf a blocks
one by one.
This commit fix the problem using standard way of key comparison:
btrfs_comp_cpu_keys()
Signed-off-by: Naohiro Aota <naota@elisp.net>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
When cloning/deduplicating file extents (through the clone and extent_same
ioctls) we can get data back references with offset values that are a
result of an unsigned integer arithmetic underflow, that is, values that
are much larger then they could be otherwise.
This is not a problem when decrementing or dropping the back references
(happens when we overwrite the extents or punch a hole for example, through
__btrfs_drop_extents()), since we compute the same too large offset value,
but it is a problem for the backref walking code, used by an incremental
send and the ioctls that are used by the btrfs tool "inspect-internal"
commands, as it makes it miss the corresponding file extent items because
the search key is set for an extent item that starts at an offset matching
the exceptionally large offset value of the data back reference. For an
incremental send this causes the send ioctl to fail with -EIO.
So teach the backref walking code to deal with these cases by setting the
search key's offset to 0 if the backref's offset value is larger than
LLONG_MAX (the largest possible file offset). This makes sure the backref
walking code finds the corresponding file extent items at the expense of
scanning more items and leafs in the btree.
Fixing the clone/dedup ioctls to not produce such underflowed results would
require major changes breaking backward compatibility, updating user space
tools, etc.
Simple reproducer case for fstests:
seq=`basename $0`
seqres=$RESULT_DIR/$seq
echo "QA output created by $seq"
tmp=/tmp/$$
status=1 # failure is the default!
trap "_cleanup; exit \$status" 0 1 2 3 15
_cleanup()
{
rm -fr $send_files_dir
rm -f $tmp.*
}
# get standard environment, filters and checks
. ./common/rc
. ./common/filter
# real QA test starts here
_supported_fs btrfs
_supported_os Linux
_require_scratch
_require_cloner
_need_to_be_root
send_files_dir=$TEST_DIR/btrfs-test-$seq
rm -f $seqres.full
rm -fr $send_files_dir
mkdir $send_files_dir
_scratch_mkfs >>$seqres.full 2>&1
_scratch_mount
# Create our test file with a single extent of 64K starting at file
# offset 128K.
$XFS_IO_PROG -f -c "pwrite -S 0xaa 128K 64K" $SCRATCH_MNT/foo \
| _filter_xfs_io
_run_btrfs_util_prog subvolume snapshot -r $SCRATCH_MNT \
$SCRATCH_MNT/mysnap1
# Now clone parts of the original extent into lower offsets of the file.
#
# The first clone operation adds a file extent item to file offset 0
# that points to our initial extent with a data offset of 16K. The
# corresponding data back reference in the extent tree has an offset of
# 18446744073709535232, which is the result of file_offset - data_offset
# = 0 - 16K.
#
# The second clone operation adds a file extent item to file offset 16K
# that points to our initial extent with a data offset of 48K. The
# corresponding data back reference in the extent tree has an offset of
# 18446744073709518848, which is the result of file_offset - data_offset
# = 16K - 48K.
#
# Those large back reference offsets (result of unsigned arithmetic
# underflow) confused the back reference walking code (used by an
# incremental send and the multiple inspect-internal ioctls) and made it
# miss the back references, which for the case of an incremental send it
# made it fail with -EIO and print a message like the following to
# dmesg:
#
# "BTRFS error (device sdc): did not find backref in send_root. \
# inode=257, offset=0, disk_byte=12845056 found extent=12845056"
#
$CLONER_PROG -s $(((128 + 16) * 1024)) -d 0 -l $((16 * 1024)) \
$SCRATCH_MNT/foo $SCRATCH_MNT/foo
$CLONER_PROG -s $(((128 + 48) * 1024)) -d $((16 * 1024)) \
-l $((16 * 1024)) $SCRATCH_MNT/foo $SCRATCH_MNT/foo
_run_btrfs_util_prog subvolume snapshot -r $SCRATCH_MNT \
$SCRATCH_MNT/mysnap2
_run_btrfs_util_prog send $SCRATCH_MNT/mysnap1 -f $send_files_dir/1.snap
_run_btrfs_util_prog send -p $SCRATCH_MNT/mysnap1 $SCRATCH_MNT/mysnap2 \
-f $send_files_dir/2.snap
echo "File digest in the original filesystem:"
md5sum $SCRATCH_MNT/mysnap2/foo | _filter_scratch
# Now recreate the filesystem by receiving both send streams and verify
# we get the same file contents that the original filesystem had.
_scratch_unmount
_scratch_mkfs >>$seqres.full 2>&1
_scratch_mount
_run_btrfs_util_prog receive $SCRATCH_MNT -f $send_files_dir/1.snap
_run_btrfs_util_prog receive $SCRATCH_MNT -f $send_files_dir/2.snap
echo "File digest in the new filesystem:"
md5sum $SCRATCH_MNT/mysnap2/foo | _filter_scratch
status=0
exit
The test's expected golden output is:
wrote 65536/65536 bytes at offset 131072
XXX Bytes, X ops; XX:XX:XX.X (XXX YYY/sec and XXX ops/sec)
File digest in the original filesystem:
6c6079335cff141b8a31233ead04cbff SCRATCH_MNT/mysnap2/foo
File digest in the new filesystem:
6c6079335cff141b8a31233ead04cbff SCRATCH_MNT/mysnap2/foo
But it failed with:
(...)
@@ -1,7 +1,5 @@
QA output created by 097
wrote 65536/65536 bytes at offset 131072
XXX Bytes, X ops; XX:XX:XX.X (XXX YYY/sec and XXX ops/sec)
-File digest in the original filesystem:
-6c6079335cff141b8a31233ead04cbff SCRATCH_MNT/mysnap2/foo
-File digest in the new filesystem:
-6c6079335cff141b8a31233ead04cbff SCRATCH_MNT/mysnap2/foo
...
$ cat /home/fdmanana/git/hub/xfstests/results//btrfs/097.full
(...)
ERROR: send ioctl failed with -5: Input/output error
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
If we remove a hard link from an inode, the inode gets evicted, then
we fsync the inode and then power fail/crash, when the log tree is
replayed, the parent directory inode still has entries pointing to
the name that no longer exists, while our inode no longer has the
BTRFS_INODE_REF_KEY item matching the deleted hard link (as expected),
leaving the filesystem in an inconsistent state. The stale directory
entries can not be deleted (an attempt to delete them causes -ESTALE
errors), which makes it impossible to delete the parent directory.
This happens because we track the id of the transaction where the last
unlink operation for the inode happened (last_unlink_trans) in an
in-memory only field of the inode, that is, a value that is never
persisted in the inode item stored on the fs/subvol btree. So if an
inode is evicted and loaded again, the value for last_unlink_trans is
set to 0, which prevents the fsync from logging the parent directory
at btrfs_log_inode_parent(). So fix this by setting last_unlink_trans
to the id of the transaction that last modified the inode when we
load the inode. This is a pessimistic approach but it always ensures
correctness with the trade off of ocassional full transaction commits
when an fsync is done against the inode in the same transaction where
it was evicted and reloaded when our inode is a directory and often
logging its parent unnecessarily when our inode is not a directory.
The following test case for fstests triggers the problem:
seq=`basename $0`
seqres=$RESULT_DIR/$seq
echo "QA output created by $seq"
tmp=/tmp/$$
status=1 # failure is the default!
trap "_cleanup; exit \$status" 0 1 2 3 15
_cleanup()
{
_cleanup_flakey
rm -f $tmp.*
}
# get standard environment, filters and checks
. ./common/rc
. ./common/filter
. ./common/dmflakey
# real QA test starts here
_need_to_be_root
_supported_fs generic
_supported_os Linux
_require_scratch
_require_dm_flakey
_require_metadata_journaling $SCRATCH_DEV
rm -f $seqres.full
_scratch_mkfs >>$seqres.full 2>&1
_init_flakey
_mount_flakey
# Create our test file with 2 hard links.
mkdir $SCRATCH_MNT/testdir
touch $SCRATCH_MNT/testdir/foo
ln $SCRATCH_MNT/testdir/foo $SCRATCH_MNT/testdir/bar
# Make sure everything done so far is durably persisted.
sync
# Now remove one of the links, trigger inode eviction and then fsync
# our inode.
unlink $SCRATCH_MNT/testdir/bar
echo 2 > /proc/sys/vm/drop_caches
$XFS_IO_PROG -c "fsync" $SCRATCH_MNT/testdir/foo
# Silently drop all writes on our scratch device to simulate a power failure.
_load_flakey_table $FLAKEY_DROP_WRITES
_unmount_flakey
# Allow writes again and mount the fs to trigger log/journal replay.
_load_flakey_table $FLAKEY_ALLOW_WRITES
_mount_flakey
# Now verify our directory entries.
echo "Entries in testdir:"
ls -1 $SCRATCH_MNT/testdir
# If we remove our inode, its parent should become empty and therefore we should
# be able to remove the parent.
rm -f $SCRATCH_MNT/testdir/*
rmdir $SCRATCH_MNT/testdir
_unmount_flakey
# The fstests framework will call fsck against our filesystem which will verify
# that all metadata is in a consistent state.
status=0
exit
The test failed on btrfs with:
generic/098 4s ... - output mismatch (see /home/fdmanana/git/hub/xfstests/results//generic/098.out.bad)
--- tests/generic/098.out 2015-07-23 18:01:12.616175932 +0100
+++ /home/fdmanana/git/hub/xfstests/results//generic/098.out.bad 2015-07-23 18:04:58.924138308 +0100
@@ -1,3 +1,6 @@
QA output created by 098
Entries in testdir:
+bar
foo
+rm: cannot remove '/home/fdmanana/btrfs-tests/scratch_1/testdir/foo': Stale file handle
+rmdir: failed to remove '/home/fdmanana/btrfs-tests/scratch_1/testdir': Directory not empty
...
(Run 'diff -u tests/generic/098.out /home/fdmanana/git/hub/xfstests/results//generic/098.out.bad' to see the entire diff)
_check_btrfs_filesystem: filesystem on /dev/sdc is inconsistent (see /home/fdmanana/git/hub/xfstests/results//generic/098.full)
$ cat /home/fdmanana/git/hub/xfstests/results//generic/098.full
(...)
checking fs roots
root 5 inode 258 errors 2001, no inode item, link count wrong
unresolved ref dir 257 index 0 namelen 3 name foo filetype 1 errors 6, no dir index, no inode ref
unresolved ref dir 257 index 3 namelen 3 name bar filetype 1 errors 5, no dir item, no inode ref
Checking filesystem on /dev/sdc
(...)
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
We have another case where after an fsync log replay we get an inode with
a wrong link count (smaller than it should be) and a number of directory
entries greater than its link count. This happens when we add a new link
hard link to our inode A and then we fsync some other inode B that has
the side effect of logging the parent directory inode too. In this case
at log replay time we add the new hard link to our inode (the item with
key BTRFS_INODE_REF_KEY) when processing the parent directory but we
never adjust the link count of our inode A. As a result we get stale dir
entries for our inode A that can never be deleted and therefore it makes
it impossible to remove the parent directory (as its i_size can never
decrease back to 0).
A simple reproducer for fstests that triggers this issue:
seq=`basename $0`
seqres=$RESULT_DIR/$seq
echo "QA output created by $seq"
tmp=/tmp/$$
status=1 # failure is the default!
trap "_cleanup; exit \$status" 0 1 2 3 15
_cleanup()
{
_cleanup_flakey
rm -f $tmp.*
}
# get standard environment, filters and checks
. ./common/rc
. ./common/filter
. ./common/dmflakey
# real QA test starts here
_need_to_be_root
_supported_fs generic
_supported_os Linux
_require_scratch
_require_dm_flakey
_require_metadata_journaling $SCRATCH_DEV
rm -f $seqres.full
_scratch_mkfs >>$seqres.full 2>&1
_init_flakey
_mount_flakey
# Create our test directory and files.
mkdir $SCRATCH_MNT/testdir
touch $SCRATCH_MNT/testdir/foo
touch $SCRATCH_MNT/testdir/bar
# Make sure everything done so far is durably persisted.
sync
# Create one hard link for file foo and another one for file bar. After
# that fsync only the file bar.
ln $SCRATCH_MNT/testdir/bar $SCRATCH_MNT/testdir/bar_link
ln $SCRATCH_MNT/testdir/foo $SCRATCH_MNT/testdir/foo_link
$XFS_IO_PROG -c "fsync" $SCRATCH_MNT/testdir/bar
# Silently drop all writes on scratch device to simulate power failure.
_load_flakey_table $FLAKEY_DROP_WRITES
_unmount_flakey
# Allow writes again and mount the fs to trigger log/journal replay.
_load_flakey_table $FLAKEY_ALLOW_WRITES
_mount_flakey
# Now verify both our files have a link count of 2.
echo "Link count for file foo: $(stat --format=%h $SCRATCH_MNT/testdir/foo)"
echo "Link count for file bar: $(stat --format=%h $SCRATCH_MNT/testdir/bar)"
# We should be able to remove all the links of our files in testdir, and
# after that the parent directory should become empty and therefore
# possible to remove it.
rm -f $SCRATCH_MNT/testdir/*
rmdir $SCRATCH_MNT/testdir
_unmount_flakey
# The fstests framework will call fsck against our filesystem which will verify
# that all metadata is in a consistent state.
status=0
exit
The test fails with:
-Link count for file foo: 2
+Link count for file foo: 1
Link count for file bar: 2
+rm: cannot remove '/home/fdmanana/btrfs-tests/scratch_1/testdir/foo_link': Stale file handle
+rmdir: failed to remove '/home/fdmanana/btrfs-tests/scratch_1/testdir': Directory not empty
(...)
_check_btrfs_filesystem: filesystem on /dev/sdc is inconsistent
And fsck's output:
(...)
checking fs roots
root 5 inode 258 errors 2001, no inode item, link count wrong
unresolved ref dir 257 index 5 namelen 8 name foo_link filetype 1 errors 4, no inode ref
Checking filesystem on /dev/sdc
(...)
So fix this by marking inodes for link count fixup at log replay time
whenever a directory entry is replayed if the entry was created in the
transaction where the fsync was made and if it points to a non-directory
inode.
This isn't a new problem/regression, the issue exists for a long time,
possibly since the log tree feature was added (2008).
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
Pull btrfs fix from Chris Mason:
"We have a btrfs quota regression fix.
I merged this one on Thursday and have run it through tests against
current master.
Normally I wouldn't have sent this while you were finalizing rc6, but
I'm feeding mosquitoes in the adirondacks next week, so I wanted to
get this one out before leaving. I'll leave longer tests running and
check on things during the week, but I don't expect any problems"
* 'for-linus-4.2' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
btrfs: qgroup: Fix a regression in qgroup reserved space.
During the change to new btrfs extent-oriented qgroup implement, due to
it doesn't use the old __qgroup_excl_accounting() for exclusive extent,
it didn't free the reserved bytes.
The bug will cause limit function go crazy as the reserved space is
never freed, increasing limit will have no effect and still cause
EQOUT.
The fix is easy, just free reserved bytes for newly created exclusive
extent as what it does before.
Reported-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Signed-off-by: Yang Dongsheng <yangds.fnst@cn.fujitsu.com>
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
With well over 200+ users of this api, there are a mere 12 users that
actually checked the return value of this function. And all of them
really didn't do anything with that information as the system or module
was shutting down no matter what.
So stop pretending like it matters, and just return void from
misc_deregister(). If something goes wrong in the call, you will get a
WARNING splat in the syslog so you know how to fix up your driver.
Other than that, there's nothing that can go wrong.
Cc: Alasdair Kergon <agk@redhat.com>
Cc: Neil Brown <neilb@suse.com>
Cc: Oleg Drokin <oleg.drokin@intel.com>
Cc: Andreas Dilger <andreas.dilger@intel.com>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Wim Van Sebroeck <wim@iguana.be>
Cc: Christine Caulfield <ccaulfie@redhat.com>
Cc: David Teigland <teigland@redhat.com>
Cc: Mark Fasheh <mfasheh@suse.com>
Acked-by: Joel Becker <jlbec@evilplan.org>
Acked-by: Alexandre Belloni <alexandre.belloni@free-electrons.com>
Acked-by: Alessandro Zummo <a.zummo@towertech.it>
Acked-by: Mike Snitzer <snitzer@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Pull btrfs fixes from Chris Mason:
"Filipe fixed up a hard to trigger ENOSPC regression from our merge
window pull, and we have a few other smaller fixes"
* 'for-linus-4.2' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
Btrfs: fix quick exhaustion of the system array in the superblock
btrfs: its btrfs_err() instead of btrfs_error()
btrfs: Avoid NULL pointer dereference of free_extent_buffer when read_tree_block() fail
btrfs: Fix lockdep warning of btrfs_run_delayed_iputs()
When we clear the dirty bits in btrfs_delete_unused_bgs for extents
in the empty block group, it results in btrfs_finish_extent_commit being
unable to discard the freed extents.
The block group removal patch added an alternate path to forget extents
other than btrfs_finish_extent_commit. As a result, any extents that
would be freed when the block group is removed aren't discarded. In my
test run, with a large copy of mixed sized files followed by removal, it
left nearly 2/3 of extents undiscarded.
To clean up the block groups, we add the removed block group onto a list
that will be discarded after transaction commit.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Tested-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
The cleaner thread may already be sleeping by the time we enter
close_ctree. If that's the case, we'll skip removing any unused
block groups queued for removal, even during a normal umount.
They'll be cleaned up automatically at next mount, but users
expect a umount to be a clean synchronization point, especially
when used on thin-provisioned storage with -odiscard. We also
explicitly remove unused block groups in the ro-remount path
for the same reason.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Tested-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
Since we now clean up block groups automatically as they become
empty, iterating over block groups is no longer sufficient to discard
unused space.
This patch iterates over the unused chunk space and discards any regions
that are unallocated, regardless of whether they were ever used. This is
a change for btrfs but is consistent with other file systems.
We do this in a transactionless manner since the discard process can take
a substantial amount of time and a transaction would need to be started
before the acquisition of the device list lock. That would mean a
transaction would be held open across /all/ of the discards collectively.
In order to prevent other threads from allocating or freeing chunks, we
hold the chunks lock across the search and discard calls. We release it
between searches to allow the file system to perform more-or-less
normally. Since the running transaction can commit and disappear while
we're using the transaction pointer, we take a reference to it and
release it after the search. This is safe since it would happen normally
at the end of the transaction commit after any locks are released anyway.
We also take the commit_root_sem to protect against a transaction starting
and committing while we're running.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Tested-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
Btrfs doesn't track superblocks with extent records so there is nothing
persistent on-disk to indicate that those blocks are in use. We track
the superblocks in memory to ensure they don't get used by removing them
from the free space cache when we load a block group from disk. Prior
to 47ab2a6c6a (Btrfs: remove empty block groups automatically), that
was fine since the block group would never be reclaimed so the superblock
was always safe. Once we started removing the empty block groups, we
were protected by the fact that discards weren't being properly issued
for unused space either via FITRIM or -odiscard. The block groups were
still being released, but the blocks remained on disk.
In order to properly discard unused block groups, we need to filter out
the superblocks from the discard range. Superblocks are located at fixed
locations on each device, so it makes sense to filter them out in
btrfs_issue_discard, which is used by both -odiscard and FITRIM.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Tested-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
It's possible, though unexpected, to pass unaligned offsets and lengths
to btrfs_issue_discard. We then shift the offset/length values to sector
units. If an unaligned offset has been passed, it will result in the
entire sector being discarded, possibly losing data. An unaligned
length is safe but we'll end up returning an inaccurate number of
discarded bytes.
This patch aligns the offset to the 512B boundary, adjusts the length,
and warns, since we shouldn't be discarding on an offset that isn't
aligned with our sector size.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Tested-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
Initially this will just be the length argument passed to it,
but the following patches will adjust that to reflect re-alignment
and skipped blocks.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Tested-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
Currently we have two different ways to signal an I/O error on a BIO:
(1) by clearing the BIO_UPTODATE flag
(2) by returning a Linux errno value to the bi_end_io callback
The first one has the drawback of only communicating a single possible
error (-EIO), and the second one has the drawback of not beeing persistent
when bios are queued up, and are not passed along from child to parent
bio in the ever more popular chaining scenario. Having both mechanisms
available has the additional drawback of utterly confusing driver authors
and introducing bugs where various I/O submitters only deal with one of
them, and the others have to add boilerplate code to deal with both kinds
of error returns.
So add a new bi_error field to store an errno value directly in struct
bio and remove the existing mechanisms to clean all this up.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Hannes Reinecke <hare@suse.de>
Reviewed-by: NeilBrown <neilb@suse.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
Omar reported that after commit 4fbcdf6694 ("Btrfs: fix -ENOSPC when
finishing block group creation"), introduced in 4.2-rc1, the following
test was failing due to exhaustion of the system array in the superblock:
#!/bin/bash
truncate -s 100T big.img
mkfs.btrfs big.img
mount -o loop big.img /mnt/loop
num=5
sz=10T
for ((i = 0; i < $num; i++)); do
echo fallocate $i $sz
fallocate -l $sz /mnt/loop/testfile$i
done
btrfs filesystem sync /mnt/loop
for ((i = 0; i < $num; i++)); do
echo rm $i
rm /mnt/loop/testfile$i
btrfs filesystem sync /mnt/loop
done
umount /mnt/loop
This made btrfs_add_system_chunk() fail with -EFBIG due to excessive
allocation of system block groups. This happened because the test creates
a large number of data block groups per transaction and when committing
the transaction we start the writeout of the block group caches for all
the new new (dirty) block groups, which results in pre-allocating space
for each block group's free space cache using the same transaction handle.
That in turn often leads to creation of more block groups, and all get
attached to the new_bgs list of the same transaction handle to the point
of getting a list with over 1500 elements, and creation of new block groups
leads to the need of reserving space in the chunk block reserve and often
creating a new system block group too.
So that made us quickly exhaust the chunk block reserve/system space info,
because as of the commit mentioned before, we do reserve space for each
new block group in the chunk block reserve, unlike before where we would
not and would at most allocate one new system block group and therefore
would only ensure that there was enough space in the system space info to
allocate 1 new block group even if we ended up allocating thousands of
new block groups using the same transaction handle. That worked most of
the time because the computed required space at check_system_chunk() is
very pessimistic (assumes a chunk tree height of BTRFS_MAX_LEVEL/8 and
that all nodes/leafs in a path will be COWed and split) and since the
updates to the chunk tree all happen at btrfs_create_pending_block_groups
it is unlikely that a path needs to be COWed more than once (unless
writepages() for the btree inode is called by mm in between) and that
compensated for the need of creating any new nodes/leads in the chunk
tree.
So fix this by ensuring we don't accumulate a too large list of new block
groups in a transaction's handles new_bgs list, inserting/updating the
chunk tree for all accumulated new block groups and releasing the unused
space from the chunk block reserve whenever the list becomes sufficiently
large. This is a generic solution even though the problem currently can
only happen when starting the writeout of the free space caches for all
dirty block groups (btrfs_start_dirty_block_groups()).
Reported-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Tested-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
sorry I indented to use btrfs_err() and I have no idea
how btrfs_error() got there.
infact I was thinking about these kind of oversights
since these two func are too closely named.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
Liu Bo <bo.li.liu@oracle.com> reported a lockdep warning of
delayed_iput_sem in xfstests generic/241:
[ 2061.345955] =============================================
[ 2061.346027] [ INFO: possible recursive locking detected ]
[ 2061.346027] 4.1.0+ #268 Tainted: G W
[ 2061.346027] ---------------------------------------------
[ 2061.346027] btrfs-cleaner/3045 is trying to acquire lock:
[ 2061.346027] (&fs_info->delayed_iput_sem){++++..}, at:
[<ffffffff814063ab>] btrfs_run_delayed_iputs+0x6b/0x100
[ 2061.346027] but task is already holding lock:
[ 2061.346027] (&fs_info->delayed_iput_sem){++++..}, at: [<ffffffff814063ab>] btrfs_run_delayed_iputs+0x6b/0x100
[ 2061.346027] other info that might help us debug this:
[ 2061.346027] Possible unsafe locking scenario:
[ 2061.346027] CPU0
[ 2061.346027] ----
[ 2061.346027] lock(&fs_info->delayed_iput_sem);
[ 2061.346027] lock(&fs_info->delayed_iput_sem);
[ 2061.346027]
*** DEADLOCK ***
It is rarely happened, about 1/400 in my test env.
The reason is recursion of btrfs_run_delayed_iputs():
cleaner_kthread
-> btrfs_run_delayed_iputs() *1
-> get delayed_iput_sem lock *2
-> iput()
-> ...
-> btrfs_commit_transaction()
-> btrfs_run_delayed_iputs() *1
-> get delayed_iput_sem lock (dead lock) *2
*1: recursion of btrfs_run_delayed_iputs()
*2: warning of lockdep about delayed_iput_sem
When fs is in high stress, new iputs may added into fs_info->delayed_iputs
list when btrfs_run_delayed_iputs() is running, which cause
second btrfs_run_delayed_iputs() run into down_read(&fs_info->delayed_iput_sem)
again, and cause above lockdep warning.
Actually, it will not cause real problem because both locks are read lock,
but to avoid lockdep warning, we can do a fix.
Fix:
Don't do btrfs_run_delayed_iputs() in btrfs_commit_transaction() for
cleaner_kthread thread to break above recursion path.
cleaner_kthread is calling btrfs_run_delayed_iputs() explicitly in code,
and don't need to call btrfs_run_delayed_iputs() again in
btrfs_commit_transaction(), it also give us a bonus to avoid stack overflow.
Test:
No above lockdep warning after patch in 1200 generic/241 tests.
Reported-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
Pull btrfs fixes from Chris Mason:
"These are all from Filipe, and cover a few problems we've had reported
on the list recently (along with ones he found on his own)"
* 'for-linus-4.2' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
Btrfs: fix file corruption after cloning inline extents
Btrfs: fix order by which delayed references are run
Btrfs: fix list transaction->pending_ordered corruption
Btrfs: fix memory leak in the extent_same ioctl
Btrfs: fix shrinking truncate when the no_holes feature is enabled
Using the clone ioctl (or extent_same ioctl, which calls the same extent
cloning function as well) we end up allowing copy an inline extent from
the source file into a non-zero offset of the destination file. This is
something not expected and that the btrfs code is not prepared to deal
with - all inline extents must be at a file offset equals to 0.
For example, the following excerpt of a test case for fstests triggers
a crash/BUG_ON() on a write operation after an inline extent is cloned
into a non-zero offset:
_scratch_mkfs >>$seqres.full 2>&1
_scratch_mount
# Create our test files. File foo has the same 2K of data at offset 4K
# as file bar has at its offset 0.
$XFS_IO_PROG -f -s -c "pwrite -S 0xaa 0 4K" \
-c "pwrite -S 0xbb 4k 2K" \
-c "pwrite -S 0xcc 8K 4K" \
$SCRATCH_MNT/foo | _filter_xfs_io
# File bar consists of a single inline extent (2K size).
$XFS_IO_PROG -f -s -c "pwrite -S 0xbb 0 2K" \
$SCRATCH_MNT/bar | _filter_xfs_io
# Now call the clone ioctl to clone the extent of file bar into file
# foo at its offset 4K. This made file foo have an inline extent at
# offset 4K, something which the btrfs code can not deal with in future
# IO operations because all inline extents are supposed to start at an
# offset of 0, resulting in all sorts of chaos.
# So here we validate that clone ioctl returns an EOPNOTSUPP, which is
# what it returns for other cases dealing with inlined extents.
$CLONER_PROG -s 0 -d $((4 * 1024)) -l $((2 * 1024)) \
$SCRATCH_MNT/bar $SCRATCH_MNT/foo
# Because of the inline extent at offset 4K, the following write made
# the kernel crash with a BUG_ON().
$XFS_IO_PROG -c "pwrite -S 0xdd 6K 2K" $SCRATCH_MNT/foo | _filter_xfs_io
status=0
exit
The stack trace of the BUG_ON() triggered by the last write is:
[152154.035903] ------------[ cut here ]------------
[152154.036424] kernel BUG at mm/page-writeback.c:2286!
[152154.036424] invalid opcode: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC
[152154.036424] Modules linked in: btrfs dm_flakey dm_mod crc32c_generic xor raid6_pq nfsd auth_rpcgss oid_registry nfs_acl nfs lockd grace fscache sunrpc loop fuse parport_pc acpi_cpu$
[152154.036424] CPU: 2 PID: 17873 Comm: xfs_io Tainted: G W 4.1.0-rc6-btrfs-next-11+ #2
[152154.036424] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.8.1-0-g4adadbd-20150316_085822-nilsson.home.kraxel.org 04/01/2014
[152154.036424] task: ffff880429f70990 ti: ffff880429efc000 task.ti: ffff880429efc000
[152154.036424] RIP: 0010:[<ffffffff8111a9d5>] [<ffffffff8111a9d5>] clear_page_dirty_for_io+0x1e/0x90
[152154.036424] RSP: 0018:ffff880429effc68 EFLAGS: 00010246
[152154.036424] RAX: 0200000000000806 RBX: ffffea0006a6d8f0 RCX: 0000000000000001
[152154.036424] RDX: 0000000000000000 RSI: ffffffff81155d1b RDI: ffffea0006a6d8f0
[152154.036424] RBP: ffff880429effc78 R08: ffff8801ce389fe0 R09: 0000000000000001
[152154.036424] R10: 0000000000002000 R11: ffffffffffffffff R12: ffff8800200dce68
[152154.036424] R13: 0000000000000000 R14: ffff8800200dcc88 R15: ffff8803d5736d80
[152154.036424] FS: 00007fbf119f6700(0000) GS:ffff88043d280000(0000) knlGS:0000000000000000
[152154.036424] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[152154.036424] CR2: 0000000001bdc000 CR3: 00000003aa555000 CR4: 00000000000006e0
[152154.036424] Stack:
[152154.036424] ffff8803d5736d80 0000000000000001 ffff880429effcd8 ffffffffa04e97c1
[152154.036424] ffff880429effd68 ffff880429effd60 0000000000000001 ffff8800200dc9c8
[152154.036424] 0000000000000001 ffff8800200dcc88 0000000000000000 0000000000001000
[152154.036424] Call Trace:
[152154.036424] [<ffffffffa04e97c1>] lock_and_cleanup_extent_if_need+0x147/0x18d [btrfs]
[152154.036424] [<ffffffffa04ea82c>] __btrfs_buffered_write+0x245/0x4c8 [btrfs]
[152154.036424] [<ffffffffa04ed14b>] ? btrfs_file_write_iter+0x150/0x3e0 [btrfs]
[152154.036424] [<ffffffffa04ed15a>] ? btrfs_file_write_iter+0x15f/0x3e0 [btrfs]
[152154.036424] [<ffffffffa04ed2c7>] btrfs_file_write_iter+0x2cc/0x3e0 [btrfs]
[152154.036424] [<ffffffff81165a4a>] __vfs_write+0x7c/0xa5
[152154.036424] [<ffffffff81165f89>] vfs_write+0xa0/0xe4
[152154.036424] [<ffffffff81166855>] SyS_pwrite64+0x64/0x82
[152154.036424] [<ffffffff81465197>] system_call_fastpath+0x12/0x6f
[152154.036424] Code: 48 89 c7 e8 0f ff ff ff 5b 41 5c 5d c3 0f 1f 44 00 00 55 48 89 e5 41 54 53 48 89 fb e8 ae ef 00 00 49 89 c4 48 8b 03 a8 01 75 02 <0f> 0b 4d 85 e4 74 59 49 8b 3c 2$
[152154.036424] RIP [<ffffffff8111a9d5>] clear_page_dirty_for_io+0x1e/0x90
[152154.036424] RSP <ffff880429effc68>
[152154.242621] ---[ end trace e3d3376b23a57041 ]---
Fix this by returning the error EOPNOTSUPP if an attempt to copy an
inline extent into a non-zero offset happens, just like what is done for
other scenarios that would require copying/splitting inline extents,
which were introduced by the following commits:
00fdf13a2e ("Btrfs: fix a crash of clone with inline extents's split")
3f9e3df8da ("btrfs: replace error code from btrfs_drop_extents")
Cc: stable@vger.kernel.org
Signed-off-by: Filipe Manana <fdmanana@suse.com>
When we have an extent that got N references removed and N new references
added in the same transaction, we must run the insertion of the references
first because otherwise the last removed reference will remove the extent
item from the extent tree, resulting in a failure for the insertions.
This is a regression introduced in the 4.2-rc1 release and this fix just
brings back the behaviour of selecting reference additions before any
reference removals.
The following test case for fstests reproduces the issue:
seq=`basename $0`
seqres=$RESULT_DIR/$seq
echo "QA output created by $seq"
tmp=/tmp/$$
status=1 # failure is the default!
trap "_cleanup; exit \$status" 0 1 2 3 15
_cleanup()
{
_cleanup_flakey
rm -f $tmp.*
}
# get standard environment, filters and checks
. ./common/rc
. ./common/filter
. ./common/dmflakey
# real QA test starts here
_need_to_be_root
_supported_fs btrfs
_supported_os Linux
_require_scratch
_require_dm_flakey
_require_cloner
_require_metadata_journaling $SCRATCH_DEV
rm -f $seqres.full
_scratch_mkfs >>$seqres.full 2>&1
_init_flakey
_mount_flakey
# Create prealloc extent covering range [160K, 620K[
$XFS_IO_PROG -f -c "falloc 160K 460K" $SCRATCH_MNT/foo
# Now write to the last 80K of the prealloc extent plus 40K to the unallocated
# space that immediately follows it. This creates a new extent of 40K that spans
# the range [620K, 660K[.
$XFS_IO_PROG -c "pwrite -S 0xaa 540K 120K" $SCRATCH_MNT/foo | _filter_xfs_io
# At this point, there are now 2 back references to the prealloc extent in our
# extent tree. Both are for our file offset 160K and one relates to a file
# extent item with a data offset of 0 and a length of 380K, while the other
# relates to a file extent item with a data offset of 380K and a length of 80K.
# Make sure everything done so far is durably persisted (all back references are
# in the extent tree, etc).
sync
# Now clone all extents of our file that cover the offset 160K up to its eof
# (660K at this point) into itself at offset 2M. This leaves a hole in the file
# covering the range [660K, 2M[. The prealloc extent will now be referenced by
# the file twice, once for offset 160K and once for offset 2M. The 40K extent
# that follows the prealloc extent will also be referenced twice by our file,
# once for offset 620K and once for offset 2M + 460K.
$CLONER_PROG -s $((160 * 1024)) -d $((2 * 1024 * 1024)) -l 0 $SCRATCH_MNT/foo \
$SCRATCH_MNT/foo
# Now create one new extent in our file with a size of 100Kb. It will span the
# range [3M, 3M + 100K[. It also will cause creation of a hole spanning the
# range [2M + 460K, 3M[. Our new file size is 3M + 100K.
$XFS_IO_PROG -c "pwrite -S 0xbb 3M 100K" $SCRATCH_MNT/foo | _filter_xfs_io
# At this point, there are now (in memory) 4 back references to the prealloc
# extent.
#
# Two of them are for file offset 160K, related to file extent items
# matching the file offsets 160K and 540K respectively, with data offsets of
# 0 and 380K respectively, and with lengths of 380K and 80K respectively.
#
# The other two references are for file offset 2M, related to file extent items
# matching the file offsets 2M and 2M + 380K respectively, with data offsets of
# 0 and 380K respectively, and with lengths of 389K and 80K respectively.
#
# The 40K extent has 2 back references, one for file offset 620K and the other
# for file offset 2M + 460K.
#
# The 100K extent has a single back reference and it relates to file offset 3M.
# Now clone our 100K extent into offset 600K. That offset covers the last 20K
# of the prealloc extent, the whole 40K extent and 40K of the hole starting at
# offset 660K.
$CLONER_PROG -s $((3 * 1024 * 1024)) -d $((600 * 1024)) -l $((100 * 1024)) \
$SCRATCH_MNT/foo $SCRATCH_MNT/foo
# At this point there's only one reference to the 40K extent, at file offset
# 2M + 460K, we have 4 references for the prealloc extent (2 for file offset
# 160K and 2 for file offset 2M) and 2 references for the 100K extent (1 for
# file offset 3M and a new one for file offset 600K).
# Now fsync our file to make all its new data and metadata updates are durably
# persisted and present if a power failure/crash happens after a successful
# fsync and before the next transaction commit.
$XFS_IO_PROG -c "fsync" $SCRATCH_MNT/foo
echo "File digest before power failure:"
md5sum $SCRATCH_MNT/foo | _filter_scratch
# Silently drop all writes and ummount to simulate a crash/power failure.
_load_flakey_table $FLAKEY_DROP_WRITES
_unmount_flakey
# Allow writes again, mount to trigger log replay and validate file contents.
# During log replay, the btrfs delayed references implementation used to run the
# deletion of back references before the addition of new back references, which
# made the addition fail as it didn't find the key in the extent tree that it
# was looking for. The failure triggered by this test was related to the 40K
# extent, which got 1 reference dropped and 1 reference added during the fsync
# log replay - when running the delayed references at transaction commit time,
# btrfs was applying the deletion before the insertion, resulting in a failure
# of the insertion that ended up turning the fs into read-only mode.
_load_flakey_table $FLAKEY_ALLOW_WRITES
_mount_flakey
echo "File digest after log replay:"
md5sum $SCRATCH_MNT/foo | _filter_scratch
_unmount_flakey
status=0
exit
This issue turned the filesystem into read-only mode (current transaction
aborted) and produced the following traces:
[ 8247.578385] ------------[ cut here ]------------
[ 8247.579947] WARNING: CPU: 0 PID: 11341 at fs/btrfs/extent-tree.c:1547 lookup_inline_extent_backref+0x17d/0x45d [btrfs]()
(...)
[ 8247.601697] Call Trace:
[ 8247.602222] [<ffffffff8145f077>] dump_stack+0x4f/0x7b
[ 8247.604320] [<ffffffff8104b3b0>] warn_slowpath_common+0xa1/0xbb
[ 8247.605488] [<ffffffffa0506c8d>] ? lookup_inline_extent_backref+0x17d/0x45d [btrfs]
[ 8247.608226] [<ffffffffa0506c8d>] lookup_inline_extent_backref+0x17d/0x45d [btrfs]
[ 8247.617061] [<ffffffffa0507957>] insert_inline_extent_backref+0x41/0xb2 [btrfs]
[ 8247.621856] [<ffffffffa0507c4f>] __btrfs_inc_extent_ref+0x8c/0x20a [btrfs]
[ 8247.624366] [<ffffffffa050ee60>] __btrfs_run_delayed_refs+0xb0c/0xd49 [btrfs]
[ 8247.626176] [<ffffffffa0510dcd>] btrfs_run_delayed_refs+0x6d/0x1d4 [btrfs]
[ 8247.627435] [<ffffffff81155c9b>] ? __cache_free+0x4a7/0x4b6
[ 8247.628531] [<ffffffffa0520482>] btrfs_commit_transaction+0x4c/0xa20 [btrfs]
(...)
[ 8247.648430] ---[ end trace 2461e55f92c2ac2d ]---
[ 8247.727263] WARNING: CPU: 3 PID: 11341 at fs/btrfs/extent-tree.c:2771 btrfs_run_delayed_refs+0xa4/0x1d4 [btrfs]()
[ 8247.728954] BTRFS: Transaction aborted (error -5)
(...)
[ 8247.760866] Call Trace:
[ 8247.761534] [<ffffffff8145f077>] dump_stack+0x4f/0x7b
[ 8247.764271] [<ffffffff8104b3b0>] warn_slowpath_common+0xa1/0xbb
[ 8247.767582] [<ffffffffa0510e04>] ? btrfs_run_delayed_refs+0xa4/0x1d4 [btrfs]
[ 8247.769373] [<ffffffff8104b410>] warn_slowpath_fmt+0x46/0x48
[ 8247.770836] [<ffffffffa0510e04>] btrfs_run_delayed_refs+0xa4/0x1d4 [btrfs]
[ 8247.772532] [<ffffffff81155c9b>] ? __cache_free+0x4a7/0x4b6
[ 8247.773664] [<ffffffffa0520482>] btrfs_commit_transaction+0x4c/0xa20 [btrfs]
[ 8247.775047] [<ffffffff81087310>] ? trace_hardirqs_on+0xd/0xf
[ 8247.776176] [<ffffffff81155dd5>] ? kmem_cache_free+0x12b/0x189
[ 8247.777427] [<ffffffffa055a920>] btrfs_recover_log_trees+0x2da/0x33d [btrfs]
[ 8247.778575] [<ffffffffa055898e>] ? replay_one_extent+0x4fc/0x4fc [btrfs]
[ 8247.779838] [<ffffffffa051e265>] open_ctree+0x1cc0/0x201a [btrfs]
[ 8247.781020] [<ffffffff81120f48>] ? register_shrinker+0x56/0x81
[ 8247.782285] [<ffffffffa04fb12c>] btrfs_mount+0x5f0/0x734 [btrfs]
(...)
[ 8247.793394] ---[ end trace 2461e55f92c2ac2e ]---
[ 8247.794276] BTRFS: error (device dm-0) in btrfs_run_delayed_refs:2771: errno=-5 IO failure
[ 8247.797335] BTRFS: error (device dm-0) in btrfs_replay_log:2375: errno=-5 IO failure (Failed to recover log tree)
Fixes: c6fc245499 ("btrfs: delayed-ref: Use list to replace the ref_root in ref_head.")
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Acked-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
When we call btrfs_commit_transaction(), we splice the list "ordered"
of our transaction handle into the transaction's "pending_ordered"
list, but we don't re-initialize the "ordered" list of our transaction
handle, this means it still points to the same elements it used to
before the splice. Then we check if the current transaction's state is
>= TRANS_STATE_COMMIT_START and if it is we end up calling
btrfs_end_transaction() which simply splices again the "ordered" list
of our handle into the transaction's "pending_ordered" list, leaving
multiple pointers to the same ordered extents which results in list
corruption when we are iterating, removing and freeing ordered extents
at btrfs_wait_pending_ordered(), resulting in access to dangling
pointers / use-after-free issues.
Similarly, btrfs_end_transaction() can end up in some cases calling
btrfs_commit_transaction(), and both did a list splice of the transaction
handle's "ordered" list into the transaction's "pending_ordered" without
re-initializing the handle's "ordered" list, resulting in exactly the
same problem.
This produces the following warning on a kernel with linked list
debugging enabled:
[109749.265416] ------------[ cut here ]------------
[109749.266410] WARNING: CPU: 7 PID: 324 at lib/list_debug.c:59 __list_del_entry+0x5a/0x98()
[109749.267969] list_del corruption. prev->next should be ffff8800ba087e20, but was fffffff8c1f7c35d
(...)
[109749.287505] Call Trace:
[109749.288135] [<ffffffff8145f077>] dump_stack+0x4f/0x7b
[109749.298080] [<ffffffff81095de5>] ? console_unlock+0x356/0x3a2
[109749.331605] [<ffffffff8104b3b0>] warn_slowpath_common+0xa1/0xbb
[109749.334849] [<ffffffff81260642>] ? __list_del_entry+0x5a/0x98
[109749.337093] [<ffffffff8104b410>] warn_slowpath_fmt+0x46/0x48
[109749.337847] [<ffffffff81260642>] __list_del_entry+0x5a/0x98
[109749.338678] [<ffffffffa053e8bf>] btrfs_wait_pending_ordered+0x46/0xdb [btrfs]
[109749.340145] [<ffffffffa058a65f>] ? __btrfs_run_delayed_items+0x149/0x163 [btrfs]
[109749.348313] [<ffffffffa054077d>] btrfs_commit_transaction+0x36b/0xa10 [btrfs]
[109749.349745] [<ffffffff81087310>] ? trace_hardirqs_on+0xd/0xf
[109749.350819] [<ffffffffa055370d>] btrfs_sync_file+0x36f/0x3fc [btrfs]
[109749.351976] [<ffffffff8118ec98>] vfs_fsync_range+0x8f/0x9e
[109749.360341] [<ffffffff8118ecc3>] vfs_fsync+0x1c/0x1e
[109749.368828] [<ffffffff8118ee1d>] do_fsync+0x34/0x4e
[109749.369790] [<ffffffff8118f045>] SyS_fsync+0x10/0x14
[109749.370925] [<ffffffff81465197>] system_call_fastpath+0x12/0x6f
[109749.382274] ---[ end trace 48e0d07f7c03d95a ]---
On a non-debug kernel this leads to invalid memory accesses, causing a
crash. Fix this by using list_splice_init() instead of list_splice() in
btrfs_commit_transaction() and btrfs_end_transaction().
Cc: stable@vger.kernel.org
Fixes: 50d9aa99bd ("Btrfs: make sure logged extents complete in the current transaction V3"
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
We were allocating memory with memdup_user() but we were never releasing
that memory. This affected pretty much every call to the ioctl, whether
it deduplicated extents or not.
This issue was reported on IRC by Julian Taylor and on the mailing list
by Marcel Ritter, credit goes to them for finding the issue.
Reported-by: Julian Taylor <jtaylor.debian@googlemail.com>
Reported-by: Marcel Ritter <ritter.marcel@gmail.com>
Cc: stable@vger.kernel.org
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Mark Fasheh <mfasheh@suse.de>
If the no_holes feature is enabled, we attempt to shrink a file to a size
that ends up in the middle of a hole and we don't have any file extent
items in the fs/subvol tree that go beyond the new file size (or any
ordered extents that will insert such file extent items), we end up not
updating the inode's disk_i_size, we only update the inode's i_size.
This means that after unmounting and mounting the filesystem, or after
the inode is evicted and reloaded, its i_size ends up being incorrect
(an inode's i_size is set to the disk_i_size field when an inode is
loaded). This happens when btrfs_truncate_inode_items() doesn't find
any file extent items to drop - in this case it never makes a call to
btrfs_ordered_update_i_size() in order to update the inode's disk_i_size.
Example reproducer:
$ mkfs.btrfs -O no-holes -f /dev/sdd
$ mount /dev/sdd /mnt
# Create our test file with some data and durably persist it.
$ xfs_io -f -c "pwrite -S 0xaa 0 128K" /mnt/foo
$ sync
# Append some data to the file, increasing its size, and leave a hole
# between the old size and the start offset if the following write. So
# our file gets a hole in the range [128Kb, 256Kb[.
$ xfs_io -c "truncate 160K" /mnt/foo
# We expect to see our file with a size of 160Kb, with the first 128Kb
# of data all having the value 0xaa and the remaining 32Kb of data all
# having the value 0x00.
$ od -t x1 /mnt/foo
0000000 aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa
*
0400000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
*
0500000
# Now cleanly unmount and mount again the filesystem.
$ umount /mnt
$ mount /dev/sdd /mnt
# We expect to get the same result as before, a file with a size of
# 160Kb, with the first 128Kb of data all having the value 0xaa and the
# remaining 32Kb of data all having the value 0x00.
$ od -t x1 /mnt/foo
0000000 aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa
*
0400000
In the example above the file size/data do not match what they were before
the remount.
Fix this by always calling btrfs_ordered_update_i_size() with a size
matching the size the file was truncated to if btrfs_truncate_inode_items()
is not called for a log tree and no file extent items were dropped. This
ensures the same behaviour as when the no_holes feature is not enabled.
A test case for fstests follows soon.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Pull btrfs fixes from Chris Mason:
"This is an assortment of fixes. Most of the commits are from Filipe
(fsync, the inode allocation cache and a few others). Mark kicked in
a series fixing corners in the extent sharing ioctls, and everyone
else fixed up on assorted other problems"
* 'for-linus-4.2' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
Btrfs: fix wrong check for btrfs_force_chunk_alloc()
Btrfs: fix warning of bytes_may_use
Btrfs: fix hang when failing to submit bio of directIO
Btrfs: fix a comment in inode.c:evict_inode_truncate_pages()
Btrfs: fix memory corruption on failure to submit bio for direct IO
btrfs: don't update mtime/ctime on deduped inodes
btrfs: allow dedupe of same inode
btrfs: fix deadlock with extent-same and readpage
btrfs: pass unaligned length to btrfs_cmp_data()
Btrfs: fix fsync after truncate when no_holes feature is enabled
Btrfs: fix fsync xattr loss in the fast fsync path
Btrfs: fix fsync data loss after append write
Btrfs: fix crash on close_ctree() if cleaner starts new transaction
Btrfs: fix race between caching kthread and returning inode to inode cache
Btrfs: use kmem_cache_free when freeing entry in inode cache
Btrfs: fix race between balance and unused block group deletion
btrfs: add error handling for scrub_workers_get()
btrfs: cleanup noused initialization of dev in btrfs_end_bio()
btrfs: qgroup: allow user to clear the limitation on qgroup
Pull more vfs updates from Al Viro:
"Assorted VFS fixes and related cleanups (IMO the most interesting in
that part are f_path-related things and Eric's descriptor-related
stuff). UFS regression fixes (it got broken last cycle). 9P fixes.
fs-cache series, DAX patches, Jan's file_remove_suid() work"
[ I'd say this is much more than "fixes and related cleanups". The
file_table locking rule change by Eric Dumazet is a rather big and
fundamental update even if the patch isn't huge. - Linus ]
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (49 commits)
9p: cope with bogus responses from server in p9_client_{read,write}
p9_client_write(): avoid double p9_free_req()
9p: forgetting to cancel request on interrupted zero-copy RPC
dax: bdev_direct_access() may sleep
block: Add support for DAX reads/writes to block devices
dax: Use copy_from_iter_nocache
dax: Add block size note to documentation
fs/file.c: __fget() and dup2() atomicity rules
fs/file.c: don't acquire files->file_lock in fd_install()
fs:super:get_anon_bdev: fix race condition could cause dev exceed its upper limitation
vfs: avoid creation of inode number 0 in get_next_ino
namei: make set_root_rcu() return void
make simple_positive() public
ufs: use dir_pages instead of ufs_dir_pages()
pagemap.h: move dir_pages() over there
remove the pointless include of lglock.h
fs: cleanup slight list_entry abuse
xfs: Correctly lock inode when removing suid and file capabilities
fs: Call security_ops->inode_killpriv on truncate
fs: Provide function telling whether file_remove_privs() will do anything
...
btrfs_force_chunk_alloc() return 1 for allocation chunk successfully.
This problem exists since commit c87f08ca4.
With this patch, we might fix some enospc problems for balances.
Signed-off-by: Wang Shilong <wangshilong1991@gmail.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Tested-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
While running generic/019, dmesg got several warnings from
btrfs_free_reserved_data_space().
Test generic/019 produces some disk failures so sumbit dio will get errors,
in which case, btrfs_direct_IO() goes to the error handling and free
bytes_may_use, but the problem is that bytes_may_use has been free'd
during get_block().
This adds a runtime flag to show if we've gone through get_block(), if so,
don't do the cleanup work.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Tested-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
The hang is uncoverd by generic/019.
btrfs_endio_direct_write() skips the "finish_ordered_fn" part when it hits
an error, thus those added ordered extents will never get processed, which
block processes that waiting for them via btrfs_start_ordered_extent().
This fixes the above, and meanwhile finish_ordered_fn will do the space
accounting work.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Tested-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
The comment was not correct about the part where it says the endio
callback of the bio might have not yet been called - update it
to mention that by that time the endio callback execution might
still be in progress only.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
If we fail to submit a bio for a direct IO request, we were grabbing the
corresponding ordered extent and decrementing its reference count twice,
once for our lookup reference and once for the ordered tree reference.
This was a problem because it caused the ordered extent to be freed
without removing it from the ordered tree and any lists it might be
attached to, leaving dangling pointers to the ordered extent around.
Example trace with CONFIG_DEBUG_PAGEALLOC=y:
[161779.858707] BUG: unable to handle kernel paging request at 0000000087654330
[161779.859983] IP: [<ffffffff8124ca68>] rb_prev+0x22/0x3b
[161779.860636] PGD 34d818067 PUD 0
[161779.860636] Oops: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC
(...)
[161779.860636] Call Trace:
[161779.860636] [<ffffffffa06b36a6>] __tree_search+0xd9/0xf9 [btrfs]
[161779.860636] [<ffffffffa06b3708>] tree_search+0x42/0x63 [btrfs]
[161779.860636] [<ffffffffa06b4868>] ? btrfs_lookup_ordered_range+0x2d/0xa5 [btrfs]
[161779.860636] [<ffffffffa06b4873>] btrfs_lookup_ordered_range+0x38/0xa5 [btrfs]
[161779.860636] [<ffffffffa06aab8e>] btrfs_get_blocks_direct+0x11b/0x615 [btrfs]
[161779.860636] [<ffffffff8119727f>] do_blockdev_direct_IO+0x5ff/0xb43
[161779.860636] [<ffffffffa06aaa73>] ? btrfs_page_exists_in_range+0x1ad/0x1ad [btrfs]
[161779.860636] [<ffffffffa06a2c9a>] ? btrfs_get_extent_fiemap+0x1bc/0x1bc [btrfs]
[161779.860636] [<ffffffff811977f5>] __blockdev_direct_IO+0x32/0x34
[161779.860636] [<ffffffffa06a2c9a>] ? btrfs_get_extent_fiemap+0x1bc/0x1bc [btrfs]
[161779.860636] [<ffffffffa06a10ae>] btrfs_direct_IO+0x198/0x21f [btrfs]
[161779.860636] [<ffffffffa06a2c9a>] ? btrfs_get_extent_fiemap+0x1bc/0x1bc [btrfs]
[161779.860636] [<ffffffff81112ca1>] generic_file_direct_write+0xb3/0x128
[161779.860636] [<ffffffffa06affaa>] ? btrfs_file_write_iter+0x15f/0x3e0 [btrfs]
[161779.860636] [<ffffffffa06b004c>] btrfs_file_write_iter+0x201/0x3e0 [btrfs]
(...)
We were also not freeing the btrfs_dio_private we allocated previously,
which kmemleak reported with the following trace in its sysfs file:
unreferenced object 0xffff8803f553bf80 (size 96):
comm "xfs_io", pid 4501, jiffies 4295039588 (age 173.936s)
hex dump (first 32 bytes):
88 6c 9b f5 02 88 ff ff 00 00 00 00 00 00 00 00 .l..............
00 00 00 00 00 00 00 00 00 00 c4 00 00 00 00 00 ................
backtrace:
[<ffffffff81161ffe>] create_object+0x172/0x29a
[<ffffffff8145870f>] kmemleak_alloc+0x25/0x41
[<ffffffff81154e64>] kmemleak_alloc_recursive.constprop.40+0x16/0x18
[<ffffffff811579ed>] kmem_cache_alloc_trace+0xfb/0x148
[<ffffffffa03d8cff>] btrfs_submit_direct+0x65/0x16a [btrfs]
[<ffffffff811968dc>] dio_bio_submit+0x62/0x8f
[<ffffffff811975fe>] do_blockdev_direct_IO+0x97e/0xb43
[<ffffffff811977f5>] __blockdev_direct_IO+0x32/0x34
[<ffffffffa03d70ae>] btrfs_direct_IO+0x198/0x21f [btrfs]
[<ffffffff81112ca1>] generic_file_direct_write+0xb3/0x128
[<ffffffffa03e604d>] btrfs_file_write_iter+0x201/0x3e0 [btrfs]
[<ffffffff8116586a>] __vfs_write+0x7c/0xa5
[<ffffffff81165da9>] vfs_write+0xa0/0xe4
[<ffffffff81166675>] SyS_pwrite64+0x64/0x82
[<ffffffff81464fd7>] system_call_fastpath+0x12/0x6f
[<ffffffffffffffff>] 0xffffffffffffffff
For read requests we weren't doing any cleanup either (none of the work
done by btrfs_endio_direct_read()), so a failure submitting a bio for a
read request would leave a range in the inode's io_tree locked forever,
blocking any future operations (both reads and writes) against that range.
So fix this by making sure we do the same cleanup that we do for the case
where the bio submission succeeds.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
One issue users have reported is that dedupe changes mtime on files,
resulting in tools like rsync thinking that their contents have changed when
in fact the data is exactly the same. We also skip the ctime update as no
user-visible metadata changes here and we want dedupe to be transparent to
the user.
Clone still wants time changes, so we special case this in the code.
This was tested with the btrfs-extent-same tool.
Signed-off-by: Mark Fasheh <mfasheh@suse.de>
Signed-off-by: Chris Mason <clm@fb.com>
clone() supports cloning within an inode so extent-same can do
the same now. This patch fixes up the locking in extent-same to
know about the single-inode case. In addition to that, we add a
check for overlapping ranges, which clone does not allow.
Signed-off-by: Mark Fasheh <mfasheh@suse.de>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
->readpage() does page_lock() before extent_lock(), we do the opposite in
extent-same. We want to reverse the order in btrfs_extent_same() but it's
not quite straightforward since the page locks are taken inside btrfs_cmp_data().
So I split btrfs_cmp_data() into 3 parts with a small context structure that
is passed between them. The first, btrfs_cmp_data_prepare() gathers up the
pages needed (taking page lock as required) and puts them on our context
structure. At this point, we are safe to lock the extent range. Afterwards,
we use btrfs_cmp_data() to do the data compare as usual and btrfs_cmp_data_free()
to clean up our context.
Signed-off-by: Mark Fasheh <mfasheh@suse.de>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
In the case that we dedupe the tail of a file, we might expand the dedupe
len out to the end of our last block. We don't want to compare data past
i_size however, so pass the original length to btrfs_cmp_data().
Signed-off-by: Mark Fasheh <mfasheh@suse.de>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
When we have the no_holes feature enabled, if a we truncate a file to a
smaller size, truncate it again but to a size greater than or equals to
its original size and fsync it, the log tree will not have any information
about the hole covering the range [truncate_1_offset, new_file_size[.
Which means if the fsync log is replayed, the file will remain with the
state it had before both truncate operations.
Without the no_holes feature this does not happen, since when the inode
is logged (full sync flag is set) it will find in the fs/subvol tree a
leaf with a generation matching the current transaction id that has an
explicit extent item representing the hole.
Fix this by adding an explicit extent item representing a hole between
the last extent and the inode's i_size if we are doing a full sync.
The issue is easy to reproduce with the following test case for fstests:
. ./common/rc
. ./common/filter
. ./common/dmflakey
_need_to_be_root
_supported_fs generic
_supported_os Linux
_require_scratch
_require_dm_flakey
# This test was motivated by an issue found in btrfs when the btrfs
# no-holes feature is enabled (introduced in kernel 3.14). So enable
# the feature if the fs being tested is btrfs.
if [ $FSTYP == "btrfs" ]; then
_require_btrfs_fs_feature "no_holes"
_require_btrfs_mkfs_feature "no-holes"
MKFS_OPTIONS="$MKFS_OPTIONS -O no-holes"
fi
rm -f $seqres.full
_scratch_mkfs >>$seqres.full 2>&1
_init_flakey
_mount_flakey
# Create our test files and make sure everything is durably persisted.
$XFS_IO_PROG -f -c "pwrite -S 0xaa 0 64K" \
-c "pwrite -S 0xbb 64K 61K" \
$SCRATCH_MNT/foo | _filter_xfs_io
$XFS_IO_PROG -f -c "pwrite -S 0xee 0 64K" \
-c "pwrite -S 0xff 64K 61K" \
$SCRATCH_MNT/bar | _filter_xfs_io
sync
# Now truncate our file foo to a smaller size (64Kb) and then truncate
# it to the size it had before the shrinking truncate (125Kb). Then
# fsync our file. If a power failure happens after the fsync, we expect
# our file to have a size of 125Kb, with the first 64Kb of data having
# the value 0xaa and the second 61Kb of data having the value 0x00.
$XFS_IO_PROG -c "truncate 64K" \
-c "truncate 125K" \
-c "fsync" \
$SCRATCH_MNT/foo
# Do something similar to our file bar, but the first truncation sets
# the file size to 0 and the second truncation expands the size to the
# double of what it was initially.
$XFS_IO_PROG -c "truncate 0" \
-c "truncate 253K" \
-c "fsync" \
$SCRATCH_MNT/bar
_load_flakey_table $FLAKEY_DROP_WRITES
_unmount_flakey
# Allow writes again, mount to trigger log replay and validate file
# contents.
_load_flakey_table $FLAKEY_ALLOW_WRITES
_mount_flakey
# We expect foo to have a size of 125Kb, the first 64Kb of data all
# having the value 0xaa and the remaining 61Kb to be a hole (all bytes
# with value 0x00).
echo "File foo content after log replay:"
od -t x1 $SCRATCH_MNT/foo
# We expect bar to have a size of 253Kb and no extents (any byte read
# from bar has the value 0x00).
echo "File bar content after log replay:"
od -t x1 $SCRATCH_MNT/bar
status=0
exit
The expected file contents in the golden output are:
File foo content after log replay:
0000000 aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa
*
0200000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
*
0372000
File bar content after log replay:
0000000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
*
0772000
Without this fix, their contents are:
File foo content after log replay:
0000000 aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa
*
0200000 bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb
*
0372000
File bar content after log replay:
0000000 ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee
*
0200000 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
*
0372000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
*
0772000
A test case submission for fstests follows soon.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
Pull btrfs updates from Chris Mason:
"Outside of our usual batch of fixes, this integrates the subvolume
quota updates that Qu Wenruo from Fujitsu has been working on for a
few releases now. He gets an extra gold star for making btrfs smaller
this time, and fixing a number of quota corners in the process.
Dave Sterba tested and integrated Anand Jain's sysfs improvements.
Outside of exporting a symbol (ack'd by Greg) these are all internal
to btrfs and it's mostly cleanups and fixes. Anand also attached some
of our sysfs objects to our internal device management structs instead
of an object off the super block. It will make device management
easier overall and it's a better fit for how the sysfs files are used.
None of the existing sysfs files are moved around.
Thanks for all the fixes everyone"
* 'for-linus-4.2' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (87 commits)
btrfs: delayed-ref: double free in btrfs_add_delayed_tree_ref()
Btrfs: Check if kobject is initialized before put
lib: export symbol kobject_move()
Btrfs: sysfs: add support to show replacing target in the sysfs
Btrfs: free the stale device
Btrfs: use received_uuid of parent during send
Btrfs: fix use-after-free in btrfs_replay_log
btrfs: wait for delayed iputs on no space
btrfs: qgroup: Make snapshot accounting work with new extent-oriented qgroup.
btrfs: qgroup: Add the ability to skip given qgroup for old/new_roots.
btrfs: ulist: Add ulist_del() function.
btrfs: qgroup: Cleanup the old ref_node-oriented mechanism.
btrfs: qgroup: Switch self test to extent-oriented qgroup mechanism.
btrfs: qgroup: Switch to new extent-oriented qgroup mechanism.
btrfs: qgroup: Switch rescan to new mechanism.
btrfs: qgroup: Add new qgroup calculation function btrfs_qgroup_account_extents().
btrfs: backref: Add special time_seq == (u64)-1 case for btrfs_find_all_roots().
btrfs: qgroup: Add new function to record old_roots.
btrfs: qgroup: Record possible quota-related extent for qgroup.
btrfs: qgroup: Add function qgroup_update_counters().
...
After commit 4f764e5153 ("Btrfs: remove deleted xattrs on fsync log
replay"), we can end up in a situation where during log replay we end up
deleting xattrs that were never deleted when their file was last fsynced.
This happens in the fast fsync path (flag BTRFS_INODE_NEEDS_FULL_SYNC is
not set in the inode) if the inode has the flag BTRFS_INODE_COPY_EVERYTHING
set, the xattr was added in a past transaction and the leaf where the
xattr is located was not updated (COWed or created) in the current
transaction. In this scenario the xattr item never ends up in the log
tree and therefore at log replay time, which makes the replay code delete
the xattr from the fs/subvol tree as it thinks that xattr was deleted
prior to the last fsync.
Fix this by always logging all xattrs, which is the simplest and most
reliable way to detect deleted xattrs and replay the deletes at log replay
time.
This issue is reproducible with the following test case for fstests:
seq=`basename $0`
seqres=$RESULT_DIR/$seq
echo "QA output created by $seq"
here=`pwd`
tmp=/tmp/$$
status=1 # failure is the default!
_cleanup()
{
_cleanup_flakey
rm -f $tmp.*
}
trap "_cleanup; exit \$status" 0 1 2 3 15
# get standard environment, filters and checks
. ./common/rc
. ./common/filter
. ./common/dmflakey
. ./common/attr
# real QA test starts here
# We create a lot of xattrs for a single file. Only btrfs and xfs are currently
# able to store such a large mount of xattrs per file, other filesystems such
# as ext3/4 and f2fs for example, fail with ENOSPC even if we attempt to add
# less than 1000 xattrs with very small values.
_supported_fs btrfs xfs
_supported_os Linux
_need_to_be_root
_require_scratch
_require_dm_flakey
_require_attrs
_require_metadata_journaling $SCRATCH_DEV
rm -f $seqres.full
_scratch_mkfs >> $seqres.full 2>&1
_init_flakey
_mount_flakey
# Create the test file with some initial data and make sure everything is
# durably persisted.
$XFS_IO_PROG -f -c "pwrite -S 0xaa 0 32k" $SCRATCH_MNT/foo | _filter_xfs_io
sync
# Add many small xattrs to our file.
# We create such a large amount because it's needed to trigger the issue found
# in btrfs - we need to have an amount that causes the fs to have at least 3
# btree leafs with xattrs stored in them, and it must work on any leaf size
# (maximum leaf/node size is 64Kb).
num_xattrs=2000
for ((i = 1; i <= $num_xattrs; i++)); do
name="user.attr_$(printf "%04d" $i)"
$SETFATTR_PROG -n $name -v "val_$(printf "%04d" $i)" $SCRATCH_MNT/foo
done
# Sync the filesystem to force a commit of the current btrfs transaction, this
# is a necessary condition to trigger the bug on btrfs.
sync
# Now update our file's data and fsync the file.
# After a successful fsync, if the fsync log/journal is replayed we expect to
# see all the xattrs we added before with the same values (and the updated file
# data of course). Btrfs used to delete some of these xattrs when it replayed
# its fsync log/journal.
$XFS_IO_PROG -c "pwrite -S 0xbb 8K 16K" \
-c "fsync" \
$SCRATCH_MNT/foo | _filter_xfs_io
# Simulate a crash/power loss.
_load_flakey_table $FLAKEY_DROP_WRITES
_unmount_flakey
# Allow writes again and mount. This makes the fs replay its fsync log.
_load_flakey_table $FLAKEY_ALLOW_WRITES
_mount_flakey
echo "File content after crash and log replay:"
od -t x1 $SCRATCH_MNT/foo
echo "File xattrs after crash and log replay:"
for ((i = 1; i <= $num_xattrs; i++)); do
name="user.attr_$(printf "%04d" $i)"
echo -n "$name="
$GETFATTR_PROG --absolute-names -n $name --only-values $SCRATCH_MNT/foo
echo
done
status=0
exit
The golden output expects all xattrs to be available, and with the correct
values, after the fsync log is replayed.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
If we do an append write to a file (which increases its inode's i_size)
that does not have the flag BTRFS_INODE_NEEDS_FULL_SYNC set in its inode,
and the previous transaction added a new hard link to the file, which sets
the flag BTRFS_INODE_COPY_EVERYTHING in the file's inode, and then fsync
the file, the inode's new i_size isn't logged. This has the consequence
that after the fsync log is replayed, the file size remains what it was
before the append write operation, which means users/applications will
not be able to read the data that was successsfully fsync'ed before.
This happens because neither the inode item nor the delayed inode get
their i_size updated when the append write is made - doing so would
require starting a transaction in the buffered write path, something that
we do not do intentionally for performance reasons.
Fix this by making sure that when the flag BTRFS_INODE_COPY_EVERYTHING is
set the inode is logged with its current i_size (log the in-memory inode
into the log tree).
This issue is not a recent regression and is easy to reproduce with the
following test case for fstests:
seq=`basename $0`
seqres=$RESULT_DIR/$seq
echo "QA output created by $seq"
here=`pwd`
tmp=/tmp/$$
status=1 # failure is the default!
_cleanup()
{
_cleanup_flakey
rm -f $tmp.*
}
trap "_cleanup; exit \$status" 0 1 2 3 15
# get standard environment, filters and checks
. ./common/rc
. ./common/filter
. ./common/dmflakey
# real QA test starts here
_supported_fs generic
_supported_os Linux
_need_to_be_root
_require_scratch
_require_dm_flakey
_require_metadata_journaling $SCRATCH_DEV
_crash_and_mount()
{
# Simulate a crash/power loss.
_load_flakey_table $FLAKEY_DROP_WRITES
_unmount_flakey
# Allow writes again and mount. This makes the fs replay its fsync log.
_load_flakey_table $FLAKEY_ALLOW_WRITES
_mount_flakey
}
rm -f $seqres.full
_scratch_mkfs >> $seqres.full 2>&1
_init_flakey
_mount_flakey
# Create the test file with some initial data and then fsync it.
# The fsync here is only needed to trigger the issue in btrfs, as it causes the
# the flag BTRFS_INODE_NEEDS_FULL_SYNC to be removed from the btrfs inode.
$XFS_IO_PROG -f -c "pwrite -S 0xaa 0 32k" \
-c "fsync" \
$SCRATCH_MNT/foo | _filter_xfs_io
sync
# Add a hard link to our file.
# On btrfs this sets the flag BTRFS_INODE_COPY_EVERYTHING on the btrfs inode,
# which is a necessary condition to trigger the issue.
ln $SCRATCH_MNT/foo $SCRATCH_MNT/bar
# Sync the filesystem to force a commit of the current btrfs transaction, this
# is a necessary condition to trigger the bug on btrfs.
sync
# Now append more data to our file, increasing its size, and fsync the file.
# In btrfs because the inode flag BTRFS_INODE_COPY_EVERYTHING was set and the
# write path did not update the inode item in the btree nor the delayed inode
# item (in memory struture) in the current transaction (created by the fsync
# handler), the fsync did not record the inode's new i_size in the fsync
# log/journal. This made the data unavailable after the fsync log/journal is
# replayed.
$XFS_IO_PROG -c "pwrite -S 0xbb 32K 32K" \
-c "fsync" \
$SCRATCH_MNT/foo | _filter_xfs_io
echo "File content after fsync and before crash:"
od -t x1 $SCRATCH_MNT/foo
_crash_and_mount
echo "File content after crash and log replay:"
od -t x1 $SCRATCH_MNT/foo
status=0
exit
The expected file output before and after the crash/power failure expects the
appended data to be available, which is:
0000000 aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa
*
0100000 bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb
*
0200000
Cc: stable@vger.kernel.org
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
While the inode cache caching kthread is calling btrfs_unpin_free_ino(),
we could have a concurrent call to btrfs_return_ino() that adds a new
entry to the root's free space cache of pinned inodes. This concurrent
call does not acquire the fs_info->commit_root_sem before adding a new
entry if the caching state is BTRFS_CACHE_FINISHED, which is a problem
because the caching kthread calls btrfs_unpin_free_ino() after setting
the caching state to BTRFS_CACHE_FINISHED and therefore races with
the task calling btrfs_return_ino(), which is adding a new entry, while
the former (caching kthread) is navigating the cache's rbtree, removing
and freeing nodes from the cache's rbtree without acquiring the spinlock
that protects the rbtree.
This race resulted in memory corruption due to double free of struct
btrfs_free_space objects because both tasks can end up doing freeing the
same objects. Note that adding a new entry can result in merging it with
other entries in the cache, in which case those entries are freed.
This is particularly important as btrfs_free_space structures are also
used for the block group free space caches.
This memory corruption can be detected by a debugging kernel, which
reports it with the following trace:
[132408.501148] slab error in verify_redzone_free(): cache `btrfs_free_space': double free detected
[132408.505075] CPU: 15 PID: 12248 Comm: btrfs-ino-cache Tainted: G W 4.1.0-rc5-btrfs-next-10+ #1
[132408.505075] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.8.1-0-g4adadbd-20150316_085822-nilsson.home.kraxel.org 04/01/2014
[132408.505075] ffff880023e7d320 ffff880163d73cd8 ffffffff8145eec7 ffffffff81095dce
[132408.505075] ffff880009735d40 ffff880163d73ce8 ffffffff81154e1e ffff880163d73d68
[132408.505075] ffffffff81155733 ffffffffa054a95a ffff8801b6099f00 ffffffffa0505b5f
[132408.505075] Call Trace:
[132408.505075] [<ffffffff8145eec7>] dump_stack+0x4f/0x7b
[132408.505075] [<ffffffff81095dce>] ? console_unlock+0x356/0x3a2
[132408.505075] [<ffffffff81154e1e>] __slab_error.isra.28+0x25/0x36
[132408.505075] [<ffffffff81155733>] __cache_free+0xe2/0x4b6
[132408.505075] [<ffffffffa054a95a>] ? __btrfs_add_free_space+0x2f0/0x343 [btrfs]
[132408.505075] [<ffffffffa0505b5f>] ? btrfs_unpin_free_ino+0x8e/0x99 [btrfs]
[132408.505075] [<ffffffff810f3b30>] ? time_hardirqs_off+0x15/0x28
[132408.505075] [<ffffffff81084d42>] ? trace_hardirqs_off+0xd/0xf
[132408.505075] [<ffffffff811563a1>] ? kfree+0xb6/0x14e
[132408.505075] [<ffffffff811563d0>] kfree+0xe5/0x14e
[132408.505075] [<ffffffffa0505b5f>] btrfs_unpin_free_ino+0x8e/0x99 [btrfs]
[132408.505075] [<ffffffffa0505e08>] caching_kthread+0x29e/0x2d9 [btrfs]
[132408.505075] [<ffffffffa0505b6a>] ? btrfs_unpin_free_ino+0x99/0x99 [btrfs]
[132408.505075] [<ffffffff8106698f>] kthread+0xef/0xf7
[132408.505075] [<ffffffff810f3b08>] ? time_hardirqs_on+0x15/0x28
[132408.505075] [<ffffffff810668a0>] ? __kthread_parkme+0xad/0xad
[132408.505075] [<ffffffff814653d2>] ret_from_fork+0x42/0x70
[132408.505075] [<ffffffff810668a0>] ? __kthread_parkme+0xad/0xad
[132408.505075] ffff880023e7d320: redzone 1:0x9f911029d74e35b, redzone 2:0x9f911029d74e35b.
[132409.501654] slab: double free detected in cache 'btrfs_free_space', objp ffff880023e7d320
[132409.503355] ------------[ cut here ]------------
[132409.504241] kernel BUG at mm/slab.c:2571!
Therefore fix this by having btrfs_unpin_free_ino() acquire the lock
that protects the rbtree while doing the searches and removing entries.
Fixes: 1c70d8fb4d ("Btrfs: fix inode caching vs tree log")
Cc: stable@vger.kernel.org
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
The free space entries are allocated using kmem_cache_zalloc(),
through __btrfs_add_free_space(), therefore we should use
kmem_cache_free() and not kfree() to avoid any confusion and
any potential problem. Looking at the kfree() definition at
mm/slab.c it has the following comment:
/*
* (...)
*
* Don't free memory not originally allocated by kmalloc()
* or you will run into trouble.
*/
So better be safe and use kmem_cache_free().
Cc: stable@vger.kernel.org
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
Although it is a rare case, we'd better free previous allocated
memory on error.
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
It is introduced by:
c404e0dc2c
Btrfs: fix use-after-free in the finishing procedure of the device replace
But seems no relationship with that bug, this patch revirt these
code block for cleanup.
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
Currently, we can only set a limitation on a qgroup, but we
can not clear it.
This patch provide a choice to user to clear a limitation on
qgroup by passing a value of CLEAR_VALUE(-1) to kernel.
Reported-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Signed-off-by: Dongsheng Yang <yangds.fnst@cn.fujitsu.com>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
Pull core block IO update from Jens Axboe:
"Nothing really major in here, mostly a collection of smaller
optimizations and cleanups, mixed with various fixes. In more detail,
this contains:
- Addition of policy specific data to blkcg for block cgroups. From
Arianna Avanzini.
- Various cleanups around command types from Christoph.
- Cleanup of the suspend block I/O path from Christoph.
- Plugging updates from Shaohua and Jeff Moyer, for blk-mq.
- Eliminating atomic inc/dec of both remaining IO count and reference
count in a bio. From me.
- Fixes for SG gap and chunk size support for data-less (discards)
IO, so we can merge these better. From me.
- Small restructuring of blk-mq shared tag support, freeing drivers
from iterating hardware queues. From Keith Busch.
- A few cfq-iosched tweaks, from Tahsin Erdogan and me. Makes the
IOPS mode the default for non-rotational storage"
* 'for-4.2/core' of git://git.kernel.dk/linux-block: (35 commits)
cfq-iosched: fix other locations where blkcg_to_cfqgd() can return NULL
cfq-iosched: fix sysfs oops when attempting to read unconfigured weights
cfq-iosched: move group scheduling functions under ifdef
cfq-iosched: fix the setting of IOPS mode on SSDs
blktrace: Add blktrace.c to BLOCK LAYER in MAINTAINERS file
block, cgroup: implement policy-specific per-blkcg data
block: Make CFQ default to IOPS mode on SSDs
block: add blk_set_queue_dying() to blkdev.h
blk-mq: Shared tag enhancements
block: don't honor chunk sizes for data-less IO
block: only honor SG gap prevention for merges that contain data
block: fix returnvar.cocci warnings
block, dm: don't copy bios for request clones
block: remove management of bi_remaining when restoring original bi_end_io
block: replace trylock with mutex_lock in blkdev_reread_part()
block: export blkdev_reread_part() and __blkdev_reread_part()
suspend: simplify block I/O handling
block: collapse bio bit space
block: remove unused BIO_RW_BLOCK and BIO_EOF flags
block: remove BIO_EOPNOTSUPP
...
There is a cut and paste error so instead of freeing "head_ref", we free
"ref" twice.
Fixes: 3368d001ba ('btrfs: qgroup: Record possible quota-related extent for qgroup.')
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
file_remove_suid() is a misnomer since it removes also file capabilities
stored in xattrs and sets S_NOSEC flag. Also should_remove_suid() tells
something else than whether file_remove_suid() call is necessary which
leads to bugs.
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
This patch will add support to show the replacing target in sysfs
during the process of replacement.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.cz>
When btrfs on a device is overwritten with a new btrfs (mkfs),
the old btrfs instance in the kernel becomes stale. So with this
patch, if kernel finds device is overwritten then delete the stale
fsid/uuid.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Neil Horman pointed out a problem where if he did something like this
receive A
snap A B
change B
send -p A B
and then on another box do
recieve A
receive B
the receive B would fail because we use the UUID of A for the clone sources for
B. This makes sense most of the time because normally you are sending from the
original sources, not a received source. However when you use a recieved subvol
its UUID is going to be something completely different, so if you then try to
receive the diff on a different volume it won't find the UUID because the new A
will be something else. The only constant is the received uuid. So instead
check to see if we have received_uuid set on the root, and if so use that as the
clone source, as btrfs receive looks for matches either in received_uuid or
uuid. Thanks,
Reported-by: Neil Horman <nhorman@redhat.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Reviewed-by: Hugo Mills <hugo@carfax.org.uk>
Signed-off-by: Chris Mason <clm@fb.com>
@log_root_tree should not be referenced after kfree.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Reported-by: Julia Lawall <julia.lawall@lip6.fr>
Signed-off-by: Chris Mason <clm@fb.com>
btrfs will report no_space when we run following write and delete
file loop:
# FILE_SIZE_M=[ 75% of fs space ]
# DEV=[ some dev ]
# MNT=[ some dir ]
#
# mkfs.btrfs -f "$DEV"
# mount -o nodatacow "$DEV" "$MNT"
# for ((i = 0; i < 100; i++)); do dd if=/dev/zero of="$MNT"/file0 bs=1M count="$FILE_SIZE_M"; rm -f "$MNT"/file0; done
#
Reason:
iput() and evict() is run after write pages to block device, if
write pages work is not finished before next write, the "rm"ed space
is not freed, and caused above bug.
Fix:
We can add "-o flushoncommit" mount option to avoid above bug, but
it have performance problem. Actually, we can to wait for on-the-fly
writes only when no-space happened, it is which this patch do.
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
qgroup.
Make snapshot accounting work with new extent-oriented mechanism by
skipping given root in new/old_roots in create_pending_snapshot().
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
This is used by later qgroup fix patches for snapshot.
As current snapshot accounting is done by btrfs_qgroup_inherit(), but
new extent oriented quota mechanism will account extent from
btrfs_copy_root() and other snapshot things, causing wrong result.
So add this ability to handle snapshot accounting.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
This function will delete unode with given (val,aux) pair.
And with this patch, seqnum for debug usage doesn't have any meaning
now, so remove them.
This is used by later patches to skip snapshot root.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
Since the self test transaction don't have delayed_ref_roots, so use
find_all_roots() and export btrfs_qgroup_account_extent() to simulate it
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
Switch from old ref_node based qgroup to extent based qgroup mechanism
for normal operations.
The new mechanism should hugely reduce the overhead of btrfs quota
system, and further more, the codes and logic should be more clean and
easier to maintain.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
Switch rescan to use the new new extent oriented mechanism.
As rescan is also based on extent, new mechanism is just a perfect match
for rescan.
With re-designed internal functions, rescan is quite easy, just call
btrfs_find_all_roots() and then btrfs_qgroup_account_one_extent().
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
btrfs_qgroup_account_extents().
The new btrfs_qgroup_account_extents() function should be called in
btrfs_commit_transaction() and it will update all the qgroup according
to delayed_ref_root->dirty_extent_root.
The new function can handle both normal operation during
commit_transaction() or in rescan in a unified method with clearer
logic.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
btrfs_find_all_roots().
Allow btrfs_find_all_roots() to skip all delayed_ref_head lock and tree
lock to do tree search.
This is important for later qgroup implement which will call
find_all_roots() after fs trees are committed.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
Add function btrfs_qgroup_prepare_account_extents() to get old_roots
which are needed for qgroup.
We do it in commit_transaction() and before switch_roots(), and only
search commit_root, so it gives a quite accurate view for previous
transaction.
With old_roots from previous transaction, we can use it to do accurate
account with current transaction.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
Add hook in add_delayed_ref_head() to record quota-related extent record
into delayed_ref_root->dirty_extent_record rb-tree for later qgroup
accounting.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
Add function qgroup_update_counters(), which will update related
qgroups' rfer/excl according to old/new_roots.
This is one of the two core functions for the new qgroup implement.
This is based on btrfs_adjust_coutners() but with clearer logic and
comment.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
This function is used to update refcnt for qgroups.
And is one of the two core functions used in the new qgroup implement.
This is based on the old update_old/new_refcnt, but provides a unified
logic and behavior.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
__btrfs_inc_extent_ref() and __btrfs_free_extent() have already had too
many parameters, but three of them can be extracted from
btrfs_delayed_ref_node struct.
So use btrfs_delayed_ref_node struct as a single parameter to replace
the bytenr/num_byte/no_quota parameters.
The real objective of this patch is to allow btrfs_qgroup_record_ref()
get the delayed_ref_node in incoming qgroup patches.
Other functions calling btrfs_qgroup_record_ref() are not affected since
the rest will only add/sub exclusive extents, where node is not used.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
Use inline functions to do such things, to improve readability.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Acked-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
Cleanup the rb_tree merge/insert/update functions, since now we use list
instead of rb_tree now.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
This patch replace the rbtree used in ref_head to list.
This has the following advantage:
1) Easier merge logic.
With the new list implement, we only need to care merging the tail
ref_node with the new ref_node.
And this can be done quite easy at insert time, no need to do a
indicated merge at run_delayed_refs().
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
Old __merge_refs() in backref.c will even merge refs whose root_id are
different, which makes qgroup gives wrong result.
Fix it by checking ref_for_same_block() before any mode specific works.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
lockdep report following warning in test:
[25176.843958] =================================
[25176.844519] [ INFO: inconsistent lock state ]
[25176.845047] 4.1.0-rc3 #22 Tainted: G W
[25176.845591] ---------------------------------
[25176.846153] inconsistent {SOFTIRQ-ON-W} -> {IN-SOFTIRQ-W} usage.
[25176.846713] fsstress/26661 [HC0[0]:SC1[1]:HE1:SE0] takes:
[25176.847246] (&wr_ctx->wr_lock){+.?...}, at: [<ffffffffa04cdc6d>] scrub_free_ctx+0x2d/0xf0 [btrfs]
[25176.847838] {SOFTIRQ-ON-W} state was registered at:
[25176.848396] [<ffffffff810bf460>] __lock_acquire+0x6a0/0xe10
[25176.848955] [<ffffffff810bfd1e>] lock_acquire+0xce/0x2c0
[25176.849491] [<ffffffff816489af>] mutex_lock_nested+0x7f/0x410
[25176.850029] [<ffffffffa04d04ff>] scrub_stripe+0x4df/0x1080 [btrfs]
[25176.850575] [<ffffffffa04d11b1>] scrub_chunk.isra.19+0x111/0x130 [btrfs]
[25176.851110] [<ffffffffa04d144c>] scrub_enumerate_chunks+0x27c/0x510 [btrfs]
[25176.851660] [<ffffffffa04d3b87>] btrfs_scrub_dev+0x1c7/0x6c0 [btrfs]
[25176.852189] [<ffffffffa04e918e>] btrfs_dev_replace_start+0x36e/0x450 [btrfs]
[25176.852771] [<ffffffffa04a98e0>] btrfs_ioctl+0x1e10/0x2d20 [btrfs]
[25176.853315] [<ffffffff8121c5b8>] do_vfs_ioctl+0x318/0x570
[25176.853868] [<ffffffff8121c851>] SyS_ioctl+0x41/0x80
[25176.854406] [<ffffffff8164da17>] system_call_fastpath+0x12/0x6f
[25176.854935] irq event stamp: 51506
[25176.855511] hardirqs last enabled at (51506): [<ffffffff810d4ce5>] vprintk_emit+0x225/0x5e0
[25176.856059] hardirqs last disabled at (51505): [<ffffffff810d4b77>] vprintk_emit+0xb7/0x5e0
[25176.856642] softirqs last enabled at (50886): [<ffffffff81067a23>] __do_softirq+0x363/0x640
[25176.857184] softirqs last disabled at (50949): [<ffffffff8106804d>] irq_exit+0x10d/0x120
[25176.857746]
other info that might help us debug this:
[25176.858845] Possible unsafe locking scenario:
[25176.859981] CPU0
[25176.860537] ----
[25176.861059] lock(&wr_ctx->wr_lock);
[25176.861705] <Interrupt>
[25176.862272] lock(&wr_ctx->wr_lock);
[25176.862881]
*** DEADLOCK ***
Reason:
Above warning is caused by:
Interrupt
-> bio_endio()
-> ...
-> scrub_put_ctx()
-> scrub_free_ctx() *1
-> ...
-> mutex_lock(&wr_ctx->wr_lock);
scrub_put_ctx() is allowed to be called in end_bio interrupt, but
in code design, it will never call scrub_free_ctx(sctx) in interrupe
context(above *1), because btrfs_scrub_dev() get one additional
reference of sctx->refs, which makes scrub_free_ctx() only called
withine btrfs_scrub_dev().
Now the code runs out of our wish, because free sequence in
scrub_pending_bio_dec() have a gap.
Current code:
-----------------------------------+-----------------------------------
scrub_pending_bio_dec() | btrfs_scrub_dev
-----------------------------------+-----------------------------------
atomic_dec(&sctx->bios_in_flight); |
wake_up(&sctx->list_wait); |
| scrub_put_ctx()
| -> atomic_dec_and_test(&sctx->refs)
scrub_put_ctx(sctx); |
-> atomic_dec_and_test(&sctx->refs)|
-> scrub_free_ctx() |
-----------------------------------+-----------------------------------
We expected:
-----------------------------------+-----------------------------------
scrub_pending_bio_dec() | btrfs_scrub_dev
-----------------------------------+-----------------------------------
atomic_dec(&sctx->bios_in_flight); |
wake_up(&sctx->list_wait); |
scrub_put_ctx(sctx); |
-> atomic_dec_and_test(&sctx->refs)|
| scrub_put_ctx()
| -> atomic_dec_and_test(&sctx->refs)
| -> scrub_free_ctx()
-----------------------------------+-----------------------------------
Fix:
Move scrub_pending_bio_dec() to a workqueue, to avoid this function run
in interrupt context.
Tested by check tracelog in debug.
Changelog v1->v2:
Use workqueue instead of adjust function call sequence in v1,
because v1 will introduce a bug pointed out by:
Filipe David Manana <fdmanana@gmail.com>
Reported-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
The extent-same code rejects requests with an unaligned length. This
poses a problem when we want to dedupe the tail extent of files as we
skip cloning the portion between i_size and the extent boundary.
If we don't clone the entire extent, it won't be deleted. So the
combination of these behaviors winds up giving us worst-case dedupe on
many files.
We can fix this by allowing a length that extents to i_size and
internally aligining those to the end of the block. This is what
btrfs_ioctl_clone() so we can just copy that check over.
Signed-off-by: Mark Fasheh <mfasheh@suse.de>
Signed-off-by: Chris Mason <clm@fb.com>
max_to_defrag represents the number of pages to defrag rather than the last
page of the file range to be defragged.
Consider a file having 10 4k blocks (i.e. blocks in the range [0 - 9]). If the
defrag ioctl was invoked for the block range [3 - 6], then max_to_defrag
should actually have the value 4. Instead in the current code we end up
setting it to 6.
Now, this does not (yet) cause an issue since the first part of the while loop
condition in btrfs_defrag_file() (i.e. "i <= last_index") causes the control
to flow out of the while loop before any buggy behavior is actually caused. So
the patch just makes sure that max_to_defrag ends up having the right value
rather than fixing a bug. I did run the xfstests suite to make sure that the
code does not regress.
Changelog: v1->v2:
Provide a much descriptive commit message.
Signed-off-by: Chandan Rajendra <chandan@linux.vnet.ibm.com>
Signed-off-by: Chris Mason <clm@fb.com>
Read-ahead is done for the pages in the range [ra_index, ra_index + cluster -
1]. So the next read-ahead should be starting from the page at index 'ra_index
+ cluster' (unless we deemed that the extent at 'ra_index + cluster' as
non-defraggable) rather than from the page at index 'ra_index +
max_cluster'. This patch fixes this. I did run the xfstests suite to make sure
that the code does not regress.
Signed-off-by: Chandan Rajendra <chandan@linux.vnet.ibm.com>
Signed-off-by: Chris Mason <clm@fb.com>
When allocating a new chunk or removing one we need to update num_devs
device items and insert or remove a chunk item in the chunk tree, so
in the worst case the space needed in the chunk space_info is:
btrfs_calc_trunc_metadata_size(chunk_root, num_devs) +
btrfs_calc_trans_metadata_size(chunk_root, 1)
That is, in the worst case we need to cow num_devs paths and cow 1 other
path that can result in splitting every node and leaf, and each path
consisting of BTRFS_MAX_LEVEL - 1 nodes and 1 leaf. We were requiring
some additional chunk_root->nodesize * BTRFS_MAX_LEVEL * num_devs bytes,
which were unnecessary since updating the existing device items does
not result in splitting the nodes and leaf since after updating them
they remain with the same size.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
We don't need to attach ordered extents that have completed to the current
transaction. Doing so only makes us hold memory for longer than necessary
and delaying the iput of the inode until the transaction is committed (for
each created ordered extent we do an igrab and then schedule an asynchronous
iput when the ordered extent's reference count drops to 0), preventing the
inode from being evictable until the transaction commits.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
Commit 3a8b36f378 ("Btrfs: fix data loss in the fast fsync path") added
a performance regression for that causes an unnecessary sync of the log
trees (fs/subvol and root log trees) when 2 consecutive fsyncs are done
against a file, without no writes or any metadata updates to the inode in
between them and if a transaction is committed before the second fsync is
called.
Huang Ying reported this to lkml (https://lkml.org/lkml/2015/3/18/99)
after a test sysbench test that measured a -62% decrease of file io
requests per second for that tests' workload.
The test is:
echo performance > /sys/devices/system/cpu/cpu0/cpufreq/scaling_governor
echo performance > /sys/devices/system/cpu/cpu1/cpufreq/scaling_governor
echo performance > /sys/devices/system/cpu/cpu2/cpufreq/scaling_governor
echo performance > /sys/devices/system/cpu/cpu3/cpufreq/scaling_governor
mkfs -t btrfs /dev/sda2
mount -t btrfs /dev/sda2 /fs/sda2
cd /fs/sda2
for ((i = 0; i < 1024; i++)); do fallocate -l 67108864 testfile.$i; done
sysbench --test=fileio --max-requests=0 --num-threads=4 --max-time=600 \
--file-test-mode=rndwr --file-total-size=68719476736 --file-io-mode=sync \
--file-num=1024 run
A test on kvm guest, running a debug kernel gave me the following results:
Without 3a8b36f378060d: 16.01 reqs/sec
With 3a8b36f378060d: 3.39 reqs/sec
With 3a8b36f378 and this patch: 16.04 reqs/sec
Reported-by: Huang Ying <ying.huang@intel.com>
Tested-by: Huang, Ying <ying.huang@intel.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
Zygo Blaxell and other users have reported occasional hangs while an
inode is being evicted, leading to traces like the following:
[ 5281.972322] INFO: task rm:20488 blocked for more than 120 seconds.
[ 5281.973836] Not tainted 4.0.0-rc5-btrfs-next-9+ #2
[ 5281.974818] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[ 5281.976364] rm D ffff8800724cfc38 0 20488 7747 0x00000000
[ 5281.977506] ffff8800724cfc38 ffff8800724cfc38 ffff880065da5c50 0000000000000001
[ 5281.978461] ffff8800724cffd8 ffff8801540a5f50 0000000000000008 ffff8801540a5f78
[ 5281.979541] ffff8801540a5f50 ffff8800724cfc58 ffffffff8143107e 0000000000000123
[ 5281.981396] Call Trace:
[ 5281.982066] [<ffffffff8143107e>] schedule+0x74/0x83
[ 5281.983341] [<ffffffffa03b33cf>] wait_on_state+0xac/0xcd [btrfs]
[ 5281.985127] [<ffffffff81075cd6>] ? signal_pending_state+0x31/0x31
[ 5281.986715] [<ffffffffa03b4b71>] wait_extent_bit.constprop.32+0x7c/0xde [btrfs]
[ 5281.988680] [<ffffffffa03b540b>] lock_extent_bits+0x5d/0x88 [btrfs]
[ 5281.990200] [<ffffffffa03a621d>] btrfs_evict_inode+0x24e/0x5be [btrfs]
[ 5281.991781] [<ffffffff8116964d>] evict+0xa0/0x148
[ 5281.992735] [<ffffffff8116a43d>] iput+0x18f/0x1e5
[ 5281.993796] [<ffffffff81160d4a>] do_unlinkat+0x15b/0x1fa
[ 5281.994806] [<ffffffff81435b54>] ? ret_from_sys_call+0x1d/0x58
[ 5281.996120] [<ffffffff8107d314>] ? trace_hardirqs_on_caller+0x18f/0x1ab
[ 5281.997562] [<ffffffff8123960b>] ? trace_hardirqs_on_thunk+0x3a/0x3f
[ 5281.998815] [<ffffffff81161a16>] SyS_unlinkat+0x29/0x2b
[ 5281.999920] [<ffffffff81435b32>] system_call_fastpath+0x12/0x17
[ 5282.001299] 1 lock held by rm/20488:
[ 5282.002066] #0: (sb_writers#12){.+.+.+}, at: [<ffffffff8116dd81>] mnt_want_write+0x24/0x4b
This happens when we have readahead, which calls readpages(), happening
right before the inode eviction handler is invoked. So the reason is
essentially:
1) readpages() is called while a reference on the inode is held, so
eviction can not be triggered before readpages() returns. It also
locks one or more ranges in the inode's io_tree (which is done at
extent_io.c:__do_contiguous_readpages());
2) readpages() submits several read bios, all with an end io callback
that runs extent_io.c:end_bio_extent_readpage() and that is executed
by other task when a bio finishes, corresponding to a work queue
(fs_info->end_io_workers) worker kthread. This callback unlocks
the ranges in the inode's io_tree that were previously locked in
step 1;
3) readpages() returns, the reference on the inode is dropped;
4) One or more of the read bios previously submitted are still not
complete (their end io callback was not yet invoked or has not
yet finished execution);
5) Inode eviction is triggered (through an unlink call for example).
The inode reference count was not incremented before submitting
the read bios, therefore this is possible;
6) The eviction handler starts executing and enters the loop that
iterates over all extent states in the inode's io_tree;
7) The loop picks one extent state record and uses its ->start and
->end fields, after releasing the inode's io_tree spinlock, to
call lock_extent_bits() and clear_extent_bit(). The call to lock
the range [state->start, state->end] blocks because the whole
range or a part of it was locked by the previous call to
readpages() and the corresponding end io callback, which unlocks
the range was not yet executed;
8) The end io callback for the read bio is executed and unlocks the
range [state->start, state->end] (or a superset of that range).
And at clear_extent_bit() the extent_state record state is used
as a second argument to split_state(), which sets state->start to
a larger value;
9) The task executing the eviction handler is woken up by the task
executing the bio's end io callback (through clear_state_bit) and
the eviction handler locks the range
[old value for state->start, state->end]. Shortly after, when
calling clear_extent_bit(), it unlocks the range
[new value for state->start, state->end], so it ends up unlocking
only part of the range that it locked, leaving an extent state
record in the io_tree that represents the unlocked subrange;
10) The eviction handler loop, in its next iteration, gets the
extent_state record for the subrange that it did not unlock in the
previous step and then tries to lock it, resulting in an hang.
So fix this by not using the ->start and ->end fields of an existing
extent_state record. This is a simple solution, and an alternative
could be to bump the inode's reference count before submitting each
read bio and having it dropped in the bio's end io callback. But that
would be a more invasive/complex change and would not protect against
other possible places that are not holding a reference on the inode
as well. Something to consider in the future.
Many thanks to Zygo Blaxell for reporting, in the mailing list, the
issue, a set of scripts to trigger it and testing this fix.
Reported-by: Zygo Blaxell <ce3g8jdj@umail.furryterror.org>
Tested-by: Zygo Blaxell <ce3g8jdj@umail.furryterror.org>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
The return value of read_tree_block() can confuse callers as it always
returns NULL for either -ENOMEM or -EIO, so it's likely that callers
parse it to a wrong error, for instance, in btrfs_read_tree_root().
This fixes the above issue.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
read_tree_block may take a reference on the 'eb', a following
free_extent_buffer is necessary.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
After commit 8407f55326
("Btrfs: fix data corruption after fast fsync and writeback error"),
during wait_ordered_extents(), we wait for ordered extent setting
BTRFS_ORDERED_IO_DONE or BTRFS_ORDERED_IOERR, at which point we've
already got checksum information, so we don't need to check
(csum_bytes_left == 0) in the whole logging path.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
Unlike when attempting to allocate a new block group, where we check
that we have enough space in the system space_info to update the device
items and insert a new chunk item in the chunk tree, we were not checking
if the system space_info had enough space for updating the device items
and deleting the chunk item in the chunk tree. This often lead to -ENOSPC
error when attempting to allocate blocks for the chunk tree (during btree
node/leaf COW operations) while updating the device items or deleting the
chunk item, which resulted in the current transaction being aborted and
turning the filesystem into read-only mode.
While running fstests generic/038, which stresses allocation of block
groups and removal of unused block groups, with a large scratch device
(750Gb) this happened often, despite more than enough unallocated space,
and resulted in the following trace:
[68663.586604] WARNING: CPU: 3 PID: 1521 at fs/btrfs/super.c:260 __btrfs_abort_transaction+0x52/0x114 [btrfs]()
[68663.600407] BTRFS: Transaction aborted (error -28)
(...)
[68663.730829] Call Trace:
[68663.732585] [<ffffffff8142fa46>] dump_stack+0x4f/0x7b
[68663.734334] [<ffffffff8108b6a2>] ? console_unlock+0x361/0x3ad
[68663.739980] [<ffffffff81045ea5>] warn_slowpath_common+0xa1/0xbb
[68663.757153] [<ffffffffa036ca6d>] ? __btrfs_abort_transaction+0x52/0x114 [btrfs]
[68663.760925] [<ffffffff81045f05>] warn_slowpath_fmt+0x46/0x48
[68663.762854] [<ffffffffa03b159d>] ? btrfs_update_device+0x15a/0x16c [btrfs]
[68663.764073] [<ffffffffa036ca6d>] __btrfs_abort_transaction+0x52/0x114 [btrfs]
[68663.765130] [<ffffffffa03b3638>] btrfs_remove_chunk+0x597/0x5ee [btrfs]
[68663.765998] [<ffffffffa0384663>] ? btrfs_delete_unused_bgs+0x245/0x296 [btrfs]
[68663.767068] [<ffffffffa0384676>] btrfs_delete_unused_bgs+0x258/0x296 [btrfs]
[68663.768227] [<ffffffff8143527f>] ? _raw_spin_unlock_irq+0x2d/0x4c
[68663.769081] [<ffffffffa038b109>] cleaner_kthread+0x13d/0x16c [btrfs]
[68663.799485] [<ffffffffa038afcc>] ? btrfs_alloc_root+0x28/0x28 [btrfs]
[68663.809208] [<ffffffff8105f367>] kthread+0xef/0xf7
[68663.828795] [<ffffffff810e603f>] ? time_hardirqs_on+0x15/0x28
[68663.844942] [<ffffffff8105f278>] ? __kthread_parkme+0xad/0xad
[68663.846486] [<ffffffff81435a88>] ret_from_fork+0x58/0x90
[68663.847760] [<ffffffff8105f278>] ? __kthread_parkme+0xad/0xad
[68663.849503] ---[ end trace 798477c6d6dbaad6 ]---
[68663.850525] BTRFS: error (device sdc) in btrfs_remove_chunk:2652: errno=-28 No space left
So fix this by verifying that enough space exists in system space_info,
and reserving the space in the chunk block reserve, before attempting to
delete the block group and allocate a new system chunk if we don't have
enough space to perform the necessary updates and delete in the chunk
tree. Like for the block group creation case, we don't error our if we
fail to allocate a new system chunk, since we might end up not needing
it (no node/leaf splits happen during the COW operations and/or we end
up not needing to COW any btree nodes or leafs because they were already
COWed in the current transaction and their writeback didn't start yet).
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
While creating a block group, we often end up getting ENOSPC while updating
the chunk tree, which leads to a transaction abortion that produces a trace
like the following:
[30670.116368] WARNING: CPU: 4 PID: 20735 at fs/btrfs/super.c:260 __btrfs_abort_transaction+0x52/0x106 [btrfs]()
[30670.117777] BTRFS: Transaction aborted (error -28)
(...)
[30670.163567] Call Trace:
[30670.163906] [<ffffffff8142fa46>] dump_stack+0x4f/0x7b
[30670.164522] [<ffffffff8108b6a2>] ? console_unlock+0x361/0x3ad
[30670.165171] [<ffffffff81045ea5>] warn_slowpath_common+0xa1/0xbb
[30670.166323] [<ffffffffa035daa7>] ? __btrfs_abort_transaction+0x52/0x106 [btrfs]
[30670.167213] [<ffffffff81045f05>] warn_slowpath_fmt+0x46/0x48
[30670.167862] [<ffffffffa035daa7>] __btrfs_abort_transaction+0x52/0x106 [btrfs]
[30670.169116] [<ffffffffa03743d7>] btrfs_create_pending_block_groups+0x101/0x130 [btrfs]
[30670.170593] [<ffffffffa038426a>] __btrfs_end_transaction+0x84/0x366 [btrfs]
[30670.171960] [<ffffffffa038455c>] btrfs_end_transaction+0x10/0x12 [btrfs]
[30670.174649] [<ffffffffa036eb6b>] btrfs_check_data_free_space+0x11f/0x27c [btrfs]
[30670.176092] [<ffffffffa039450d>] btrfs_fallocate+0x7c8/0xb96 [btrfs]
[30670.177218] [<ffffffff812459f2>] ? __this_cpu_preempt_check+0x13/0x15
[30670.178622] [<ffffffff81152447>] vfs_fallocate+0x14c/0x1de
[30670.179642] [<ffffffff8116b915>] ? __fget_light+0x2d/0x4f
[30670.180692] [<ffffffff81152863>] SyS_fallocate+0x47/0x62
[30670.186737] [<ffffffff81435b32>] system_call_fastpath+0x12/0x17
[30670.187792] ---[ end trace 0373e6b491c4a8cc ]---
This is because we don't do proper space reservation for the chunk block
reserve when we have multiple tasks allocating chunks in parallel.
So block group creation has 2 phases, and the first phase essentially
checks if there is enough space in the system space_info, allocating a
new system chunk if there isn't, while the second phase updates the
device, extent and chunk trees. However, because the updates to the
chunk tree happen in the second phase, if we have N tasks, each with
its own transaction handle, allocating new chunks in parallel and if
there is only enough space in the system space_info to allocate M chunks,
where M < N, none of the tasks ends up allocating a new system chunk in
the first phase and N - M tasks will get -ENOSPC when attempting to
update the chunk tree in phase 2 if they need to COW any nodes/leafs
from the chunk tree.
Fix this by doing proper reservation in the chunk block reserve.
The issue could be reproduced by running fstests generic/038 in a loop,
which eventually triggered the problem.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
Now that we're guaranteed to have a meaningful root dentry, we can just
export seq_dentry() and use it in btrfs_show_options(). The subvolume ID
is easy to get and can also be useful, so put that in there, too.
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Omar Sandoval <osandov@osandov.com>
Signed-off-by: Chris Mason <clm@fb.com>
Currently, mounting a subvolume with subvolid= takes a different code
path than mounting with subvol=. This isn't really a big deal except for
the fact that mounts done with subvolid= or the default subvolume don't
have a dentry that's connected to the dentry tree like in the subvol=
case. To unify the code paths, when given subvolid= or using the default
subvolume ID, translate it into a subvolume name by walking
ROOT_BACKREFs in the root tree and INODE_REFs in the filesystem trees.
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Omar Sandoval <osandov@osandov.com>
Signed-off-by: Chris Mason <clm@fb.com>
There's nothing to stop a user from passing both subvol= and subvolid=
to mount, but if they don't refer to the same subvolume, someone is
going to be surprised at some point. Error out on this case, but allow
users to pass in both if they do match (which they could, for example,
get out of /proc/mounts).
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Omar Sandoval <osandov@osandov.com>
Signed-off-by: Chris Mason <clm@fb.com>
In preparation for new functionality in mount_subvol(), give it
ownership of subvol_name and tidy up the error paths.
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Omar Sandoval <osandov@osandov.com>
Signed-off-by: Chris Mason <clm@fb.com>
Currently, setup_root_args() substitutes 's/subvol=[^,]*/subvolid=0/'.
But, this means that if the user passes both a subvol and subvolid for
some reason, we won't actually mount the top-level when we recursively
mount. For example, consider:
mkfs.btrfs -f /dev/sdb
mount /dev/sdb /mnt
btrfs subvol create /mnt/subvol1 # subvolid=257
btrfs subvol create /mnt/subvol2 # subvolid=258
umount /mnt
mount -osubvol=/subvol1,subvolid=258 /dev/sdb /mnt
In the final mount, subvol=/subvol1,subvolid=258 becomes
subvolid=0,subvolid=258, and the last option takes precedence, so we
mount subvol2 and try to look up subvol1 inside of it, which fails.
So, instead, do a thorough scan through the argument list and remove any
subvol= and subvolid= options, then append subvolid=0 to the end. This
implicitly makes subvol= take precedence over subvolid=, but we're about
to add a stricter check for that. This also makes setup_root_args() more
generic, which we'll need soon.
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Omar Sandoval <osandov@osandov.com>
Signed-off-by: Chris Mason <clm@fb.com>
Since commit 0723a0473f ("btrfs: allow mounting btrfs subvolumes with
different ro/rw options"), when mounting a subvolume read/write when
another subvolume has previously been mounted read-only, we first do a
remount. However, this should be done with the superblock locked, as per
sync_filesystem():
/*
* We need to be protected against the filesystem going from
* r/o to r/w or vice versa.
*/
WARN_ON(!rwsem_is_locked(&sb->s_umount));
This WARN_ON can easily be hit with:
mkfs.btrfs -f /dev/vdb
mount /dev/vdb /mnt
btrfs subvol create /mnt/vol1
btrfs subvol create /mnt/vol2
umount /mnt
mount -oro,subvol=/vol1 /dev/vdb /mnt
mount -orw,subvol=/vol2 /dev/vdb /mnt2
Fixes: 0723a0473f ("btrfs: allow mounting btrfs subvolumes with different ro/rw options")
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Omar Sandoval <osandov@osandov.com>
Signed-off-by: Chris Mason <clm@fb.com>
When we clear an extent state's EXTENT_LOCKED bit with clear_extent_bits()
through free_io_failure(), we weren't waking up any tasks waiting for the
extent's state EXTENT_LOCKED bit, leading to an hang.
So make sure clear_extent_bits() ends up waking up any waiters if the
bit EXTENT_LOCKED is supplied by its callers.
Zygo Blaxell was experiencing such hangs at inode eviction time after
file unlinks. Thanks to him for a set of scripts to reproduce the issue.
Reported-by: Zygo Blaxell <ce3g8jdj@umail.furryterror.org>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
With commit 1b98450816 ("Btrfs: fix find_free_dev_extent() malfunction
in case device tree has hole") introduced in the kernel 4.1 merge window,
we end up using part of a device hole for which there are already pending
chunks or pinned chunks. Before that commit we didn't use the hole and
would just move on to the next hole in the device.
However when we adjust the start offset for the chunk allocation and we
have pinned chunks, we set it blindly to the end offset of the pinned
chunk we are currently processing, which is dangerous because we can
have a pending chunk that has a start offset that matches the end offset
of our pinned chunk - leading us to a case where we end up getting two
pending chunks that start at the same physical device offset, which makes
us later abort the current transaction with -EEXIST when finishing the
chunk allocation at btrfs_create_pending_block_groups():
[194737.659017] ------------[ cut here ]------------
[194737.660192] WARNING: CPU: 15 PID: 31111 at fs/btrfs/super.c:260 __btrfs_abort_transaction+0x52/0x106 [btrfs]()
[194737.662209] BTRFS: Transaction aborted (error -17)
[194737.663175] Modules linked in: btrfs dm_snapshot dm_bufio dm_flakey dm_mod crc32c_generic xor raid6_pq nfsd auth_rpcgss oid_registry nfs_acl nfs lockd grace fscache sunrpc loop fuse
[194737.674015] CPU: 15 PID: 31111 Comm: xfs_io Tainted: G W 4.0.0-rc5-btrfs-next-9+ #2
[194737.675986] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.7.5-0-ge51488c-20140602_164612-nilsson.home.kraxel.org 04/01/2014
[194737.682999] 0000000000000009 ffff8800564c7a98 ffffffff8142fa46 ffffffff8108b6a2
[194737.684540] ffff8800564c7ae8 ffff8800564c7ad8 ffffffff81045ea5 ffff8800564c7b78
[194737.686017] ffffffffa0383aa7 00000000ffffffef ffff88000c7ba000 ffff8801a1f66f40
[194737.687509] Call Trace:
[194737.688068] [<ffffffff8142fa46>] dump_stack+0x4f/0x7b
[194737.689027] [<ffffffff8108b6a2>] ? console_unlock+0x361/0x3ad
[194737.690095] [<ffffffff81045ea5>] warn_slowpath_common+0xa1/0xbb
[194737.691198] [<ffffffffa0383aa7>] ? __btrfs_abort_transaction+0x52/0x106 [btrfs]
[194737.693789] [<ffffffff81045f05>] warn_slowpath_fmt+0x46/0x48
[194737.695065] [<ffffffffa0383aa7>] __btrfs_abort_transaction+0x52/0x106 [btrfs]
[194737.696806] [<ffffffffa039a3bd>] btrfs_create_pending_block_groups+0x101/0x130 [btrfs]
[194737.698683] [<ffffffffa03aa433>] __btrfs_end_transaction+0x84/0x366 [btrfs]
[194737.700329] [<ffffffffa03aa725>] btrfs_end_transaction+0x10/0x12 [btrfs]
[194737.701924] [<ffffffffa0394b51>] btrfs_check_data_free_space+0x11f/0x27c [btrfs]
[194737.703675] [<ffffffffa03b8ba4>] __btrfs_buffered_write+0x16a/0x4c8 [btrfs]
[194737.705417] [<ffffffffa03bb502>] ? btrfs_file_write_iter+0x19a/0x431 [btrfs]
[194737.707058] [<ffffffffa03bb511>] ? btrfs_file_write_iter+0x1a9/0x431 [btrfs]
[194737.708560] [<ffffffffa03bb68d>] btrfs_file_write_iter+0x325/0x431 [btrfs]
[194737.710673] [<ffffffff81067d85>] ? get_parent_ip+0xe/0x3e
[194737.712076] [<ffffffff811534c3>] new_sync_write+0x7c/0xa0
[194737.713293] [<ffffffff81153b58>] vfs_write+0xb2/0x117
[194737.714443] [<ffffffff81154424>] SyS_pwrite64+0x64/0x82
[194737.715646] [<ffffffff81435b32>] system_call_fastpath+0x12/0x17
[194737.717175] ---[ end trace f2d5dc04e56d7e48 ]---
[194737.718170] BTRFS: error (device sdc) in btrfs_create_pending_block_groups:9524: errno=-17 Object already exists
The -EEXIST failure comes from btrfs_finish_chunk_alloc(), called by
btrfs_create_pending_block_groups(), when it attempts to insert a
duplicated device extent item via btrfs_alloc_dev_extent().
This issue was reproducible with fstests generic/038 running in a loop for
several hours (it's very hard to hit) and using MOUNT_OPTIONS="-o discard".
Applying Jeff's recent patch titled "btrfs: add missing discards when
unpinning extents with -o discard" makes the issue much easier to reproduce
(usually within 4 to 5 hours), since it pins chunks for longer periods of
time when an unused block group is deleted by the cleaner kthread.
Fix this by making sure that we never adjust the start offset to a lower
value than it currently has.
Fixes: 1b98450816 ("Btrfs: fix find_free_dev_extent() malfunction in case device tree has hole"
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
__btrfs_close_devices() would call_rcu to free the device, which is racy with
list_for_each_entry() accessing the memory to retrieve the next device on the
list.
Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
The INO_LOOKUP ioctl can lookup path for a given inode number and is
thus restricted. As a sideefect it can find the root id of the
containing subvolume and we're using this int the 'btrfs inspect rootid'
command.
The restriction is unnecessary in case we set the ioctl args
args::treeid = 0
args::objectid = 256 (BTRFS_FIRST_FREE_OBJECTID)
Then the path will be empty and the treeid is filled with the root id of
the inode on which the ioctl is called. This behaviour is unchanged,
after the root restriction is removed.
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
Report missing device when add is successful,
otherwise it would exit as ENOMEM. And add uuid
to the report.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
Old csum type check is wrong and can't catch csum_type 1(not supported).
Fix it to avoid hostile 0 division.
Reported-by: Lukas Lueg <lukas.lueg@gmail.com>
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
Marc reported a problem where the receiving end of an incremental send
was performing clone operations that failed with -EINVAL. This happened
because, unlike for uncompressed extents, we were not checking if the
source clone offset and length, after summing the data offset, falls
within the source file's boundaries.
So make sure we do such checks when attempting to issue clone operations
for compressed extents.
Problem reproducible with the following steps:
$ mkfs.btrfs -f /dev/sdb
$ mount -o compress /dev/sdb /mnt
$ mkfs.btrfs -f /dev/sdc
$ mount -o compress /dev/sdc /mnt2
# Create the file with a single extent of 128K. This creates a metadata file
# extent item with a data start offset of 0 and a logical length of 128K.
$ xfs_io -f -c "pwrite -S 0xaa 64K 128K" -c "fsync" /mnt/foo
# Now rewrite the range 64K to 112K of our file. This will make the inode's
# metadata continue to point to the 128K extent we created before, but now
# with an extent item that points to the extent with a data start offset of
# 112K and a logical length of 16K.
# That metadata file extent item is associated with the logical file offset
# at 176K and covers the logical file range 176K to 192K.
$ xfs_io -c "pwrite -S 0xbb 64K 112K" -c "fsync" /mnt/foo
# Now rewrite the range 180K to 12K. This will make the inode's metadata
# continue to point the the 128K extent we created earlier, with a single
# extent item that points to it with a start offset of 112K and a logical
# length of 4K.
# That metadata file extent item is associated with the logical file offset
# at 176K and covers the logical file range 176K to 180K.
$ xfs_io -c "pwrite -S 0xcc 180K 12K" -c "fsync" /mnt/foo
$ btrfs subvolume snapshot -r /mnt /mnt/snap1
$ touch /mnt/bar
# Calls the btrfs clone ioctl.
$ ~/xfstests/src/cloner -s $((176 * 1024)) -d $((176 * 1024)) \
-l $((4 * 1024)) /mnt/foo /mnt/bar
$ btrfs subvolume snapshot -r /mnt /mnt/snap2
$ btrfs send /mnt/snap1 | btrfs receive /mnt2
At subvol /mnt/snap1
At subvol snap1
$ btrfs send -p /mnt/snap1 /mnt/snap2 | btrfs receive /mnt2
At subvol /mnt/snap2
At snapshot snap2
ERROR: failed to clone extents to bar
Invalid argument
A test case for fstests follows soon.
Reported-by: Marc MERLIN <marc@merlins.org>
Tested-by: Marc MERLIN <marc@merlins.org>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Tested-by: David Sterba <dsterba@suse.cz>
Tested-by: Jan Alexander Steffens (heftig) <jan.steffens@gmail.com>
Signed-off-by: Chris Mason <clm@fb.com>
Commit 9c8b35b1ba ("btrfs: quota: Automatically update related qgroups or
mark INCONSISTENT flags when assigning/deleting a qgroup relations.")
introduced the allocation of a temporary ulist in function
btrfs_add_qgroup_relation() and added the corresponding cleanup to the out
path. However, the allocation was introduced before the src/dst level check
that directly returns. Fix the possible leakage of the ulist by moving the
allocation after the input validation. Detected by Coverity CID 1295988.
Signed-off-by: Christian Engelmayer <cengelma@gmx.at>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
If the call to btrfs_truncate_inode_items() failed and we don't have a block
group, we were unlocking the cache_write_mutex without having locked it (we
do it only if we have a block group).
Fixes: 1bbc621ef2 ("Btrfs: allow block group cache writeout
outside critical section in commit")
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
fs/btrfs/volumes.c: In function ‘btrfs_create_uuid_tree’:
fs/btrfs/volumes.c:3909:3: warning: format ‘%d’ expects argument of type ‘int’, but argument 4 has type ‘long int’ [-Wformat=]
btrfs_abort_transaction(trans, tree_root,
^
CC [M] fs/btrfs/ioctl.o
fs/btrfs/ioctl.c: In function ‘create_subvol’:
fs/btrfs/ioctl.c:549:3: warning: format ‘%d’ expects argument of type ‘int’, but argument 4 has type ‘long int’ [-Wformat=]
btrfs_abort_transaction(trans, root, PTR_ERR(new_root));
PTR_ERR returns long, but we're really using 'int' for the error codes
everywhere so just set and use the local variable.
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
The annotated functios will be placed into .text.unlikely section. The
annotation also hints compiler to move the code out of the hot paths,
and may implicitly mark if-statement leading to that block as unlikely.
This is a heuristic, the impact on the generated code is not
significant.
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
WARN is called from a single location and all bugreports say that's in
super.c __btrfs_abort_transaction. This is slightly confusing as we'd
rather want to know the exact callsite. Whereas this information is
printed in the syslog below the stacktrace, this requires further look
and we usually see only the headline from WARNING.
Moving the WARN into the macro has to inline some code and increases
code by a few kilobytes:
text data bss dec hex filename
835481 20305 14120 869906 d4612 btrfs.ko.before
842883 20305 14120 877308 d62fc btrfs.ko.after
The delta is +7k (130+ calls), measured on 3.19 x86_64, distro config.
The increase is not small and could lead to worse icache use. The code
is on error/exit paths that can be recognized by compiler as cold and
moved out of the way so the impact is speculated to be low, if
measurable at all.
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
Long time ago (2008) the defrag was automatic for new b-tree writes but
has been disabled after performance problems. There was a leftover in
tree-defrag.c that effectively stops any defragmentation on b-trees.
This is a bit unexpected and IMHO undesired. The SSD mode is an
optimization and defrag is supposed to work if the users asks for it.
Related commits:
6702ed490c
Btrfs: Add run time btree defrag, and an ioctl to force btree defrag
e18e4809b1
Btrfs: Add mount -o ssd, which includes optimizations for seek free
storage
b3236e68bf
Btrfs: Leave on the tree defragger in mount -o ssd, it still helps there
9afbb0b752
Btrfs: Disable tree defrag in SSD mode
The last three commits switch the defrag+ssd off/on/off and the last one
3f157a2fd2
Btrfs: Online btree defragmentation fixes
misses the bits from tree-defrag.c to revert to the behaviour introduced
in e18e4809b1.
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
When we shrink the usable size of a device (its total_bytes), we go over
all the device extent items in the device tree and attempt to relocate
the chunk of any device extent that goes beyond the new usable size for
the device. We do that after setting the new usable size (total_bytes) in
the device object, so that all new allocations (and reallocations) don't
use areas of the device that go beyond the new (shorter) size. However we
were not considering that before setting the new size in the device,
pending chunks might have been created that use device extents that go
beyond the new size, and those device extents are not yet in the device
tree after we search the device tree - they are still attached to the
list of new block group for some ongoing transaction handle, and they are
only added to the device tree when the transaction handle is ended (via
btrfs_create_pending_block_groups()).
So check for pending chunks with device extents that go beyond the new
size and if any exists, commit the current transaction and repeat the
search in the device tree.
Not doing this it would mean we would return success to user space while
still having extents that go beyond the new size, and later user space
could override those locations on the device while the fs still references
them, causing all sorts of corruption and unexpected events.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
Since commit bafc9b754f ("vfs: More precise tests in d_invalidate"),
mounted subvolumes can be deleted because d_invalidate() won't fail.
However, we run into problems when we attempt to delete the default
subvolume while it is mounted as the root filesystem:
# btrfs subvol list /
ID 257 gen 306 top level 5 path rootvol
ID 267 gen 334 top level 5 path snap1
# btrfs subvol get-default /
ID 267 gen 334 top level 5 path snap1
# btrfs inspect-internal rootid /
267
# mount -o subvol=/ /dev/vda1 /mnt
# btrfs subvol del /mnt/snap1
Delete subvolume (no-commit): '/mnt/snap1'
ERROR: cannot delete '/mnt/snap1' - Operation not permitted
# findmnt /
findmnt: can't read /proc/mounts: No such file or directory
# ls /proc
#
Markus reported that this same scenario simply led to a kernel oops.
This happens because in btrfs_ioctl_snap_destroy(), we call
d_invalidate() before we check may_destroy_subvol(), which means that we
detach the submounts and drop the dentry before erroring out. Instead,
we should only invalidate the dentry once the deletion has succeeded.
Additionally, the shrink_dcache_sb() isn't necessary; d_invalidate()
will prune the dcache for the deleted subvolume.
Cc: <stable@vger.kernel.org>
Fixes: bafc9b754f ("vfs: More precise tests in d_invalidate")
Reported-by: Markus Schauler <mschauler@gmail.com>
Signed-off-by: Omar Sandoval <osandov@osandov.com>
Signed-off-by: Chris Mason <clm@fb.com>
If a directory inode is orphanized, because some inode previously
processed has a new name that collides with the old name of the current
inode, we need to check if it needs its rename operation delayed too,
as its ancestor-descendent relationship with some other inode might
have been reversed between the parent and send snapshots and therefore
its rename operation needs to happen after that other inode is renamed.
For example, for the following reproducer where this is needed (provided
by Robbie Ko):
$ mkfs.btrfs -f /dev/sdb
$ mount /dev/sdb /mnt
$ mkfs.btrfs -f /dev/sdc
$ mount /dev/sdc /mnt2
$ mkdir -p /mnt/data/n1/n2
$ mkdir /mnt/data/n4
$ mkdir -p /mnt/data/t6/t7
$ mkdir /mnt/data/t5
$ mkdir /mnt/data/t7
$ mkdir /mnt/data/n4/t2
$ mkdir /mnt/data/t4
$ mkdir /mnt/data/t3
$ mv /mnt/data/t7 /mnt/data/n4/t2
$ mv /mnt/data/t4 /mnt/data/n4/t2/t7
$ mv /mnt/data/t5 /mnt/data/n4/t2/t7/t4
$ mv /mnt/data/t6 /mnt/data/n4/t2/t7/t4/t5
$ mv /mnt/data/n1/n2 /mnt/data/n4/t2/t7/t4/t5/t6
$ mv /mnt/data/n1 /mnt/data/n4/t2/t7/t4/t5/t6
$ mv /mnt/data/n4/t2/t7/t4/t5/t6/t7 /mnt/data/n4/t2/t7/t4/t5/t6/n2
$ mv /mnt/data/t3 /mnt/data/n4/t2/t7/t4/t5/t6/n2/t7
$ btrfs subvolume snapshot -r /mnt /mnt/snap1
$ mv /mnt/data/n4/t2/t7/t4/t5/t6/n1 /mnt/data/n4
$ mv /mnt/data/n4/t2 /mnt/data/n4/n1
$ mv /mnt/data/n4/n1/t2/t7/t4/t5/t6/n2 /mnt/data/n4/n1/t2
$ mv /mnt/data/n4/n1/t2/n2/t7/t3 /mnt/data/n4/n1/t2
$ mv /mnt/data/n4/n1/t2/t7/t4/t5/t6 /mnt/data/n4/n1/t2
$ mv /mnt/data/n4/n1/t2/t7/t4 /mnt/data/n4/n1/t2/t6
$ mv /mnt/data/n4/n1/t2/t7 /mnt/data/n4/n1/t2/t3
$ mv /mnt/data/n4/n1/t2/n2/t7 /mnt/data/n4/n1/t2
$ btrfs subvolume snapshot -r /mnt /mnt/snap2
$ btrfs send /mnt/snap1 | btrfs receive /mnt2
$ btrfs send -p /mnt/snap1 /mnt/snap2 | btrfs receive /mnt2
ERROR: send ioctl failed with -12: Cannot allocate memory
Where the parent snapshot directory hierarchy is the following:
. (ino 256)
|-- data/ (ino 257)
|-- n4/ (ino 260)
|-- t2/ (ino 265)
|-- t7/ (ino 264)
|-- t4/ (ino 266)
|-- t5/ (ino 263)
|-- t6/ (ino 261)
|-- n1/ (ino 258)
|-- n2/ (ino 259)
|-- t7/ (ino 262)
|-- t3/ (ino 267)
And the send snapshot's directory hierarchy is the following:
. (ino 256)
|-- data/ (ino 257)
|-- n4/ (ino 260)
|-- n1/ (ino 258)
|-- t2/ (ino 265)
|-- n2/ (ino 259)
|-- t3/ (ino 267)
| |-- t7 (ino 264)
|
|-- t6/ (ino 261)
| |-- t4/ (ino 266)
| |-- t5/ (ino 263)
|
|-- t7/ (ino 262)
While processing inode 262 we orphanize inode 264 and later attempt
to rename inode 264 to its new name/location, which resulted in building
an incorrect destination path string for the rename operation with the
value "data/n4/t2/t7/t4/t5/t6/n2/t7/t3/t7". This rename operation must
have been done only after inode 267 is processed and renamed, as the
ancestor-descendent relationship between inodes 264 and 267 was reversed
between both snapshots, because otherwise it results in an infinite loop
when building the path string for inode 264 when we are processing an
inode with a number larger than 264. That loop is the following:
start inode 264, send progress of 265 for example
parent of 264 -> 267
parent of 267 -> 262
parent of 262 -> 259
parent of 259 -> 261
parent of 261 -> 263
parent of 263 -> 266
parent of 266 -> 264
|--> back to first iteration while current path string length
is <= PATH_MAX, and fail with -ENOMEM otherwise
So fix this by making the check if we need to delay a directory rename
regardless of the current inode having been orphanized or not.
A test case for fstests follows soon.
Thanks to Robbie Ko for providing a reproducer for this problem.
Reported-by: Robbie Ko <robbieko@synology.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Even though we delay the rename of directories when they become
descendents of other directories that were also renamed in the send
root to prevent infinite path build loops, we were doing it in cases
where this was not needed and was actually harmful resulting in
infinite path build loops as we ended up with a circular dependency
of delayed directory renames.
Consider the following reproducer:
$ mkfs.btrfs -f /dev/sdb
$ mount /dev/sdb /mnt
$ mkfs.btrfs -f /dev/sdc
$ mount /dev/sdc /mnt2
$ mkdir /mnt/data
$ mkdir /mnt/data/n1
$ mkdir /mnt/data/n1/n2
$ mkdir /mnt/data/n4
$ mkdir /mnt/data/n1/n2/p1
$ mkdir /mnt/data/n1/n2/p1/p2
$ mkdir /mnt/data/t6
$ mkdir /mnt/data/t7
$ mkdir -p /mnt/data/t5/t7
$ mkdir /mnt/data/t2
$ mkdir /mnt/data/t4
$ mkdir -p /mnt/data/t1/t3
$ mkdir /mnt/data/p1
$ mv /mnt/data/t1 /mnt/data/p1
$ mkdir -p /mnt/data/p1/p2
$ mv /mnt/data/t4 /mnt/data/p1/p2/t1
$ mv /mnt/data/t5 /mnt/data/n4/t5
$ mv /mnt/data/n1/n2/p1/p2 /mnt/data/n4/t5/p2
$ mv /mnt/data/t7 /mnt/data/n4/t5/p2/t7
$ mv /mnt/data/t2 /mnt/data/n4/t1
$ mv /mnt/data/p1 /mnt/data/n4/t5/p2/p1
$ mv /mnt/data/n1/n2 /mnt/data/n4/t5/p2/p1/p2/n2
$ mv /mnt/data/n4/t5/p2/p1/p2/t1 /mnt/data/n4/t5/p2/p1/p2/n2/t1
$ mv /mnt/data/n4/t5/t7 /mnt/data/n4/t5/p2/p1/p2/n2/t1/t7
$ mv /mnt/data/n4/t5/p2/p1/t1/t3 /mnt/data/n4/t5/p2/p1/p2/n2/t1/t3
$ mv /mnt/data/n4/t5/p2/p1/p2/n2/p1 /mnt/data/n4/t5/p2/p1/p2/n2/t1/t7/p1
$ mv /mnt/data/t6 /mnt/data/n4/t5/p2/p1/p2/n2/t1/t3/t5
$ mv /mnt/data/n4/t5/p2/p1/t1 /mnt/data/n4/t5/p2/p1/p2/n2/t1/t3/t1
$ mv /mnt/data/n1 /mnt/data/n4/t5/p2/p1/p2/n2/t1/t7/p1/n1
$ btrfs subvolume snapshot -r /mnt /mnt/snap1
$ mv /mnt/data/n4/t1 /mnt/data/n4/t5/p2/p1/p2/n2/t1/t7/p1/t1
$ mv /mnt/data/n4/t5/p2/p1/p2/n2/t1 /mnt/data/n4/
$ mv /mnt/data/n4/t5/p2/p1/p2/n2 /mnt/data/n4/t1/n2
$ mv /mnt/data/n4/t1/t7/p1 /mnt/data/n4/t1/n2/p1
$ mv /mnt/data/n4/t1/t3/t1 /mnt/data/n4/t1/n2/t1
$ mv /mnt/data/n4/t1/t3 /mnt/data/n4/t1/n2/t1/t3
$ mv /mnt/data/n4/t5/p2/p1/p2 /mnt/data/n4/t1/n2/p1/p2
$ mv /mnt/data/n4/t1/t7 /mnt/data/n4/t1/n2/p1/t7
$ mv /mnt/data/n4/t5/p2/p1 /mnt/data/n4/t1/n2/p1/p2/p1
$ mv /mnt/data/n4/t1/n2/t1/t3/t5 /mnt/data/n4/t1/n2/p1/p2/t5
$ mv /mnt/data/n4/t5 /mnt/data/n4/t1/n2/p1/p2/p1/t5
$ mv /mnt/data/n4/t1/n2/p1/p2/p1/t5/p2 /mnt/data/n4/t1/n2/p1/p2/p1/p2
$ mv /mnt/data/n4/t1/n2/p1/p2/p1/p2/t7 /mnt/data/n4/t1/t7
$ btrfs subvolume snapshot -r /mnt /mnt/snap2
$ btrfs send /mnt/snap1 | btrfs receive /mnt2
$ btrfs send -p /mnt/snap1 /mnt/snap2 | btrfs receive -vv /mnt2
ERROR: send ioctl failed with -12: Cannot allocate memory
This reproducer resulted in an infinite path build loop when building the
path for inode 266 because the following circular dependency of delayed
directory renames was created:
ino 272 <- ino 261 <- ino 259 <- ino 268 <- ino 267 <- ino 261
Where the notation "X <- Y" means the rename of inode X is delayed by the
rename of inode Y (X will be renamed after Y is renamed). This resulted
in an infinite path build loop of inode 266 because that inode has inode
261 as an ancestor in the send root and inode 261 is in the circular
dependency of delayed renames listed above.
Fix this by not delaying the rename of a directory inode if an ancestor of
the inode in the send root, which has a delayed rename operation, is not
also a descendent of the inode in the parent root.
Thanks to Robbie Ko for sending the reproducer example.
A test case for xfstests follows soon.
Reported-by: Robbie Ko <robbieko@synology.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
To support seed sysfs layout and represent seed fsid under
the sprout we need the facility to create fsid under the
specified parent.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.cz>
btrfs_kobj_add_device() does not need fs_info any more.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.cz>
Just a helper function to clean up the sysfs fsid kobjects.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.cz>
This patch will provide a framework and help to create attributes
from the structure btrfs_fs_devices which are available even before
fs_info is created. So by moving the parent kobject super_kobj from
fs_info to btrfs_fs_devices, it will help to create attributes
from the btrfs_fs_devices as well.
Patches on top of this patch now will be able to create the
sys/fs/btrfs/fsid kobject and attributes from btrfs_fs_devices
when devices are scanned and registered to the kernel.
Just to note, this does not change any of the existing btrfs sysfs
external kobject names and its attributes and not even the life
cycle of them. Changes are internal only. And to ensure the same,
this path has been tested with various device operations and,
checking and comparing the sysfs kobjects and attributes with
sysfs kobject and attributes with out this patch, and they remain
same.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.cz>
Separate device kobject and its attribute creation so that device
kobject can be created from the device discovery thread.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.cz>
As of now btrfs_attrs are provided using the default_attrs through
the kset. Separate them and create the default_attrs using the
sysfs_create_files instead. By doing this we will have the
flexibility that device discovery thread could create fsid
kobject.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.cz>
We need it in a seperate function so that it can be called from the
device discovery thread as well.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.cz>
As of now the order in which the kobjects are created
at btrfs_sysfs_add_one() is..
fsid
features
unknown features (dynamic features)
devices.
Since we would move fsid and device kobject to fs_devices
from fs_info structure, this patch will reorder in which
the kobjects are created as below.
fsid
devices
features
unknown features (dynamic features)
And hence the btrfs_sysfs_remove_one() will follow the same
in reverse order. and the device kobject destroy now can
be moved into the function __btrfs_sysfs_remove_one()
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.cz>
Since the failure code in the btrfs_sysfs_add_one() can
call btrfs_sysfs_remove_one() even before device_dir_kobj
has been created we need to check if its null.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.cz>
The sysfs clean up self test like in the below code fails, since
fs_info->device_dir_kobject still points to its stale kobject.
Reseting this pointer will help to fix this.
open_ctree()
{
ret = btrfs_sysfs_add_one(fs_info);
::
+ btrfs_sysfs_remove_one(fs_info);
+ ret = btrfs_sysfs_add_one(fs_info);
+ if (ret) {
+ pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
+ goto fail_block_groups;
+ }
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.cz>
Theoritically need to remove the device links attributes, but since its entire device
kobject was removed, so there wasn't any issue of about it. Just do it nicely.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.cz>
kobject_unregister is to handle the release of the kobject,
its completion init is being called in btrfs_sysfs_add_one(),
so we don't have to do the same in the open_ctree() again.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.cz>
The following test case fails indicating that, thread tried to init an initialized object.
kernel: [232104.016513] kobject (ffff880006c1c980): tried to init an initialized object, something is seriously wrong.
btrfs_sysfs_remove_one() self test code:
open_tree()
{
::
ret = btrfs_sysfs_add_one(fs_info);
if (ret) {
pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
goto fail_block_groups;
}
+ btrfs_sysfs_remove_one(fs_info);
+ ret = btrfs_sysfs_add_one(fs_info);
+ if (ret) {
+ pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
+ goto fail_block_groups;
+ }
cleaning up the unregistered kobject fixes this.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.cz>
Pull btrfs fixes from Chris Mason:
"I fixed up a regression from 4.0 where conversion between different
raid levels would sometimes bail out without converting.
Filipe tracked down a race where it was possible to double allocate
chunks on the drive.
Mark has a fix for fiemap. All three will get bundled off for stable
as well"
* 'for-linus-4.1' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
Btrfs: fix regression in raid level conversion
Btrfs: fix racy system chunk allocation when setting block group ro
btrfs: clear 'ret' in btrfs_check_shared() loop
Commit c4cf5261 ("bio: skip atomic inc/dec of ->bi_remaining for
non-chains") regressed all existing callers that followed this pattern:
1) saving a bio's original bi_end_io
2) wiring up an intermediate bi_end_io
3) restoring the original bi_end_io from intermediate bi_end_io
4) calling bio_endio() to execute the restored original bi_end_io
The regression was due to BIO_CHAIN only ever getting set if
bio_inc_remaining() is called. For the above pattern it isn't set until
step 3 above (step 2 would've needed to establish BIO_CHAIN). As such
the first bio_endio(), in step 2 above, never decremented __bi_remaining
before calling the intermediate bi_end_io -- leaving __bi_remaining with
the value 1 instead of 0. When bio_inc_remaining() occurred during step
3 it brought it to a value of 2. When the second bio_endio() was
called, in step 4 above, it should've called the original bi_end_io but
it didn't because there was an extra reference that wasn't dropped (due
to atomic operations being optimized away since BIO_CHAIN wasn't set
upfront).
Fix this issue by removing the __bi_remaining management complexity for
all callers that use the above pattern -- bio_chain() is the only
interface that _needs_ to be concerned with __bi_remaining. For the
above pattern callers just expect the bi_end_io they set to get called!
Remove bio_endio_nodec() and also remove all bio_inc_remaining() calls
that aren't associated with the bio_chain() interface.
Also, the bio_inc_remaining() interface has been moved local to bio.c.
Fixes: c4cf5261 ("bio: skip atomic inc/dec of ->bi_remaining for non-chains")
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
Commit 2f0810880f changed
btrfs_set_block_group_ro to avoid trying to allocate new chunks with the
new raid profile during conversion. This fixed failures when there was
no space on the drive to allocate a new chunk, but the metadata
reserves were sufficient to continue the conversion.
But this ended up causing a regression when the drive had plenty of
space to allocate new chunks, mostly because reduce_alloc_profile isn't
using the new raid profile.
Fixing btrfs_reduce_alloc_profile is a bigger patch. For now, do a
partial revert of 2f0810880, and don't error out if we hit ENOSPC.
Signed-off-by: Chris Mason <clm@fb.com>
Tested-by: Dave Sterba <dsterba@suse.cz>
Reported-by: Holger Hoffstaette <holger.hoffstaette@googlemail.com>
If while setting a block group read-only we end up allocating a system
chunk, through check_system_chunk(), we were not doing it while holding
the chunk mutex which is a problem if a concurrent chunk allocation is
happening, through do_chunk_alloc(), as it means both block groups can
end up using the same logical addresses and physical regions in the
device(s). So make sure we hold the chunk mutex.
Cc: stable@vger.kernel.org # 4.0+
Fixes: 2f0810880f ("btrfs: delete chunk allocation attemp when
setting block group ro")
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
btrfs_check_shared() is leaking a return value of '1' from
find_parent_nodes(). As a result, callers (in this case, extent_fiemap())
are told extents are shared when they are not. This in turn broke fiemap on
btrfs for kernels v3.18 and up.
The fix is simple - we just have to clear 'ret' after we are done processing
the results of find_parent_nodes().
It wasn't clear to me at first what was happening with return values in
btrfs_check_shared() and find_parent_nodes() - thanks to Josef for the help
on irc. I added documentation to both functions to make things more clear
for the next hacker who might come across them.
If we could queue this up for -stable too that would be great.
Signed-off-by: Mark Fasheh <mfasheh@suse.de>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Since the big barrier rewrite/removal in 2007 we never fail FLUSH or
FUA requests, which means we can remove the magic BIO_EOPNOTSUPP flag
to help propagating those to the buffer_head layer.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jeff Moyer <jmoyer@redhat.com>
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Jens Axboe <axboe@fb.com>
Pull btrfs fixes from Chris Mason:
"The first commit is a fix from Filipe for a very old extent buffer
reuse race that triggered a BUG_ON. It hasn't come up often, I looked
through old logs at FB and we hit it a handful of times over the last
year.
The rest are other corners he hit during testing"
* 'for-linus-4.1' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
Btrfs: fix race when reusing stale extent buffers that leads to BUG_ON
Btrfs: fix race between block group creation and their cache writeout
Btrfs: fix panic when starting bg cache writeout after IO error
Btrfs: fix crash after inode cache writeback failure
There's a race between releasing extent buffers that are flagged as stale
and recycling them that makes us it the following BUG_ON at
btrfs_release_extent_buffer_page:
BUG_ON(extent_buffer_under_io(eb))
The BUG_ON is triggered because the extent buffer has the flag
EXTENT_BUFFER_DIRTY set as a consequence of having been reused and made
dirty by another concurrent task.
Here follows a sequence of steps that leads to the BUG_ON.
CPU 0 CPU 1 CPU 2
path->nodes[0] == eb X
X->refs == 2 (1 for the tree, 1 for the path)
btrfs_header_generation(X) == current trans id
flag EXTENT_BUFFER_DIRTY set on X
btrfs_release_path(path)
unlocks X
reads eb X
X->refs incremented to 3
locks eb X
btrfs_del_items(X)
X becomes empty
clean_tree_block(X)
clear EXTENT_BUFFER_DIRTY from X
btrfs_del_leaf(X)
unlocks X
extent_buffer_get(X)
X->refs incremented to 4
btrfs_free_tree_block(X)
X's range is not pinned
X's range added to free
space cache
free_extent_buffer_stale(X)
lock X->refs_lock
set EXTENT_BUFFER_STALE on X
release_extent_buffer(X)
X->refs decremented to 3
unlocks X->refs_lock
btrfs_release_path()
unlocks X
free_extent_buffer(X)
X->refs becomes 2
__btrfs_cow_block(Y)
btrfs_alloc_tree_block()
btrfs_reserve_extent()
find_free_extent()
gets offset == X->start
btrfs_init_new_buffer(X->start)
btrfs_find_create_tree_block(X->start)
alloc_extent_buffer(X->start)
find_extent_buffer(X->start)
finds eb X in radix tree
free_extent_buffer(X)
lock X->refs_lock
test X->refs == 2
test bit EXTENT_BUFFER_STALE is set
test !extent_buffer_under_io(eb)
increments X->refs to 3
mark_extent_buffer_accessed(X)
check_buffer_tree_ref(X)
--> does nothing,
X->refs >= 2 and
EXTENT_BUFFER_TREE_REF
is set in X
clear EXTENT_BUFFER_STALE from X
locks X
btrfs_mark_buffer_dirty()
set_extent_buffer_dirty(X)
check_buffer_tree_ref(X)
--> does nothing, X->refs >= 2 and
EXTENT_BUFFER_TREE_REF is set
sets EXTENT_BUFFER_DIRTY on X
test and clear EXTENT_BUFFER_TREE_REF
decrements X->refs to 2
release_extent_buffer(X)
decrements X->refs to 1
unlock X->refs_lock
unlock X
free_extent_buffer(X)
lock X->refs_lock
release_extent_buffer(X)
decrements X->refs to 0
btrfs_release_extent_buffer_page(X)
BUG_ON(extent_buffer_under_io(X))
--> EXTENT_BUFFER_DIRTY set on X
Fix this by making find_extent buffer wait for any ongoing task currently
executing free_extent_buffer()/free_extent_buffer_stale() if the extent
buffer has the stale flag set.
A more clean alternative would be to always increment the extent buffer's
reference count while holding its refs_lock spinlock but find_extent_buffer
is a performance critical area and that would cause lock contention whenever
multiple tasks search for the same extent buffer concurrently.
A build server running a SLES 12 kernel (3.12 kernel + over 450 upstream
btrfs patches backported from newer kernels) was hitting this often:
[1212302.461948] kernel BUG at ../fs/btrfs/extent_io.c:4507!
(...)
[1212302.470219] CPU: 1 PID: 19259 Comm: bs_sched Not tainted 3.12.36-38-default #1
[1212302.540792] Hardware name: Supermicro PDSM4/PDSM4, BIOS 6.00 04/17/2006
[1212302.540792] task: ffff8800e07e0100 ti: ffff8800d6412000 task.ti: ffff8800d6412000
[1212302.540792] RIP: 0010:[<ffffffffa0507081>] [<ffffffffa0507081>] btrfs_release_extent_buffer_page.constprop.51+0x101/0x110 [btrfs]
(...)
[1212302.630008] Call Trace:
[1212302.630008] [<ffffffffa05070cd>] release_extent_buffer+0x3d/0xa0 [btrfs]
[1212302.630008] [<ffffffffa04c2d9d>] btrfs_release_path+0x1d/0xa0 [btrfs]
[1212302.630008] [<ffffffffa04c5c7e>] read_block_for_search.isra.33+0x13e/0x3a0 [btrfs]
[1212302.630008] [<ffffffffa04c8094>] btrfs_search_slot+0x3f4/0xa80 [btrfs]
[1212302.630008] [<ffffffffa04cf5d8>] lookup_inline_extent_backref+0xf8/0x630 [btrfs]
[1212302.630008] [<ffffffffa04d13dd>] __btrfs_free_extent+0x11d/0xc40 [btrfs]
[1212302.630008] [<ffffffffa04d64a4>] __btrfs_run_delayed_refs+0x394/0x11d0 [btrfs]
[1212302.630008] [<ffffffffa04db379>] btrfs_run_delayed_refs.part.66+0x69/0x280 [btrfs]
[1212302.630008] [<ffffffffa04ed2ad>] __btrfs_end_transaction+0x2ad/0x3d0 [btrfs]
[1212302.630008] [<ffffffffa04f7505>] btrfs_evict_inode+0x4a5/0x500 [btrfs]
[1212302.630008] [<ffffffff811b9e28>] evict+0xa8/0x190
[1212302.630008] [<ffffffff811b0330>] do_unlinkat+0x1a0/0x2b0
I was also able to reproduce this on a 3.19 kernel, corresponding to Chris'
integration branch from about a month ago, running the following stress
test on a qemu/kvm guest (with 4 virtual cpus and 16Gb of ram):
while true; do
mkfs.btrfs -l 4096 -f -b `expr 20 \* 1024 \* 1024 \* 1024` /dev/sdd
mount /dev/sdd /mnt
snapshot_cmd="btrfs subvolume snapshot -r /mnt"
snapshot_cmd="$snapshot_cmd /mnt/snap_\`date +'%H_%M_%S_%N'\`"
fsstress -d /mnt -n 25000 -p 8 -x "$snapshot_cmd" -X 100
umount /mnt
done
Which usually triggers the BUG_ON within less than 24 hours:
[49558.618097] ------------[ cut here ]------------
[49558.619732] kernel BUG at fs/btrfs/extent_io.c:4551!
(...)
[49558.620031] CPU: 3 PID: 23908 Comm: fsstress Tainted: G W 3.19.0-btrfs-next-7+ #3
[49558.620031] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.7.5-0-ge51488c-20140602_164612-nilsson.home.kraxel.org 04/01/2014
[49558.620031] task: ffff8800319fc0d0 ti: ffff880220da8000 task.ti: ffff880220da8000
[49558.620031] RIP: 0010:[<ffffffffa0476b1a>] [<ffffffffa0476b1a>] btrfs_release_extent_buffer_page+0x20/0xe9 [btrfs]
(...)
[49558.620031] Call Trace:
[49558.620031] [<ffffffffa0476c73>] release_extent_buffer+0x90/0xd3 [btrfs]
[49558.620031] [<ffffffff8142b10c>] ? _raw_spin_lock+0x3b/0x43
[49558.620031] [<ffffffffa0477052>] ? free_extent_buffer+0x37/0x94 [btrfs]
[49558.620031] [<ffffffffa04770ab>] free_extent_buffer+0x90/0x94 [btrfs]
[49558.620031] [<ffffffffa04396d5>] btrfs_release_path+0x4a/0x69 [btrfs]
[49558.620031] [<ffffffffa0444907>] __btrfs_free_extent+0x778/0x80c [btrfs]
[49558.620031] [<ffffffffa044a485>] __btrfs_run_delayed_refs+0xad2/0xc62 [btrfs]
[49558.728054] [<ffffffff811420d5>] ? kmemleak_alloc_recursive.constprop.52+0x16/0x18
[49558.728054] [<ffffffffa044c1e8>] btrfs_run_delayed_refs+0x6d/0x1ba [btrfs]
[49558.728054] [<ffffffffa045917f>] ? join_transaction.isra.9+0xb9/0x36b [btrfs]
[49558.728054] [<ffffffffa045a75c>] btrfs_commit_transaction+0x4c/0x981 [btrfs]
[49558.728054] [<ffffffffa0434f86>] btrfs_sync_fs+0xd5/0x10d [btrfs]
[49558.728054] [<ffffffff81155923>] ? iterate_supers+0x60/0xc4
[49558.728054] [<ffffffff8117966a>] ? do_sync_work+0x91/0x91
[49558.728054] [<ffffffff8117968a>] sync_fs_one_sb+0x20/0x22
[49558.728054] [<ffffffff81155939>] iterate_supers+0x76/0xc4
[49558.728054] [<ffffffff811798e8>] sys_sync+0x55/0x83
[49558.728054] [<ffffffff8142bbd2>] system_call_fastpath+0x12/0x17
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
So creating a block group has 2 distinct phases:
Phase 1 - creates the btrfs_block_group_cache item and adds it to the
rbtree fs_info->block_group_cache_tree and to the corresponding list
space_info->block_groups[];
Phase 2 - adds the block group item to the extent tree and corresponding
items to the chunk tree.
The first phase adds the block_group_cache_item to a list of pending block
groups in the transaction handle, and phase 2 happens when
btrfs_end_transaction() is called against the transaction handle.
It happens that once phase 1 completes, other concurrent tasks that use
their own transaction handle, but points to the same running transaction
(struct btrfs_trans_handle->transaction), can use this block group for
space allocations and therefore mark it dirty. Dirty block groups are
tracked in a list belonging to the currently running transaction (struct
btrfs_transaction) and not in the transaction handle (btrfs_trans_handle).
This is a problem because once a task calls btrfs_commit_transaction(),
it calls btrfs_start_dirty_block_groups() which will see all dirty block
groups and attempt to start their writeout, including those that are
still attached to the transaction handle of some concurrent task that
hasn't called btrfs_end_transaction() yet - which means those block
groups haven't gone through phase 2 yet and therefore when
write_one_cache_group() is called, it won't find the block group items
in the extent tree and abort the current transaction with -ENOENT,
turning the fs into readonly mode and require a remount.
Fix this by ignoring -ENOENT when looking for block group items in the
extent tree when we attempt to start the writeout of the block group
caches outside the critical section of the transaction commit. We will
try again later during the critical section and if there we still don't
find the block group item in the extent tree, we then abort the current
transaction.
This issue happened twice, once while running fstests btrfs/067 and once
for btrfs/078, which produced the following trace:
[ 3278.703014] WARNING: CPU: 7 PID: 18499 at fs/btrfs/super.c:260 __btrfs_abort_transaction+0x52/0x114 [btrfs]()
[ 3278.707329] BTRFS: Transaction aborted (error -2)
(...)
[ 3278.731555] Call Trace:
[ 3278.732396] [<ffffffff8142fa46>] dump_stack+0x4f/0x7b
[ 3278.733860] [<ffffffff8108b6a2>] ? console_unlock+0x361/0x3ad
[ 3278.735312] [<ffffffff81045ea5>] warn_slowpath_common+0xa1/0xbb
[ 3278.736874] [<ffffffffa03ada6d>] ? __btrfs_abort_transaction+0x52/0x114 [btrfs]
[ 3278.738302] [<ffffffff81045f05>] warn_slowpath_fmt+0x46/0x48
[ 3278.739520] [<ffffffffa03ada6d>] __btrfs_abort_transaction+0x52/0x114 [btrfs]
[ 3278.741222] [<ffffffffa03b9e56>] write_one_cache_group+0xae/0xbf [btrfs]
[ 3278.742797] [<ffffffffa03c487b>] btrfs_start_dirty_block_groups+0x170/0x2b2 [btrfs]
[ 3278.744492] [<ffffffffa03d309c>] btrfs_commit_transaction+0x130/0x9c9 [btrfs]
[ 3278.746084] [<ffffffff8107d33d>] ? trace_hardirqs_on+0xd/0xf
[ 3278.747249] [<ffffffffa03e5660>] btrfs_sync_file+0x313/0x387 [btrfs]
[ 3278.748744] [<ffffffff8117acad>] vfs_fsync_range+0x95/0xa4
[ 3278.749958] [<ffffffff81435b54>] ? ret_from_sys_call+0x1d/0x58
[ 3278.751218] [<ffffffff8117acd8>] vfs_fsync+0x1c/0x1e
[ 3278.754197] [<ffffffff8117ae54>] do_fsync+0x34/0x4e
[ 3278.755192] [<ffffffff8117b07c>] SyS_fsync+0x10/0x14
[ 3278.756236] [<ffffffff81435b32>] system_call_fastpath+0x12/0x17
[ 3278.757366] ---[ end trace 9a4d4df4969709aa ]---
Fixes: 1bbc621ef2 ("Btrfs: allow block group cache writeout
outside critical section in commit")
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
When waiting for the writeback of block group cache we returned
immediately if there was an error during writeback without waiting
for the ordered extent to complete. This left a short time window
where if some other task attempts to start the writeout for the same
block group cache it can attempt to add a new ordered extent, starting
at the same offset (0) before the previous one is removed from the
ordered tree, causing an ordered tree panic (calls BUG()).
This normally doesn't happen in other write paths, such as buffered
writes or direct IO writes for regular files, since before marking
page ranges dirty we lock the ranges and wait for any ordered extents
within the range to complete first.
Fix this by making btrfs_wait_ordered_range() not return immediately
if it gets an error from the writeback, waiting for all ordered extents
to complete first.
This issue happened often when running the fstest btrfs/088 and it's
easy to trigger it by running in a loop until the panic happens:
for ((i = 1; i <= 10000; i++)) do ./check btrfs/088 ; done
[17156.862573] BTRFS critical (device sdc): panic in ordered_data_tree_panic:70: Inconsistency in ordered tree at offset 0 (errno=-17 Object already exists)
[17156.864052] ------------[ cut here ]------------
[17156.864052] kernel BUG at fs/btrfs/ordered-data.c:70!
(...)
[17156.864052] Call Trace:
[17156.864052] [<ffffffffa03876e3>] btrfs_add_ordered_extent+0x12/0x14 [btrfs]
[17156.864052] [<ffffffffa03787e2>] run_delalloc_nocow+0x5bf/0x747 [btrfs]
[17156.864052] [<ffffffffa03789ff>] run_delalloc_range+0x95/0x353 [btrfs]
[17156.864052] [<ffffffffa038b7fe>] writepage_delalloc.isra.16+0xb9/0x13f [btrfs]
[17156.864052] [<ffffffffa038d75b>] __extent_writepage+0x129/0x1f7 [btrfs]
[17156.864052] [<ffffffffa038da5a>] extent_write_cache_pages.isra.15.constprop.28+0x231/0x2f4 [btrfs]
[17156.864052] [<ffffffff810ad2af>] ? __module_text_address+0x12/0x59
[17156.864052] [<ffffffff8107d33d>] ? trace_hardirqs_on+0xd/0xf
[17156.864052] [<ffffffffa038df76>] extent_writepages+0x4b/0x5c [btrfs]
[17156.864052] [<ffffffff81144431>] ? kmem_cache_free+0x9b/0xce
[17156.864052] [<ffffffffa0376a46>] ? btrfs_submit_direct+0x3fc/0x3fc [btrfs]
[17156.864052] [<ffffffffa0389cd6>] ? free_extent_state+0x8c/0xc1 [btrfs]
[17156.864052] [<ffffffffa0374871>] btrfs_writepages+0x28/0x2a [btrfs]
[17156.864052] [<ffffffff8110c4c8>] do_writepages+0x23/0x2c
[17156.864052] [<ffffffff81102f36>] __filemap_fdatawrite_range+0x5a/0x61
[17156.864052] [<ffffffff81102f6e>] filemap_fdatawrite_range+0x13/0x15
[17156.864052] [<ffffffffa0383ef7>] btrfs_fdatawrite_range+0x21/0x48 [btrfs]
[17156.864052] [<ffffffffa03ab89e>] __btrfs_write_out_cache.isra.14+0x2d9/0x3a7 [btrfs]
[17156.864052] [<ffffffffa03ac1ab>] ? btrfs_write_out_cache+0x41/0xdc [btrfs]
[17156.864052] [<ffffffffa03ac1fd>] btrfs_write_out_cache+0x93/0xdc [btrfs]
[17156.864052] [<ffffffffa0363847>] ? btrfs_start_dirty_block_groups+0x13a/0x2b2 [btrfs]
[17156.864052] [<ffffffffa03638e6>] btrfs_start_dirty_block_groups+0x1d9/0x2b2 [btrfs]
[17156.864052] [<ffffffff8107d33d>] ? trace_hardirqs_on+0xd/0xf
[17156.864052] [<ffffffffa037209e>] btrfs_commit_transaction+0x130/0x9c9 [btrfs]
[17156.864052] [<ffffffffa034c748>] btrfs_sync_fs+0xe1/0x12d [btrfs]
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
If the writeback of an inode cache failed we were unnecessarilly
attempting to release again the delalloc metadata that we previously
reserved. However attempting to do this a second time triggers an
assertion at drop_outstanding_extent() because we have no more
outstanding extents for our inode cache's inode. If we were able
to start writeback of the cache the reserved metadata space is
released at btrfs_finished_ordered_io(), even if an error happens
during writeback.
So make sure we don't repeat the metadata space release if writeback
started for our inode cache.
This issue was trivial to reproduce by running the fstest btrfs/088
with "-o inode_cache", which triggered the assertion leading to a
BUG() call and requiring a reboot in order to run the remaining
fstests. Trace produced by btrfs/088:
[255289.385904] BTRFS: assertion failed: BTRFS_I(inode)->outstanding_extents >= num_extents, file: fs/btrfs/extent-tree.c, line: 5276
[255289.388094] ------------[ cut here ]------------
[255289.389184] kernel BUG at fs/btrfs/ctree.h:4057!
[255289.390125] invalid opcode: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC
(...)
[255289.392068] Call Trace:
[255289.392068] [<ffffffffa035e774>] drop_outstanding_extent+0x3d/0x6d [btrfs]
[255289.392068] [<ffffffffa0364988>] btrfs_delalloc_release_metadata+0x54/0xe3 [btrfs]
[255289.392068] [<ffffffffa03b4174>] btrfs_write_out_ino_cache+0x95/0xad [btrfs]
[255289.392068] [<ffffffffa036f5c4>] btrfs_save_ino_cache+0x275/0x2dc [btrfs]
[255289.392068] [<ffffffffa03e2d83>] commit_fs_roots.isra.12+0xaa/0x137 [btrfs]
[255289.392068] [<ffffffff8107d33d>] ? trace_hardirqs_on+0xd/0xf
[255289.392068] [<ffffffffa037841f>] ? btrfs_commit_transaction+0x4b1/0x9c9 [btrfs]
[255289.392068] [<ffffffff814351a4>] ? _raw_spin_unlock+0x32/0x46
[255289.392068] [<ffffffffa037842e>] btrfs_commit_transaction+0x4c0/0x9c9 [btrfs]
(...)
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
Pull btrfs fix from Chris Mason:
"When an arm user reported crashes near page_address(page) in my new
code, it became clear that I can't be trusted with GFP masks. Filipe
beat me to the patch, and I'll just be in the corner with my dunce cap
on"
* 'for-linus-4.1' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
Btrfs: fix wrong mapping flags for free space inode
We were passing a flags value that differed from the intention in commit
2b10826800 ("Btrfs: don't use highmem for free space cache pages").
This caused problems in a ARM machine, leaving btrfs unusable there.
Reported-by: Merlijn Wajer <merlijn@wizzup.org>
Tested-by: Merlijn Wajer <merlijn@wizzup.org>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
Struct bio has a reference count that controls when it can be freed.
Most uses cases is allocating the bio, which then returns with a
single reference to it, doing IO, and then dropping that single
reference. We can remove this atomic_dec_and_test() in the completion
path, if nobody else is holding a reference to the bio.
If someone does call bio_get() on the bio, then we flag the bio as
now having valid count and that we must properly honor the reference
count when it's being put.
Tested-by: Robert Elliott <elliott@hp.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
Pull btrfs fixes from Chris Mason:
"A few more btrfs fixes.
These range from corners Filipe found in the new free space cache
writeback to a grab bag of fixes from the list"
* 'for-linus-4.1' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
Btrfs: btrfs_release_extent_buffer_page didn't free pages of dummy extent
Btrfs: fill ->last_trans for delayed inode in btrfs_fill_inode.
btrfs: unlock i_mutex after attempting to delete subvolume during send
btrfs: check io_ctl_prepare_pages return in __btrfs_write_out_cache
btrfs: fix race on ENOMEM in alloc_extent_buffer
btrfs: handle ENOMEM in btrfs_alloc_tree_block
Btrfs: fix find_free_dev_extent() malfunction in case device tree has hole
Btrfs: don't check for delalloc_bytes in cache_save_setup
Btrfs: fix deadlock when starting writeback of bg caches
Btrfs: fix race between start dirty bg cache writeout and bg deletion
btrfs_release_extent_buffer_page() can't handle dummy extent that
allocated by btrfs_clone_extent_buffer() properly. That is because
reference count of pages that allocated by btrfs_clone_extent_buffer()
was 2, 1 by alloc_page(), and another by attach_extent_buffer_page().
Running following command repeatly can check this memory leak problem
btrfs inspect-internal inode-resolve 256 /mnt/btrfs
Signed-off-by: Chien-Kuan Yeh <ckya@synology.com>
Signed-off-by: Forrest Liu <forrestl@synology.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Tested-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
Pull btrfs fixes from Chris Mason:
"Filipe hit two problems in my block group cache patches. We finalized
the fixes last week and ran through more tests"
* 'for-linus-4.1' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
Btrfs: prevent list corruption during free space cache processing
Btrfs: fix inode cache writeout
Pull fourth vfs update from Al Viro:
"d_inode() annotations from David Howells (sat in for-next since before
the beginning of merge window) + four assorted fixes"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
RCU pathwalk breakage when running into a symlink overmounting something
fix I_DIO_WAKEUP definition
direct-io: only inc/dec inode->i_dio_count for file systems
fs/9p: fix readdir()
VFS: assorted d_backing_inode() annotations
VFS: fs/inode.c helpers: d_inode() annotations
VFS: fs/cachefiles: d_backing_inode() annotations
VFS: fs library helpers: d_inode() annotations
VFS: assorted weird filesystems: d_inode() annotations
VFS: normal filesystems (and lustre): d_inode() annotations
VFS: security/: d_inode() annotations
VFS: security/: d_backing_inode() annotations
VFS: net/: d_inode() annotations
VFS: net/unix: d_backing_inode() annotations
VFS: kernel/: d_inode() annotations
VFS: audit: d_backing_inode() annotations
VFS: Fix up some ->d_inode accesses in the chelsio driver
VFS: Cachefiles should perform fs modifications on the top layer only
VFS: AF_UNIX sockets should call mknod on the top layer only
We need to fill inode when we found a node for it in delayed_nodes_tree.
But we did not fill the ->last_trans currently, it will cause the test
of xfstest/generic/311 fail. Scenario of the 311 is shown as below:
Problem:
(1). test_fd = open(fname, O_RDWR|O_DIRECT)
(2). pwrite(test_fd, buf, 4096, 0)
(3). close(test_fd)
(4). drop_all_caches() <-------- "echo 3 > /proc/sys/vm/drop_caches"
(5). test_fd = open(fname, O_RDWR|O_DIRECT)
(6). fsync(test_fd);
<-------- we did not get the correct log entry for the file
Reason:
When we re-open this file in (5), we would find a node
in delayed_nodes_tree and fill the inode we are lookup with the
information. But the ->last_trans is not filled, then the fsync()
will check the ->last_trans and found it's 0 then say this inode
is already in our tree which is commited, not recording the extents
for it.
Fix:
This patch fill the ->last_trans properly and set the
runtime_flags if needed in this situation. Then we can get the
log entries we expected after (6) and generic/311 passed.
Signed-off-by: Dongsheng Yang <yangds.fnst@cn.fujitsu.com>
Reviewed-by: Miao Xie <miaoxie@huawei.com>
Signed-off-by: Chris Mason <clm@fb.com>
Whenever the check for a send in progress introduced in commit
521e0546c9 (btrfs: protect snapshots from deleting during send) is
hit, we return without unlocking inode->i_mutex. This is easy to see
with lockdep enabled:
[ +0.000059] ================================================
[ +0.000028] [ BUG: lock held when returning to user space! ]
[ +0.000029] 4.0.0-rc5-00096-g3c435c1 #93 Not tainted
[ +0.000026] ------------------------------------------------
[ +0.000029] btrfs/211 is leaving the kernel with locks still held!
[ +0.000029] 1 lock held by btrfs/211:
[ +0.000023] #0: (&type->i_mutex_dir_key){+.+.+.}, at: [<ffffffff8135b8df>] btrfs_ioctl_snap_destroy+0x2df/0x7a0
Make sure we unlock it in the error path.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Cc: stable@vger.kernel.org
Signed-off-by: Omar Sandoval <osandov@osandov.com>
Signed-off-by: Chris Mason <clm@fb.com>
If io_ctl_prepare_pages fails, the pages in io_ctl.pages are not valid.
When we try to access them later, things will blow up in various ways.
Also fix the comment about the return value, which is an errno on error,
not -1, and update the cases where it was not.
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Omar Sandoval <osandov@osandov.com>
Signed-off-by: Chris Mason <clm@fb.com>
Consider the following interleaving of overlapping calls to
alloc_extent_buffer:
Call 1:
- Successfully allocates a few pages with find_or_create_page
- find_or_create_page fails, goto free_eb
- Unlocks the allocated pages
Call 2:
- Calls find_or_create_page and gets a page in call 1's extent_buffer
- Finds that the page is already associated with an extent_buffer
- Grabs a reference to the half-written extent_buffer and calls
mark_extent_buffer_accessed on it
mark_extent_buffer_accessed will then try to call mark_page_accessed on
a null page and panic.
The fix is to decrement the reference count on the half-written
extent_buffer before unlocking the pages so call 2 won't use it. We
should also set exists = NULL in the case that we don't use exists to
avoid accidentally returning a freed extent_buffer in an error case.
Signed-off-by: Omar Sandoval <osandov@osandov.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
This is one of the first places to give out when memory is tight. Handle
it properly rather than with a BUG_ON.
Also fix the comment about the return value, which is an ERR_PTR, not
NULL, on error.
Signed-off-by: Omar Sandoval <osandov@osandov.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
If device tree has hole, find_free_dev_extent() cannot find available
address properly.
The problem can be reproduce by following script.
mntpath=/btrfs
loopdev=/dev/loop0
filepath=/home/forrest/image
umount $mntpath
losetup -d $loopdev
truncate --size 100g $filepath
losetup $loopdev $filepath
mkfs.btrfs -f $loopdev
mount $loopdev $mntpath
# make device tree with one big hole
for i in `seq 1 1 100`; do
fallocate -l 1g $mntpath/$i
done
sync
for i in `seq 1 1 95`; do
rm $mntpath/$i
done
sync
# wait cleaner thread remove unused block group
sleep 300
fallocate -l 1g $mntpath/aaa
# failed to allocate new chunk
fallocate -l 1g $mntpath/bbb
Above script will make device tree with one big hole, and can only allocate
just one chunk in a transaction, so failed to allocate new chunk for $mntpath/bbb
item 8 key (1 DEV_EXTENT 2185232384) itemoff 15859 itemsize 48
dev extent chunk_tree 3
chunk objectid 256 chunk offset 106292051968 length 1073741824
item 9 key (1 DEV_EXTENT 104190705664) itemoff 15811 itemsize 48
dev extent chunk_tree 3
chunk objectid 256 chunk offset 103108575232 length 1073741824
Signed-off-by: Forrest Liu <forrestl@synology.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
Now that we're doing free space cache writeback outside the critical
section in the commit, there is a bigger window for delalloc_bytes to
be added after a cache has been written. find_free_extent may do this
without putting the block group back into the dirty list, and also
without a transaction running.
Checking for delalloc_bytes in cache_save_setup means we might leave the
cache marked as written without invalidating it. Consistency checks
during mount will toss the cache, but it's better to get rid of the
check in cache_save_setup and let it get invalidated by the checks
already done during cache write out.
Signed-off-by: Chris Mason <clm@fb.com>
While running xfstests I ran into the following:
[20892.242791] ------------[ cut here ]------------
[20892.243776] WARNING: CPU: 0 PID: 13299 at fs/btrfs/super.c:260 __btrfs_abort_transaction+0x52/0x114 [btrfs]()
[20892.245874] BTRFS: Transaction aborted (error -2)
[20892.247329] Modules linked in: btrfs dm_snapshot dm_bufio dm_flakey dm_mod crc32c_generic xor raid6_pq nfsd auth_rpcgss oid_registry nfs_acl nfs lockd grace fscache sunrpc loop fuse$
[20892.258488] CPU: 0 PID: 13299 Comm: fsstress Tainted: G W 4.0.0-rc5-btrfs-next-9+ #2
[20892.262011] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.7.5-0-ge51488c-20140602_164612-nilsson.home.kraxel.org 04/01/2014
[20892.264738] 0000000000000009 ffff880427f8bc18 ffffffff8142fa46 ffffffff8108b6a2
[20892.266244] ffff880427f8bc68 ffff880427f8bc58 ffffffff81045ea5 ffff880427f8bc48
[20892.267761] ffffffffa0509a6d 00000000fffffffe ffff8803545d6f40 ffffffffa05a15a0
[20892.269378] Call Trace:
[20892.269915] [<ffffffff8142fa46>] dump_stack+0x4f/0x7b
[20892.271097] [<ffffffff8108b6a2>] ? console_unlock+0x361/0x3ad
[20892.272173] [<ffffffff81045ea5>] warn_slowpath_common+0xa1/0xbb
[20892.273386] [<ffffffffa0509a6d>] ? __btrfs_abort_transaction+0x52/0x114 [btrfs]
[20892.274857] [<ffffffff81045f05>] warn_slowpath_fmt+0x46/0x48
[20892.275851] [<ffffffffa0509a6d>] __btrfs_abort_transaction+0x52/0x114 [btrfs]
[20892.277341] [<ffffffffa0515e10>] write_one_cache_group+0x68/0xaf [btrfs]
[20892.278628] [<ffffffffa052088a>] btrfs_start_dirty_block_groups+0x18d/0x29b [btrfs]
[20892.280191] [<ffffffffa052f077>] btrfs_commit_transaction+0x130/0x9c9 [btrfs]
[20892.281781] [<ffffffff8107d33d>] ? trace_hardirqs_on+0xd/0xf
[20892.282873] [<ffffffffa054163b>] btrfs_sync_file+0x313/0x387 [btrfs]
[20892.284111] [<ffffffff8117acad>] vfs_fsync_range+0x95/0xa4
[20892.285203] [<ffffffff810e603f>] ? time_hardirqs_on+0x15/0x28
[20892.286290] [<ffffffff8123960b>] ? trace_hardirqs_on_thunk+0x3a/0x3f
[20892.287469] [<ffffffff8117acd8>] vfs_fsync+0x1c/0x1e
[20892.288412] [<ffffffff8117ae54>] do_fsync+0x34/0x4e
[20892.289348] [<ffffffff8117b07c>] SyS_fsync+0x10/0x14
[20892.290255] [<ffffffff81435b32>] system_call_fastpath+0x12/0x17
[20892.291316] ---[ end trace 597f77e664245373 ]---
[20892.293955] BTRFS: error (device sdg) in write_one_cache_group:3184: errno=-2 No such entry
[20892.297390] BTRFS info (device sdg): forced readonly
This happens because in btrfs_start_dirty_block_groups() we splice the
transaction's list of dirty block groups into a local list and then we
keep extracting the first element of the list without holding the
cache_write_mutex mutex. This means that before we acquire that mutex
the first block group on the list might be removed by a conurrent task
running btrfs_remove_block_group(). So make sure we extract the first
element (and test the list emptyness) while holding that mutex.
Fixes: 1bbc621ef2 ("Btrfs: allow block group cache writeout
outside critical section in commit")
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
do_blockdev_direct_IO() increments and decrements the inode
->i_dio_count for each IO operation. It does this to protect against
truncate of a file. Block devices don't need this sort of protection.
For a capable multiqueue setup, this atomic int is the only shared
state between applications accessing the device for O_DIRECT, and it
presents a scaling wall for that. In my testing, as much as 30% of
system time is spent incrementing and decrementing this value. A mixed
read/write workload improved from ~2.5M IOPS to ~9.6M IOPS, with
better latencies too. Before:
clat percentiles (usec):
| 1.00th=[ 33], 5.00th=[ 34], 10.00th=[ 34], 20.00th=[ 34],
| 30.00th=[ 34], 40.00th=[ 34], 50.00th=[ 35], 60.00th=[ 35],
| 70.00th=[ 35], 80.00th=[ 35], 90.00th=[ 37], 95.00th=[ 80],
| 99.00th=[ 98], 99.50th=[ 151], 99.90th=[ 155], 99.95th=[ 155],
| 99.99th=[ 165]
After:
clat percentiles (usec):
| 1.00th=[ 95], 5.00th=[ 108], 10.00th=[ 129], 20.00th=[ 149],
| 30.00th=[ 155], 40.00th=[ 161], 50.00th=[ 167], 60.00th=[ 171],
| 70.00th=[ 177], 80.00th=[ 185], 90.00th=[ 201], 95.00th=[ 270],
| 99.00th=[ 390], 99.50th=[ 398], 99.90th=[ 418], 99.95th=[ 422],
| 99.99th=[ 438]
In other setups, Robert Elliott reported seeing good performance
improvements:
https://lkml.org/lkml/2015/4/3/557
The more applications accessing the device, the worse it gets.
Add a new direct-io flags, DIO_SKIP_DIO_COUNT, which tells
do_blockdev_direct_IO() that it need not worry about incrementing
or decrementing the inode i_dio_count for this caller.
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Elliott, Robert (Server Storage) <elliott@hp.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Jens Axboe <axboe@fb.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
__btrfs_write_out_cache is holding the ctl->tree_lock while it prepares
a list of bitmaps to record in the free space cache. It was dropping
the lock while it worked on other components, which made a window for
free_bitmap() to free the bitmap struct without removing it from the
list.
This changes things to hold the lock the whole time, and also makes sure
we hold the lock during enospc cleanup.
Reported-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
Pull btrfs updates from Chris Mason:
"I've been running these through a longer set of load tests because my
commits change the free space cache writeout. It fixes commit stalls
on large filesystems (~20T space used and up) that we have been
triggering here. We were seeing new writers blocked for 10 seconds or
more during commits, which is far from good.
Josef and I fixed up ENOSPC aborts when deleting huge files (3T or
more), that are triggered because our metadata reservations were not
properly accounting for crcs and were not replenishing during the
truncate.
Also in this series, a number of qgroup fixes from Fujitsu and Dave
Sterba collected most of the pending cleanups from the list"
* 'for-linus-4.1' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (93 commits)
btrfs: quota: Update quota tree after qgroup relationship change.
btrfs: quota: Automatically update related qgroups or mark INCONSISTENT flags when assigning/deleting a qgroup relations.
btrfs: qgroup: clear STATUS_FLAG_ON in disabling quota.
btrfs: Update btrfs qgroup status item when rescan is done.
btrfs: qgroup: Fix dead judgement on qgroup_rescan_leaf() return value.
btrfs: Don't allow subvolid >= (1 << BTRFS_QGROUP_LEVEL_SHIFT) to be created
btrfs: Check qgroup level in kernel qgroup assign.
btrfs: qgroup: allow to remove qgroup which has parent but no child.
btrfs: qgroup: return EINVAL if level of parent is not higher than child's.
btrfs: qgroup: do a reservation in a higher level.
Btrfs: qgroup, Account data space in more proper timings.
Btrfs: qgroup: Introduce a may_use to account space_info->bytes_may_use.
Btrfs: qgroup: free reserved in exceeding quota.
Btrfs: qgroup: cleanup, remove an unsued parameter in btrfs_create_qgroup().
btrfs: qgroup: fix limit args override whole limit struct
btrfs: qgroup: update limit info in function btrfs_run_qgroups().
btrfs: qgroup: consolidate the parameter of fucntion update_qgroup_limit_item().
btrfs: qgroup: update qgroup in memory at the same time when we update it in btree.
btrfs: qgroup: inherit limit info from srcgroup in creating snapshot.
btrfs: Support busy loop of write and delete
...
The code to fix stalls during free spache cache IO wasn't using
the correct root when waiting on the IO for inode caches. This
is only a problem when the inode cache is enabled with
mount -o inode_cache
This fixes the inode cache writeout to preserve any error values and
makes sure not to override the root when inode cache writeout is done.
Reported-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
that's the bulk of filesystem drivers dealing with inodes of their own
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Previous patch modified the in memory struct but it's not written in
quota tree until next commit.
So user will still get old data using "btrfs qgroup show" after
assign/remove.
This patch will call btrfs_run_qgroups in assign ioctl so it will be
updated to in memory quota trees and user will get up-to-date results.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Operation like qgroups assigning/deleting qgroup relations will mostly
cause qgroup data inconsistent, since it needs to do the full rescan to
determine whether shared extents are exclusive or still shared in
parent qgroups.
But there are some exceptions, like qgroup with only exclusive extents
(qgroup->excl == qgroup->rfer), in that case, we only needs to
modify all its parents' excl and rfer.
So this patch adds a quick path for such qgroup in qgroup
assign/remove routine, and if quick path failed, the qgroup status will
be marked INCONSISTENT, and return 1 to info user-land.
BTW since the quick path is much the same of qgroup_excl_accounting(),
so move the core of it to __qgroup_excl_accounting() and reuse it.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Dongsheng Yang <yangds.fnst@cn.fujitsu.com>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
we forgot to clear STATUS_FLAG_ON in quota_disable(), it
will cause a problem shown as below:
# mount /dev/sdc /mnt
# btrfs quota enable /mnt
# btrfs quota disable /mnt
# btrfs quota rescan /mnt
quota rescan started <--- expecting it fail here.
# echo $?
0
Signed-off-by: Dongsheng Yang <yangds.fnst@cn.fujitsu.com>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Update qgroup status when rescan is done.
Before this patch, status item is not updated on rescan finish, which
causing the RESCAN and INCONSISTENT flags never cleared.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Old qgroup_rescan_leaf() comment indicates ret == 2 as complete and
cleared INCONSISTENT flag.
This is not true since it will never return 2, and inside it no codes
will clear INCONSISTENT flag.
The flag clearance is done in btrfs_qgroup_rescan_work().
This caused the bug that INCONSISTENT flag is never cleared.
So change the comment and fix the dead judgment.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Btrfs will create qgroup on subvolume creation if quota is enabled, but
qgroup uses the high bits(currently 16 bits) as level, to build the
inheritance.
However it is fully possible a subvolume can be created with a
subvolumeid larger than 1 << BTRFS_QGROUP_LEVEL_SHIFT, so it will be
considered as level 1 and can't be assigned to other qgroup in level 1.
This patch will prevent such things so qgroup inheritance will not be
screwed up.
The downside is very clear, btrfs subvolume number limit will decrease
from (u64 max - 256(fisrt free objectid) - 256(last free objectid)) to
(u48 max -256(first free objectid)).
But we still have near u48(that's 15 digits in dec), so that should not
be a huge problem.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Although we have qgroup level check in btrfs-progs, it's not enough
since other programe may still call ioctl directly not using
btrfs-progs. For example, systemd.
But it's btrfs-progs to be blame since we don't provide a
full-function(like subvolume create things) btrfs library with enough
check, and only rely on kernel ioctl.
So Add level checks in kernel too.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
When a qgroup has parents but no child, it should be removable in
Theory I think. But currently, we can not remove it when it has
either parent or child.
Example:
# btrfs quota enable /mnt
# btrfs qgroup create 1/0 /mnt
# btrfs qgroup create 2/0 /mnt
# btrfs qgroup assign 1/0 2/0 /mnt
# btrfs qgroup show -pcre /mnt
qgroupid rfer excl max_rfer max_excl parent child
-------- ---- ---- -------- -------- ------ -----
0/5 16384 16384 0 0 --- ---
1/0 0 0 0 0 2/0 ---
2/0 0 0 0 0 --- 1/0
At this time, there is no subvol or qgroup depending on it.
Just a qgroup 2/0 is its parent, but 2/0 can work well without
1/0. So I think 1/0 should be removalbe. But:
# btrfs qgroup destroy 1/0 /mnt
ERROR: unable to destroy quota group: Device or resource busy
This patch remove the check of qgroup->parent in removing it,
then we can remove a qgroup when it has a parent.
Signed-off-by: Dongsheng Yang <yangds.fnst@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
When we create a subvol inheriting a qgroup, we need to check the level
of them. Otherwise, there is a chance a qgroup can inherit another qgroup
at the same level.
Signed-off-by: Dongsheng Yang <yangds.fnst@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
There are two problems in qgroup:
a). The PAGE_CACHE is 4K, even when we are writing a data of 1K,
qgroup will reserve a 4K size. It will cause the last 3K in a qgroup
is not available to user.
b). When user is writing a inline data, qgroup will not reserve it,
it means this is a window we can exceed the limit of a qgroup.
The main idea of this patch is reserving the data size of write_bytes
rather than the reserve_bytes. It means qgroup will not care about
the data size btrfs will reserve for user, but only care about the
data size user is going to write. Then reserve it when user want to
write and release it in transaction committed.
In this way, qgroup can be released from the complex procedure in
btrfs and only do the reserve when user want to write and account
when the data is written in commit_transaction().
Signed-off-by: Dongsheng Yang <yangds.fnst@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
Currenly, in data writing, ->reserved is accounted in
fill_delalloc(), but ->may_use is released in clear_bit_hook()
which is called by btrfs_finish_ordered_io(). That's too late,
that said, between fill_delalloc() and btrfs_finish_ordered_io(),
the data is doublely accounted by qgroup. It will cause some
unexpected -EDQUOT.
Example:
# btrfs quota enable /root/btrfs-auto-test/
# btrfs subvolume create /root/btrfs-auto-test//sub
Create subvolume '/root/btrfs-auto-test/sub'
# btrfs qgroup limit 1G /root/btrfs-auto-test//sub
dd if=/dev/zero of=/root/btrfs-auto-test//sub/file bs=1024 count=1500000
dd: error writing '/root/btrfs-auto-test//sub/file': Disk quota exceeded
681353+0 records in
681352+0 records out
697704448 bytes (698 MB) copied, 8.15563 s, 85.5 MB/s
It's (698 MB) when we got an -EDQUOT, but we limit it by 1G.
This patch move the btrfs_qgroup_reserve/free() for data from
btrfs_delalloc_reserve/release_metadata() to btrfs_check_data_free_space()
and btrfs_free_reserved_data_space(). Then the accounter in qgroup
will be updated at the same time with the accounter in space_info updated.
In this way, the unexpected -EDQUOT will be killed.
Reported-by: Satoru Takeuchi <takeuchi_satoru@jp.fujitsu.com>
Signed-off-by: Dongsheng Yang <yangds.fnst@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
Currently, for pre_alloc or delay_alloc, the bytes will be accounted
in space_info by the three guys.
space_info->bytes_may_use --- space_info->reserved --- space_info->used.
But on the other hand, in qgroup, there are only two counters to account the
bytes, qgroup->reserved and qgroup->excl. And qg->reserved accounts
bytes in space_info->bytes_may_use and qg->excl accounts bytes in
space_info->used. So the bytes in space_info->reserved is not accounted
in qgroup. If so, there is a window we can exceed the quota limit when
bytes is in space_info->reserved.
Example:
# btrfs quota enable /mnt
# btrfs qgroup limit -e 10M /mnt
# for((i=0;i<20;i++));do fallocate -l 1M /mnt/data$i; done
# sync
# btrfs qgroup show -pcre /mnt
qgroupid rfer excl max_rfer max_excl parent child
-------- ---- ---- -------- -------- ------ -----
0/5 20987904 20987904 0 10485760 --- ---
qg->excl is 20987904 larger than max_excl 10485760.
This patch introduce a new counter named may_use to qgroup, then
there are three counters in qgroup to account bytes in space_info
as below.
space_info->bytes_may_use --- space_info->reserved --- space_info->used.
qgroup->may_use --- qgroup->reserved --- qgroup->excl
With this patch applied:
# btrfs quota enable /mnt
# btrfs qgroup limit -e 10M /mnt
# for((i=0;i<20;i++));do fallocate -l 1M /mnt/data$i; done
fallocate: /mnt/data9: fallocate failed: Disk quota exceeded
fallocate: /mnt/data10: fallocate failed: Disk quota exceeded
fallocate: /mnt/data11: fallocate failed: Disk quota exceeded
fallocate: /mnt/data12: fallocate failed: Disk quota exceeded
fallocate: /mnt/data13: fallocate failed: Disk quota exceeded
fallocate: /mnt/data14: fallocate failed: Disk quota exceeded
fallocate: /mnt/data15: fallocate failed: Disk quota exceeded
fallocate: /mnt/data16: fallocate failed: Disk quota exceeded
fallocate: /mnt/data17: fallocate failed: Disk quota exceeded
fallocate: /mnt/data18: fallocate failed: Disk quota exceeded
fallocate: /mnt/data19: fallocate failed: Disk quota exceeded
# sync
# btrfs qgroup show -pcre /mnt
qgroupid rfer excl max_rfer max_excl parent child
-------- ---- ---- -------- -------- ------ -----
0/5 9453568 9453568 0 10485760 --- ---
Reported-by: Cyril SCETBON <cyril.scetbon@free.fr>
Signed-off-by: Dongsheng Yang <yangds.fnst@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
When we exceed quota limit in writing, we will free
some reserved extent when we need to drop but not free
account in qgroup. It means, each time we exceed quota
in writing, there will be some remain space in qg->reserved
we can not use any more. If things go on like this, the
all space will be ate up.
Signed-off-by: Dongsheng Yang <yangds.fnst@cn.fujitsu.com>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
btrfs_limit_group use arg limit to override the old qgroup_limit of
corresponding qgroup. However, we should override part of old qgroup_limit
according to the bit which has been set in arg limit.
Signed-off-by: Fan Chengniang <fancn.fnst@cn.fujitsu.com>
Signed-off-by: Dongsheng Yang <yangds.fnst@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
When we commit_transaction(), qgroups in btree should be updated.
But, limit info is not considered currently. It will cause a problem
when a qgroup of a snapshot inherit the limit info from srcqgroup,
then there is an inconsistency.
Signed-off-by: Dongsheng Yang <yangds.fnst@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
Cleanup: Change the parameter of update_qgroup_limit_item() to the family of
update_qgroup_xxx_item().
Signed-off-by: Dongsheng Yang <yangds.fnst@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
When we call btrfs_qgroup_inherit() with BTRFS_QGROUP_INHERIT_SET_LIMITS,
btrfs will update the limit info of qgroup in btree but forget to update
the qgroup in rbtree at the same time. It obviousely will cause an inconsistency.
This patch fix it by updating the rbtree at the same time.
Signed-off-by: Dongsheng Yang <yangds.fnst@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
Currently, when we snapshot a subvol, snapshot will not copy the limits
from srcqgroup.
This patch make the qgroup in snapshot inherit the limit info when create
a snapshot.
Signed-off-by: Dongsheng Yang <yangds.fnst@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
Reproduce:
while true; do
dd if=/dev/zero of=/mnt/btrfs/file count=[75% fs_size]
rm /mnt/btrfs/file
done
Then we can see above loop failed on NO_SPACE.
It it long-term problem since very beginning, because delayed-iput
after rm are not run.
We already have commit_transaction() in alloc_space code, but it is
not triggered in above case.
This patch trigger commit_transaction() to run delayed-iput and
reflash pinned-space to to make write success.
It is based on previous fix of delayed-iput in commit_transaction(),
need to be applied on top of:
btrfs: Fix NO_SPACE bug caused by delayed-iput
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
Steps to reproduce:
while true; do
dd if=/dev/zero of=/btrfs_dir/file count=[fs_size * 75%]
rm /btrfs_dir/file
sync
done
And we'll see dd failed because btrfs return NO_SPACE.
Reason:
Normally, btrfs_commit_transaction() call btrfs_run_delayed_iputs()
in end to free fs space for next write, but sometimes it hadn't
done work on time, because btrfs-cleaner thread get delayed-iputs
from list before, but do iput() after next write.
This is log:
[ 2569.050776] comm=btrfs-cleaner func=btrfs_evict_inode() begin
[ 2569.084280] comm=sync func=btrfs_commit_transaction() call btrfs_run_delayed_iputs()
[ 2569.085418] comm=sync func=btrfs_commit_transaction() done btrfs_run_delayed_iputs()
[ 2569.087554] comm=sync func=btrfs_commit_transaction() end
[ 2569.191081] comm=dd begin
[ 2569.790112] comm=dd func=__btrfs_buffered_write() ret=-28
[ 2569.847479] comm=btrfs-cleaner func=add_pinned_bytes() 0 + 32677888 = 32677888
[ 2569.849530] comm=btrfs-cleaner func=add_pinned_bytes() 32677888 + 23834624 = 56512512
...
[ 2569.903893] comm=btrfs-cleaner func=add_pinned_bytes() 943976448 + 21762048 = 965738496
[ 2569.908270] comm=btrfs-cleaner func=btrfs_evict_inode() end
Fix:
Make btrfs_commit_transaction() wait current running btrfs-cleaner's
delayed-iputs() done in end.
Test:
Use script similar to above(more complex),
before patch:
7 failed in 100 * 20 loop.
after patch:
0 failed in 100 * 20 loop.
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
space_info's value calculation is some complex and easy to cause
bug, add WARN_ON() to help debug.
Changelog v1->v2:
Put WARN_ON()s under the ENOSPC_DEBUG mount option.
Suggested by: David Sterba <dsterba@suse.cz>
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
Bug1:
space_info->bytes_readonly was set to very large(negative) value in
btrfs_remove_block_group().
Reason:
Current code set block_group_cache->pinned = 0 in btrfs_delete_unused_bgs(),
but above space was not counted to space_info->bytes_readonly.
Then in btrfs_remove_block_group():
block_group->space_info->bytes_readonly -= block_group->key.offset;
We can see following value in trace:
btrfs_remove_block_group: pid=2677 comm=btrfs-cleaner WARNING: bytes_readonly=12582912, key.offset=134217728
Bug2:
space_info->total_bytes_pinned grow to value larger than fs size.
In a 1.2G fs, we can get following trace log:
at first:
ZL_DEBUG: add_pinned_bytes: pid=2710 comm=sync change total_bytes_pinned flags=1 869793792 + 95944704 = 965738496
after some op:
ZL_DEBUG: add_pinned_bytes: pid=2770 comm=sync change total_bytes_pinned flags=1 1780178944 + 95944704 = 1876123648
after some op:
ZL_DEBUG: add_pinned_bytes: pid=3193 comm=sync change total_bytes_pinned flags=1 2924568576 + 95551488 = 3020120064
...
Reason:
Similar to bug1, we also need to adjust space_info->total_bytes_pinned
in above code block.
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
If we have any chance to make a successful write, we should not give up.
This patch adjust commit-transaction condition from:
pinned >= wanted
to
left + pinned >= wanted
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
It is another reason for NO_SPACE case.
When we found enough free space in loop and saved them to
max_hole_start/size before, and tail space contains pending extent,
origional innocent max_hole_start/size are reset in retry.
As a result, find_free_dev_extent() returns less space than it can,
and cause NO_SPACE in user program.
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
Old code bypass commit transaction when we don't have enough
pinned space, but another case is there exist freed bgs in current
transction, it have possibility to make alloc_chunk success.
This patch modify the condition to:
if (have_free_bg || have_pinned_space) commit_transaction()
Confirmed above action by printk before and after patch.
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
Commit 0d97a64e0 creates a new variable but doesn't always set it up.
This puts it back to the original method (key.offset + 1) for the cases
not covered by Filipe's new logic.
Signed-off-by: Chris Mason <clm@fb.com>
If we attempt to clone a 0 length region into a file we can end up
inserting a range in the inode's extent_io tree with a start offset
that is greater then the end offset, which triggers immediately the
following warning:
[ 3914.619057] WARNING: CPU: 17 PID: 4199 at fs/btrfs/extent_io.c:435 insert_state+0x4b/0x10b [btrfs]()
[ 3914.620886] BTRFS: end < start 4095 4096
(...)
[ 3914.638093] Call Trace:
[ 3914.638636] [<ffffffff81425fd9>] dump_stack+0x4c/0x65
[ 3914.639620] [<ffffffff81045390>] warn_slowpath_common+0xa1/0xbb
[ 3914.640789] [<ffffffffa03ca44f>] ? insert_state+0x4b/0x10b [btrfs]
[ 3914.642041] [<ffffffff810453f0>] warn_slowpath_fmt+0x46/0x48
[ 3914.643236] [<ffffffffa03ca44f>] insert_state+0x4b/0x10b [btrfs]
[ 3914.644441] [<ffffffffa03ca729>] __set_extent_bit+0x107/0x3f4 [btrfs]
[ 3914.645711] [<ffffffffa03cb256>] lock_extent_bits+0x65/0x1bf [btrfs]
[ 3914.646914] [<ffffffff8142b2fb>] ? _raw_spin_unlock+0x28/0x33
[ 3914.648058] [<ffffffffa03cbac4>] ? test_range_bit+0xcc/0xde [btrfs]
[ 3914.650105] [<ffffffffa03cb3c3>] lock_extent+0x13/0x15 [btrfs]
[ 3914.651361] [<ffffffffa03db39e>] lock_extent_range+0x3d/0xcd [btrfs]
[ 3914.652761] [<ffffffffa03de1fe>] btrfs_ioctl_clone+0x278/0x388 [btrfs]
[ 3914.654128] [<ffffffff811226dd>] ? might_fault+0x58/0xb5
[ 3914.655320] [<ffffffffa03e0909>] btrfs_ioctl+0xb51/0x2195 [btrfs]
(...)
[ 3914.669271] ---[ end trace 14843d3e2e622fc1 ]---
This later makes the inode eviction handler enter an infinite loop that
keeps dumping the following warning over and over:
[ 3915.117629] WARNING: CPU: 22 PID: 4228 at fs/btrfs/extent_io.c:435 insert_state+0x4b/0x10b [btrfs]()
[ 3915.119913] BTRFS: end < start 4095 4096
(...)
[ 3915.137394] Call Trace:
[ 3915.137913] [<ffffffff81425fd9>] dump_stack+0x4c/0x65
[ 3915.139154] [<ffffffff81045390>] warn_slowpath_common+0xa1/0xbb
[ 3915.140316] [<ffffffffa03ca44f>] ? insert_state+0x4b/0x10b [btrfs]
[ 3915.141505] [<ffffffff810453f0>] warn_slowpath_fmt+0x46/0x48
[ 3915.142709] [<ffffffffa03ca44f>] insert_state+0x4b/0x10b [btrfs]
[ 3915.143849] [<ffffffffa03ca729>] __set_extent_bit+0x107/0x3f4 [btrfs]
[ 3915.145120] [<ffffffffa038c1e3>] ? btrfs_kill_super+0x17/0x23 [btrfs]
[ 3915.146352] [<ffffffff811548f6>] ? deactivate_locked_super+0x3b/0x50
[ 3915.147565] [<ffffffffa03cb256>] lock_extent_bits+0x65/0x1bf [btrfs]
[ 3915.148785] [<ffffffff8142b7e2>] ? _raw_write_unlock+0x28/0x33
[ 3915.149931] [<ffffffffa03bc325>] btrfs_evict_inode+0x196/0x482 [btrfs]
[ 3915.151154] [<ffffffff81168904>] evict+0xa0/0x148
[ 3915.152094] [<ffffffff811689e5>] dispose_list+0x39/0x43
[ 3915.153081] [<ffffffff81169564>] evict_inodes+0xdc/0xeb
[ 3915.154062] [<ffffffff81154418>] generic_shutdown_super+0x49/0xef
[ 3915.155193] [<ffffffff811546d1>] kill_anon_super+0x13/0x1e
[ 3915.156274] [<ffffffffa038c1e3>] btrfs_kill_super+0x17/0x23 [btrfs]
(...)
[ 3915.167404] ---[ end trace 14843d3e2e622fc2 ]---
So just bail out of the clone ioctl if the length of the region to clone
is zero, without locking any extent range, in order to prevent this issue
(same behaviour as a pwrite with a 0 length for example).
This is trivial to reproduce. For example, the steps for the test I just
made for fstests:
mkfs.btrfs -f SCRATCH_DEV
mount SCRATCH_DEV $SCRATCH_MNT
touch $SCRATCH_MNT/foo
touch $SCRATCH_MNT/bar
$CLONER_PROG -s 0 -d 4096 -l 0 $SCRATCH_MNT/foo $SCRATCH_MNT/bar
umount $SCRATCH_MNT
A test case for fstests follows soon.
CC: <stable@vger.kernel.org>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Omar Sandoval <osandov@osandov.com>
Signed-off-by: Chris Mason <clm@fb.com>
If we pass a length of 0 to the extent_same ioctl, we end up locking an
extent range with a start offset greater then its end offset (if the
destination file's offset is greater than zero). This results in a warning
from extent_io.c:insert_state through the following call chain:
btrfs_extent_same()
btrfs_double_lock()
lock_extent_range()
lock_extent(inode->io_tree, offset, offset + len - 1)
lock_extent_bits()
__set_extent_bit()
insert_state()
--> WARN_ON(end < start)
This leads to an infinite loop when evicting the inode. This is the same
problem that my previous patch titled
"Btrfs: fix inode eviction infinite loop after cloning into it" addressed
but for the extent_same ioctl instead of the clone ioctl.
CC: <stable@vger.kernel.org>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Omar Sandoval <osandov@osandov.com>
Signed-off-by: Chris Mason <clm@fb.com>
While searching for extents to clone we might find one where we only use
a part of it coming from its tail. If our destination inode is the same
the source inode, we end up removing the tail part of the extent item and
insert after a new one that point to the same extent with an adjusted
key file offset and data offset. After this we search for the next extent
item in the fs/subvol tree with a key that has an offset incremented by
one. But this second search leaves us at the new extent item we inserted
previously, and since that extent item has a non-zero data offset, it
it can make us call btrfs_drop_extents with an empty range (start == end)
which causes the following warning:
[23978.537119] WARNING: CPU: 6 PID: 16251 at fs/btrfs/file.c:550 btrfs_drop_extent_cache+0x43/0x385 [btrfs]()
(...)
[23978.557266] Call Trace:
[23978.557978] [<ffffffff81425fd9>] dump_stack+0x4c/0x65
[23978.559191] [<ffffffff81045390>] warn_slowpath_common+0xa1/0xbb
[23978.560699] [<ffffffffa047f0ea>] ? btrfs_drop_extent_cache+0x43/0x385 [btrfs]
[23978.562389] [<ffffffff8104544d>] warn_slowpath_null+0x1a/0x1c
[23978.563613] [<ffffffffa047f0ea>] btrfs_drop_extent_cache+0x43/0x385 [btrfs]
[23978.565103] [<ffffffff810e3a18>] ? time_hardirqs_off+0x15/0x28
[23978.566294] [<ffffffff81079ff8>] ? trace_hardirqs_off+0xd/0xf
[23978.567438] [<ffffffffa047f73d>] __btrfs_drop_extents+0x6b/0x9e1 [btrfs]
[23978.568702] [<ffffffff8107c03f>] ? trace_hardirqs_on+0xd/0xf
[23978.569763] [<ffffffff811441c0>] ? ____cache_alloc+0x69/0x2eb
[23978.570817] [<ffffffff81142269>] ? virt_to_head_page+0x9/0x36
[23978.571872] [<ffffffff81143c15>] ? cache_alloc_debugcheck_after.isra.42+0x16c/0x1cb
[23978.573466] [<ffffffff811420d5>] ? kmemleak_alloc_recursive.constprop.52+0x16/0x18
[23978.574962] [<ffffffffa0480d07>] btrfs_drop_extents+0x66/0x7f [btrfs]
[23978.576179] [<ffffffffa049aa35>] btrfs_clone+0x516/0xaf5 [btrfs]
[23978.577311] [<ffffffffa04983dc>] ? lock_extent_range+0x7b/0xcd [btrfs]
[23978.578520] [<ffffffffa049b2a2>] btrfs_ioctl_clone+0x28e/0x39f [btrfs]
[23978.580282] [<ffffffffa049d9ae>] btrfs_ioctl+0xb51/0x219a [btrfs]
(...)
[23978.591887] ---[ end trace 988ec2a653d03ed3 ]---
Then we attempt to insert a new extent item with a key that already
exists, which makes btrfs_insert_empty_item return -EEXIST resulting in
abortion of the current transaction:
[23978.594355] WARNING: CPU: 6 PID: 16251 at fs/btrfs/super.c:260 __btrfs_abort_transaction+0x52/0x114 [btrfs]()
(...)
[23978.622589] Call Trace:
[23978.623181] [<ffffffff81425fd9>] dump_stack+0x4c/0x65
[23978.624359] [<ffffffff81045390>] warn_slowpath_common+0xa1/0xbb
[23978.625573] [<ffffffffa044ab6c>] ? __btrfs_abort_transaction+0x52/0x114 [btrfs]
[23978.626971] [<ffffffff810453f0>] warn_slowpath_fmt+0x46/0x48
[23978.628003] [<ffffffff8108a6c8>] ? vprintk_default+0x1d/0x1f
[23978.629138] [<ffffffffa044ab6c>] __btrfs_abort_transaction+0x52/0x114 [btrfs]
[23978.630528] [<ffffffffa049ad1b>] btrfs_clone+0x7fc/0xaf5 [btrfs]
[23978.631635] [<ffffffffa04983dc>] ? lock_extent_range+0x7b/0xcd [btrfs]
[23978.632886] [<ffffffffa049b2a2>] btrfs_ioctl_clone+0x28e/0x39f [btrfs]
[23978.634119] [<ffffffffa049d9ae>] btrfs_ioctl+0xb51/0x219a [btrfs]
(...)
[23978.647714] ---[ end trace 988ec2a653d03ed4 ]---
This is wrong because we should not process the extent item that we just
inserted previously, and instead process the extent item that follows it
in the tree
For example for the test case I wrote for fstests:
bs=$((64 * 1024))
mkfs.btrfs -f -l $bs -O ^no-holes /dev/sdc
mount /dev/sdc /mnt
xfs_io -f -c "pwrite -S 0xaa $(($bs * 2)) $(($bs * 2))" /mnt/foo
$CLONER_PROG -s $((3 * $bs)) -d $((267 * $bs)) -l 0 /mnt/foo /mnt/foo
$CLONER_PROG -s $((217 * $bs)) -d $((95 * $bs)) -l 0 /mnt/foo /mnt/foo
The second clone call fails with -EEXIST, because when we process the
first extent item (offset 262144), we drop part of it (counting from the
end) and then insert a new extent item with a key greater then the key we
found. The next time we search the tree we search for a key with offset
262144 + 1, which leaves us at the new extent item we have just inserted
but we think it refers to an extent that we need to clone.
Fix this by ensuring the next search key uses an offset corresponding to
the offset of the key we found previously plus the data length of the
corresponding extent item. This ensures we skip new extent items that we
inserted and works for the case of implicit holes too (NO_HOLES feature).
A test case for fstests follows soon.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
... returning -E... upon error and amount of data left in iter after
(possible) truncation upon success. Note, that normal case gives
a non-zero (positive) return value, so any tests for != 0 _must_ be
updated.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Conflicts:
fs/ext4/file.c
The rw parameter to direct_IO is redundant with iov_iter->type, and
treated slightly differently just about everywhere it's used: some users
do rw & WRITE, and others do rw == WRITE where they should be doing a
bitwise check. Simplify this with the new iov_iter_rw() helper, which
always returns either READ or WRITE.
Signed-off-by: Omar Sandoval <osandov@osandov.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Most filesystems call through to these at some point, so we'll start
here.
Signed-off-by: Omar Sandoval <osandov@osandov.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
All places outside of core VFS that checked ->read and ->write for being NULL or
called the methods directly are gone now, so NULL {read,write} with non-NULL
{read,write}_iter will do the right thing in all cases.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Near the end of close_ctree, we're calling btrfs_free_block_rsv
to free up the orphan rsv. The problem is this call updates the
space_info, which has already been freed.
This adds a new __ function that directly calls kfree instead of trying
to update the space infos.
Signed-off-by: Chris Mason <clm@fb.com>
We loop through all of the dirty block groups during commit and write
the free space cache. In order to make sure the cache is currect, we do
this while no other writers are allowed in the commit.
If a large number of block groups are dirty, this can introduce long
stalls during the final stages of the commit, which can block new procs
trying to change the filesystem.
This commit changes the block group cache writeout to take appropriate
locks and allow it to run earlier in the commit. We'll still have to
redo some of the block groups, but it means we can get most of the work
out of the way without blocking the entire FS.
Signed-off-by: Chris Mason <clm@fb.com>
In order to create the free space cache concurrently with FS modifications,
we need to take a few block group locks.
The cache code also does kmap, which would schedule with the locks held.
Instead of going through kmap_atomic, lets just use lowmem for the cache
pages.
Signed-off-by: Chris Mason <clm@fb.com>
Block group cache writeout is currently waiting on the pages for each
block group cache before moving on to writing the next one. This commit
switches things around to send down all the caches and then wait on them
in batches.
The end result is much faster, since we're keeping the disk pipeline
full.
Signed-off-by: Chris Mason <clm@fb.com>
We'll need to put the io_ctl into the block_group cache struct, so
name it struct btrfs_io_ctl and move it into ctree.h
Signed-off-by: Chris Mason <clm@fb.com>
btrfs_evict_inode() needs to be more careful about stealing from the
global_rsv. We dont' want to end up aborting commit with ENOSPC just
because the evict_inode code was too greedy.
Signed-off-by: Chris Mason <clm@fb.com>
We're triggering a huge number of commits from
btrfs_async_reclaim_metadata_space. These aren't really requried,
because everyone calling the async reclaim code is going to end up
triggering a commit on their own.
Signed-off-by: Chris Mason <clm@fb.com>
When truncate starts, it allocates some space in the block reserves so
that we'll have enough to update metadata along the way.
For very large files, we can easily go through all of that space as we
loop through the extents. This changes truncate to refill the space
reservation as it progresses through the file.
Signed-off-by: Chris Mason <clm@fb.com>
As we delete large extents, we end up doing huge amounts of COW in order
to delete the corresponding crcs. This adds accounting so that we keep
track of that space and flushing of delayed refs so that we don't build
up too much delayed crc work.
This helps limit the delayed work that must be done at commit time and
tries to avoid ENOSPC aborts because the crcs eat all the global
reserves.
Signed-off-by: Chris Mason <clm@fb.com>
When we are deleting large files with large extents, we are building up
a huge set of delayed refs for processing. Truncate isn't checking
often enough to see if we need to back off and process those, or let
a commit proceed.
The end result is long stalls after the rm, and very long commit times.
During the commits, other processes back up waiting to start new
transactions and we get into trouble.
Signed-off-by: Chris Mason <clm@fb.com>
Building alpha:allmodconfig fails with
fs/btrfs/inode.c: In function 'check_direct_IO':
fs/btrfs/inode.c:8050:2: error: implicit declaration of function 'iov_iter_alignment'
due to a missing include file.
Fixes: 3737c63e1fb0 ("fs: move struct kiocb to fs.h")
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
Acked-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
This was used to make sure that a fresh btrfs from an older mkfs.btrfs,
but it also allows us to mount a buggy btrfs if this btrfs has the right
superblock head part but has something wrong with chunk tree part[1], and
after that we can hit BUG_ON()s set in the code to prevent something
impossible.
Since David has released "Btrfs progs v3.19-rc2", just remove the check,
if anyone who wants to make a fresh btrfs, please use the latest one.
[1]: http://www.spinics.net/lists/linux-btrfs/msg42358.html
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: Omar Sandoval <osandov@osandov.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
Orphans in the fs tree are cleaned up via open_ctree and subvolume
orphans are cleaned via btrfs_lookup_dentry -- except when a default
subvolume is in use. The name for the default subvolume uses a manual
lookup that doesn't trigger orphan cleanup and needs to trigger it
manually as well. This doesn't apply to the remount case since the
subvolumes are cleaned up by walking the root radix tree.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
The private_data member of the Btrfs control device file
(/dev/btrfs-control) is used to hold the current transaction and needs
to be initialized to NULL to signify that no transaction is in progress.
We explicitly set the control file's private_data to NULL to be
independent of whatever value the misc subsystem initializes it to.
Backstory:
----------
The misc subsystem (which is used by /dev/btrfs-control) initializes
a file's private_data to point to the misc device when a driver has
registered a custom open file operation and initializes it to NULL
when a custom open file operation has *not* been provided.
This subtle quirk is confusing, to the point where kernel code registers
*empty* file open operations to have private_data point to the misc
device structure.
And it leads to bugs, where the addition or removal of a custom open
file operation surprisingly changes the initial contents of a file's
private_data structure.
To simplify things in the misc subsystem, a patch [1] has been proposed
to *always* set private_data to point to the misc device instead of
only doing this when a custom open file operation has been registered.
But before we can fix this in the misc subsystem itself, we need to
modify the (few) drivers that rely on this very subtle behavior.
[1] https://lkml.org/lkml/2014/12/4/939
Signed-off-by: Martin Kepplinger <martink@posteo.de>
Signed-off-by: Tom Van Braeckel <tomvanbraeckel@gmail.com>
Signed-off-by: Chris Mason <clm@fb.com>
fiemap_fill_next_extent returns 0 on success, -errno on error, 1 if this was
the last extent that will fit in user array. If 1 is returned, the return
value may eventually returned to user space, which should not happen, according
to manpage of ioctl.
Signed-off-by: Chengyu Song <csong84@gatech.edu>
Reviewed-by: David Sterba <dsterba@suse.cz>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
Due to insufficient check in btrfs_is_valid_xattr, this unexpectedly
works:
$ touch file
$ setfattr -n user. -v 1 file
$ getfattr -d file
user.="1"
ie. the missing attribute name after the namespace.
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=94291
Reported-by: William Douglas <william.douglas@intel.com>
CC: <stable@vger.kernel.org> # 2.6.29+
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
While committing a transaction we free the log roots before we write the
new super block. Freeing the log roots implies marking the disk location
of every node/leaf (metadata extent) as pinned before the new super block
is written. This is to prevent the disk location of log metadata extents
from being reused before the new super block is written, otherwise we
would have a corrupted log tree if before the new super block is written
a crash/reboot happens and the location of any log tree metadata extent
ended up being reused and rewritten.
Even though we pinned the log tree's metadata extents, we were issuing a
discard against them if the fs was mounted with the -o discard option,
resulting in corruption of the log tree if a crash/reboot happened before
writing the new super block - the next time the fs was mounted, during
the log replay process we would find nodes/leafs of the log btree with
a content full of zeroes, causing the process to fail and require the
use of the tool btrfs-zero-log to wipeout the log tree (and all data
previously fsynced becoming lost forever).
Fix this by not doing a discard when pinning an extent. The discard will
be done later when it's safe (after the new super block is committed) at
extent-tree.c:btrfs_finish_extent_commit().
Fixes: e688b7252f (Btrfs: fix extent pinning bugs in the tree log)
CC: <stable@vger.kernel.org>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
We can get into inconsistency between inodes and directory entries
after fsyncing a directory. The issue is that while a directory gets
the new dentries persisted in the fsync log and replayed at mount time,
the link count of the inode that directory entries point to doesn't
get updated, staying with an incorrect link count (smaller then the
correct value). This later leads to stale file handle errors when
accessing (including attempt to delete) some of the links if all the
other ones are removed, which also implies impossibility to delete the
parent directories, since the dentries can not be removed.
Another issue is that (unlike ext3/4, xfs, f2fs, reiserfs, nilfs2),
when fsyncing a directory, new files aren't logged (their metadata and
dentries) nor any child directories. So this patch fixes this issue too,
since it has the same resolution as the incorrect inode link count issue
mentioned before.
This is very easy to reproduce, and the following excerpt from my test
case for xfstests shows how:
_scratch_mkfs >> $seqres.full 2>&1
_init_flakey
_mount_flakey
# Create our main test file and directory.
$XFS_IO_PROG -f -c "pwrite -S 0xaa 0 8K" $SCRATCH_MNT/foo | _filter_xfs_io
mkdir $SCRATCH_MNT/mydir
# Make sure all metadata and data are durably persisted.
sync
# Add a hard link to 'foo' inside our test directory and fsync only the
# directory. The btrfs fsync implementation had a bug that caused the new
# directory entry to be visible after the fsync log replay but, the inode
# of our file remained with a link count of 1.
ln $SCRATCH_MNT/foo $SCRATCH_MNT/mydir/foo_2
# Add a few more links and new files.
# This is just to verify nothing breaks or gives incorrect results after the
# fsync log is replayed.
ln $SCRATCH_MNT/foo $SCRATCH_MNT/mydir/foo_3
$XFS_IO_PROG -f -c "pwrite -S 0xff 0 64K" $SCRATCH_MNT/hello | _filter_xfs_io
ln $SCRATCH_MNT/hello $SCRATCH_MNT/mydir/hello_2
# Add some subdirectories and new files and links to them. This is to verify
# that after fsyncing our top level directory 'mydir', all the subdirectories
# and their files/links are registered in the fsync log and exist after the
# fsync log is replayed.
mkdir -p $SCRATCH_MNT/mydir/x/y/z
ln $SCRATCH_MNT/foo $SCRATCH_MNT/mydir/x/y/foo_y_link
ln $SCRATCH_MNT/foo $SCRATCH_MNT/mydir/x/y/z/foo_z_link
touch $SCRATCH_MNT/mydir/x/y/z/qwerty
# Now fsync only our top directory.
$XFS_IO_PROG -c "fsync" $SCRATCH_MNT/mydir
# And fsync now our new file named 'hello', just to verify later that it has
# the expected content and that the previous fsync on the directory 'mydir' had
# no bad influence on this fsync.
$XFS_IO_PROG -c "fsync" $SCRATCH_MNT/hello
# Simulate a crash/power loss.
_load_flakey_table $FLAKEY_DROP_WRITES
_unmount_flakey
_load_flakey_table $FLAKEY_ALLOW_WRITES
_mount_flakey
# Verify the content of our file 'foo' remains the same as before, 8192 bytes,
# all with the value 0xaa.
echo "File 'foo' content after log replay:"
od -t x1 $SCRATCH_MNT/foo
# Remove the first name of our inode. Because of the directory fsync bug, the
# inode's link count was 1 instead of 5, so removing the 'foo' name ended up
# deleting the inode and the other names became stale directory entries (still
# visible to applications). Attempting to remove or access the remaining
# dentries pointing to that inode resulted in stale file handle errors and
# made it impossible to remove the parent directories since it was impossible
# for them to become empty.
echo "file 'foo' link count after log replay: $(stat -c %h $SCRATCH_MNT/foo)"
rm -f $SCRATCH_MNT/foo
# Now verify that all files, links and directories created before fsyncing our
# directory exist after the fsync log was replayed.
[ -f $SCRATCH_MNT/mydir/foo_2 ] || echo "Link mydir/foo_2 is missing"
[ -f $SCRATCH_MNT/mydir/foo_3 ] || echo "Link mydir/foo_3 is missing"
[ -f $SCRATCH_MNT/hello ] || echo "File hello is missing"
[ -f $SCRATCH_MNT/mydir/hello_2 ] || echo "Link mydir/hello_2 is missing"
[ -f $SCRATCH_MNT/mydir/x/y/foo_y_link ] || \
echo "Link mydir/x/y/foo_y_link is missing"
[ -f $SCRATCH_MNT/mydir/x/y/z/foo_z_link ] || \
echo "Link mydir/x/y/z/foo_z_link is missing"
[ -f $SCRATCH_MNT/mydir/x/y/z/qwerty ] || \
echo "File mydir/x/y/z/qwerty is missing"
# We expect our file here to have a size of 64Kb and all the bytes having the
# value 0xff.
echo "file 'hello' content after log replay:"
od -t x1 $SCRATCH_MNT/hello
# Now remove all files/links, under our test directory 'mydir', and verify we
# can remove all the directories.
rm -f $SCRATCH_MNT/mydir/x/y/z/*
rmdir $SCRATCH_MNT/mydir/x/y/z
rm -f $SCRATCH_MNT/mydir/x/y/*
rmdir $SCRATCH_MNT/mydir/x/y
rmdir $SCRATCH_MNT/mydir/x
rm -f $SCRATCH_MNT/mydir/*
rmdir $SCRATCH_MNT/mydir
# An fsck, run by the fstests framework everytime a test finishes, also detected
# the inconsistency and printed the following error message:
#
# root 5 inode 257 errors 2001, no inode item, link count wrong
# unresolved ref dir 258 index 2 namelen 5 name foo_2 filetype 1 errors 4, no inode ref
# unresolved ref dir 258 index 3 namelen 5 name foo_3 filetype 1 errors 4, no inode ref
status=0
exit
The expected golden output for the test is:
wrote 8192/8192 bytes at offset 0
XXX Bytes, X ops; XX:XX:XX.X (XXX YYY/sec and XXX ops/sec)
wrote 65536/65536 bytes at offset 0
XXX Bytes, X ops; XX:XX:XX.X (XXX YYY/sec and XXX ops/sec)
File 'foo' content after log replay:
0000000 aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa
*
0020000
file 'foo' link count after log replay: 5
file 'hello' content after log replay:
0000000 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
*
0200000
Which is the output after this patch and when running the test against
ext3/4, xfs, f2fs, reiserfs or nilfs2. Without this patch, the test's
output is:
wrote 8192/8192 bytes at offset 0
XXX Bytes, X ops; XX:XX:XX.X (XXX YYY/sec and XXX ops/sec)
wrote 65536/65536 bytes at offset 0
XXX Bytes, X ops; XX:XX:XX.X (XXX YYY/sec and XXX ops/sec)
File 'foo' content after log replay:
0000000 aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa
*
0020000
file 'foo' link count after log replay: 1
Link mydir/foo_2 is missing
Link mydir/foo_3 is missing
Link mydir/x/y/foo_y_link is missing
Link mydir/x/y/z/foo_z_link is missing
File mydir/x/y/z/qwerty is missing
file 'hello' content after log replay:
0000000 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
*
0200000
rmdir: failed to remove '/home/fdmanana/btrfs-tests/scratch_1/mydir/x/y/z': No such file or directory
rmdir: failed to remove '/home/fdmanana/btrfs-tests/scratch_1/mydir/x/y': No such file or directory
rmdir: failed to remove '/home/fdmanana/btrfs-tests/scratch_1/mydir/x': No such file or directory
rm: cannot remove '/home/fdmanana/btrfs-tests/scratch_1/mydir/foo_2': Stale file handle
rm: cannot remove '/home/fdmanana/btrfs-tests/scratch_1/mydir/foo_3': Stale file handle
rmdir: failed to remove '/home/fdmanana/btrfs-tests/scratch_1/mydir': Directory not empty
Fsck, without this fix, also complains about the wrong link count:
root 5 inode 257 errors 2001, no inode item, link count wrong
unresolved ref dir 258 index 2 namelen 5 name foo_2 filetype 1 errors 4, no inode ref
unresolved ref dir 258 index 3 namelen 5 name foo_3 filetype 1 errors 4, no inode ref
So fix this by logging the inodes that the dentries point to when
fsyncing a directory.
A test case for xfstests follows.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
After looking at Liu Bo's recent patch (titled
"Btrfs: fix comp_oper to get right order") I realized the search made by
qgroup_oper_exists() was buggy because its rbtree navigation comparison
function, comp_oper_exist(), only looks at the fields bytenr and ref_root
of a tree node, ignoring the seq field completely. This was wrong because
when we insert a node into the rbtree we use comp_oper(), which takes a
decision based first on bytenr, then on seq and then on the ref_root field.
That means qgroup_oper_exists() could miss the fact that at least one
operation with given bytenr and ref_root exists.
Consider the following simple example of a 3 nodes qgroup operations
rbtree (created using comp_oper before this patch), where each node's key
is a tuple with the shape (bytenr, seq, ref_root, op):
[ (4096, 2, 20, op X) ]
/ \
/ \
[ (4096, 1, 5, op Y) ] [ (4096, 3, 10, op Z) ]
qgroup_oper_exists() when called to search for an existing operation for
bytenr 4096 and ref root 10 wouldn't find anything because it would go to
the left subtree instead of the right subtree, since comp_oper_exits()
ignores the seq field completely.
Fix this by changing the insertion navigation function to use the ref_root
field right after using the bytenr field and before using the seq field,
so that qgroup_oper_exists() / comp_oper_exist() work as expected.
This patch applies on top of the patch mentioned above from Liu.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
If we fallocate(), without the keep size flag, into an area already covered
by an extent previously fallocated, we were updating the inode's i_size but
we weren't updating the inode item in the fs/subvol tree. A following umount
+ mount would result in a loss of the inode's size (and an fsync would miss
too the fact that the inode changed).
Reproducer:
$ mkfs.btrfs -f /dev/sdd
$ mount /dev/sdd /mnt
$ fallocate -n -l 1M /mnt/foobar
$ fallocate -l 512K /mnt/foobar
$ umount /mnt
$ mount /dev/sdd /mnt
$ od -t x1 /mnt/foobar
0000000
The expected result is:
$ od -t x1 /mnt/foobar
0000000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
*
2000000
A test case for fstests follows soon.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
The logic to detect path loops when attempting to apply a pending
directory rename, introduced in commit
f959492fc1 (Btrfs: send, fix more issues related to directory renames)
is no longer needed, and the respective fstests test case for that commit,
btrfs/045, now passes without this code (as well as all the other test
cases for send/receive).
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
If a directory's reference ends up being orphanized, because the inode
currently being processed has a new path that matches that directory's
path, make sure we evict the name of the directory from the name cache.
This is because there might be descendent inodes (either directories or
regular files) that will be orphanized later too, and therefore the
orphan name of the ancestor must be used, otherwise we send issue rename
operations with a wrong path in the send stream.
Reproducer:
$ mkfs.btrfs -f /dev/sdb
$ mount /dev/sdb /mnt
$ mkdir -p /mnt/data/n1/n2/p1/p2
$ mkdir /mnt/data/n4
$ mkdir -p /mnt/data/p1/p2
$ btrfs subvolume snapshot -r /mnt /mnt/snap1
$ mv /mnt/data/p1/p2 /mnt/data
$ mv /mnt/data/n1/n2/p1/p2 /mnt/data/p1
$ mv /mnt/data/p2 /mnt/data/n1/n2/p1
$ mv /mnt/data/n1/n2 /mnt/data/p1
$ mv /mnt/data/p1 /mnt/data/n4
$ mv /mnt/data/n4/p1/n2/p1 /mnt/data
$ btrfs subvolume snapshot -r /mnt /mnt/snap2
$ btrfs send /mnt/snap1 -f /tmp/1.send
$ btrfs send -p /mnt/snap1 /mnt/snap2 -f /tmp/2.send
$ mkfs.btrfs -f /dev/sdc
$ mount /dev/sdc /mnt2
$ btrfs receive /mnt2 -f /tmp/1.send
$ btrfs receive /mnt2 -f /tmp/2.send
ERROR: rename data/p1/p2 -> data/n4/p1/p2 failed. no such file or directory
Directories data/p1 (inode 263) and data/p1/p2 (inode 264) in the parent
snapshot are both orphanized during the incremental send, and as soon as
data/p1 is orphanized, we must make sure that when orphanizing data/p1/p2
we use a source path of o263-6-o/p2 for the rename operation instead of
the old path data/p1/p2 (the one before the orphanization of inode 263).
A test case for xfstests follows soon.
Reported-by: Robbie Ko <robbieko@synology.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
If the clone root was not readonly or the dead flag was set on it, we were
leaving without decrementing the root's send_progress counter (and before
we just incremented it). If a concurrent snapshot deletion was in progress
and ended up being aborted, it would be impossible to later attempt to
delete again the snapshot, since the root's send_in_progress counter could
never go back to 0.
We were also setting clone_sources_to_rollback to i + 1 too early - if we
bailed out because the clone root we got is not readonly or flagged as dead
we ended up later derreferencing a null pointer because we didn't assign
the clone root to sctx->clone_roots[i].root:
for (i = 0; sctx && i < clone_sources_to_rollback; i++)
btrfs_root_dec_send_in_progress(
sctx->clone_roots[i].root);
So just don't increment the send_in_progress counter if the root is readonly
or flagged as dead.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
After we locked the root's root item, a concurrent snapshot deletion
call might have set the dead flag on it. So check if the dead flag
is set and abort if it is, just like we do for the parent root.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
If we deleted xattrs from a file and fsynced the file, after a log replay
the xattrs would remain associated to the file. This was an unexpected
behaviour and differs from what other filesystems do, such as for example
xfs and ext3/4.
Fix this by, on fsync log replay, check if every xattr in the fs/subvol
tree (that belongs to a logged inode) has a matching xattr in the log,
and if it does not, delete it from the fs/subvol tree. This is a similar
approach to what we do for dentries when we replay a directory from the
fsync log.
This issue is trivial to reproduce, and the following excerpt from my
test for xfstests triggers the issue:
_crash_and_mount()
{
# Simulate a crash/power loss.
_load_flakey_table $FLAKEY_DROP_WRITES
_unmount_flakey
_load_flakey_table $FLAKEY_ALLOW_WRITES
_mount_flakey
}
rm -f $seqres.full
_scratch_mkfs >> $seqres.full 2>&1
_init_flakey
_mount_flakey
# Create out test file and add 3 xattrs to it.
touch $SCRATCH_MNT/foobar
$SETFATTR_PROG -n user.attr1 -v val1 $SCRATCH_MNT/foobar
$SETFATTR_PROG -n user.attr2 -v val2 $SCRATCH_MNT/foobar
$SETFATTR_PROG -n user.attr3 -v val3 $SCRATCH_MNT/foobar
# Make sure everything is durably persisted.
sync
# Now delete the second xattr and fsync the inode.
$SETFATTR_PROG -x user.attr2 $SCRATCH_MNT/foobar
$XFS_IO_PROG -c "fsync" $SCRATCH_MNT/foobar
_crash_and_mount
# After the fsync log is replayed, the file should have only 2 xattrs, the ones
# named user.attr1 and user.attr3. The btrfs fsync log replay bug left the file
# with the 3 xattrs that we had before deleting the second one and fsyncing the
# file.
echo "xattr names and values after first fsync log replay:"
$GETFATTR_PROG --absolute-names --dump $SCRATCH_MNT/foobar | _filter_scratch
# Now write some data to our file, fsync it, remove the first xattr, add a new
# hard link to our file and commit the fsync log by fsyncing some other new
# file. This is to verify that after log replay our first xattr does not exist
# anymore.
echo "hello world!" >> $SCRATCH_MNT/foobar
$XFS_IO_PROG -c "fsync" $SCRATCH_MNT/foobar
$SETFATTR_PROG -x user.attr1 $SCRATCH_MNT/foobar
ln $SCRATCH_MNT/foobar $SCRATCH_MNT/foobar_link
touch $SCRATCH_MNT/qwerty
$XFS_IO_PROG -c "fsync" $SCRATCH_MNT/qwerty
_crash_and_mount
# Now only the xattr with name user.attr3 should be set in our file.
echo "xattr names and values after second fsync log replay:"
$GETFATTR_PROG --absolute-names --dump $SCRATCH_MNT/foobar | _filter_scratch
status=0
exit
The expected golden output, which is produced with this patch applied or
when testing against xfs or ext3/4, is:
xattr names and values after first fsync log replay:
# file: SCRATCH_MNT/foobar
user.attr1="val1"
user.attr3="val3"
xattr names and values after second fsync log replay:
# file: SCRATCH_MNT/foobar
user.attr3="val3"
Without this patch applied, the output is:
xattr names and values after first fsync log replay:
# file: SCRATCH_MNT/foobar
user.attr1="val1"
user.attr2="val2"
user.attr3="val3"
xattr names and values after second fsync log replay:
# file: SCRATCH_MNT/foobar
user.attr1="val1"
user.attr2="val2"
user.attr3="val3"
A patch with a test case for xfstests follows soon.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>